
DI-BENCH: Benchmarking Large Language Models on Dependency
Inference with Testable Repositories at Scale

Anonymous ACL submission

Abstract001

Large Language Models have advanced auto-002
mated software development, however, it re-003
mains a challenge to correctly infer depen-004
dencies, namely, identifying the internal com-005
ponents and external packages required for a006
repository to successfully run. Existing stud-007
ies highlight that dependency-related issues008
cause over 40% of observed runtime errors009
on the generated repository. To address this,010
we introduce DI-BENCH1, a large-scale bench-011
mark and evaluation framework specifically012
designed to assess LLMs’ capability on depen-013
dency inference. The benchmark features 600014
repositories with testing environments across015
Python, C#, Rust, and JavaScript. Extensive016
experiments with textual and execution-based017
metrics reveal that the current best-performing018
model achieves only a 48% execution pass019
rate on Python, indicating significant room for020
improvement. DI-BENCH establishes a new021
viewpoint for evaluating LLM performance on022
repositories, paving the way for more robust023
end-to-end software synthesis.024

1 Introduction025

Large Language Models (LLMs) have revolu-026

tionized automated software development, scal-027

ing from function-level code completion (GitHub,028

2023) to repository-level code synthesis (Wang029

et al., 2024; Qian et al., 2024; Ibrahimzada et al.,030

2024). A pivotal yet often overlooked step is to031

ensure that generated repositories are fully exe-032

cutable. This requires accurate inference and inte-033

gration of all necessary dependencies, both inter-034

nal (across project components) and external (from035

package ecosystems). Without robust dependency036

inference, even the most advanced code generation037

solutions risk failing at runtime, impeding further038

iteration, evaluation, and reliable deployment.039

As illustrated in Figure 1, dependency inference040

involves understanding the intricate relationships041

1code: https://github.com/DIBench/DIBench

A Python Repository

src/

metrics.py
main.py

$__init$__.py

tests/
test_main.py

pyproject.toml
README.md

$$...

[build-system]
build-backend = $$...

[project]
name = "A Python Project"
authors = [$$...]
classifiers = {$$...}
dependencies = [
 "pandas$==1.5.3",
 "scikit-learn$==1.1.0",
]

[tool.setuptools]
$$...

pyproject.toml

Crucial for exec!

Figure 1: An example of Python project dependencies.

within the codebase and mapping out the exter- 042

nal packages required for execution. Such depen- 043

dencies are typically documented in configuration 044

files that may vary from language to language (see 045

Appendix A). Correctly reconstructing these rela- 046

tionships is a foundational capability: it not only 047

ensures that code generation tools produce func- 048

tional and self-contained repositories, but it also in- 049

forms deeper reasoning about project architecture 050

and build systems (PyPI, 2024; crates.io, 2024). 051

Consequently, mastering dependency inference is 052

a critical leap forward for enabling robust, end-to- 053

end software synthesis and maintenance. 054

Despite the significance of dependency infer- 055

ence, current LLM-based approaches struggle in 056

this area. Works like ChatDev (Qian et al., 2024) 057

and DevBench (Li et al., 2024a)—pioneers in 058

repository-level generation using multi-agent LLM 059

systems—have reported that dependency-related 060

issues (e.g., missing or incorrectly specified mod- 061

ules) account for over 50% of their observed run- 062

time errors. MetaGPT (Hong et al., 2024) also 063

demonstrates that missing or incorrectly generated 064

dependencies represent one of the most significant 065

hallucinations when LLMs attempt to generate the 066

entire project. These challenges highlight the dif- 067

ficulty that state-of-the-art models face in accu- 068

rately navigating build systems and package repos- 069

itories. Although existing repository-level bench- 070

1

https://github.com/DIBench/DIBench

marks such as SWEBench (Jimenez et al., 2023),071

RepoBench (Liu et al., 2023), and DevBench (Li072

et al., 2024a) offer valuable insights into a model’s073

ability to handle large contexts and generate code074

at scale, none focuses on systematically evaluating075

dependency inference capabilities.076

To address this critical gap, we introduce DI-077

BENCH, the first comprehensive repository-level078

benchmark dedicated to dependency inference. DI-079

BENCH comprises 600 verified repositories, includ-080

ing 400 regular-sized and 200 large-sized, across081

four popular programming languages (Python, C#,082

Rust, and JavaScript). Each repository is carefully083

curated to assess a model’s ability to identify both084

internal and external dependencies. We pair this085

dataset with a rigorous, multi-faceted evaluation086

framework. Beyond measuring textual matching087

accuracy between model-generated and ground-088

truth dependencies, we propose a novel CI-based089

execution evaluation by reusing each repository’s090

intrinsic Continuous Integration (CI) pipelines as091

automated test harnesses. This approach enables092

scalable and objective assessment of end-to-end ex-093

ecutability, eliminating the costly and error-prone094

need for manual environment setup.095

Through comprehensive experiments on various096

LLMs and prompting strategies, we observed that097

even the best-performing LLM achieved only a098

53% executability rate. This finding highlights sig-099

nificant room for future improvement in this area.100

Further analysis revealed that several factors in-101

fluence performance, including the dependency102

amount and repository size. Notably, issues such103

as hallucination and challenges related to depen-104

dency metadata emerged as critical bottlenecks that105

adversely affect model performance.106

In summary, our contributions are as follows:107

• DI-BENCH Benchmark: We introduce a pio-108

neering, large-scale, dependency-focused bench-109

mark featuring 600 repositories spanning 4 pop-110

ular programming languages. It establishes a111

new standard for evaluating LLMs’ capabilities112

in realistic, repository-scale scenarios.113

• Dual-Use CI Infrastructure: We leverage CI114

workflows not only to identify executable reposi-115

tories during dataset curation but also to serve as116

a reliable, fully automated test environment. By117

using CI pipelines, we ensure that dependency118

checks remain robust, scalable, and faithful to119

real-world development practices.120

• Granular Evaluation Metrics: We combine 121

coarse-grained runtime executability measures 122

with fine-grained precision and recall on inferred 123

dependencies. This dual-layered approach en- 124

ables systematic and insightful analysis of both 125

functional correctness and textual accuracy. 126

By spotlighting dependency inference and offering 127

a dedicated benchmark, our work lays the founda- 128

tion for advancing LLMs toward robust, end-to-end 129

repository-level software synthesis. 130

2 Related Works 131

Repository-level coding tasks have attracted in- 132

creasing attention in recent years. Many bench- 133

marks (Zhang et al., 2023; Liu et al., 2023; Ding 134

et al., 2023) center on code completion at various 135

level such as next tokens completion and function 136

generation. SWE-Bench and its variant (Jimenez 137

et al., 2023; Yang et al., 2024) challenge LLMs 138

systems with issues from real-world Python reposi- 139

tories. More recent studies explore LLMs’ capabil- 140

ities in complete project generation. DevBench (Li 141

et al., 2024a) decomposes the project development 142

into multiple stages and evaluates performance at 143

each stage. Agent-As-a-Judge (Zhuge et al., 2024) 144

introduces DevAI, innovatively employing LLM 145

agents to evaluate development outcomes. 146

However, existing works have not adequately 147

addressed build configuration evaluation: code 148

completion tasks (Zhang et al., 2023; Liu et al., 149

2023; Ding et al., 2023) do not generate build 150

files, and issue-fixing benchmarks like SWE- 151

Bench (Jimenez et al., 2023) contain only 1% of 152

patches related to build configurations. In reposi- 153

tory generation tasks (Li et al., 2024a; Zhuge et al., 154

2024), build file generation is merely treated as one 155

subtask without dedicated evaluation. 156

Recent works on dependency or version spe- 157

cific code generation (Wu et al., 2024b; Liu et al., 158

2024b; Islah et al., 2024; Kuhar et al., 2024) have 159

explored code generation tasks based on evolv- 160

ing dependencies and API usage changes. Our 161

paper aims to infer the dependencies from exist- 162

ing code, which can be seen as the reverse pro- 163

cess. Prior research in dependency inference (Ye 164

et al., 2022; damnever, 2024) has predominantly 165

focused on Python using program analysis, while 166

lacking broader language coverage. Our study fills 167

in this gap by providing a benchmark specifically 168

designed for evaluating dependency inference ca- 169

pability across multiple mainstream languages. 170

2

import sklearn.metrics
import pandas as pd

def get_metric():
 if task $== 'classification':
 if label[columns[0]].nunique() > 2:
 metric = 'accuracy'
 else:
 metric = 'roc_auc'
 else:
 metric = 'r2'
 assert metric in sklearn.metrics.SCORERS.keys()

🤖 LLM

Generate code:

Cannot be executed directly ❌
Need dependency packages!

Generate configuration file:

dependencies = [
 "pandas$>=0.20.3",
 "scikit-learn$>=1.2.2",
]

🤖 LLM

dependencies = [
 "pandas$==1.5.3",
 "scikit-learn$==1.1.0",
]

Ground Truth

🤕

Version mismatch:
requires scikit-learn<=1.1.0

Deprecated in version 1.2.0

Run test AttributeError: module
'sklearn.metrics' has
no attribute 'SCORERS'

🙂
Run test

Test Pass!

LLM may fail to identify dependencies
used in its generated code

🧑💻 Help me write the code
do the following: ...

Figure 2: An example of incorrectly identifying dependencies used in code.

