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ABSTRACT

Enforcing exact symmetry in machine learning models often yields significant
gains in scientific applications, serving as a powerful inductive bias. However,
recent work suggests that relying on approximate symmetry can offer greater flex-
ibility and robustness. Despite promising empirical evidence, there has been lit-
tle theoretical understanding, and in particular, a direct comparison between exact
and approximate symmetry is missing from the literature. In this paper, we initiate
this study by asking: What is the cost of enforcing exact versus approximate sym-
metry? To address this question, we introduce averaging complexity, a framework
for quantifying the cost of enforcing symmetry via averaging. Our main result is
an exponential separation: under standard conditions, achieving exact symmetry
requires linear averaging complexity, whereas approximate symmetry can be at-
tained with only logarithmic averaging complexity. To the best of our knowledge,
this provides the first theoretical separation of these two cases, formally justifying
why approximate symmetry may be preferable in practice. Beyond this, our tools
and techniques may be of independent interest for the broader study of symmetries
in machine learning.

1 INTRODUCTION

The field of geometric machine learning aims to incorporate structures observed in scientific data
into abstract machine learning models, with the goal of leveraging these strong inductive biases to
make learning more robust, efficient, and interpretable (Bronstein et al., 2021; Weber, 2025). Promi-
nent examples include permutation symmetries in point clouds for vision tasks, sign-flip symmetries
in spectral graph methods, rotational symmetry in robotic tasks, and other structures in molecular
and atomistic data with applications from physics to drug discovery (Bogatskiy et al., 2020; Wang
et al., 2022a; Nguyen et al., 2024; Kufel et al., 2025).

A natural approach to handling symmetries is to encode them exactly into the model through dif-
ferent mechanisms. This ensures that the invariance hypothesis is exploited to its full extent. The
literature offers a variety of such methods, including model-agnostic approaches such as group av-
eraging, data augmentation, canonicalization, and frame averaging (Puny et al., 2022; Lin et al.,
2024; Atzmon et al., 2022; Kaba et al., 2023; Ma et al., 2024; Tahmasebi & Jegelka, 2025a;b; Dym
et al., 2024; Shumaylov et al., 2025), as well as model-dependent approaches such as convolutional
neural networks as well as neural networks with equivariant weights (Cohen & Welling, 2016; 2017;
Krizhevsky et al., 2012; Satorras et al., 2021; Maron et al., 2019; Liao & Smidt, 2023; Zaheer et al.,
2017). Both categories have been shown to be effective in practice, and detailed theoretical studies
have further analyzed their benefits.

However, introducing exact symmetries also comes with a number of caveats. In many applications,
invariance is only partial, and targets may respect symmetry only approximately (Finzi et al., 2021;
Romero & Lohit, 2022; van der Ouderaa et al., 2022; Kim et al., 2023; Park et al., 2025; Wang
et al., 2022b). For example, in medical imaging, expected reflectional symmetries are not perfect,
and results are often mildly sensitive to such transformations. Another case arises when only partial
knowledge of the underlying symmetries is available, and symmetry discovery is performed (Yang
et al., 2023; van der Ouderaa et al., 2023; Desai et al., 2022; Dehmamy et al., 2021; Shaw et al.,
2024; Yang et al., 2024; Huh, 2025). In this setting, enforcing exact invariance introduces funda-
mental limitations on universality and expressive power, making flexibility essential. Indeed, from
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Figure 1: Approximate and exact symmetry enforcement via averaging for the 100-element group
of 2D rotations. Left: original anisotropic function f(x, y). Middle: average over |S| = 5 ≈
log(100) random rotations (approximate symmetry). Right: average over |S| = 100 rotations (exact
symmetry). Approximate symmetry is already high quality when |S| ≈ log |G|.

a distributional shift, robustness, and optimization perspective, it is often argued that allowing the
model to violate symmetry up to a certain degree can improve performance while still exploiting
the strong inductive biases present in the data. Motivated by these considerations, researchers have
proposed using approximate symmetry instead of exact symmetry, which enables models to be more
flexible, to achieve more robust performance, and to exploit symmetry in a semi-supervised fashion,
particularly in the context of symmetry discovery.

Despite these practical successes, theoretical gaps remain. Since approximate symmetry can be
viewed as a relaxed form of invariance compared to hard-coded constraints, one might expect it
to be easier to achieve in data. A theoretical analysis of the complexity of this emergence would
provide several benefits. First, it explains why approximate symmetries are ubiquitous in data, where
exact equivariance rarely holds. Second, it shows why models exploit them more easily: lower
enforcement complexity can yield better sample or computational efficiency, as well as robustness
to noise and distributional shifts.

Motivated by these considerations, in this paper, we study the following question: Is it easier, from a
complexity perspective, to enforce approximate symmetry compared to exact symmetry? A key chal-
lenge lies in defining what is meant by the “complexity” of achieving approximate symmetry and
in formalizing the associated “budget” in this setting. While there is no unified notion of such com-
plexity in the literature, we introduce a natural measure for comparing the two regimes: averaging
complexity.

In averaging complexity, we assume access to a black-box model, and the learner is only allowed
to post-process this model linearly through a number of action queries (AQ). The number of such
queries required in an averaging scheme is defined as the averaging complexity of the scheme. The
learner’s goal is to accomplish its task using as few queries as possible, which we interpret as the
learner’s budget.

Within this formal framework, we pose the following quantitative question: Given a model, what
is the averaging complexity of enforcing approximate versus exact symmetry? Is there a separa-
tion between their complexities? Specifically, is achieving approximate symmetry easier than exact
symmetry, as suggested by practical evidence?

Our main contribution is summarized in the following statement (informal; under mild conditions):

The averaging complexity of achieving exact symmetry scales linearly with the group size,
while approximate symmetry requires only logarithmic complexity in the group size.

This result provides a foundation for understanding why approximate symmetry is often preferred
in practice: in an abstract model, it is exponentially easier to achieve. The central message of this
paper is the exponential separation, demonstrating that for a given budget, approximate symmetry
is more capable of achieving stronger results in semi-supervised learning (for example, in sym-
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metry discovery). Beyond this, our abstract framework and complexity notion, together with the
representation-theoretic tools developed in this work, can also be applied to the broader study of
geometric machine learning, independent of the specific results presented here.

In short, this paper makes the following contributions:

• We advance the theoretical understanding of approximate versus exact symmetries in ma-
chine learning models, and we prove that approximate symmetry is exponentially easier
to enforce in an abstract setting. To the best of our knowledge, this is the first theoretical
separation between these two widely used approaches.

• The abstract formulation of averaging complexity, together with the theoretical tools de-
veloped in this work, may be of independent interest for future studies in the theory of
geometric machine learning. We believe that the results presented here represent just one
instance of their broader applicability.

2 RELATED WORK

Symmetries appear in many scientific datasets, and equivariant machine learning has proven power-
ful across applications in particle physics (Bogatskiy et al., 2020), robotics (Wang et al., 2022a), and
quantum physics, in both exact (Nguyen et al., 2024) and approximate forms (Kufel et al., 2025).
Incorporating symmetry has been shown to improve sample complexity and generalization (Wang
et al., 2021; Tahmasebi & Jegelka, 2023; Elesedy, 2021), estimation (Chen et al., 2023; Tahmasebi
& Jegelka, 2024), and learning complexity (Kiani et al., 2024; Soleymani et al., 2025b). Generaliza-
tion benefits have been observed even when only approximate symmetry holds (Petrache & Trivedi,
2023).

Many architectures have been proposed for incorporating symmetries in neural networks, including
group-equivariant CNNs (Cohen & Welling, 2016) and steerable CNNs (Cohen & Welling, 2017),
both built on top of standard convolutional networks (Krizhevsky et al., 2012). Equivariant graph
neural networks (Satorras et al., 2021; Maron et al., 2019) and transformers (Liao & Smidt, 2023)
have also been proposed and used in practice. A canonical example for permutation symmetry is
Deep Sets (Zaheer et al., 2017).

Beyond exact methods, many approaches for introducing relaxed invariance have been proposed
in the literature, including modified filters (van der Ouderaa et al., 2022), soft equivariance (Kim
et al., 2023; Finzi et al., 2021), partial equivariance (Romero & Lohit, 2022), and Lie-algebraic
parameterizations (McNeela, 2023). Approximate symmetry has proved effective in reinforcement
learning (Park et al., 2025) via approximately equivariant Markov decision processes (MDPs). Other
examples include the use of structured matrices (Samudre et al., 2025) and relaxed constraints (Per-
tigkiozoglou et al., 2024); see also (Wang et al., 2022b; Wu et al., 2025). For neural processes,
Ashman et al. (2024) propose approximately equivariant schemes with promising benefits. This line
of work extends to approximately equivariant graph networks (Huang et al., 2023) and symmetry
breaking for relaxed equivariance (Wang et al., 2024; 2023). The role and benefits of approximate
equivariance in the neural-network optimization landscape have also been studied (Xie & Smidt,
2025). In the context of symmetry discovery, many results use semi-supervised methods to learn the
underlying symmetry (Yang et al., 2023; van der Ouderaa et al., 2023; Desai et al., 2022; Dehmamy
et al., 2021; Shaw et al., 2024; Yang et al., 2024; Huh, 2025).

For model-agnostic methods for equivariant learning, see frame averaging (Puny et al., 2022; Lin
et al., 2024; Atzmon et al., 2022) and canonicalization (Kaba et al., 2023; Ma et al., 2024; Tahmasebi
& Jegelka, 2025a;b; Dym et al., 2024; Shumaylov et al., 2025) as two widely applicable paradigms.

3 PROBLEM STATEMENT

In this section, we state the problem and prepare to present our main result in the next section. We
begin by formalizing function spaces on domains with symmetries and by setting the notation used
throughout the paper.
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3.1 PRELIMINARIES, NOTATION, AND BACKGROUND

Given n ∈ N, we write [n] := {1, 2, . . . , n}. Let X be a complete topological space (the data
domain), and let G be a finite group. Let L2(X ) denote the space of square-integrable functions on
X , assuming X is equipped with a canonical Borel measure µ.

A (left) group action of G on X is a map θ : G×X → X such that θ(gh, x) = θ
(
g, θ(h, x)

)
for all

g, h ∈ G and x ∈ X , and the identity element of G acts trivially (via the identity map x 7→ x) on X .
We write gx := θ(g, x); for each g, the map x 7→ gx is a homeomorphism of X . Indeed, without
loss of generality, we assume that the canonical measure µ on X is invariant under the action of G.

Let F ⊆ L2(X ) be a finite-dimensional real vector space of functions on X , and let GL(F) denote
the group of invertible linear mappings from F to itself (under composition). Assume that for every
g ∈ G and f ∈ F , the function x 7→ f(gx) also belongs to F . Define ρ : G → GL(F) as the
canonical group action on F by leveraging the action on the domain:

(ρ(g)[f ])(x) := f
(
g−1x

)
, ∀f ∈ F , ∀x ∈ X .

Indeed, ρ is a (linear) group representation of G on F , meaning that ρ(gh) = ρ(g)ρ(h) under the
composition of linear maps.

Appendix A contains the detailed background underlying our results.
Remark 1. While the results in this paper are mainly framed as achieving invariance via averaging,
they all follow using the same procedure to achieve equivariance via averaging. Using a natural
algebraic correspondence, one can find a bijection between such equivariant functions and invariant
functions on a new appropriate space. We detail this construction in Appendix A.4.

3.2 AVERAGING SCHEMES

In this part, we formalize averaging schemes as abstract mechanisms for enforcing desired functional
properties (e.g., symmetry) in function classes.

Consider an abstract setting where a learner aims to post-process the function class F to enforce
a condition (e.g., symmetry). The learner is informed that an arbitrary function f ∈ F has been
chosen by an oracle and that it remains unchanged throughout post-processing. The learner then
issues functional queries to the oracle as follows. Given f ∈ F and a group element g ∈ G,
the oracle returns the transformed function x 7→ f(gx) ∈ F . Because each query evaluates f on
gx ∈ X , we call it an action query (AQ).

After issuing a number of action queries, the learner forms a linear combination of the oracle re-
sponses to obtain a post-processed function. The learner has a limited budget and seeks to minimize
the number of action queries. This motivates the following definition.
Definition 2 (Averaging Scheme). An averaging scheme is a function ω : G→ R on the finite group
G such that ∥ω∥ℓ1(G) :=

∑
g∈G ω(g) = 1. For a function class F , the averaging operator induced

by ω, denoted Eω : F → F , is defined by

(Eω[f ])(x) :=
∑
g∈G

ω(g) f
(
g−1x

)
, ∀f ∈ F , ∀x ∈ X .

The size of an averaging scheme is the number of nonzero weights:
size(ω) := #{ g ∈ G : ω(g) ̸= 0 }.

Intuitively, an averaging scheme specifies weights used to linearly combine the transformed func-
tions x 7→ f

(
g−1x

)
to produce the final output. Crucially, averaging schemes do not depend on

the domain point x ∈ X ; otherwise, they become instances of (weighted) frame averaging, and
the notion of averaging complexity becomes ill-defined. We therefore focus on universal linear
combinations as outputs of averaging operators.

3.3 AVERAGING COMPLEXITY

In this paper, we consider the abstract setting where the learner aims to obtain either an exactly
symmetric function or an approximately symmetric one. To define averaging complexity, we first
introduce a few definitions, starting with exact symmetry.

4
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Definition 3 (Exact Symmetry). A function f ∈ F is exactly symmetric if, for all g ∈ G and all
x ∈ X , one has f(gx) = f(x).

To define approximate symmetry, one must fix a notion of distance from symmetry and allow a
relaxation within a prescribed precision. A natural choice is to shrink the “non-symmetry” com-
ponents of functions (in L2(X )) by a small factor ϵ > 0. When ϵ = 0, the definition reduces to
exact symmetry. The L2(X )-norm is a canonical way to define distances in function space, and this
particular choice for defining different notions of approximate symmetry enables our application to
the generalization theory of approximately symmetric regression; see Appendix A.8. For further
discussion on going beyond the L2(X )-norm, please see Appendix F.

In this paper, we use two types of approximate symmetry: weak and strong.

Definition 4 (Weak Approximate Symmetry Enforcement). An averaging scheme ω : G → R
enforces weak approximate symmetry with respect to a parameter ϵ > 0 if and only if, for every
function f ∈ F , we have

Eg

[∫
X
|(Eω[f ])(x)− (Eω[f ])(gx)|2 dµ(x)

]
≤ ϵEg

[∫
X
|f(x)− f(gx)|2 dµ(x)

]
,

where g ∈ G is chosen uniformly at random and µ is the canonical Borel measure on X .

Definition 5 (Strong Approximate Symmetry Enforcement). An averaging scheme ω : G → R
enforces strong approximate symmetry with respect to a parameter ϵ > 0 if and only if, for every
function f ∈ F , we have∫

X
|(Eω[f ])(x)− (Eω[f ])(gx)|2 dµ(x) ≤ ϵEg

[∫
X
|f(x)− f(gx)|2 dµ(x)

]
, ∀g ∈ G,

where g ∈ G is chosen uniformly at random and µ is the canonical Borel measure on X .

In the weak notion, Eω[f ] is multiplicatively ϵ-closer (in L2(X )) to being symmetric on average
over group elements g ∈ G. In the strong notion, the same closeness must hold for every g ∈ G.

We are now ready to define the concept of averaging complexity.

Definition 6 (Averaging Complexity). The averaging complexity of enforcing exact, weak approx-
imate, or strong approximate symmetry, denoted ACex(F), ACwk(F , ε), and ACst(F , ε), respec-
tively, is the minimal size of an averaging scheme that a learner can construct such that the result-
ing post-processed function is exactly, weakly approximately, or strongly approximately symmetric,
respectively. Formally,

ACex(F) := min
ω

size(ω) s.t. (Eω[f ])(gx) = (Eω[f ])(x), ∀f ∈ F , g ∈ G, x ∈ X

ACwk(F , ε) := min
ω

size(ω) s.t. Eg

[
∥(Eω[f ])(x)− (Eω[f ])(gx)∥2L2(X )

]
≤ εEg

[
∥f(x)− f(gx)∥2L2(X )

]
, ∀f ∈ F

ACst(F , ε) := min
ω

size(ω) s.t. ∥(Eω[f ])(x)− (Eω[f ])(gx)∥2L2(X )

≤ εEg

[
∥f(x)− f(gx)∥2L2(X )

]
, ∀f ∈ F , g ∈ G.

Example 7. Consider the set of constant functions on the domain. This function class clearly satis-
fies all notions of symmetry for any group action, and thus ACex(F) = ACwk(F , ε) = ACst(F , ε) =
1, for all ϵ > 0, as the learner needs just one query to achieve any of these symmetries.

3.4 PROPERTIES OF AVERAGING COMPLEXITY

Before presenting the main result of the paper, we first review basic properties of averaging com-
plexity in the following proposition.

Proposition 8 (Properties of Averaging Complexity). The following properties hold for the different
notions of averaging complexity:

5
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• The functions ACwk(F , ε) and ACst(F , ε) are non-increasing in ε.

• For all ε > 0, ACwk(F , ε) ≤ ACst(F , ε) ≤ ACex(F) ≤ |G|.

• For all ε > 0, ACwk(F , 4ε) ≤ ACst(F , 4ε) ≤ ACwk(F , ε).

• If F1 ⊆ F2, then ACex(F1) ≤ ACex(F2). The same holds for ACwk and ACst.

The proof of Proposition 8 is deferred to Appendix B. The first two properties follow directly from
the definition of averaging complexity and are obtained via the trivial averaging scheme (i.e., query-
ing all g ∈ G). Intuitively, the last inequality illustrates that enforcing exact symmetry becomes
more difficult as the class grows.

The proof of the third property is more challenging: it relates the strong and weak notions of ap-
proximate symmetry when the precision is relaxed by a constant factor. This observation allows us
to only focus, for simplicity, on the notion of weak approximate symmetry.

4 MAIN RESULTS

The main purpose of this paper is to study how various notions of averaging complexity relate to
properties of the group action and the function class, and whether there is a fundamental separa-
tion between exact and approximate symmetry. Such a separation would show that approximate
symmetry is, in an abstract setting, fundamentally easier to achieve.

4.1 ASSUMPTIONS AND DEFINITIONS

We note that any form of averaging complexity can always be upper bounded linearly by the group
size via the trivial averaging scheme that queries all group elements g ∈ G. This motivates the
question of when sublinear averaging complexity is achievable.

To this end, the role of the function class is crucial: trivial classes, such as the set of constant
functions, always have trivial averaging complexity. To avoid pathological cases, we assume the
following condition for the domain, group action, and function class:

Assumption 9 (Faithful Group Action). For every nontrivial group element g ∈ G, there exist a
function f ∈ F and a point x ∈ X such that f(gx) ̸= f(x).

This assumption excludes degenerate cases while remaining sufficiently general. We next define
(symmetric) tensor powers of a function class, which we use later in our results.

Definition 10 (Symmetric Tensor Powers of Function Spaces). Let F be a finite-dimensional vector
space of functions on a domain X and let k ∈ N. Define

Sym⊗k(F) := span
{ k∏

i=1

fi(x) : fi ∈ F for i ∈ [k]
}
, S̃ym

⊗k
(F) :=

k⊕
ℓ=0

Sym⊗ℓ(F),

where Sym⊗0(F) is the one-dimensional space of constant functions on X .

The construction above uses the base function class F to form the enlarged class S̃ym
⊗k

(F), which
consists of linear combinations of pointwise products of up to k functions from F . In particular,
Sym⊗1(F), and higher orders k ∈ N include progressively higher-order polynomial features.

A canonical example is X = Rd with F the set of linear functions on Rd. In this case, S̃ym
⊗k

(F)
is exactly the space of polynomials in x of total degree at most k. Another example arises in kernel
methods: starting from a base kernel (and its feature map), one may form polynomial feature expan-
sions, which correspond to tensor powers of the base feature space and yield increased expressivity.

In this paper, symmetric tensor powers serve as a tool for proving lower bounds on the averaging
complexity of enforcing exact symmetry. Our goal is to exhibit relatively low degrees k (i.e., low-
order polynomial features) for which the required averaging complexity is linear in |G|.
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4.2 AN EXPONENTIAL SEPARATION

The main result of this paper is summarized in the following series of theorems.
Theorem 11 (Averaging Complexity of Exact Symmetry Enforcement). Under the above assump-
tions, for any function classF there exists an integer K, for which we provide an explicit closed-form
expression, such that the averaging complexity of exact symmetry enforcement is

ACex
(
S̃ym

⊗k
(F)

)
= |G|, ∀k ≥ K. (4.1)

The proof of Theorem 11 is given in Appendix C. By definition of tensor powers, one has

S̃ym
⊗k

(F) ⊆ S̃ym
⊗k′

(F) for any k′ ≥ k. Since averaging complexity is monotone with respect to

inclusion of function classes (Proposition 8), the quantity ACex
(
S̃ym

⊗k
(F)

)
is nondecreasing in

k ∈ N; intuitively, enforcing exact symmetry becomes harder as the class grows. At the same time,

ACex(S̃ym
⊗k

(F)) ≤ |G| for all k ∈ N. Therefore, to prove Theorem 11, it suffices to show that

ACex(S̃ym
⊗k

(F)) = |G| for k = K.

Theorem 11 asserts that exact symmetry requires linear averaging complexity once polynomial fea-
tures of degree k = K are included. A natural question is how to bound K. To answer this question,
we establish an explicit upper bound on K, building on recent advances in algebra. In particular, we
show that

K = min

{
|G|,

∑
λ∈Λ

Mλ − 1

}
, (4.2)

where

Λ :=
⋃
g∈G

{
eigenvalues of ρ(g)

}
, Mλ := max

g∈G

{
multiplicity of λ as an eigenvalue of ρ(g)

}
,

suffices to ensure linear averaging complexity. Equivalently, if ρ denotes the representation of G on
F , then K can be upper bounded by the sum, over all eigenvalues, of the maximum multiplicity of
the eigenvalues of ρ(g), g ∈ G.
Example 12. Let X = Rd and let G = Sd act by permuting the coordinates of x ∈ Rd. Let F
be the class of all linear functions on Rd. In this setting, for each g ∈ G, the matrix ρ(g) ∈ Rd×d

is the permutation matrix associated with g. If g has cycle decomposition in Sd with cycle lengths
(ℓ1, ℓ2, . . . , ℓt) satisfying

∑t
j=1 ℓj = d, then the eigenvalues of ρ(g) are

exp
(

2πip
ℓj

)
, p = 0, 1, . . . , ℓj − 1, j = 1, . . . , t.