3 Dependency Inference171

Although many studies focus on repository code172

generation with LLMs recently, there exists a sig-173

nificant gap between the generated code and the ex-174

ecutable and operational software, Dependency. In175

this paper, we adapt Dependency Inference, which176

aims to generate a list of dependencies for a given177

codebase. As shown in Figure 2, the code gener-178

ated by LLM cannot be executed directly without179

installing the required dependencies; However, it180

is non-trivial to identify the correct dependencies.181

The illustrated example shows that the LLM gen-182

erates dependencies with a wrong version (‘scikit-183

learn==1.1.0’ rather than ‘scikit-learn>=1.2.2’),184

resulting in an execution failure.185

Automatic and accurate dependency inference186

makes end-to-end code development possible by187

installing the inferred dependencies for execution.188

Furthermore, it can enable key scenarios like fully-189

automated evaluation and iterative code improve-190

ment with execution feedback. Besides the reposi-191

tory, dependency inference can be also applied to192

small code snippets like Python Notebook, incre-193

mental code changes, and etc.194

Formally, the task is formulated as below: Given195

a software repository containing many source196

code files and build configuration files where197

dependency-related sections are masked, the de-198

pendency inference task aims to generate a list199

of inferred dependencies to fill into the config-200

uration. Formally, we define the task as: F:201

(R, {bm1 , bm2 , ..., bmk }) → {b1, b2, ..., bk}, where R202

denotes the repository including all source files,203

bmi is a build configuration file with dependency204

masked/removed, bi is a build configuration with205

the inferred dependencies. The output candi-206

date space consists of every possible combina-207

tions of dependencies and versions for each pro- 208

gramming language, while format and grammar 209

of dependencies are also considered during eval- 210

uation. For example, in a Python project, given 211

a pyproject.toml file with masked dependency 212

sections and all source code files, the task is to edit 213

pyproject.toml file to specifying all dependen- 214

cies required by the project. 215

4 DI-BENCH 216

Focused on the task of dependency inference, we in- 217

troduce DI-BENCH, a meticulously curated, large- 218

scale benchmark dataset and evaluation framework 219

at the repository level. DI-BENCH encompasses 220

600 real-world, testable repository instances across 221

4 programming languages, providing a comprehen- 222

sive platform for assessing LLM-based methods in 223

identifying and managing repository dependencies. 224

4.1 Statistics & Features 225

DI-BENCH’s instances, sourced from real-world 226

repositories, are categorized into two subsets based 227

on repository size: regular and large. The regular 228

subset includes repositories with fewer than 120k 229

tokens2, ensuring they fit within the context length 230

limits of recent LLMs. It comprises 400 instances 231

(100 per language) with an average of 12.1 depen- 232

dencies. The large subset consists of 200 reposito- 233

ries (50 per language) with more than 120k tokens 234

and the average dependency count is 29.3. Table 1 235

provides detailed statistics of DI-BENCH, while 236

Figure 10 illustrates the overall distribution of to- 237

ken and dependency counts using Kernel Density 238

Estimation (KDE) curves. The dataset exhibits a 239

wide size distribution, with smaller repositories 240

being more prevalent. Table 6 in Appendix C pro- 241

2Tokens are counted using the Llama 3.2 tokenizer.

3

Table 1: Statistical summary of DI-BENCH

Subset Lang #Files #LoC #Tokens #Deps. #Tests

Regular

Python 31.1 3.1K 31K 5.9 46.6
Rust 20.0 3.4K 32K 10.8 21.0
C# 69.7 4.1K 39K 26.2 29.8
JS 15.1 1.6K 15K 5.6 42.0
Avg. 33.9 3.0K 29K 12.1 34.9

Large

Python 268.3 45.6K 519K 11.8 547.3
Rust 94.3 23.6K 279K 45.2 153.4
C# 252.2 23.9K 238K 43.4 132.6
JS 139.8 26.6K 383K 15.9 291.1
Avg. 214.1 33.3K 387K 29.3 281.1

vides a comparative analysis of the features dis-242

tinguishing DI-BENCH from existing code task243

benchmarks. The unique attributes of DI-BENCH244

include:245

Beyond Code. DI-BENCH focuses on a crucial246

challenge in real-world software development: de-247

pendency inference. This essential aspect is often248

overlooked in existing studies.249

Test Execution. DI-BENCH not only evaluates re-250

sult correctness through textual matching but also251

executes project test suites, providing a straightfor-252

ward and reliable evaluation.253

Practical and Verified. The repository instances254

included in DI-BENCH are sourced from real-255

world projects on GitHub, thus making the bench-256

mark both practical and challenging. Each project257

undergoes verification to ensure its validity.258

Diverse Long Inputs. The dataset includes two259

subsets, regular and large, with a wide distr ibution260

of context lengths, ranging from small repositories261

with a few files to large projects with over 200 files.262

Continually Updatable. We have developed a263

dataset curation pipeline that is fully automated,264

scalable, and continuously updatable, eliminating265

the need for manual annotation to set up environ-266

ments and run tests.267

Open Solution. Our evaluation framework fea-268

tures two complementary datasets: while both the269

regular and large sets welcome various approaches270

including language models and agentic systems,271

the large set presents additional challenges of272

model context limits, specifically motivating the273

exploration of novel methodologies.274

4.2 Dataset Construction275

Creating a dataset that supports execution-based276

evaluation at the repository level is challenging.277

Previous works often involve manual setting up278

environments and writing test scripts, which can279

require significant human and engineering effort280

and cannot scale up to larger datasets. As shown in 281

Table 6, the existing largest repository-level bench- 282

mark supporting test execution contains only 25 283

repositories. To address this, we leverage GitHub 284

Actions (GitHub, 2024)—a widely used continu- 285

ous integration (CI) tool that allows developers to 286

automate test execution through YAML configura- 287

tion files. By reusing these developer-written CI 288

workflows within repositories, we propose an au- 289

tomated curation pipeline that eliminates human 290

engagement during the benchmark construction, 291

ultimately resulting in a dataset of 600 testable 292

repositories—24 times larger than the largest pre- 293

vious benchmark. With the large-scale dataset, we 294

can provide more generalizable insights and more 295

robust evaluations. Figure 3 illustrates steps to 296

construct DI-BENCH with details listed below. 297

Repository Crawling. The goal of this phase 298

is to collect GitHub repositories that meet the 299

following criteria: 1) Written in one of the four 300

programming languages: Python, C#, Rust, or 301

JavaScript (The characteristics of these languages 302

and their dependency configurations are detailed 303

in Appendix A). These languages are popular, pos- 304

sess a standardized dependency packages ecosys- 305

tem, and have clear standards for specifying de- 306

pendencies. 2) Have more than 100 stars, serv- 307

ing as a quality filter criterion. 3) Repository 308

size is less than 10MB to avoid extremely large 309

repositories and maintain a manageable dataset 310

size. 4) Most importantly, the repository must have 311

GitHub Actions enabled, indicated by the presence 312

of the .github/workflows folder. Repositories 313

that meet these criteria proceed as candidate repos- 314

itories into subsequent phases. 315

Test Job Locating. Repositories often define 316

multiple workflows to perform tasks unrelated to 317

testing, such as linting and publishing. These tasks 318

may also be defined within different jobs in the 319

same workflow configuration file. Due to the lack 320

of a specific naming convention, we introduce an 321

LLM-assisted locating process to identify the spe- 322

cific jobs responsible for executing project tests. 323

At the execution stage, only the test job will be run. 324

Execution Validating. We use act (nektos, 325

2024) as the runner for GitHub Actions, enabling 326

local execution of testing CI. In this phase, by ex- 327

ecuting the test jobs of candidate repositories, we 328

obtain those that successfully follow the workflow 329

and pass all tests as expected. The validation phase 330

4

‣ 4 Languages

‣ Stars > 100

‣ Github Actions Enabled

‣ Size < 10 MB

Repository Crawling

Candidate Repos

Test Job Locating

‣ Which is Testing CI?
.github/
 └──workflows/
 ├──lint.yml
 ├──test.yml
 └──publish.yml
name: Main test
jobs:
 $$...
 test:
 runs-on: ubuntu-latest
 steps:
 - name: Install dependencies
 run: pip install .[dev]
 - name: Run test
 run: pytest ./test_folder

Locate Testing Job

Execution Validating

‣ CI Runner

‣ Run actions/setup-python

‣ Install dependencies

‣ Run test

$== 132 passed, 3 skipped in 320.76s $==

‣ Complete Job

‣ Run actions/checkout 1s

55s

1m 21s

5m 20s

0s

Verified

mask
Repo Instance

Figure 3: CI-based curation pipeline for DI-BENCH.