Moreover, if λ is an eigenvalue of some ρ(g), g ∈ G, with order q (i.e., minimum q ∈ N such that
λq = 1), then we have Mλ = ⌊nq ⌋. A counting argument shows that K = d(d+1)

2 − 1. Therefore,
polynomial features of degree K = O(d2) already suffice to yield linear averaging complexity for
enforcing exact symmetry.

Next, we derive upper bounds on the averaging complexity of approximate symmetry, to compare
with the exact case, which we already proved requires linear averaging complexity.
Theorem 13 (Averaging Complexity of Approximate Symmetry Enforcement). For any function
class F and any ε > 0, the averaging complexities of weak and strong approximate symmetry
enforcement satisfy

ACst(F , ε) = O
(
log |G|
ε

)
, ACwk(F , ε) = O

(
log |G|
ε

)
,

where the big-O notation hides universal constants.

Note: The hidden constant in the big-O notation is at most 8
3 ≈ 2.67 or 32

3 ≈ 10.67 for weak or
strong symmetry enforcement, respectively. . The proof of Theorem 13 is given in Appendix D.
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These bounds hold uniformly for all function classes and do not rely on Assumption 9 or on the
use of tensor powers; they apply even beyond the tensor-power setting. Thus, the upper bounds for
approximate symmetry enforcement are universal. In particular, they apply to the classes consid-
ered in Theorem 11, for which exact symmetry requires linear averaging complexity. Therefore,
approximate symmetry enforcement needs only logarithmic averaging complexity (in |G|), yielding
an exponential separation between the approximate and exact regimes.

The averaging complexity of approximate symmetry enforcement (in the weak or strong
sense) is Oε(log |G|), whereas exact symmetry requires complexity |G|. This yields an
exponential separation between the two regimes, showing approximate symmetry is much
easier to achieve in the abstract model of averaging complexity.

Remark 14. In our proofs we also show that the bounds in Theorem 13 are tight (up to constants). In
other words, there exist instances that require at least Ωε

(
log |G|

)
action queries (AQs) to achieve

approximate symmetry. Details are provided in Appendix E.

5 PROOF SKETCH

We sketch the proofs of our main results. For Theorem 11, we show that averaging over the entire
group is necessary to guarantee exact invariance. For Theorem 13, we outline how approximate
symmetry yields a universal logarithmic averaging complexity. For background on representation
theory, see Fulton & Harris (2013).

5.1 PROOF SKETCH FOR THEOREM 11

We first note that, by complete reducibility, any group representation ρ can be decomposed into a
direct sum of (complex) irreducible representations (irreps) as follows:

ρ ∼=
|Ĝ|⊕
i=1

miπi, ∀i : mi ∈ Z≥0, (5.1)

where Ĝ denotes the set of distinct irreps (equivalently, one per conjugacy class of the group), and
πi, i = 1, 2, . . . , |Ĝ|, enumerate these irreps. Applying this to the representation induced on the
function class F yields nonnegative coefficients mi for all i.

What happens to this decomposition when we extend it to tensor powers S̃ym
⊗K

(F) for some
K ≥ 1? Let Sym⊗k(ρ) denote the induced representation on Sym⊗k(F) for k ∈ [K]. In this case,
for each k ∈ [K],

Sym⊗k(ρ) ∼=
|Ĝ|⊕
i=1

m
(k)
i πi, ∀i : m(k)

i ∈ Z≥0. (5.2)

What happens if we have an averaging scheme ω(g) and apply it on a space with representation
Sym⊗k(ρ)? To analyze this, view ω : G → R as a group signal (a function on the group), and
consider its Fourier transform ω̂ defined by

ω̂(π) =
∑
g∈G

ω(g)π (g)
†
, ∀π ∈ Ĝ, (5.3)

where † denotes the conjugate transpose (adjoint) of a complex-valued matrix.

Using standard facts from representation theory, one concludes that averaging for Sym⊗k(F), k ∈
K, yields exactly symmetric functions if and only if

∀i : ∃k ∈ [K] : m
(k)
i ̸= 0 =⇒

(
ω̂(πi) = 0 or πi is trivial

)
. (5.4)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Therefore, the function ω̂ : Ĝ → C must have sparse support whenever many irreps appear in the
direct-sum decomposition of Sym⊗k(ρ), k ∈ K. We claim that for K given in Equation 4.2, every
nontrivial irrep appears in some Sym⊗k(ρ) with k ∈ K. If this claim holds, then

ω̂(πi) = 0 for all i with πi nontrivial.

But this means the Fourier transform of ω vanishes everywhere except at the point corresponding to
the trivial irrep. By Fourier inversion, ω must be the uniform measure on G; since it sums to one,
ω(g) = 1

|G| for all g ∈ G. Thus, any averaging scheme achieving exact symmetry requires access
to |G| action queries, as claimed.

5.2 PROOF SKETCH FOR THEOREM 13

We adopt the same Fourier-analytic viewpoint on ω as in the previous subsection. To establish that
averaging complexityO

(
log |G|

ε

)
is achievable under approximate symmetry, it suffices to construct

ω : G→ R such that

size(ω) = O
(
log |G|
ε

)
, ∀π nontrivial : ∥ω̂(π)∥op ≤ ε. (5.5)

We use a probabilistic construction. Sample n group elements independently and uniformly at
random, and let Ω be their empirical distribution (we use a capital letter to emphasize that it is
chosen at random). Form the block-diagonal matrix Ξ :=

⊕
π nontrivial Ω̂(π). Then E[Ξ] = 0 and, for

every nontrivial π, ∥Ω̂(π)∥op ≤ ∥Ξ∥op. Thus, it is enough to control the operator norm of a zero-
mean random matrix. Standard large deviation bounds imply that, with high probability, ∥Ξ∥op ≤ ε
provided n ≥ c log dim(Ξ)

ε for a universal constant c. From representation theory, dim(Ξ) ≤ |G|,
which yields the claimed O

(
log |G|

ε

)
bound.

6 CONCLUSION AND FUTURE DIRECTIONS

We presented a theoretical study of learning with symmetries, focusing on why approximate sym-
metry is both more convenient in practice and more reasonable for natural data. We introduced an
abstract framework that defines the averaging complexity of enforcing exact or approximate symme-
try as the minimum number of interactions with an oracle via action queries (AQs). Our main result
shows an exponential separation: enforcing symmetry exactly can require linear complexity in |G|,
whereas relaxing to approximate symmetry reduces the complexity to logarithmic in |G|, providing
theoretical evidence for a sharp gap between the two regimes.

Several directions remain open. First, while this work focuses on finite groups, extending the frame-
work and bounds to infinite groups is both natural and challenging, likely requiring ideas beyond
those used here. Second, it would be valuable to leverage our abstract formulation, together with
representation-theoretic methods, to analyze other theoretical problems in machine learning under
symmetry, such as data augmentation. We leave these questions to future work.
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A BACKGROUND FOR PROOFS

This appendix collects the background used in our proofs. We briefly review finite groups, group
actions, group representations, character theory, and Fourier analysis on finite groups (Serre et al.,
1977; Isaacs, 1994; Fulton & Harris, 2013).

A.1 GROUP THEORY

A finite group is a finite set G equipped with a binary operation · : G×G→ G satisfying:

• (Associativity) For all g, h, k ∈ G, (g · h) · k = g · (h · k).
• (Identity) There exists an element e ∈ G such that e · g = g · e = g for all g ∈ G.

• (Inverses) For each g ∈ G, there exists g−1 ∈ G with g · g−1 = g−1 · g = e.

Given a finite group G, we denote its identity element by e. For brevity, we omit the operation
symbol and write gh for g · h.

The order of G is the number of its elements, denoted |G|. For every integer n ≥ 1, there exists a
group of order n: the cyclic group Z/nZ := {0, 1, . . . , n− 1} under addition modulo n.

A canonical example of a finite group is the symmetric group Sd, the group of all permutations of d
elements:

Sd :=
{
σ : [d]→ [d]

∣∣ σ is bijective
}
,

with composition as the group operation. Here, we use the notation [d] := {1, 2, . . . , d} for d ∈ N.

Define a relation ∼ on G by g ∼ h ⇐⇒ ∃ s ∈ G : h = sgs−1. This is an equivalence relation on
G. The conjugacy class of g is [g] := {sgs−1 : s ∈ G}. The conjugacy classes {[g] : g ∈ G} form
a partition of G. Let r denote the number of conjugacy classes of G. If [g1], . . . , [gr] are the distinct
conjugacy classes, then

G =

r⊔
i=1

[gi].

Trivially, r ≤ |G|. For commutative groups (i.e., gh = hg for all g, h ∈ G), this bound is tight:
r = |G|, since every conjugacy class is a singleton.

In contrast, for many noncommutative groups one has r ≪ |G|. A canonical example is the sym-
metric group Sd, where conjugacy classes correspond to cycle type; hence r = p(d), the par-
tition number, which is far smaller than |Sd| = d!. Asymptotically, log p(d) = Θ(

√
d) while

log |Sd| = log(d!) = Θ(d log d). Thus, in this case we have r ≪ |Sd|. Another canonical example
is the dihedral group D2n, the symmetries of a regular n-gon, which has 2n elements (rotations and
reflections). It has n+3

2 conjugacy classes when n is odd and n
2 + 3 when n is even; in particular,

r < |D2n| = 2n.

A.2 GROUP ACTIONS AND FUNCTION SPACES

Let X be a topological space and G a finite group. A (left) group action of G on X is a map
θ : G × X → X such that θ(gh, x) = θ

(
g, θ(h, x)

)
for all g, h ∈ G and x ∈ X , and the identity

element of G acts trivially (via the identity map x 7→ x) on X . For notational convenience, we
write gx := θ(g, x). We consider only continuous actions: for each g ∈ G, the map x 7→ gx is a
homeomorphism of X onto itself.

Let X be a topological space and let B(X ) denote its Borel σ-algebra, making (X ,B(X )) a mea-
surable space. Fix a reference measure µ on X ; all function spaces below are defined with respect
to µ. Without loss of generality, we assume the action of G preserves the reference measure µ, i.e.,
µ(gA) = µ(A) for all measurable A ⊆ X and g ∈ G (equivalently, dµ(gx) = dµ(x) for all g ∈ G)
. For finite groups this can always be arranged by averaging any reference measure over G:

µ̄(A) :=
1

|G|
∑
g∈G

µ(g−1A),
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which is G-invariant. In many settings there is also a canonical “uniform” choice (e.g., counting
measure on finite sets or Haar/surface/Lebesgue measure on standard spaces) under which the usual
actions are measure-preserving.

The space of square-integrable (real-valued) functions is

L2(X ) :=
{
f : X → R measurable : ∥f∥2L2(X ) :=

∫
X
|f(x)|2 dµ(x) <∞

}
.

Let F ⊆ L2(X ) be a finite-dimensional subspace of continuous functions that is stable under G,
i.e., f (gx) ∈ F for all f ∈ F and g ∈ G. The action of G on X induces a (left) action on F by:

(gf)(x) := f
(
g−1x

)
∈ F , ∀ g ∈ G, f ∈ F , x ∈ X .

Recall that an action of G on U (either X or F) is faithful if and only if

∀u ∈ U , gu = u ⇒ g is the identity element of G.

In this paper, we always assume that the function class F satisfies Assumption 9: the action of G on
F is faithful. That is, for every nontrivial group element g ∈ G, there exists a function f ∈ F and
a point x ∈ X such that f(gx) ̸= f(x). Note that Assumption 9 implies that the action of G on X
is also faithful: if a nontrivial g ∈ G fixed every x ∈ X , then we would have f(gx) = f(x) for all
f ∈ F , contradicting Assumption 9.

A.3 GROUP REPRESENTATION THEORY

We use several notions from representation theory to establish our main results. This appendix
reviews group representation theory in detail, with a particular focus on finite groups. For a compre-
hensive reference, see Fulton & Harris (2013).

Let G be a finite group and let V be a finite-dimensional (real or complex) inner-product space. Let
GL(V ) denote the group of invertible linear maps ψ : V → V (under composition). A (linear)
group representation is a group homomorphism ρ : G → GL(V ), meaning ρ(gh) = ρ(g)ρ(h) for
all g, h ∈ G. After fixing a basis for V , each ρ(g) can be viewed as a matrix in RdimV×dimV

(or CdimV×dimV ). In other words, a representation “encodes” group elements by matrices so that
group multiplication corresponds to matrix multiplication. For example, the trivial representation is
defined as ρ(g) = 1 ∈ R for all g ∈ G.

In this paper, we assume representations are orthogonal (or unitary in the complex case):
ρ(g)⊤ρ(g) = I (respectively, ρ(g)†ρ(g) = I) for all g ∈ G. Equivalently, ⟨ρ(g)u, ρ(g)v⟩V =
⟨u, v⟩V for all u, v ∈ V . This assumption holds without loss of generality in our setting: when
V = F ⊆ L2(X ) with the L2(X ) inner product and the action is measure-preserving (i.e.,
dµ(gx) = dµ(x)), the induced action is orthogonal. Indeed, for any f, f ′ ∈ F and g ∈ G,

⟨ρ(g)f, ρ(g)f ′⟩L2(X ) =

∫
X
f(g−1x) f ′(g−1x) dµ(x)

=

∫
X
f(x) f ′(x) dµ(gx)

=

∫
X
f(x) f ′(x) dµ(x) = ⟨f, f ′⟩L2(X ).

Two representations ρ and ρ′ of G on V are equivalent if there exists an orthogonal (unitary) matrix
U ∈ RdimV×dimV (resp. CdimV×dimV ) such that Uρ(g) = ρ′(g)U for all g ∈ G. A representation
ρ is reducible if it is equivalent to a nontrivial block-diagonal representation (simultaneously for all
g ∈ G); otherwise, ρ is irreducible (abbreviated “irrep,” which we use throughout, consistent with
standard representation-theory terminology).

Irreps are fundamental building blocks of representations. The main important result in representa-
tion theory of finite group is that any representation can be decomposed into irreps.
Theorem 15 (Maschke’s Theorem). Let G be a finite group. Over R or C, every finite-dimensional
representation of G decomposes as a direct sum of irreducible representations.
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In particular, a finite group G has only finitely many irreducible representations (up to equivalence),
which we index as πi for i ∈ [r], where r is their number. Any representation ρ of G on a finite-
dimensional space V decomposes as

ρ ∼=
⊕
i∈[r]

mi πi, mi ∈ Z≥0.

Here “⊕” means that, after a change of basis (equivalence of representations), all matrices ρ(g)
become block diagonal simultaneously, with mi blocks each equivalent to πi. The nonnegative
integers mi are the multiplicities of the irreps πi.
Example 16. Let ρ be the natural permutation representation of the symmetric group Sd on Rd,
acting by coordinate permutation:

ρ(σ)x = Pσx, σ ∈ Sd,

where Pσ is the permutation matrix of σ. This representation is reducible: the subspace Span{1}
(with 1 = (1, . . . , 1)) is Sd-invariant (the trivial representation π1), and its orthogonal complement
{x ∈ Rd :

∑d
i=1 xi = 0} is also Sd-invariant (the standard representation π2) of dimension d− 1.

In fact, ρ ∼= π1 ⊕ π2, and both are irreducible.

What do we know about irreps of a finite group G? If we index them by πi, i ∈ [r], then r equals
the number of conjugacy classes of G. We write

Ĝ := {π : π is an irrep of G}, r = |Ĝ| = the number of conjugacy classes of G.

In particular, |Ĝ| ≤ |G|; for commutative groups this is tight, |Ĝ| = |G|, while for noncommutative
groups one has |Ĝ| < |G|, and in many cases even |Ĝ| ≪ |G| (e.g., for the symmetric group Sd, as
we discussed before).

We now focus on complex irreducible representations of a finite group G. For an irrep π, let its
dimension be dπ; thus π(g) ∈ Cdπ×dπ for all g ∈ G. For commutative groups, all irreps are
one-dimensional: dπ = 1 for every π ∈ Ĝ. In contrast, noncommutative groups admit higher-
dimensional irreps.

For the complex irreps of a finite group, we have the identity:

|G| =
∑
π∈Ĝ

d 2
π .

Example 17. For the symmetric group Sd, we have |Sd| = d! = exp (Θ(d log d)), while |Ŝd| =
p(d) = exp

(
Θ(
√
d
)

, where p(d) is the number of integer partitions of d. In this case,

d! =
∑
π∈Ŝd

d 2
π = 1︸︷︷︸

trivia irrep

+ (d− 1)︸ ︷︷ ︸
standard irrep

+ other terms.

Thus, many irreps exist beyond those appearing in the natural permutation representation (trivial and
standard), even though the natural permutation representation is faithful. In other words, faithfulness
does not imply that a representation contains all irreps. In this case, several irreps have dimensions
growing superpolynomially in d. A complete classification of Ŝd is given by the partitions of d.

A.4 EQUIVALENCE BETWEEN INVARIANCE AND EQUIVARIANCE

Adopting the previous definitions and notations, let V denote a (complex-valued) finite-dimensional
representation of G and let us consider the space F(V ) := span{vf : v ∈ V, f ∈ F} = F ⊗ V . In
other words, for any function f : X → C and any vector v ∈ V , one can define vf : X → V in a
natural way. Moreover, the group G acts on F(V ) = F ⊗ V naturally via the tensor product of the
two diagonal representations.

Now consider equivariant functions within F(V ), which we denote via F(V )G (as functions from
X to V ). Such functions are defined as φ ∈ F(V ) such that φ(gx) = gφ(x) for all x, g. In other

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

words, we must have that gφ
(
g−1x

)
= φ(x) for all x, g. This means that φ ∈ F(V ) is equivariant

if and only if it is an invariant element of F ⊗ V .

In other words, if we consider the space of linear functions on X̃ := F ⊗ V , then equivariant
functions from X to V are precisely invariant functions from X̃ to C. This completes the proof of
correspondence.

As a result, all the claims and proofs in the paper will apply to the equivariant function classes
after applying appropriate changes. In particular, the exponential separation will again apply to such
cases, with no further assumptions.

A.5 FOURIER ANALYSIS ON FINITE GROUPS

The theory of Fourier analysis on finite groups is essential for the results in this paper. It is built on
group representation theory and has numerous applications, including signal processing on groups.
Definition 18 (Fourier Transform on Finite Groups). Let G be a finite group and let ω : G→ C be
a (complex-valued) signal on G. The Fourier transform of ω is the collection of matrices indexed by
irreps π ∈ Ĝ,

ω̂(π) :=
∑
g∈G

ω(g)π(g)†, π ∈ Ĝ, (A.1)

where † denotes the conjugate transpose. This means that while the signal is supported on the group
G, its Fourier transform is supported on Ĝ (one matrix per irrep).

Many natural properties of fourier transform on Cd also hold for finite groups. For instance, we have
Fourier inversion formula:

ω(g) =
1

|G|
∑
π∈Ĝ

dπ Tr
(
ω̂(π)π(g)

)
. (A.2)

Moreover, for any ω, η : G→ C,∑
g∈G

ω(g) η(g) =
1

|G|
∑
π∈Ĝ

dπ Tr
(
ω̂(π) η̂(π)†

)
. (A.3)

If we set η = ω, we obtain the Plancherel formula:∑
g∈G

|ω(g)|2 =
1

|G|
∑
π∈Ĝ

dπ ∥ω̂(π)∥2F, (A.4)

where ∥ · ∥F denotes the Frobenius norm of matrices.
Example 19. Consider a group signal ω : G→ C with the property

ω̂(π) = 0, for all nontrivial π ∈ Ĝ.
What does this sparsity of the Fourier transform imply? By the inversion formula,

ω(g) =
1

|G|
∑
π∈Ĝ

dπ Tr
(
ω̂(π)π(g)

)
(A.5)

=
1

|G|
Tr
(
ω̂(πtriv)πtriv(g)

)
(A.6)

=
1

|G|
ω̂(πtriv), (A.7)

for all g ∈ G, where πtriv is the one-dimensional trivial irrep. Hence ω must be constant on G. If,
in addition, ∥ω∥ℓ1(G) =

∑
g∈G ω(g) = 1, then necessarily

ω(g) =
1

|G|
for all g ∈ G, (A.8)

i.e., ω is the uniform distribution on G. We will use this fact later to obtain our main result on the
linearity of averaging complexity for exact symmetry enforcement.
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A.6 INVARIANT SUBSPACES AND FOURIER ANALYSIS (EXACT SYMMETRY)

In this subsection, we review core properties of group actions on function spaces and how they relate
to the subspace of exactly symmetric functions. These tools are essential in our proofs.

Consider a finite-dimensional vector space F of complex-valued functions on the domain X , as
before. Not all functions in F are exactly symmetric; the invariant subspace

FG :=
{
f ∈ F : gf = f, ∀ g ∈ G

}
⊆ F (A.9)

is, in nontrivial cases, a proper subset of F .

Let ρ denote the representation of the finite group G induced on F . We write its decomposition as

ρ ∼=
⊕
i∈[r]

mi πi, mi ∈ Z≥0. (A.10)

How can one relate the invariant subspace FG to the decomposition of ρ into the irreps of G? To
this end, consider the uniform signal ω(g) = 1

|G| for all g ∈ G, and compute its Fourier transform:

ω̂(π) =
∑
g∈G

ω(g)π(g)† =
1

|G|
∑
g∈G

π(g)† = Eg

[
π(g)†

]
, ∀π ∈ Ĝ. (A.11)

However, using the Fourier inversion formula, we have shown in the previous section that for the
uniform signal, ω̂(π) = 0 for any nontrivial π ∈ Ĝ. Therefore, we conclude that

Eg

[
π(g)†

]
=

{
0 ∈ Rdπ×dπ , if π is nontrivial,
1 ∈ R, if π is trivial.

(A.12)

Note that after a change of coordinates (i.e., choosing an appropriate basis of F ), we can write the
group representation ρ in block-diagonal form:

ρ(g) =
⊕
i∈[r]

(
Imi
⊗ πi(g)

)
∈ Rdim(F)×dim(F), ∀ g ∈ G, (A.13)

where Imi ∈ Rmi×mi denotes the identity matrix for each i ∈ [r]. Therefore,

Eg

[
ρ(g)

]
=
⊕
i∈[r]

(
Imi ⊗ Eg

[
πi(g)

])
= Imtriv ⊕ 0 ⊕ 0 ⊕ · · · , (A.14)

where we have indexed the trivial irrep by i = 1. Note that, according to the above derivation, we
also obtain

mtriv = Tr
(
Eg

[
ρ(g)

])
= Eg

[
Tr
(
ρ(g)

)]
, (A.15)

where the quantities Tr
(
ρ(g)

)
, for g ∈ G, are commonly referred to as the characters of the group

representation ρ.