ensures that the selected repositories are correct331

and executable. This further highlights the advan-332

tage of our proposed CI-based testing approach:333

fully automated and scalable.334

Dependency Masking. After the validation, we335

utilized an automated script to remove the sections336

specifying dependencies in the configuration files.337

We further performed sanitization by removing any338

existing dependency lock files (e.g., in JavaScript)339

to prevent potential ground truth leakage and en-340

sure proper execution. This process ultimately pro-341

duced the instances included in DI-BENCH.342

5 Experiment Setup343

This section provides a detailed description of the344

experimental settings, including the LLMs, base-345

line methods, and evaluation metrics.346

Baseline Methods. We designed three baseline347

systems with various prompting strategies in the348

dependency inference task, intentionally avoiding349

complex techniques such as agent-based methods.350

• All-In-One: The approach concatenates all the351

source code of a repository into a single query for352

model generation. It serves as a straightforward353

yet computationally intensive baseline.354

• File-Iterate: The method processes each individ-355

ual file in the repository to generate dependen-356

cies, with the results subsequently aggregated357

to feed into the model for generating the final358

output. This simulates a modular and distributed359

reasoning approach.360

• Imports-Only: The approach collects all import-361

related statements from the code base as the in-362

put context to LLMs using tree-sitter (tree-sitter,363

2024). For Python and JavaScript, we extract all364

import statements; for C# and Rust, we extract365

all use statements. More details about tree-sitter 366

are provided in the Appendix G.4. 367

Additionally, we report the human performance 368

in Appendix D via recruiting experienced develop- 369

ers. Two additional baselines including program 370

analysis approach and Retrieval-Augmented Gener- 371

ation (RAG) baseline are presented in Appendix F. 372

Metrics. we use textual and execution-based met- 373

rics, and the fake rate in evaluation. 374

• Textual Accuracy assesses whether the generated 375

dependencies align with the ground truth from 376

a textual matching perspective. We compute the 377

Precision (ratio of correct dependencies among 378

model-generated ones), Recall (Ratio of correct 379

dependencies among all ground-truth ones), and 380

F1 (The harmonic mean of the above). 381

• Executability Rate measures whether the project 382

can be successfully built and executed through CI 383

testing pipeline with the generated dependencies. 384

A score of 1 is assigned if all tests passed suc- 385

cessfully; otherwise, a score of 0 will be given. 386

Whether the tests pass is the most direct and reli- 387

able indicator of the correctness of the generated 388

dependencies. 389

• Fake Rate represents the proportion of the gen- 390

erated dependencies that cannot be found in the 391

package ecosystem (for external dependencies) 392

or in the local repository directory (for internal 393

dependencies). It highlights the hallucination is- 394

sue in LLMs, where non-existent dependencies 395

or versions are generated. 396

Models. Since code repositories are usually very 397

long, we choose LLMs that support at least 398

128k context windows as the backbone mod- 399

els, including proprietary models: GPT-4o (Ope- 400

nAI, 2024b), GPT-4o-mini (OpenAI, 2024a), 401

5

Table 2: Performance of benchmark methods across programming languages and repository sizes on GPT-4o, where
Exec denotes the executability rate, P/R/F1 denote Precision, Recall, and F1-score, FR denotes Fake Rate, which is
the lower, the better. Note that the Large repositories cannot fit into the All-In-One method (denoted with ‘-’).

Lang Method
Regular Large

Exec P R F1 FR Exec P R F1 FR

Python
All-In-One 42.0 62.6 72.9 67.4 2.7 - - - - -
File-Iterate 29.0 39.1 74.3 51.3 4.4 8.0 19.5 35.3 25.1 6.4
Imports-Only 36.0 57.5 73.9 64.7 3.7 18.0 36.9 46.9 41.3 23.1

Rust
All-In-One 11.0 93.7 74.7 83.2 0.9 - - - - -
File-Iterate 8.0 74.8 76.1 75.4 1.2 2.0 45.0 69.1 54.5 6.2
Imports-Only 4.0 89.0 65.4 75.4 1.1 2.0 84.9 51.0 63.7 12.1

C#
All-In-One 13.0 60.6 39.5 47.8 3.5 - - - - -
File-Iterate 5.0 28.0 34.1 30.8 6.5 0.0 20.4 33.0 25.2 6.0
Imports-Only 3.0 52.4 29.5 37.8 5.0 0.0 49.1 19.2 27.6 6.3

JavaScript
All-In-One 42.0 86.4 66.7 75.3 4.6 - - - - -
File-Iterate 32.0 52.0 61.2 56.3 2.9 16.0 33.6 54.5 41.6 3.5
Imports-Only 22.0 73.0 45.7 56.2 6.0 8.0 47.9 17.5 25.7 2.8

Claude 3.5 Sonnet (Anthropic, 2025), and Gem-402

ini 2.0 Flash (Google, 2025), and open-source403

models: Qwen-Coder-V2.5-Instruct (Hui et al.,404

2024), Llama 3.1-Instruct (Grattafiori et al., 2024),405

DeepSeek-Coder-V2-Lite-Instruct (MoE) (Guo406

et al., 2024) and DeepSeek V3 (Liu et al., 2024a).407

Detailed settings on model serving are presented408

in Appendix G.5.409

6 Experimental Results410

6.1 Performance of Baseline Methods411

We start by conducting preliminary experiments412

utilizing three baseline systems — All-In-One,413

File-Iterate, and Imports-Only on GPT-4o and GPT-414

4o-Mini (Table 9 in Appendix G.1), encompassing415

both the regular and large subsets. Table 2 shows416

the results with several key insights:417

Challenging Nature of Dependency Inference418

Dependency inference presents a significant chal-419

lenge for contemporary LLMs. In the regular420

subset (< 120k tokens), even one of the best-421

performing models achieved executability rates of422

below 50% for scripting languages such as Python423

and JavaScript and only around 10% for compiled424

languages like Rust and C#. These findings un-425

derscore the limitations of current models in accu-426

rately inferring dependencies in various languages.427

Impact of Repository Size Large repositories,428

characterized by extensive contexts and complex429

dependency structures, are more challenging for430

dependency inference. Executability rates in the431

large subset were markedly lower across all base-432

line methods compared to the regular subset. For433

File-Iterate and Imports-Only, the performance gap 434

was especially evident, indicating the difficulty of 435

adapting these methods to large repositories. 436

Importance of Models and Prompting Strate- 437

gies The choice of LLMs and prompting contexts 438

play crucial roles in determining performance. For 439

instance, the All-In-One approach with GPT-4o, 440

by merging the entire code base into a single query, 441

consistently outperformed other methods on exe- 442

cutability. However, this approach does not work 443

for larger repositories. While the File-Iterate and 444

Imports-Only methods can handle large reposito- 445

ries, their performance significantly declined with- 446

out the full code context. The finding reveals the 447

trade-off between prompting strategies and repos- 448

itory sizes to achieve optimal performance on de- 449

pendency inference. 450

Hallucination Issues A recurring issue across 451

all methods was the generation of hallucinated de- 452

pendencies, i.e., non-existent packages or versions, 453

as indicated by the Fake Rate. Specifically, we 454

observed a remarkably higher Fake Rate on large 455

subset with Imports-Only method. In Section 6.3, 456

we will show that the hallucination adversely af- 457

fected the executability. 458

6.2 Performance of Different Models 459

For simplicity, we report benchmark results on the 460

DI-BENCH Regular dataset using the All-In-One 461

approach in the following sections. The method 462

has shown superior performance in Table 2 and can 463

reflect a zero-shot setting for the dependency infer- 464

ence task. Specifically, in this section, we evaluate 465

6

Table 3: Model performance across programming languages with the All-In-One approach on DI-BENCH.

Language Model Size Exec P R F1 FR

Python

GPT-4o - 42.0 62.6 72.9 67.4 2.7
GPT-4o-mini - 26.0 57.1 56.3 56.7 1.9
Gemini 2.0 Flash - 42.0 75.0 73.8 74.4 1.6
Claude 3.5 Sonnet - 39.0 74.4 79.6 76.9 1.3
Qwen2.5-Coder-7B-Instruct 7B 22.0 55.7 41.9 47.8 5.3
Llama-3.1-8B-Instruct 8B 13.0 30.1 39.3 34.1 4.2
DeepSeek-Coder-V2-Lite-Instruct 16B(MoE) 17.0 48.0 44.8 46.3 18.4
DeepSeek V3 671B(MoE) 48.0 72.5 74.3 73.4 1.5

Rust

GPT-4o - 11.0 93.7 74.7 83.2 0.9
GPT-4o-mini - 7.0 76.1 49.3 59.8 1.1
Gemini 2.0 Flash - 14.0 94.7 76.2 84.5 1.6
Claude 3.5 Sonnet - 39.0 96.8 92.6 94.7 8.2
Qwen2.5-Coder-7B-Instruct 7B 6.0 71.6 41.4 52.5 2.1
Llama-3.1-8B-Instruct 8B 1.0 58.1 38.1 46.0 11.3
DeepSeek-Coder-V2-Lite-Instruct 16B(MoE) 2.0 75.8 40.6 52.8 2.8
DeepSeek V3 671B(MoE) 20.0 93.5 82.5 87.7 1.4

C#

GPT-4o - 13.0 60.6 39.5 47.8 3.5
GPT-4o-mini - 4.0 42.1 22.5 29.3 11.5
Gemini 2.0 Flash - 21.0 65.1 48.2 55.4 4.3
Claude 3.5 Sonnet - 31.0 74.7 54.1 62.8 0.4
Qwen2.5-Coder-7B-Instruct 7B 1.0 22.6 17.2 19.6 14.7
Llama-3.1-8B-Instruct 8B 0.0 14.9 8.4 10.7 21.2
DeepSeek-Coder-V2-Lite-Instruct 16B(MoE) 1.0 33.6 7.0 11.6 9.2
DeepSeek V3 671B(MoE) 16.0 60.0 38.9 47.2 3.0

JavaScript

GPT-4o - 42.0 86.4 66.7 75.3 4.6
GPT-4o-mini - 17.0 83.3 31.0 45.1 2.4
Gemini 2.0 Flash - 24.0 89.6 71.9 79.8 1.1
Claude 3.5 Sonnet - 53.0 88.0 87.7 87.9 2.1
Qwen2.5-Coder-7B-Instruct 7B 17.0 81.6 42.7 56.1 3.4
Llama-3.1-8B-Instruct 8B 9.0 67.4 16.5 26.6 1.4
DeepSeek-Coder-V2-Lite-Instruct 16B(MoE) 17.0 81.8 31.1 45.1 2.3
DeepSeek V3 671B(MoE) 54.0 79.1 77.6 78.3 9.4

various LLMs and report the results in Table 3.466

It reveals Claude 3.5 Sonnet achieves outstand-467

ing performances across all languages. Notably,468

DeepSeek V3 outperforms all models on Python469

and JavaScript. The Qwen-7B model demonstrates470

superior performance than the other two small471

open-sourced models. In addition, we vary the472

model sizes based on the QWen2.5-Coder-Instruct473

series, where the model size ranges from 3B, 7B,474

14B to 32B. We observed that the model in gen-475

eral achieves better performance when increasing476

the model size. The results and more analysis are477

presented in Appendix G.2478

Failure Categories and Distribution. To better479

understand why the execution failed with model-480

generated dependencies, we manually analyzed481

the failure cases of GPT-4o, the best-performing482

model, under the All-In-One setting in Python.483

As shown in Figure 4, the most common failure484

category is “Missing Dependency in Test”, which485

29.8%

22.8%17.5%

14.0%

10.5%
5.3% Categories

Missing Dependency in test
Dependency Not Found in build
Invalid Dependency Version in build
Mismatched Dependency Version in test
Other Failure in test
Other Failure in build

Figure 4: Distribution of failure categories (GPT-4o,
All-In-One setting, Python).

means that the model missed to generate some de- 486

pendencies that are required during the testing eval- 487

uation. Additionally, “Dependency Not Found in 488

Build” and “Invalid Dependency Version in Build” 489

also account for a significant proportion. These in- 490

dicate that the model-generated dependency spec- 491

ifications either include nonexistent packages or 492

specify nonexistent versions, leading to failures 493

when installing generated dependencies. More 494

analysis on case studies and representative root 495

causes are presented in Appendix H. 496

7

Table 4: Execution success improvement by replacing
predicted dependency metadata with oracle metadata.

Language Exec Exec (with Orac.) ∆

Python 42.0 54.0 +28.6%
Rust 11.0 38.0 +245.5%
C# 12.0 15.0 +25%
JavaScript 42.0 65.0 +54.8%

6.3 Further Analysis and Ablation Study497

In this section, we further analyze how repository498

size and the amount of dependencies affect depen-499

dency inference performance, and the impact of500

dependency metadata and the hallucination issue.501

Challenges in dependency inference for larger502

repositories with more dependencies. As illus-503

trated in Figure 5, inference accuracy decreases504

significantly as the number of dependencies grows.505

This trend is consistent across all languages, partic-506

ularly those with complex dependency structures507

like Rust and JavaScript. The decline in perfor-508

mance is attributed to the difficulty of maintaining509

accurate dependency mappings as their quantity510

increases, highlighting spaces for future enhance-511

ment of LLMs. Besides, we made further analysis512

about how the repository size affect the perfor-513

mance on the regular dataset and results are de-514

picted in Figure 13 (Appendix G.3). We observed515

a negative correlation between repository size and516

model performance, which aligns with the find-517

ing obtained in Table 2. This suggests that long-518

context reasoning (Hsieh et al., 2024; Bai et al.,519

2024) remains a significant challenge for LLMs, as520

longer input contexts lead to increased complexity.521

Reasoning the dependency metadata is a bot-522

tleneck. In previous experiments, we found that523

while textual accuracy was relatively high, the exe-524

cutability rate was significantly lower. For exam-525

ple, GPT-4o achieved a precision of 62.6% and526

recall of 72.9% on Python, while the executability527

rate was only 42.0%. We suspect this discrepancy528

arises from incorrect metadata generation in depen-529

dencies, such as package version constraints, extra530

features and so on, (examples can be found in Ap-531

pendix A). To validate this hypothesis, we replaced532

the predicted dependencies with oracle metadata533

and observed a notable increase in the executability534

rate. As shown in Table 4, the Python executability535

rate improved from 42.0% to 54.0%, representing536

a relative increase of 28%. This demonstrates the537

importance of accurate dependency metadata for538

successful execution of dependency configurations.539

0-4 4-8 8-1
2

12
-16

16
-20

20
-24 >24

0

10

20

30

40

Nu
m

be
r o

f I
ns

ta
nc

es

Python
Total
Exec Pass

0-4 4-8 8-1
2

12
-16

16
-20

20
-24 >24

0

5

10

15

20

25

30

35
Rust

Total
Exec Pass

0-8 8-1
6

16
-24

24
-32

32
-40

40
-48 >48

Dependency Count

0

5

10

15

20

25

30

Nu
m

be
r o

f I
ns

ta
nc

es

C#
Total
Exec Pass

0-4 4-8 8-1
2

12
-16

16
-20

20
-24 >24

Dependency Count

0

10

20

30

40

50

JavaScript
Total
Exec Pass

Figure 5: Execution pass rate w.r.t dependency count.

Table 5: Impact of hallucination on exeutability rate.

Language Exec Exec w.o. Fake Dep. ∆

Python 42.0 43.0 +2.4%
Rust 11.0 13.0 +9.1%
C# 12.0 13.0 +8.3%
JavaScript 42.0 42.0 +0%

Hallucination hurts the executability. We ob- 540

served all models generate dependencies that do 541

not exist, as indicated by the fake rate. Although 542

the fake rate was relatively low, excluding the hallu- 543

cinated dependencies can improve the executabil- 544

ity, as shown in Table 5. These improvements, 545

though modest, reinforce the need for more accu- 546

rate dependency predictions. Hallucination issues 547

remain one of the primary obstacles to improving 548

the reliability of dependency inference systems. 549

7 Conclusion 550

We introduce DI-BENCH, the first benchmark ded- 551

icated to dependency inference across 600 repos- 552

itories in four programming languages: Python, 553

C#, Rust, and JavaScript. In addition to measur- 554

ing textual accuracy, we propose a novel CI-based 555

evaluation that incorporates actual tests execution. 556

Extensive experiments on various open-source and 557

proprietary LLMs demonstrate that even the most 558

advanced models struggle to infer dependencies 559

accurately, highlighting opportunities for future ad- 560

vancements. We believe this study lays the ground- 561

work for repository-level code development, with 562

dependency inference serving as a pivotal step to- 563

ward fully automated code generation. 564

8

Limitations565

Our study acknowledges several limitations.566

❶ Due to constraints in computing resources, our567

evaluation primarily focused on five mainstream568

models, selecting smaller model sizes. While these569

models are sufficiently representative, broadening570

the scope to include a greater variety of LLMs571

with diverse sizes could potentially enrich our find-572

ings. ❷ In our experiments, we employed the GPT-573

4o and GPT-4o mini models, which operate as574

black boxes. The outputs may vary due to poten-575

tial model upgrades or fluctuations in resources.576

To mitigate this issue, we provide the dates of the577

model versions used as a reference and set the tem-578

perature to 0 to ensure more consistent outputs.579

❸ Test coverage for each repository may not be580

exhaustive, meaning some test cases might not en-581

compass every possible code path. However, as582

the tests were developed by project contributors,583

the results are expected to reflect practical settings584

accurately.585

Ethics Considerations586

We take ethical considerations very seriously, and587

strictly adhere to the ACL Ethics Policy. The588

dataset were collected from open-source GitHub589

repositories, most of which have clear licenses.590

While we respect the efforts of each repository au-591

thor and comply with the respective licenses, we592

cannot guarantee that all specific requirements of593

individual repositories have been accounted for.594

All the data used in our work is publicly accessible595

and does not involve any ethical concerns.596

References 597

Anthropic. 2025. Claude 3.5 Sonnet. https://www. 598
anthropic.com/news/claude-3-5-sonnet. 599

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 600
Bosma, Henryk Michalewski, David Dohan, Ellen 601
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 602
2021. Program synthesis with large language models. 603
arXiv preprint arXiv:2108.07732. 604

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, 605
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao 606
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, 607
and Juanzi Li. 2024. Longbench: A bilingual, mul- 608
titask benchmark for long context understanding. 609
Preprint, arXiv:2308.14508. 610

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 611
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 612
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 613
Greg Brockman, Alex Ray, Raul Puri, Gretchen 614
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 615
try, Pamela Mishkin, Brooke Chan, Scott Gray, 616
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 617
Kaiser, Mohammad Bavarian, Clemens Winter, 618
Philippe Tillet, Felipe Petroski Such, Dave Cum- 619
mings, Matthias Plappert, Fotios Chantzis, Eliza- 620
beth Barnes, Ariel Herbert-Voss, William Hebgen 621
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 622
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 623
William Saunders, Christopher Hesse, Andrew N. 624
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 625
Morikawa, Alec Radford, Matthew Knight, Miles 626
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 627
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 628
Sutskever, and Wojciech Zaremba. 2021. Evaluating 629
large language models trained on code. Preprint, 630
arXiv:2107.03374. 631

crates.io. 2024. The Rust community’s crate registry. 632
https://crates.io/. 633

damnever. 2024. A tool to generate require- 634
ments.txt for Python project, and more than that. 635
https://github.com/damnever/pigar. 636

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, 637
Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna 638
Ramanathan, Ramesh Nallapati, Parminder Bhatia, 639
Dan Roth, and Bing Xiang. 2023. Crosscodeeval: 640
A diverse and multilingual benchmark for cross-file 641
code completion. Preprint, arXiv:2310.11248. 642

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 643
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 644
Sha, Xin Peng, and Yiling Lou. 2023. Classe- 645
val: A manually-crafted benchmark for evaluating 646
llms on class-level code generation. arXiv preprint 647
arXiv:2308.01861. 648

GitHub. 2023. GitHub Copilot – Your AI pair program- 649
mer. https://github.com/features/copilot. 650

GitHub. 2024. GitHub Actions: Automate your work- 651
flow from idea to production. https://github. 652
com/features/actions. 653