Define Π := Eg[ρ(g)]. For the basis of F above that block-diagonalizes ρ (the “appropriate”
basis), identify each f ∈ F with its coefficient vector f ∈ Cdim(F). Then,

∀ g ∈ G : gf ←→ ρ(g)f . (A.16)

Then

f ∈ FG ⇐⇒ ∀ g ∈ G : gf = f (A.17)
⇐⇒ ∀ g ∈ G : ρ(g)f = f (A.18)

⇐⇒ 1

|G|
∑
g∈G

ρ(g)f = f (A.19)

⇐⇒ Πf = f (A.20)

⇐⇒ f =
(
ftriv, 0, 0, . . .

)
(i.e., all nontrivial blocks are zero). (A.21)
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In particular, Π2 = Π and Π† = Π, so Π is the orthogonal projector onto its image, which is FG,
and thus

dim(FG) = rank (Π) = mtriv = Eg

[
Tr
(
ρ(g)

)]
. (A.22)

Note that we used the fact that

∀ g ∈ G : ρ(g)f = f ⇐⇒ 1

|G|
∑
g∈G

ρ(g)f = f . (A.23)

This is proved as follows. If ρ(g)f = f for all g ∈ G, summing the equalities yields
1
|G|
∑

g∈G ρ(g)f = f . Conversely, suppose 1
|G|
∑

g∈G ρ(g)f = f . Then for any g ∈ G,

ρ(g)f = ρ(g)
1

|G|
∑
g′∈G

ρ(g′)f =
1

|G|
∑
g′∈G

ρ(g)ρ(g′)f (A.24)

=
1

|G|
∑
g′∈G

ρ(gg′)f =
1

|G|
∑
g′′∈G

ρ(g′′)f = f , (A.25)

which completes the proof.

A.7 INVARIANT SUBSPACES AND FOURIER ANALYSIS (APPROXIMATE SYMMETRY)

We now relate weak approximate symmetry of a function f ∈ F to its coefficient vector f ∈ Rm

withm := dim(F). We have already shown that if f is exactly symmetric, then its coefficient vector
has the form f =

(
ftriv, 0, 0, . . .

)
∈ Rm. In general, we have f =

(
ftriv, fnon

)
∈ Rm where

F = FG ⊕F⊥
G and mtriv := dim(FG) and mnon := dim(F⊥

G ).

For a weakly symmetric function f ∈ F with parameter ϵ > 0, we have

Eg

[∫
X

∣∣(Eω[f ])(x)− (Eω[f ])(gx)
∣∣2 dµ(x)] ≤ ϵ Eg

[∫
X
|f(x)− f(gx)|2 dµ(x)

]
. (A.26)

Note that, using measure preservation of the group action on X and the definition of Π,

Eg

[∫
X

∣∣f(x)− f(gx)∣∣2 dµ(x)] = Eg

[ ∫
X
|f(x)|2 dµ(x) +

∫
X
|f(gx)|2 dµ(x) (A.27)

− 2

∫
X
f(x)f(gx) dµ(x)

]
(A.28)

= 2 ∥f∥22 − 2

∫
X
f(x)Eg

[
f(gx)

]
dµ(x) (A.29)

= 2 ∥f∥22 − 2 ⟨f , Πf⟩ (A.30)

= 2 ∥f∥22 − 2∥ftriv∥22, (A.31)

= 2 ∥fnon∥22. (A.32)

Therefore, we conclude that

Eω[.] is ϵ-weakly approx. symm. ⇐⇒ ∥ (Eωf)non ∥
2
2 ≤ ϵ ∥fnon∥22, ∀f ∈ F (A.33)

A.8 A NOTE ON THE RELATIONSHIP WITH SAMPLE COMPLEXITY UNDER SYMMETRIES

In this subsection, we briefly review how the results derived in this paper relate to the sample com-
plexity of learning under symmetries. Let F ⊆ L2(X ) be a finite-dimensional vector space of
functions on X . Draw samples xi ∈ X , i ∈ [n], i.i.d. from a reference probability measure µ on X .
Let f⋆ ∈ F be a target function and observe labels

∀ i ∈ [n] : yi = f⋆(xi) + ϵi, (A.34)

where the noise terms ϵi are independent and identically distributed with law N (0, σ2).
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The empirical risk minimizer (ERM) is

f̂ERM := argmin
f∈F

{ 1

2n

n∑
i=1

(
f(xi)− yi

)2}
. (A.35)

The excess population risk (generalization error) of an estimator f̂ is

R(f̂) := E
[
∥f̂ − f⋆∥2L2(X )

]
, (A.36)

where the expectation is over the sample (and label) randomness.

When learning under (exact) symmetries, we assume that f⋆ is symmetric: gf⋆ = f⋆ for all g ∈ G.
It is then desirable to encode the known symmetry of f⋆ in the ERM output via exact or approximate
symmetrization. Motivated by this, define the exactly symmetrized and weakly symmetrized ERM
estimators by

f̂ exERM(x) :=
1

|G|
∑
g∈G

f̂ERM(g−1x), (A.37)

f̂wk
ERM(x) :=

(
Eω[f̂ERM]

)
(x) =

∑
g∈G

ω(g) f̂ERM(g−1x), (A.38)

where ω : G→ R is an averaging scheme chosen to ensure ϵ-weak approximate symmetry.

Let φj(x), for j = 1, 2, . . . , dim(F), be an L2(X )-orthonormal basis for F , and let Φ(x) :=
(φ1(x), . . . , φdim(F)(x))

⊤ denote the corresponding feature vector. For any f ∈ F with coefficient
vector f ∈ Rdim(F), we have f(x) = ⟨f ,Φ(x)⟩.

Given samples x1, . . . , xn, let X ∈ Rn×dim(F) be the design matrix with Xij = φj(xi) for each
ℓ, i. Let y = (yi)

n
i=1 = Xf⋆ + ϵ ∈ Rn. Then, the ERM problem can be written as

f̂ERM := arg min
f∈Rdim(F)

1

2n
∥Xf − y∥22 =⇒ f̂ERM = (X⊤X)−1X⊤y, (A.39)

assuming X has full column rank.

The excess population risk of ERM (with no symmetry enforcement) can be written as

R(f̂ERM) := E
[
∥f̂ERM − f⋆∥2L2(X )

]
= E

[
∥f̂ERM − f⋆∥22

]
(A.40)

= E
[
∥(X⊤X)−1X⊤(Xf⋆ + ϵ)− f⋆∥22

]
(A.41)

= E
[
∥(X⊤X)−1X⊤ϵ∥22

]
(A.42)

= E
[
ϵ⊤X(X⊤X)−2X⊤ϵ

]
(A.43)

= σ2 E
[
Tr
(
X(X⊤X)−2X⊤)] (A.44)

= σ2 E
[
Tr
(
(X⊤X)−1

)]
(A.45)

=
σ2

n
Tr

(
E

[(
1

n
X⊤X

)−1
])

(A.46)

=
σ2

n
Tr

E

( 1

n

n∑
i=1

Φ(xi)Φ(xi)
⊤

)−1
 , (A.47)

where we used the cyclic property of the trace and the fact that ϵ ∼ N (0, σ2In). Now, let us study
the excess population risk of exact symmetry enforcement via group averaging. Let Π denote the
projection operator, as before. Note that Πf⋆ = f⋆ and Π† = Π. Moreover, rank(Π) = mtriv.
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Then

R
(
f̂ exERM

)
:= E

[
∥f̂ exERM − f⋆∥2L2(X )

]
= E

[
∥Πf̂ERM − f⋆∥22

]
(A.48)

= E
[
∥Π(X⊤X)−1X⊤(Xf⋆ + ϵ)− f⋆∥22

]
(A.49)

= E
[
∥Π(X⊤X)−1X⊤ϵ∥22

]
(A.50)

= E
[
ϵ⊤X(X⊤X)−1Π(X⊤X)−1X⊤ϵ

]
(A.51)

= σ2 E
[
Tr
(
X(X⊤X)−1Π(X⊤X)−1X⊤)] (A.52)

= σ2 E
[
Tr
(
Π(X⊤X)−1

)]
(A.53)

=
σ2

n
Tr

(
ΠE

[(
1

n
X⊤X

)−1
])

(A.54)

=
σ2

n
Tr

ΠE

( 1

n

n∑
i=1

Φ(xi)Φ(xi)
⊤

)−1
 . (A.55)

Using standard concentration inequalities (Vershynin, 2018), and assuming supx∈X ∥Φ(x)∥2 ≤ c0,
we have

c1 Im ⪯ E

( 1

n

n∑
i=1

Φ(xi)Φ(xi)
⊤

)−1
 ⪯ c2 Im, ∀n ≥ c3m, (A.56)

for some absolute constants c1, c2, c3 (depending only on c0). Therefore,

R(f̂ERM) = Θ

(
σ2m

n

)
, R

(
f̂ exERM

)
= Θ

(
σ2mtriv

n

)
, (A.57)

where m = dim(F) and mtriv = dim(FG).

Finally, to studyR
(
f̂wk
ERM

)
, note that a given averaging scheme ω : G→ R induces a linear operator

Eω : F → F ; with a slight abuse of notation, we use the same symbol for its action on coefficient
vectors.

Note that

R
(
f̂wk
ERM

)
:= E

[
∥f̂wk

ERM − f⋆∥2L2(X )

]
= E

[
∥ f̂wk

ERM − f⋆∥22
]

(A.58)

= E
[
∥Eωf̂ERM − f⋆∥22

]
(A.59)

≤ 2E
[
∥Eωf̂ERM −Πf̂ERM∥22

]
+ 2E

[
∥Πf̂ERM − f⋆∥22

]
(A.60)

= 2E
[
∥Eωf̂ERM −Πf̂ERM∥22

]
+Θ

(
σ2mtriv

n

)
, (A.61)

where we used the previous derivation of the excess population risk under exact symmetry enforce-
ment. To upper bound the first term, note that the invariant subspace FG is fixed by the linear
operator Eω:

∀ f ∈ FG =⇒ Eω[f ] = f, (A.62)

since gf = f for all g ∈ G and ∥ω∥ℓ1(G) = 1. Therefore,

f̂ERM =
(
f̂ERM, triv, f̂ERM, non

)
=⇒ Πf̂ERM =

(
f̂ERM, triv, 0

)
, (A.63)

and, moreover,

f̂ERM =
(
f̂ERM, triv, f̂ERM, non

)
=⇒ Eωf̂ERM =

(
f̂ERM, triv, E′

ω f̂ERM, non

)
, (A.64)

where E′
ω denotes the linear operator induced by Eω on F⊥

G . From the previous section, since Eω is
ϵ-weakly approximately symmetric, we have∥∥E′

ωf̂ERM

∥∥2
2
≤ ϵ

∥∥f̂ERM, non

∥∥2
2
. (A.65)
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Therefore,

R
(
f̂wk
ERM

)
≤ ϵE

[∥∥f̂ERM, non

∥∥2
2

]
+ Θ

(
σ2mtriv

n

)
. (A.66)

Assuming ∥f⋆∥22 = O(1), we obtain

E
[∥∥f̂ERM, non

∥∥2
2

]
≤ 2∥f⋆∥22 + 2R

(
f̂ERM

)
= O(1). (A.67)

Hence the excess population risk under approximate symmetry enforcement satisfies

R
(
f̂wk
ERM

)
≤ O(ϵ) + O

(
σ2mtriv

n

)
. (A.68)

Remark 20. The three excess population risks derived in this subsection are

R(f̂ERM) = Θ

(
σ2m

n

)
, (A.69)

R
(
f̂ exERM

)
= Θ

(
σ2mtriv

n

)
, (A.70)

R
(
f̂wk
ERM

)
≤ O

(
σ2mtriv

n

)
+ O(ϵ), (A.71)

where m = dim(F) and mtriv = dim(FG). Therefore, using Theorem 13, one can achieve the full
generalization benefits of symmetry with an appropriate averaging scheme of size only O

(
log |G|

ϵ

)
,

without requiring |G|-fold averaging. Here ϵ can be chosen as the target generalization error. In
particular, taking ϵ = σ2mtriv

n makes the weakly symmetric estimator’s generalization bound match
(up to constants) the bound for exact symmetry enforcement (which is superior in this simple linear
regression setting). The size of the averaging scheme is then only O

(
n log |G|
σ2mtriv

)
, which can be much

smaller than |G|.