9

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://crates.io/
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://github.com/features/copilot
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions

Google. 2025. Gemini 2.0 Flash. https://deepmind.654
google/technologies/gemini/flash/.655

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,656
Abhinav Pandey, and et al. Abhishek Kadian.657
2024. The llama 3 herd of models. Preprint,658
arXiv:2407.21783.659

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,660
Kai Dong, Wentao Zhang, Guanting Chen, Xiao661
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:662
When the large language model meets programming–663
the rise of code intelligence. arXiv preprint664
arXiv:2401.14196.665

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu666
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,667
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang668
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,669
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro-670
gramming for a multi-agent collaborative framework.671
In The Twelfth International Conference on Learning672
Representations (ICLR).673

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-674
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,675
and Boris Ginsburg. 2024. Ruler: What’s the real676
context size of your long-context language models?677
Preprint, arXiv:2404.06654.678

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-679
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,680
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder681
technical report. arXiv preprint arXiv:2409.12186.682

Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi,683
Muhammad Salman Abid, Rangeet Pan, Saurabh684
Sinha, and Reyhaneh Jabbarvand. 2024. Repository-685
level compositional code translation and validation.686
arXiv preprint arXiv:2410.24117.687

Nizar Islah, Justine Gehring, Diganta Misra, Eilif688
Muller, Irina Rish, Terry Yue Zhuo, and Mas-689
simo Caccia. 2024. Gitchameleon: Unmasking the690
version-switching capabilities of code generation691
models. arXiv preprint arXiv:2411.05830.692

Carlos E Jimenez, John Yang, Alexander Wettig,693
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik694
Narasimhan. 2023. Swe-bench: Can language mod-695
els resolve real-world github issues? arXiv preprint696
arXiv:2310.06770.697

Sachit Kuhar, Wasi Uddin Ahmad, Zijian Wang, Ni-698
hal Jain, Haifeng Qian, Baishakhi Ray, Murali Kr-699
ishna Ramanathan, Xiaofei Ma, and Anoop Deoras.700
2024. Libevolutioneval: A benchmark and study701
for version-specific code generation. arXiv preprint702
arXiv:2412.04478.703

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John704
Yang, Jinyang Li, Shunyu Yao, Chen Qian, Binyuan705
Hui, Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang,706
Dahua Lin, Chao Peng, and Kai Chen. 2024a. De-707
vbench: A comprehensive benchmark for software708
development. Preprint, arXiv:2403.08604.709

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and 710
Zhi Jin. 2024b. Evocodebench: An evolving code 711
generation benchmark aligned with real-world code 712
repositories. arXiv preprint arXiv:2404.00599. 713

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 714
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 715
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a. 716
Deepseek-v3 technical report. arXiv preprint 717
arXiv:2412.19437. 718

Tianyang Liu, Canwen Xu, and Julian McAuley. 719
2023. Repobench: Benchmarking repository-level 720
code auto-completion systems. arXiv preprint 721
arXiv:2306.03091. 722

Zeyu Leo Liu, Shrey Pandit, Xi Ye, Eunsol Choi, and 723
Greg Durrett. 2024b. Codeupdatearena: Benchmark- 724
ing knowledge editing on api updates. arXiv preprint 725
arXiv:2407.06249. 726

nektos. 2024. act: Run your GitHub Actions locally. 727
https://nektosact.com/. 728

OpenAI. 2024a. GPT-4o mini: advancing cost- 729
efficient intelligence. https://openai.com/ 730
index/gpt-4o-mini-advancing-cost-effi_ 731
cient-intelligence/. 732

OpenAI. 2024b. Hello GPT-4o. https://openai. 733
com/index/hello-gpt-4o/. 734

PyPI. 2024. Find, install and publish Python packages 735
with the Python Package Index. https://https: 736
//pypi.org/. 737

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan 738
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng 739
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, 740
and Maosong Sun. 2024. Chatdev: Communica- 741
tive agents for software development. Preprint, 742
arXiv:2307.07924. 743

tree-sitter. 2024. Tree-sitter. https://tree-sitter. 744
github.io/tree-sitter/. 745

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. 746
Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, 747
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. 748
Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill 749
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe 750
Zhang, Binyuan Hui, Junyang Lin, Robert Bren- 751
nan, Hao Peng, Heng Ji, and Graham Neubig. 752
2024. OpenHands: An Open Platform for AI Soft- 753
ware Developers as Generalist Agents. Preprint, 754
arXiv:2407.16741. 755

Qinyun Wu, Chao Peng, Pengfei Gao, Ruida Hu, Haoyu 756
Gan, Bo Jiang, Jinhe Tang, Zhiwen Deng, Zhanming 757
Guan, Cuiyun Gao, et al. 2024a. Repomastereval: 758
Evaluating code completion via real-world reposito- 759
ries. arXiv preprint arXiv:2408.03519. 760

Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu, 761
Suyu Ma, Bo Jiang, Ping Yang, Zhenchang Xing, 762
Yuan-Fang Li, and Gholamreza Haffari. 2024b. Ver- 763
sicode: Towards version-controllable code genera- 764
tion. arXiv preprint arXiv:2406.07411. 765

10

https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2403.08604
https://nektosact.com/
https://openai.com/index/gpt-4o-mini-advancing-cost-effi_cient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-effi_cient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-effi_cient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-effi_cient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-effi_cient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://https://pypi.org/
https://https://pypi.org/
https://https://pypi.org/
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kil-766
ian Lieret, Joyce Yang, Xindi Wu, Ori Press,767
Niklas Muennighoff, Gabriel Synnaeve, Karthik R.768
Narasimhan, Diyi Yang, Sida I. Wang, and Ofir769
Press. 2024. Swe-bench multimodal: Do ai systems770
generalize to visual software domains? Preprint,771
arXiv:2410.03859.772

Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu,773
and Jun Wei. 2022. Knowledge-based environment774
dependency inference for python programs. In 2022775
IEEE/ACM 44th International Conference on Soft-776
ware Engineering (ICSE), pages 1245–1256.777

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin778
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and779
Weizhu Chen. 2023. Repocoder: Repository-level780
code completion through iterative retrieval and gen-781
eration. arXiv preprint arXiv:2303.12570.782

Mingchen Zhuge, Changsheng Zhao, Dylan Ash-783
ley, Wenyi Wang, Dmitrii Khizbullin, Yunyang784
Xiong, Zechun Liu, Ernie Chang, Raghuraman Kr-785
ishnamoorthi, Yuandong Tian, Yangyang Shi, Vikas786
Chandra, and Jürgen Schmidhuber. 2024. Agent-787
as-a-judge: Evaluate agents with agents. Preprint,788
arXiv:2410.10934.789

A Example of Configuration Files 790

This section introduces the types of configuration 791

files for the four languages involved in this paper. 792

These files specify project dependencies and serve 793

as carriers for storing inference results. They also 794

exercise the capabilities of LLMs to interact with 795

modern programming languages build systems, it 796

is important to provide a clear demonstration here. 797

Python (Figure 6) pyproject.toml is the con- 798

figuration file used by most Python projects. It 799

includes sections for specifying metadata such as 800

package names and authors, defining project de- 801

pendencies, and configuring various development 802

tools. 803

Figure 6: An example of pyproject.toml in Python

Rust (Figure 7) Cargo.toml is the configuration 804

file used in Rust projects. A single repository may 805

contain multiple local crates, each with its own 806

Cargo.toml, requiring proper configuration of in- 807

ternal dependency references. 808

C# (Figure 8) Similar to Rust projects, C# repos- 809

itories are often structured as solutions contain- 810

ing multiple internal projects. Each project uses a 811

.csproj configuration file to specify external and 812

internal dependencies and configure compilation 813

options. 814

JavaScript (Figure 9) package.json is the con- 815

figuration file used in JavaScript projects, particu- 816

11

https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1145/3510003.3510127
https://arxiv.org/abs/2410.10934
https://arxiv.org/abs/2410.10934
https://arxiv.org/abs/2410.10934

Figure 7: An example of Cargo.toml in Rust

larly those managed with Node.js. It defines meta-817

data such as the project name, version, and descrip-818

tion, and specifies dependencies, scripts, and entry819

points for the project.820

It can be found that dependency management821

constitutes the majority of the configuration files.822

B Distribution of DI-BENCH Dataset on823

Token Count and Dependency Amount824

Figure 10 illustrates the distribution of token and825

dependency counts across different programming826

languages (Python, Rust, C#, and JavaScript) for827

both Regular and Large repositories. For Regu-828

lar repositories, the token count distribution shows829

that Python and Rust have a higher density at lower830

token counts, indicating that these languages typi-831

cally have smaller codebases. In contrast, C# and832

JavaScript display a more spread-out distribution,833

suggesting a wider range of codebase sizes. When834

examining Large repositories, the token count dis-835

tribution shifts substantially, with all languages836

showing a lower density, highlighting the increased837

complexity and size of codebases in larger reposi-838

tories.839

The dependency count distribution for Regular840

repositories reveals that most dependencies are con-841

centrated in the lower range across all languages,842

Figure 8: An example of example.csproj in C#

Figure 9: An example of package.json in JavaScript

with Python and Rust having slightly higher den- 843

sities at lower counts. For Large repositories, the 844

dependency count distribution shows a similar pat- 845

tern but with slightly higher densities for C# and 846

JavaScript, indicating these languages tend to have 847

more dependencies in larger codebases. 848

C Comparison with Existing Benchmarks 849

As shown in Table 6, we provide a comparative 850

analysis of the features distinguishing DI-BENCH 851

from existing code task benchmarks, including 852

MBPP (Austin et al., 2021), HumanEval (Chen 853

et al., 2021), ClassEval (Du et al., 2023), Re- 854

poEval (Zhang et al., 2023), RepoBench (Liu 855

et al., 2023), CrossCodeEval (Ding et al., 2023), 856

EvoCodeBench (Li et al., 2024b), and RepoMas- 857

12

0k 25k 50k 75k 100k
0

1

2

3

De
ns

ity
 (R

eg
ul

ar
)