B PROOF OF PROPOSITION 8

Proof. Note that the first two properties, as well as the last, follow directly from the definitions
of averaging complexity for weak and strong approximate symmetry enforcement. In the second
inequality, the universal upper bound |G| on the averaging complexity follows from the uniform
averaging scheme defined by

ω(g) :=
1

|G|
, ∀ g ∈ G. (B.1)

For this scheme, size(ω) = |G|, and for any f ∈ F we have

(Eω[f ])(x) =
1

|G|
∑
g∈G

f
(
g−1x

)
∈ FG, (B.2)

which is exactly (and therefore also weakly and strongly approximately) symmetric, since it is the
output of group averaging.

Moreover, we always have
ACwk(F , ε) ≤ ACst(F , ε),

again by definition (similarly for other averaging complexities). Therefore, to complete the proof of
Proposition 8, it suffices to establish the remaining inequality: for all ε > 0,

ACst(F , 4ε) ≤ ACwk(F , ε). (B.3)

To begin the proof, fix ε > 0 and let ω : G → R be an averaging scheme that attains ACwk(F , ε).
By definition, for all f ∈ F ,

Eg

[
∥(Eω[f ])(x)− (Eω[f ])(gx)∥2L2(X )

]
≤ εEg

[
∥f(x)− f(gx)∥2L2(X )

]
.
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We show that the same scheme ω achieves strong approximate symmetry with precision 4ε.

Fix any g′ ∈ G. By the triangle inequality and introducing the group-averaging operator Eg (uniform
over G), we have

∥(Eω[f ])(x)− (Eω[f ])(g
′x)∥L2(X ) ≤ ∥(Eω[f ])(x)− Eg[(Eω[f ])(gx)]∥L2(X )

+ ∥Eg[(Eω[f ])(gx)]− (Eω[f ])(g
′x)∥L2(X ).

Since the group action on the domain preserves the measure (dµ(gx) = dµ(x)), we have

∥Eg[(Eω[f ])(gx)]− (Eω[f ])(g
′x)∥L2(X ) = ∥Eg[(Eω[f ])(gg

′−1x)]− (Eω[f ])(x)∥L2(X ) (B.4)

= Eg[(Eω[f ])(gx)]− (Eω[f ])(x)∥L2(X ). (B.5)

Therefore, we have

∥(Eω[f ])(x)− (Eω[f ])(g
′x)∥L2(X ) ≤ 2 ∥(Eω[f ])(x)− Eg[(Eω[f ])(gx)]∥L2(X ).

By Jensen’s inequality,

∥(Eω[f ])(x)− Eg[(Eω[f ])(gx)]∥L2(X ) ≤ Eg

[
∥(Eω[f ])(x)− (Eω[f ])(gx)∥L2(X )

]
=
√

Eg

[
∥(Eω[f ])(x)− (Eω[f ])(gx)∥2L2(X )

]
,

and therefore

∀g′ ∈ G : ∥(Eω[f ])(x)− (Eω[f ])(g
′x)∥L2(X ) ≤ 2

√
εEg

[
∥f(x)− f(gx)∥L2(X )

]
.

Squaring both sides yields

∀g′ ∈ G : ∥(Eω[f ])(x)− (Eω[f ])(g
′x)∥2L2(X ) = 4ε

(
Eg

[
∥f(x)− f(gx)∥L2(X )

])2
(B.6)

≤ 4εEg

[
∥f(x)− f(gx)∥2L2(X )

]
, (B.7)

where we used the Cauchy–Schwarz inequality in the last step. Thus, the same averaging scheme
(with the same size) achieves strong approximate symmetry with precision 4ε, which completes the
proof in the sense of the definition of the averaging complexity of the strong approximate symmetry
enforcement.

Remark 21. Proposition 8 allows us to focus on weak approximate symmetry enforcement: the
strong notion follows with only a constant-factor loss in precision: for all ε > 0, ACst(F , 4ε) ≤
ACwk(F , ε). Consequently, the upper bound we prove, Θ

(
log |G|/ε

)
, holds up to constants for both

notions. From a theoretical perspective, this is significant because it lets one upgrade average-case
error over the group to a uniform (worst-case) guarantee over all g ∈ G within a constant factor.

Finally, we note that an analogous constant-factor relationship between uniform and average-case
errors has recently been observed in the problem of testing symmetries in data; see Soleymani et al.
(2025a) for details.

C PROOF OF THEOREM 11

Proof. We begin by recalling why it suffices to prove the bound on the averaging complexity for

K = min
{
|G|,

∑
λ∈ΛMλ − 1

}
, By the definition of tensor powers, the space S̃ym

⊗k
(F) =⊕k

ℓ=0 Sym
⊗ℓ(F) is the direct sum of tensor product spaces of degrees ℓ = 0, 1, . . . , k. Conse-

quently, for any k′ ≥ k we have

S̃ym
⊗k

(F) =
k⊕

ℓ=0

Sym⊗ℓ(F) ⊆
k′⊕
ℓ=0

Sym⊗ℓ(F) = S̃ym
⊗k′

(F), (C.1)

where the inclusion follows from the monotonicity of direct sums of vector spaces.

According to Proposition 8, the averaging complexity of exact symmetry enforcement is monotone
with respect to inclusion of vector spaces: if F1 ⊆ F2, then ACex(F1) ≤ ACex(F2). Specializing

this inequality to F1 = S̃ym
⊗K

(F) and F2 = S̃ym
⊗k

(F) for k ≥ K, we obtain

ACex(S̃ym
⊗K

(F)) ≤ ACex(S̃ym
⊗k

(F)), ∀ k ≥ K. (C.2)
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Moreover, Proposition 8 also implies that ACex(S̃ym
⊗k

(F)) ≤ |G| for all k ∈ N. Therefore, to
prove Theorem 11, it suffices to establish that

ACex(S̃ym
⊗K

(F)) = |G|, where K = min

{
|G|,

∑
λ∈Λ

Mλ − 1

}
.

We complete the proof of Theorem 11 through the following two claims, whose proofs are deferred
to the end of this section. For background material required in these arguments, we refer the reader
to Appendix A.

Claim 22 (Steinberg (2014); Kollár & Tiep (2023)). Let πi, i ∈ [r], r = |Ĝ|, denote all the irre-
ducible representations of a finite group G. Consider the decomposition of the action of G on the
function space F (which we have already assumed to be faithful):

ρ ∼=
⊕
i∈[r]

mi πi, mi ∈ Z≥0. (C.3)

Define K = min
{
|G|,

∑
λ∈ΛMλ − 1

}
. Moreover, for each k ∈ [K], decompose the induced repre-

sentation of G on the tensor power as

Sym⊗k(ρ) ∼=
|Ĝ|⊕
i=1

m
(k)
i πi, m

(k)
i ∈ Z≥0. (C.4)

Then, we have

∀i ∈ [r], ∃ k ∈ [K] such that m(k)
i ≥ 1. (C.5)

Claim 22 shows that by taking tensor powers up to order K = min
{
|G|,

∑
λ∈ΛMλ − 1

}
, we

“observe” every irreducible representation at least once among the decompositions of the tensor
powers. Indeed, we have

S̃ym
⊗K

(F) =
K⊕

k=0

Sym⊗k(F) =⇒ S̃ym
⊗K

(ρ) ∼=
K⊕

k=0

Sym⊗k(ρ) ∼=
|Ĝ|⊕
i=1

(
K∑

k=0

m
(k)
i

)
︸ ︷︷ ︸
≥1 by Claim 22

πi.

(C.6)

In other words, the induced group action on S̃ym
⊗K

(F), denoted by S̃ym
⊗K(ρ)

, is the direct sum
of the representations on all tensor powers up to order K. Furthermore, in the decomposition of

S̃ym
⊗K

(ρ), every irreducible representation appears at least once. We will use this fact to establish
lower bounds on averaging complexity via Fourier analysis on finite groups.

Let us now present the final claim needed to complete the proof.

Claim 23. Consider an averaging scheme ω : G → R that achieves exact symmetry on the func-
tion space F with induced representation ρ. Assume that the decomposition of ρ into irreducible
representations of the finite group G satisfies

ρ ∼=
⊕
i∈[r]

mi πi, mi ∈ Z≥1. (C.7)

Then, we have ∑
g∈G

ω(g)π(g)† = 0 ∈ Rdπ×dπ , (C.8)

for all nontrivial irreducible representations π ∈ Ĝ, where Ĝ denotes the set of all irreducible
representations of G.
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By Claim 23, the Fourier transform of the group signal ω : G→ R is sparse, in the sense that

ω̂(π) :=
∑
g∈G

ω(g)π(g)† = 0 ∈ Rdπ×dπ , (C.9)

for every non-trivial irrep π ∈ Ĝ.

Moreover, the conditions of Claim 23 are already satisfied by the representation S̃ym
⊗K

(ρ) induced

on S̃ym
⊗K

(F), thanks to Claim 22. Therefore, combining the two claims and applying the Fourier
inversion formula for the group signal ω, we conclude that if ω achieves exact symmetry for the
function class, then necessarily

ω̂(π) = 0 ∀π non-trivial =⇒ ω(g) =
1

|G|
, ∀g ∈ G =⇒ size(ω) = |G|. (C.10)

Here we used the fact that a group signal with Fourier support only on the trivial irrep must be
constant, along with the assumption that ∥ω∥ℓ1(G) =

∑
g∈G ω(g) = 1. For further details on

Fourier analysis on finite groups, see Appendix A.5.

This completes the proof of Theorem 11. In the remainder of this section, we provide the proofs of
the claim stated above.

C.1 PROOF OF CLAIM 23

Proof. Throughout the proof, we adopt the notation and definitions from Appendix A, in particular
those introduced in Appendix A.6. Let ω : G → R denote an averaging scheme, and let ρ be the
representation induced on the function class F , decomposed into irreps as

ρ ∼=
⊕
i∈[r]

mi πi, mi ∈ Z≥1, (C.11)

where r := |Ĝ| denotes the number of distinct irreps.

Our goal is to show that, under the condition mi ≥ 1 for all i, and assuming that ω is an exactly
symmetric averaging scheme, the nontrivial components of the Fourier transform of ω vanish:∑

g∈G

ω(g)π(g)† = 0 ∈ Rdπ×dπ , (C.12)

for all nontrivial irreducible representations π ∈ Ĝ, where Ĝ denotes the set of irreducible represen-
tations of G.