1e 5
Python
Rust
C#
JavaScript

0 50 100 150
0.000

0.025

0.050

0.075

0.100

120k500k 1000k 1500k 2000k 2500k
Token count

0

1

2

De
ns

ity
 (L

ar
ge

)

1e 6

0 50 100 150
Dependency count

0.00

0.01

0.02

0.03

Figure 10: Distribution of token and dependency count.

terEval (Wu et al., 2024a)858

859

D Human Experiment860

Since repository-level dependency inference is a861

new task in LLM benchmarking, we conducted862

a human experiment on DI-BENCH to better un-863

derstand the general manner and performance of864

human developers in this task and to uncover the865

gap between LLMs and humans.866

Experiment Setting In DI-BENCH, LLMs need867

to curate the list of dependencies by going through868

the entire repository. To mimic this process, we869

recruited 4 developers who have at least two years870

Python development experience as annotators. We871

sampled 40 repositories from the Python language872

of the regular subset for labelling, and each repos-873

itory involves two annotators to ensure the anno-874

tation quality. For each repository, the annotator875

needs to produce a list of dependencies (includ-876

ing name and version) by reading the source code877

in which the original dependencies were removed.878

It is worth noting that the human annotators are879

allowed to execute the code to test whether the de-880

pendency list is correct and use as feedback. We881

also set a 20-minute time limit for completing each882

repository. The complete instructions for human883

annotators can be found in Figure 11.884

Results Table 7 presents the average metric885

scores of annotators on the sampled instances, com-886

pared with three prompting baselines of GPT-4o.887

Human performance slightly exceeded the best888

score achieved by GPT-4o. In practice, all the889

dependencies are crafted by human developers by890

iteratively identifying the dependency information891

during code development. In our experiment, de- 892

velopers inferred the used packages and versions 893

by consulting dependency package’s documenta- 894

tion and analyzing API usage in the code. When 895

dependency resolution fails or test execution en- 896

counters errors, developers can iteratively refine 897

their answers by referring to the error messages. 898

We observed that participants often relied on search 899

and multi-round debugging to complete their an- 900

swers. This further highlights the significant room 901

for improvement in methods on our benchmark. 902

An agentic approach capable of searching external 903

information and performing interactive debugging 904

would be a promising direction. 905

906

E Program Analysis Baseline 907

Several tools are available for analyzing external 908

dependencies in Python codebases, we choose pi- 909

gar(damnever, 2024) as a baseline. The perfor- 910

mance of pigar in our python subset is shown in 911

Table 10. The lower score showing that LLM’s 912

motivation on dependency inference. 913

F RAG Baseline 914

We propose a simple Retrieval-Augmented Gen- 915

eration (RAG) approach based on our Imports- 916

Only baseline for dependency inference. For each 917

source file, the method utilizes tree-sitter to ex- 918

tract dependency-related statements. These state- 919

ments serve as queries to retrieve semantically sim- 920

ilar content within the same file. The underly- 921

ing hypothesis is that code segments with textual 922

similarity to import statements may contain infor- 923

mation for determining appropriate dependency 924

versions. We conduct experiments with two re- 925

trieval approaches: BM25, and Embedding-based 926

retrieval using OpenAI’s text-embedding-ada-002 927

model. Performance are shown in Table 8. Our 928

experimental results reveals several key limitations 929

in our current RAG implementation. First, using 930

dependency-related statements as queries may be 931

overly simplistic, failing to capture the rich con- 932

textual information needed for dependency version 933

selection. Second, while the retrieved code seg- 934

ments show textual similarity to the queries, they 935

may not contain the critical information necessary 936

for version determination. Finally, our approach to 937

utilizing the retrieved content requires refinement, 938

as we need more effective strategies for integrating 939

and leveraging this information. The chunk size 940

13

Table 6: Comparison of features between existing benchmarks and DI-BENCH

Benchmark Task Evaluation Scope Languages #Repo Curation

MBPP (Austin et al., 2021) Code Generation Unit Tests Function Python N/A Manual
HumanEval (Chen et al., 2021) Code Generation Unit Tests Function Python N/A Manual
ClassEval (Du et al., 2023) Code Generation Unit Tests Class Python N/A Manual
RepoEval (Zhang et al., 2023) Code Completion Textual & Unit Tests Repo-level Python 14 Manual
RepoBench (Liu et al., 2023) Retrieval & Completion Only Textual Repo-level Python, Java 1,669 Automated
CrossCodeEval (Ding et al., 2023) Code Completion Only Textual Repo-level Python, Java, C#, TS 1,002 Automated
EvoCodeBench (Li et al., 2024b) Code Generation Unit Tests Repo-level Python 25 Automated
RepoMasterEval (Wu et al., 2024a) Code Completion Unit Tests Repo-level Python, TS 6 Manual

DI-BENCH Dependency Inference Textual & Test Suite Repo-level Python, Rust, C#, JS 600 Automated

1 # Instructions for Human Annotators
2

3 ## What You Receive:
4 A Python repository where the dependency section in pyproject.toml is masked (only

this file is affected).
5

6 ## What You Do:
7 1. Analyze and infer the dependencies used in the repository.
8 2. Edit pyproject.toml in place , filling in the dependency section.
9 3. Ensure comprehensive coverage of all dependencies used in the code.

10 4. Complete each repository within 20 minutes.
11 5. Specify versions and metadata if necessary.
12 6. Use command -line tools and execute code as needed.
13

14 ## What You Deliver:
15 A repository with the dependency section in pyproject.toml fully restored.
16

17 ## Data Consent Notice:
18 By participating in this annotation task , you agree that your annotations will be

used as part of a human experiment dataset for research purposes. The collected
data will be included in a research paper and made publicly available.

Figure 11: Instructions for human annotators.

Approach Exec P R F1 FR

All-In-One 47.5 63.3 78.5 70.1 1.5
File-Iterate 25.0 37.4 75.1 49.9 4.5
Imports-Only 35.0 54.5 80.4 65.0 3.9

Human 77.5 82.4 91.9 86.9 1.3

Table 7: Human Performance vs. LLM Baselines (on
40 Python Instances)

for BM25 and embeddin 512 and we use top-3941

retrieve results. These findings suggest substan-942

tial room for improvement in RAG methods on943

our benchmark. Future research directions could944

explore more sophisticated query construction ap-945

proaches that incorporate code semantic features946

and project context; enhance similarity computa-947

tion methods to retrieve more relevant content; and948

design more effective strategies for analyzing and949

integrating retrieved information. Additionally, the950

integration of code analysis techniques and project951

dependency graphs could potentially enhance the952

performance of RAG methods. 953

G Additional Experiments 954

G.1 Performance of Baseline Methods with 955

GPT-4o-mini 956

Table 9 presents the performance of various bench- 957

mark methods across different languages and repos- 958

itory sizes (Regular and Large) on GPT-4o-mini. 959

Notably, the effectiveness of these methods varies 960

significantly between Regular and Large reposi- 961

tories, with performance generally declining as 962

repository size increases. Python and Rust show 963

relatively higher performance in Regular reposito- 964

ries compared to C# and JavaScript, which struggle 965

more consistently across both repository sizes. Fur- 966

thermore, the Imports-Only method for Python and 967

File-Iterate method for Rust stand out with com- 968

paratively better performance in Regular reposito- 969

ries. The results indicate that while some methods 970

perform well in smaller repositories, there is a sig- 971

nificant drop in effectiveness in larger repositories, 972

underscoring the importance of optimizing meth- 973

14

Lang Approach Exec P R F1 FR

Python All-In-One 42.0 62.6 72.9 67.4 2.7
File-Iterate 29.0 39.1 74.3 51.3 4.4
Imports-Only 36.0 57.5 73.9 64.7 3.7
RAG(BM25) 36.0 60.6 71.2 65.5 3.1
RAG(embedding) 34.0 63.9 69.5 66.6 1.6

Rust All-In-One 11.0 93.7 74.7 83.2 0.9
File-Iterate 8.0 74.8 76.1 75.4 1.2
Imports-Only 4.0 89.0 65.4 75.4 1.1
RAG(BM25) 4.0 87.1 59.4 70.6 2.6
RAG(embedding) 3.0 92.7 60.2 73.0 1.4

C# All-In-One 13.0 60.6 39.5 47.8 3.5
File-Iterate 5.0 28.0 34.1 30.8 6.5
Imports-Only 3.0 52.4 29.5 37.8 5.0
RAG(BM25) 2.0 89.4 62.7 73.7 1.3
RAG(embedding) 7.0 53.1 33.3 40.9 4.2

Javascript All-In-One 42.0 86.4 66.7 75.3 4.6
File-Iterate 32.0 52.0 61.2 56.3 2.9
Imports-Only 22.0 73.0 45.7 56.2 6.0
RAG(BM25) 11.0 80.1 40.9 54.2 4.9
RAG(embedding) 12.0 75.8 37.4 50.1 3.2

Table 8: Import-Only baseline Combined with Different
RAG Methods for Context Enhancement vs. Other
Baselines

ods to handle different repository scales efficiently.974

The conclusion aligns with the findings we ob-975

tained in Section 6.1. Besides, the variability sug-976

gests that a one-size-fits-all approach is insufficient,977

and tailored strategies are necessary to maintain978

high performance across different contexts.979

G.2 Performance When Varying the Model980

Size981

Figure 12 presents the performance of All-In-One982

approach on Regular dataset with different sizes of983

Qwen2.5-Coder-Instruct models. We observed a984

general trend where larger models consistently im-985

proved executability and textual accuracy metrics986

across four languages. Besides, when increasing987

the model size for compiled languages ike Rust988

and C#, textual accuracy increases sharply, but the989

executability remains relative low, demonstrating990

the great value of our execution-based evaluation991

in benchmarking.992

3B 7B 14B 32B
Model Size

0

10

20

30

Ex
ec

 P
as

s

Exec Pass vs Model Size
Python
Rust
C#
JavaScript

3B 7B 14B 32B
Model Size

20

40

60

80

F1
 S

co
re

F1 Score vs Model Size

Figure 12: Model performance across programming
languages for Qwen2.5-Coder-Instruct

G.3 Performance When Varying the 993

Repository Size 994

0-2
0k

20
k-4

0k

40
k-6

0k

60
k-8

0k

80
k-1

00
k

10
0k

-12
0k

0

10

20

30

40

Nu
m

be
r o

f I
ns

ta
nc

es

Python
Total
Exec Pass

0-2
0k

20
k-4

0k

40
k-6

0k

60
k-8

0k

80
k-1

00
k

10
0k

-12
0k

0

10

20

30

40

Rust
Total
Exec Pass

0-2
0k

20
k-4

0k

40
k-6

0k

60
k-8

0k

80
k-1

00
k

10
0k

-12
0k

Repository Size

0

5

10

15

20

25

30

35

Nu
m

be
r o

f I
ns

ta
nc

es

C#
Total
Exec Pass

0-2
0k

20
k-4

0k

40
k-6

0k

60
k-8

0k

80
k-1

00
k

10
0k

-12
0k

Repository Size

0

20

40

60

80
JavaScript

Total
Exec Pass

Figure 13: Execution pass rate w.r.t repository size

In Table 2, we can observe that that dependency 995

inference performance deteriorates when applied 996

to larger datasets. However, whether this finding 997

is generally applicable is unconfirmed. Therefore, 998

we conducted a further analysis within the regular 999

dataset which contains repositories of varying sizes. 1000

The results are depicted in Figure 13, showing a 1001

decline in executability rates as repository size in- 1002

creases. Hence, there exists a negative correlation 1003

between repository size and model performance 1004

both between and within datasets. This suggests 1005

that long-context reasoning remains a significant 1006

challenge for LLMs, as longer input contexts lead 1007

to increased complexity in managing the project 1008

dependencies. This finding aligns with previous 1009

studies on long-context reasoning (Hsieh et al., 1010

2024; Bai et al., 2024). 1011

G.4 Tree-sitter 1012

Tree-sitter is a parsing system widely used in 1013

code analysis that generates concrete syntax trees 1014

for source code. In our implementation, we uti- 1015

lize Tree-sitter to extract import statements and 1016

dependency-related code segments across different 1017

programming languages. Tree-sitter’s language- 1018

agnostic nature and robust parsing capabilities en- 1019

able our system to maintain consistent analysis 1020

quality across Python, JavaScript, Rust, and other 1021

supported languages. Tree-sitter queries provide a 1022

powerful pattern-matching language for searching 1023

15

Table 9: Performance of benchmark methods across programming languages and repository sizes on GPT-4o-mini
(Continue to Table 2 with a different model)

Lang Method
Regular Large

Exec P R F1 FR Exec P R F1 FR

Python
All-In-One 26.0 57.1 56.3 56.7 1.9 - - - - -
File-Iterate 21.0 42.6 62.4 50.7 2.7 14.0 31.0 27.6 29.2 4.2
Imports-Only 30.0 59.4 60.2 59.8 1.7 18.0 45.4 32.3 37.7 3.1

Rust
All-In-One 7.0 76.1 49.3 59.8 1.1 - - - - -
File-Iterate 4.0 75.2 60.8 67.2 1.6 0.0 36.5 45.6 40.5 4.4
Imports-Only 1.0 77.9 49.9 60.8 1.2 0.0 63.9 23.9 34.8 4.0

C#
All-in-One 3.0 41.1 18.1 25.2 12.5 - - - - -
File-Iter 3.0 25.4 22.9 24.1 15.2 0.0 19.2 13.6 15.9 5.8
Pattern-Retrieve 3.0 44.1 23.3 30.5 6.4 0.0 34.7 14.1 20.1 6.2

JavaScript
All-In-One 18.0 83.3 31.0 45.1 2.4 - - - - -
File-Iterate 17.0 45.1 26.2 33.1 6.7 2.0 26.4 20.4 23.0 3.1
Imports-Only 13.0 65.4 18.9 29.3 1.2 4.0 54.5 11.3 18.8 1.2

syntax trees. The query language allows precise1024

targeting of syntax tree patterns using a declarative,1025

S-expression-based syntax. Below is the queries1026

we used to extract import statements.1027
1028

1 # Python1029
2 [(import_statement)1030

(import_from_statement)] @import1031
31032
4 # Rust1033
5 (use_declaration) @use1034
61035
7 # C#1036
8 (using_directive) @use1037
91038

10 # JavaScript1039
11 (import_statement) @import10401041

G.5 Model Serving1042

For GPT-4o and GPT-4o-mini, we utilize the spe-1043

cific versions gpt-4o-20240806 and gpt-4o-mini-1044

20240718, accessed through the OpenAI API. For1045

Gemini-2.0-Flash we utilize the specific version of1046

gemini-2.0-flash-001, accessed through the Google1047

API. For Claude-3.5-Sonnet we utilize the specific1048

version of claude-3-5-sonnet-20241022, accessed1049

through the Anthropic API. For opensource mod-1050

els, we employ checkpoints available on Hugging1051

Face. We serve deepseek-v3 and deepseek-r1 with1052

A100 GPU cluster, and other models with 4 A1001053

GPUs in single node using VLLM. The decoding1054

strategy is configured as greedy decoding with a1055

maximum output token limit of 8,000.1056

1057

H Case Study1058

To gain a better understanding of the root causes1059

and patterns of LLM errors in dependency reason-1060

ing, we conduct an in-depth analysis of a repre- 1061

sentative sample for each error category (Figure 1062

4) in this section. Figure 14–17 presents the de- 1063

tailed information of four fail instances inferred 1064

by GPT-4o, including a comparison between the 1065

model-generated results and the ground truth, as 1066

well as the error messages encountered during fail- 1067

ure. 1068

• Missing Dependency in test (Figure 14): In the 1069

open2c_bioframe instance, the model missed 1070

the matplotlib package, resulting in a Modu- 1071

leNotFoundError during test execution. 1072

• Dependency Not Found in build (Figure 15): 1073

In the mrtolkien_fastapi_simple_security 1074

instance, the model inferred a dependency named 1075

sqlite3, which does not exist in pip, causing the 1076

pip install command to fail. 1077

• Invalid Dependency Version in build (Fig- 1078

ure 16): In the Zuehlke_ConfZ instance, the 1079

model specified an invalid version for the de- 1080

pendency python-dotenv, which requires Python 1081

>=3.8, while the project is using Python 3.7. This 1082

caused the pip install stage to fail due to unre- 1083

solved dependencies. 1084

• Mismatched Dependency Version in test (Fig- 1085

ure 17): In the codeskyblue_tidevice3 in- 1086

stance, the model correctly inferred the depen- 1087

dency pymobiledevice3 but specified an incor- 1088

rect version, preventing the import of certain 1089

attributes in the code. 1090

We found that the model often fails due to inferring 1091

incorrect dependency versions or missing depen- 1092

16

Approach Exec P R F1 FR

All-In-One 42.0 62.6 72.9 67.4 2.7
File-Iterate 29.0 39.1 74.3 51.3 4.4
Imports-Only 36.0 57.5 73.9 64.7 3.7

Pigar 29.0 24.3 44.3 31.4 0.3

Table 10: Program analysis-based traditional method
vs. LLM baselines

dencies used in the code. Our ablation study in Sec-1093

tion 6.3 also demonstrates that reasoning about de-1094

pendency metadata (e.g., versions) is a bottleneck.1095

This indicates that the model’s dependency-related1096

knowledge for the four languages is insufficient1097

and exhibits a significant degree of hallucination.1098

Instance: `open2c_bioframe`

Dependencies Generated by GPT-4o
dependencies = [

"numpy",
"pandas",
"requests",
"pyyaml",
"importlib_metadata; python_version<'3.8'",

]

Ground Truth
dependencies = [

"matplotlib",
"numpy>=1.10, <3",
"pandas>=1.3",
"pyyaml",
"requests",
"typing-extensions ; python_version<'3.9'",
"importlib-metadata ;

python_version<'3.8'",↪→
"importlib-resources ;

python_version<'3.9'",↪→
]

Error Message
[CI/Test] | bioframe/vis.py:4: in <module>
[CI/Test] | import matplotlib as mpl
[CI/Test] | E ModuleNotFoundError: No

module named 'matplotlib'↪→

Figure 14: A case of the category Missing Dependency
in test

I Experimental Settings1099

I.1 Baseline All-In-One1100

In All-In-One, our baseline approach feeds the1101

entire codebase as input context to the LLM and1102

processes the task through a single LLM call. The1103

model simultaneously generates all build configu-1104

Instance: `mrtolkien_fastapi_simple_security`

Dependencies Generated by GPT-4o
[tool.poetry.dependencies]
python = ">=3.7.2,<4"
fastapi = "^0.95.0"
pydantic = "^1.10.0"
starlette = "^0.20.4"
sqlite3 = { version = "*", optional = true }

Ground Truth
[tool.poetry.dependencies]
python = ">=3.7.2,<4"
fastapi = ">=0.70"
urllib3 = ">=1.26.12"

Error Message
[Python Tests/tests] | Updating dependencies
[Python Tests/tests] | Resolving

dependencies...↪→
[Python Tests/tests] |
[Python Tests/tests] | Because

fastapi-simple-security depends on sqlite3
(*) which does not match any versions,
version solving failed.