Note that, after a change of coordinates (i.e., choosing an appropriate basis), we can write the group
representation ρ in block-diagonal form:

ρ(g) =
⊕
i∈[r]

(
Imi ⊗ πi(g)

)
∈ Rm×m, ∀g ∈ G, (C.13)

where Imi
∈ Rmi×mi denotes the identity matrix for each i ∈ [r], and

m := dim(F) =

r∑
i=1

midπi
,

with dπi
= dim(πi).

Therefore, there exist projection matrices Πi ∈ Cm×m, one for each i ∈ [r], corresponding to
the subspaces spanned by the (possibly multiple) copies of πi. In the chosen coordinates, each
projection takes the form

Πi = 0⊕ 0⊕ · · · ⊕ 0⊕ Imidπi
⊕ 0⊕ · · · ⊕ 0, ∀i ∈ [r]. (C.14)
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In the orthonormal basis of the function space F , any function f ∈ F can be identified with its
coefficient vector f ∈ Cm. We decompose this vector as

f =
(
f1, f2, . . . , fr

)
,

where each block fi corresponds to the component associated with πi.

By definition of the trivial representation (assumed here to be indexed by i = 1), we have

f ∈ FG ⇐⇒ f = (f1, 0, 0, . . . , 0) ∈ Cm, (C.15)

so that Π1 is precisely the projection onto the subspace of exactly symmetric functions, i.e. FG ⊆ F .

Note that a given averaging scheme ω : G → R induces a linear operator Eω : F → F . With a
slight abuse of notation, we use the same symbol for its action on coefficient vectors, so that we may
also regard Eω : Cm → Cm.

Since ω enforces exact symmetry, we must have

Eωf =
(
⋆ , 0, 0, . . .

)
∈ Cm, ∀f ∈ Cm. (C.16)

In other words, because the output of the averaging operator is exactly symmetric, all components
corresponding to nontrivial irreps must vanish in the coefficient vector.

Now for arbitrary f ∈ Cm, we have

Eωf =
∑
g∈G

ω(g) ρ(g)f =
(
⋆ , 0, 0, . . .

)
∈ Cm. (C.17)

Therefore, for any i ≥ 2 (indices corresponding to nontrivial irreps), applying the projection matrix
Πi to the above identity yields

Πi

∑
g∈G

ω(g) ρ(g)f =
∑
g∈G

ω(g)Πiρ(g)f (C.18)

=
∑
g∈G

ω(g)πi(g)
⊕mi fi (C.19)

=

∑
g∈G

ω(g)πi(g)

⊕mi

fi (C.20)

= 0 ∈ Cm. (C.21)

This identity must hold for all fi ∈ Cmi , and since mi ≥ 1 by assumption, we conclude that∑
g∈G

ω(g)πi(g) = 0 ∈ Cdπi
×dπi , ∀ i ≥ 2. (C.22)

Taking the conjugate transpose of the above identity completes the proof.

D PROOF OF THEOREM 13

Proof. Throughout the proof, we rely on the tools and ideas developed in Appendix A, as well as
those used in the proof of Theorem 11. We briefly review them here.

Let F denote an arbitrary function class, and let ρ be the representation induced by the action of the
finite group G on F , which decomposes into irreducibles as

ρ ∼=
⊕
i∈[r]

mi πi, mi ∈ Z≥0, (D.1)

where r := |Ĝ| is the number of distinct irreps. Note that mi may be zero for some indices i.
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Under a change of coordinates (i.e., after choosing an appropriate basis for F ), the group represen-
tation ρ can be expressed in block-diagonal form:

ρ(g) =
⊕
i∈[r]

(
Imi ⊗ πi(g)

)
∈ Rm×m, g ∈ G, (D.2)

where Imi ∈ Rmi×mi denotes the identity matrix for each i ∈ [r]. Here

m := dim(F) =

r∑
i=1

mi dπi
, dπi

= dim(πi).

Therefore, there exist projection matrices Πi ∈ Cm×m, one for each i ∈ [r], corresponding to the
subspaces spanned by the (possibly multiple, or zero) copies of πi. In the chosen coordinates, each
projection has the form

Πi = 0⊕ 0⊕ · · · ⊕ 0⊕ Imidπi
⊕ 0⊕ · · · ⊕ 0, i ∈ [r], (D.3)

where the identity block appears in the position associated with πi.

In the orthonormal basis of the function space F , any function f ∈ F can be identified with its
coefficient vector f ∈ Cm. We decompose this vector as

f =
(
f1, f2, . . . , fr

)
,

where each block fi ∈ Cmidπi corresponds to the isotypic component associated with πi.

By convention, we assume the trivial representation is indexed by i = 1. Then

f ∈ FG ⇐⇒ f = (f1, 0, 0, . . . , 0) ∈ Cm, (D.4)

so that Π1 is exactly the projection onto the subspace of symmetric functions, i.e., FG ⊆ F .

Note that, according to Proposition 8, it suffices to prove Theorem 13 for weak approximate sym-
metry. Indeed, once the claim is established in the weak case, we have

ACst(F , ε) ≤ ACwk(F , ε/4) = O
(
log |G|
ε

)
. (D.5)

Therefore, throughout this section we focus only on weak approximate symmetry enforcement.

Consider an averaging scheme ω : G → R that induces a linear operator Eω : F → F . With a
slight abuse of notation, we use the same symbol for its action on coefficient vectors, so that we may
also regard Eω : Cm → Cm. Assume that Eω[·] enforces ϵ-weak approximate symmetry for a fixed
parameter ϵ > 0.

As noted at the end of Appendix A.7, this condition can be written as

Eω[·] is ϵ-weakly symmetric ⇐⇒

∥∥∥∥∥
r∑

i=2

ΠiEωf

∥∥∥∥∥
2

2

≤ ϵ

∥∥∥∥∥
r∑

i=2

Πif

∥∥∥∥∥
2

2

, ∀f ∈ F . (D.6)

Equivalently,

Eω[·] is ϵ-weakly symmetric ⇐⇒
r∑

i=2

∥ΠiEωf∥22 ≤ ϵ

r∑
i=2

∥Πif∥22 , ∀f ∈ F . (D.7)

A necessary and sufficient condition for the above inequality is to require that

∀i ≥ 2 : ∥ΠiEωf∥22 ≤ ϵ ∥Πif∥22 , ∀f ∈ F . (D.8)

Using the decomposition of the representation ρ into irreps, this condition reduces to

∀i ≥ 2 :

∥∥∥∥∥∥
∑
g∈G

ω(g)πi(g)
⊕mi Πif

∥∥∥∥∥∥
2

2

≤ ϵ ∥Πif∥22 , ∀f ∈ F . (D.9)
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A necessary and sufficient condition for this to hold is

sup
i≥2

∥∥∥∥∥∥
∑
g∈G

ω(g)πi(g)

∥∥∥∥∥∥
2

op

≤ ϵ. (D.10)

Let us now use a probabilistic construction for ω : G → R. Draw n i.i.d. samples uniformly from
G, and let Ω denote the empirical measure induced by these n samples. We use the capital letter Ω
instead of ω to emphasize that it is constructed randomly.

Since each πi is a nontrivial irrep, we have

Eg[πi(g)] = 0 ∈ Cdπi
×dπi , ∀i ≥ 2. (D.11)

Moreover, since all representations considered in this paper are unitary, it follows that

sup
i≥2

sup
g∈G

∥∥πi(g)∥∥op ≤ 1. (D.12)

Now we apply the matrix Bernstein tail bound from Tropp (2012, Theorem 1.6). In their notation,
we have R = 1, σ2 ≤ n, and t2 = n2ϵ. Then, for any ϵ < 1, we obtain

PΩ


∥∥∥∥∥∥
∑
g∈G

Ω(g)πi(g)

∥∥∥∥∥∥
2

op

> ϵ

 ≤ 2dπi
exp
(
− 3nϵ

8

)
, ∀i ≥ 2. (D.13)

Applying a union bound then gives

PΩ

sup
i≥2

∥∥∥∥∥∥
∑
g∈G

Ω(g)πi(g)

∥∥∥∥∥∥
2

op

> ϵ

 ≤ 2
∑
i≥2

dπi exp
(
− 3nϵ

8

)
(D.14)

≤ 2|G| exp
(
− 3nϵ

8

)
, (D.15)

where in the last step we used the fact that∑
i≥2

dπi
≤
∑
i≥2

d2πi
= |G| − 1. (D.16)

Thus, to ensure that the probability of failure of a random averaging scheme to satisfy the weak
approximate symmetry condition is at most δ < 1, it suffices to take

n =

⌈
2.67×

log |G|+ log 1
δ + 0.7

ϵ

⌉
, (D.17)

samples. At the same time, the size of such a random averaging scheme is

size(Ω) = n = O
(
log |G|+ log 1

δ

ϵ

)
, (D.18)

which completes the proof.

Remark 24. In the proof, the decomposition into irreps and the removal of redundancies (i.e., cases
with mi ≥ 2) are essential for obtaining the log |G| term. A naive application of matrix concentra-
tion inequalities to the entire space F would yield only a bound depending on log dim(F), which
can be suboptimal when the function space F is large. By contrast, through representation-theoretic
arguments we derive a bound of log |G|, which holds uniformly for any finite-dimensional function
space F .
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Remark 25. The proofs of our main results on exactly symmetric functions are closely related to
classical work in representation theory, including the results of Burnside (Burnside, 2012), Steinberg
(Steinberg, 1962), and Brauer (Brauer, 1964).

The theory of designing averaging schemes is also closely connected to the study of unitary designs
and unitary codes, which have been investigated in the literature (Roy & Scott, 2009; Dankert et al.,
2009). The notion of almost independent permutations is also closely related to our setting, in the
specific case of the symmetric group and low-degree polynomials (Alon & Lovett, 2013). Moreover,
the fact that under a random averaging scheme logarithmically sized subsets of group elements
suffice to ensure that all nontrivial irreps average close to zero has been used in a different context in
the study of random walks on groups (see the Alon–Roichman theorem (Alon & Roichman, 1994)).
This line of work is further related to the theory of Cayley graphs and expander graphs (Bourgain
& Gamburd, 2008), as well as tensor product Markov chains (Benkart et al., 2020), both of which
have numerous applications (Hoory et al., 2006).

E PROOF OF THE CLAIM IN REMARK 14

Proof. In order to show that at least Ωε

(
log |G|

)
action queries (AQs) are required to achieve ap-

proximate symmetry, we construct a particular instance of the problem.

Assume that ϵ < 1, and let us consider the group G = {0, 1}d under addition modulo two, where
d ∈ N. Note that log |G| = Θ(d). Let πi, i ∈ [r], denote the distinct irreps of G, which are all
one-dimensional since G is a commutative group. This means that r = |G|. Consider an arbitrary
averaging scheme ω : G→ R that achieves weak approximate symmetry (Definition 4).

Using the same line of argument as appeared in the proof of Theorem 13 (Equation D.10), we have

|ω̂(πi)|2 =

∣∣∣∣∣∣
∑
g∈G

ω(g)πi(g)

∣∣∣∣∣∣
2

≤ ϵ, ∀i : i ≥ 2, (E.1)

where i = 1 is used above to denote the trivial irrep.