↪→
↪→
↪→
[Python Tests/tests] Failure - Main Install

python dependencies↪→

Figure 15: A case of the category Dependency Not
Found in build

rations, which are then parsed to obtain the updated 1105

build files. The complete prompt template used for 1106

this approach is detailed in Figure 18. 1107

I.2 Baseline Imports-Only 1108

Imports-Only follows the same prompting strategy 1109

as All-In-One with a single LLM call. The key 1110

distinction lies in the input composition: while All- 1111

In-One includes the complete codebase, Imports- 1112

Only only incorporates the import statements from 1113

source files in the input context. This selective ap- 1114

proach focuses the model’s attention on the most 1115

dependency-relevant code segments. We leverage 1116

tree-sitter to extract import statements across dif- 1117

ferent programming languages, with detailed usage 1118

information provided in Appendix G.4. 1119

I.3 Baseline File-Iterate 1120

File-Iterate employs a two-stage prompting strat- 1121

egy. In the first stage, it processes source files 1122

individually, applying the same prompt template 1123

which is detailed in Appendix I.1 as previous base- 1124

lines but with a single file as context per LLM call. 1125

This generates separate build files edits for each 1126

source file. In the second stage, for each build file, 1127

we merge its various updates from the first stage 1128

using a dedicated LLM call, where the prompt is 1129

17

Instance: `Zuehlke_ConfZ`

Dependencies Generated by GPT-4o
[tool.poetry.dependencies]
python = "^3.7.2"
pydantic = "^1.10.2"
PyYAML = "^6.0"
toml = "^0.10.2"
python-dotenv = "^1.0.0"

Ground Truth
[tool.poetry.dependencies]
python = "^3.7.2"
pydantic = ">=1.9.0, <3.0.0"
PyYAML = ">=5.4.1, <7.0.0"
python-dotenv = ">=0.19.2, <2.0.0"
toml = "^0.10.2"

Error Message
[test/run-test] | The current project's

Python requirement (>=3.7.2,<4.0.0) is not
compatible with some of the required
packages Python requirement:

↪→
↪→
↪→
[test/run-test] | - python-dotenv requires

Python >=3.8, so it will not be satisfied
for Python >=3.7.2,<3.8

↪→
↪→
[test/run-test] |
[test/run-test] | Because no versions of

python-dotenv match >1.0.0,<1.0.1 ||
>1.0.1,<2.0.0

↪→
↪→
[test/run-test] | and python-dotenv (1.0.0)

requires Python >=3.8, python-dotenv is
forbidden.

↪→
↪→
[test/run-test] | So, because python-dotenv

(1.0.1) requires Python >=3.8↪→
[test/run-test] | and confz depends on

python-dotenv (^1.0.0), version solving
failed.

↪→
↪→

Figure 16: A case of the category Invalid Dependency
Version in build

shown in Figure 19. The merge prompt template is1130

detailed in Appendix I.3. The final output consists1131

of the comprehensively updated build files derived1132

from this two-stage process.1133

Instance: `codeskyblue_tidevice3`

Dependencies Generated by GPT-4o
[tool.poetry.dependencies]
python = "^3.8"
click = "^8.1.3"
pymobiledevice3 = "^1.0.0"
requests = "^2.31.0"
pydantic = "^1.10.2"
Pillow = "^10.0.0"
packaging = "^23.1"
fastapi = "^0.95.2"
uvicorn = "^0.22.0"
imageio = "^2.31.1"

Ground Truth
[tool.poetry.dependencies]
python = "^3.8"
pymobiledevice3 = "^4.2.3"
click = "*"
pydantic = "^2.5.3"
fastapi = "*"
requests = "*"
numpy = "*"
imageio = {extras = ["ffmpeg"], version =

"^2.33.1"}↪→
pillow = "^10.0"
zeroconf = "^0.132.2"

Error Message
[Python Package/test] | tidevice3/api.py:17:

in <module>↪→
[Python Package/test] | from

pymobiledevice3.lockdown import
LockdownClient, create_using_usbmux, usbmux

↪→
↪→
[Python Package/test] | E ImportError:

cannot import name 'create_using_usbmux'
from 'pymobiledevice3.lockdown'
(/project/.venv/lib/python3.8/site-packages
/pymobiledevice3/lockdown.py)

↪→
↪→
↪→
↪→

Figure 17: A case of the category Mismatched Depen-
dency Version in test

18

1 Edit the build files to include all necessary dependency -related configurations to
ensure the project builds and runs successfully. Output a copy of each build file.

2

3 You will receive four sections of information to configure dependencies in build
files:

4 1. ** Project Structure **: A tree structure representing the project 's layout.
5 2. ** Environment Specifications **: Details about the operating system and language

SDK where the project will run.
6 3. ** Source Code **: The full source code of the project.
7 4. **Build Files **: Build files missing dependency configurations , which you will

need to update.
8

9 !Important Notes:
10 1. The project may include multiple build files. Ensure you update all of them

with the necessary dependency configurations.
11 2. Only edit the files listed in the "Build Files" section.
12 3. Limit your edits strictly to dependency configurations within the build files.
13

14 To suggest changes to a file you MUST return the entire content of the updated
file.

15 You MUST use this *file listing* format:
16

17 path/to/filename.js
18 ```
19 // entire file content ...
20 // ... goes in between
21 ```
22

23 Every *file listing* MUST use this format:
24 - First line: the filename with any originally provided path; no extra markup ,

punctuation , comments , etc. **JUST** the filename with path.
25 - Second line: opening ```
26 - ... entire content of the file ...
27 - Final line: closing ```
28

29 To suggest changes to a file you MUST return a *file listing* that contains the
entire content of the file.

30 *NEVER* skip , omit or elide content from a *file listing* using "..." or by adding
comments like "... rest of code ..."!

31 Create a new file you MUST return a *file listing* which includes an appropriate
filename , including any appropriate path.

32

33 --- Begin of Project Structure ---
34 {project_structure}
35 --- End of Project Structure ---
36

37 --- Begin of Environment Specifications ---
38 {env_specs}
39 --- End of Environment Specifications ---
40

41 --- Begin of Source Code ---
42 {src_section}
43 --- End of Source Code ---
44

45 --- Begin of Build Files ---
46 {build_section}
47 --- End of Build Files ---

Figure 18: Prompt template used to generate build file.

19

1 Here is a list of edits to a project 's build files , which is generated by add \
2 dependency configuration according to each source file.
3 Edit the build files to merge all edits in the "Build File Edits" section \
4 to ensure the project builds and runs successfully. Output a copy of the build

file.
5

6 You will receive four sections of information to configure dependencies in build
files:

7 1. ** Project Structure **: A tree structure representing the project 's layout.
8 2. ** Environment Specifications **: Details about the operating system and language

SDK where the project will run.
9 3. **Build File Edits **: A list of edited build file , which you will need to merge.

10 4. **Build File **: Build files missing dependency configurations , which you will
need to update based on above edits.

11

12 To suggest changes to a file you MUST return the entire content of the updated
file.

13 You MUST use this *file listing* format:
14

15 path/to/filename.js
16 ```
17 // entire file content ...
18 // ... goes in between
19 ```
20

21 Every *file listing* MUST use this format:
22 - First line: the filename with any originally provided path; no extra markup ,

punctuation , comments , etc. **JUST** the filename with path.
23 - Second line: opening ```
24 - ... entire content of the file ...
25 - Final line: closing ```
26

27 To suggest changes to a file you MUST return a *file listing* that contains the
entire content of the file.

28 *NEVER* skip , omit or elide content from a *file listing* using "..." or by adding
comments like "... rest of code ..."!

29 Create a new file you MUST return a *file listing* which includes an appropriate
filename , including any appropriate path.

30

31 --- Begin of Project Structure ---
32 {project_structure}
33 --- End of Project Structure ---
34

35 --- Begin of Environment Specifications ---
36 {env_specs}
37 --- End of Environment Specifications ---
38

39 --- Begin of Build File Edits ---
40 {build_file_edits}
41 --- End of Build Files Edits ---
42

43 --- Begin of Build File ---
44 {build_section}
45 --- End of Build File ---

Figure 19: Prompt used to merge build file edits.

20

	Introduction
	Related Works
	Dependency Inference
	DI-Bench
	Statistics & Features
	Dataset Construction

	Experiment Setup
	Experimental Results
	Performance of Baseline Methods
	Performance of Different Models
	Further Analysis and Ablation Study

	Conclusion
	Example of Configuration Files
	Distribution of DI-Bench Dataset on Token Count and Dependency Amount
	Comparison with Existing Benchmarks
	Human Experiment
	Program Analysis Baseline
	RAG Baseline
	Additional Experiments
	Performance of Baseline Methods with GPT-4o-mini
	Performance When Varying the Model Size
	Performance When Varying the Repository Size
	Tree-sitter
	Model Serving

	Case Study
	Experimental Settings
	Baseline All-In-One
	Baseline Imports-Only
	Baseline File-Iterate