We claim that this means that the support of ω is a generating set of the group. In other words,
letting S := { g ∈ G : ω(g) ̸= 0 } we claim that S generates the group. This means that there exists
a finite k ∈ N such that ∪ℓ∈[k]S

ℓ = G, where we define Aℓ := {
∑ℓ

j=1 ai : ai ∈ A, ∀i ∈ [ℓ]} for
any set A ⊆ G.

First, let us show that the above claim completes the proof. Note that G is a d-dimensional vector
space, and thus if S has fewer than d elements then it is impossible to have ∪ℓ∈[k]S

ℓ = G, via
elementary linear algebra arguments (i.e., span of less than d vectors cannot become a d-dimensional
vector space). Indeed, in such cases we have ∪∞ℓ=1S

ℓ ⊊ G. This means that |S| ≥ d = Θ(log |G|).
However, the size of the averaging scheme ω is size(ω) = |S| = Θ(log |G|). Since this bound holds
for all ϵ < 1, the proof is complete.

Now let us focus on proving that such a subset S generates the group. For any two functions
ω1, ω2 : G→ R, define their convolution, denoted by ω1 ⋆ ω2 : G→ R, such that

(ω1 ⋆ ω2)(g) :=
∑
h∈G

ω1(h)ω2

(
h−1g

)
, ∀g ∈ G. (E.2)

A clear property of the convolution operator is that

supp(ω1 ⋆ ω2) ⊆ supp(ω1) + supp(ω2), for all ω1, ω2. (E.3)

In particular, this shows that for the averaging scheme ω : G→ R and its ℓ-fold convolution

ω⋆ℓ := ω ⋆ ω ⋆ . . . ⋆ ω︸ ︷︷ ︸
ℓ times

, ∀ℓ ∈ N, (E.4)

we have

supp(ω⋆ℓ) ⊆ (supp(ω))ℓ, ∀ℓ ∈ N. (E.5)
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This means that ⋃
ℓ∈[k]

supp(ω⋆ℓ) ⊆
⋃
ℓ∈[k]

(supp(ω))ℓ, ∀k ∈ N. (E.6)

Therefore, to complete the proof it is sufficient to show that⋃
ℓ∈[k]

supp(ω⋆ℓ) = G, (E.7)

for some finite k ∈ N.

Note that, according to the properties of the Fourier transform on groups, we have

|ω̂⋆ℓ(πi)|2 ≤ |ω̂(πi)|2ℓ ≤ ϵℓ, ∀i ≥ 2. (E.8)

In particular, since ϵ < 1, we have that limℓ→∞ |ω̂⋆ℓ(πi)|2 = 0, uniformly over i ≥ 2. This
means that ω⋆ℓ converges in L2(G) to the uniform distribution over G. Recall that ω is an averaging
scheme, thus its average over the group is one. Moreover, convergence in L2(G) and pointwise
convergence are essentially equivalent here, since G is finite.

Therefore, since the support of the uniform distribution is the whole group, we conclude that for
some finite k ∈ N, we have that supp(ω⋆k) = G, and this completes the proof.

Remark 26. The above lower bound indeed holds for all finite groups, if we replace S with the
minimum generating set of the group G. More precisely, the number of required action queries
(AQs) is at least Ωϵ(|S|), where S here is the minimum-sized generating set of the group G. For the
particular case with G = {0, 1}d, we showed that any generating set has size at least log |G|, thus
proving the claim.

F BEYOND L2(X ): ON APPROXIMATE SYMMETRY IN OTHER METRICS

In this section, we discuss how choosing metrics other than theL2(X )-distance can affect our results.
Here, X is equipped with a Borel measure µ, and L2(X ) is defined with respect to µ.

Assume that ω : G → R achieves weak (or strong) approximate symmetry with respect to a given
parameter ϵ. Let f ∈ F ⊆ L2(X ) be an arbitrary function. According to Definition 4, and using the
characterization of weak approximate symmetry in Equation A.33, we have

∥Eω[f ]− Eg[f ]∥2L2(X ) ≤ ϵ Eg[∥f(x)− f(gx)∥2L2(X )] (F.1)

≤ 4ϵ ∥f∥2L2(X ). (F.2)

In the above, the operator Eω[·] is defined according to the averaging scheme, and Eg[·] is the (full)
group averaging operator corresponding to the uniform averaging scheme over the whole group.

The above inequality tells us that if we have a weak (or strong) averaging scheme, then the resulting
averaged functions are ϵ-close to their full group-averaged versions in the L2(X )-metric. This holds
for all square-integrable functions f ∈ F . Moreover, the size of the averaging scheme is only
size(ω) = O

(
log |G|

ϵ

)
, according to our main result in the paper.

What happens if we want to go beyond the L2(X )-norm and provide approximations of group
averaging using sparse sets? Let us discuss what happens if we want to achieve this for the supremum
norm overX andF via a random averaging scheme ω : G→ R derived by sampling uniformly from
the group. This is motivated by a number of previous studies on approximate symmetry (Ashman
et al., 2024; Kim et al., 2023).

For a fixed function f ∈ F and a fixed x ∈ X , note that according to classical concentration
inequalities (e.g., Hoeffding’s inequality) we have

|(Eω[f ])(x)− (Eg[f ])(x)|2 ≤ O

(
∥f∥2L∞(X ) log(

1
δ )

size(ω)

)
, with probability 1− δ. (F.3)
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This bound, while even independent of the group size, is less interesting since it only holds for one
particular pair (x, f). To make it more general, one may want to take a supremum (over x and/or f )
of the left-hand side of the above inequality and hope that a modified upper bound holds.

To take the supremum over x ∈ X , we need to use the so-called covering arguments, which are
standard in classical statistics. Let logN (κ,X ) denote the metric entropy of X at scale κ, that is,
the logarithm of the minimum number of points required to cover the whole domain X with balls of
radius at most κ, where we equip the domain with a given metric.

Assume κ2 = ϵ and

size(ω) = Ω

(
∥f∥2L∞(X ) log(

1
δ ) + ∥f∥

2
L∞(X ) logN (κ,X )

ϵ

)
. (F.4)

Then we have

sup
x∈X
|(Eω[f ])(x)− (Eg[f ])(x)|2 ≤ ϵ, with probability 1− δ, (F.5)

Usually, the metric entropy depends linearly on the intrinsic dimension of the domain X , and it
is also heavily affected by the volume of the domain. The above bound, while being nice and
independent of the group, still depends on potentially complicated constants determined by the
geometry of the input domain X .

There is one more issue here. The bound above holds only for a fixed function f ∈ F . To obtain
a uniform bound holding for all f ∈ F , one needs to study covering numbers of the function space
F , which can be difficult to handle for general spaces.

Let us now obtain a uniform bound over functions f ∈ F to see how complicated this task can
become. Consider a fixed x ∈ X , and let µω and µg denote the probability measures corresponding
to the law of the point x transformed either according to the distribution ω or uniformly over the
domain. Note that

|(Eω[f ])(x)− (Eg[f ])(x)| ≤ Lip(f)W (µω, µg), (F.6)

for all f ∈ F , where W (·, ·) denotes the ℓ1-optimal transport (Wasserstein-1) distance between
measures on X . This bound is indeed optimal whenever F contains all Lipschitz functions over X .
Let FLip denote the set of all L-Lipschitz functions over X , for some fixed L ∈ R. Assume that this
is the case, and plug in the empirical measure µω convergence rate in Wasserstein distance to µg to
obtain

sup
f∈FLip

|(Eω[f ])(x)− (Eg[f ])(x)| ≤ LW (µω, µg), E[W (µω, µg)] ≲ (size(ω))−
1
d , (F.7)

where the latter expectation is over the randomness of choosing ω, and d is the intrinsic dimension
of the domain X .

Note that there is a curse of dimensionality here: in order to ensure a bounded error, one needs
averaging schemes of size at least size(ω) = exp(Θ(d)). This is in contrast to the logarithmic bound
in the group size for the L2(X )-distance, which holds with no curse of dimensionality. We note that
the above bound is essentially optimal for Lipschitz function classes, according to the optimality of
the Wasserstein distance estimation convergence rate. As a final remark, note that all the analysis
above holds only for a fixed x ∈ X , and obtaining a uniform bound over x ∈ X introduces another
layer of complexity.

To conclude, obtaining the same type of result uniformly over all x ∈ X and f ∈ F is impossible
in full generality, even for Lipschitz function classes, which are a substantially smaller subclass
of square-integrable functions. Moreover, since generalization analyses in machine learning and
statistics are almost always governed by the L2(X )-distance, going beyond this regime has less
theoretical motivation; see Appendix A.8. Still, the problem of finding better bounds beyond the
L2(X ) regime for specific function classes F is an open direction that we leave for future work.

G EXPERIMENT

In this section, we present a simple proof-of-concept experiment that validates the theoretical find-
ings of this paper. We consider ntrain = 5×104 training and ntest = 5×104 test samples in dimension
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d = 20. Each data point x ∈ Rd is drawn i.i.d. from a Gaussian distribution with zero mean and
identity covariance, and is labeled according to the target regression function:

f⋆(x) := ⟨w⋆, abs(x)⟩,

where abs(x) ∈ Rd denotes the element-wise absolute value of x, and w⋆ ∈ Rd is an unknown
weight vector sampled from a zero-mean Gaussian with identity covariance.

To learn f⋆, we train a three-layer ReLU network with two hidden layers of widths h1 = 128 and
h2 = 64. The network is trained using SGD with learning rate 10−3 and batch size 256 for 500
epochs, using the squared loss.

By construction, this task is invariant under coordinate-wise sign flips, meaning that for any g ∈
G := {±1}d, we have f⋆(gx) = f⋆(x). The group G therefore has cardinality |G| = 2d, which
is prohibitively large for exact group averaging in practice. To approximate group averaging, we
instead sample a random subset S ⊂ G of size |S| = 2k for k ∈ {0, 1, . . . , 10}. At evaluation time,
the prediction on an input x is obtained by averaging the network outputs over all transformations
in S, and the test loss is computed via the squared loss. Crucially, the subset S is fixed throughout
training and is used only at evaluation time, and the training procedure itself does not depend on S.

Figure 2 summarizes the results of this experiment. The left plot shows the final test loss as a
function of the subset size |S|. As |S| increases, the test loss decreases, reflecting the benefit of
averaging over more group elements. Interestingly, most of the improvement is already achieved
around |S| = 32, and larger subsets yield only marginal gains. This behavior is in strong agreement
with our theory, which predicts that logarithmic-sized subsets already capture essentially the full
benefit of group averaging.

The right plot in Figure 2 illustrates how averaging with a subset of size |S| = 32 affects the test
loss over the course of training. We observe a uniform improvement in test loss across epochs
when averaging is applied. This is consistent with our theoretical guarantees, which show that
logarithmic-sized subsets approximate full group averaging with a uniform error bound that holds
for all square-integrable functions, and hence is reflected uniformly over training as the learned
function evolves.
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Figure 2: Left: Final test loss when averaging over random subsets S ⊂ G of increasing size |S|.
Most of the benefit is achieved already at |S| = 32, with only marginal gains beyond that. Right:
Test loss over training epochs, with and without averaging using a subset of size |S| = 32. The
improvement from averaging is observed uniformly over training.

H LLM USAGE DISCLOSURE

We used ChatGPT 5 only for minor copyediting (grammar, wording, and clarity) during manuscript
preparation. No technical content, proofs, analyses, or results were generated by the model; all ideas
and conclusions are our own.
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