
Satisfiability.jl:
Satisfiability Modulo Theories in Julia⋆

Emiko Soroka[0009−0001−2710−469X], Mykel J. Kochenderfer[0000−0002−7238−9663],
and Sanjay Lall[0000−0002−1783−5309]

Stanford University, Stanford CA 94305, USA
{esoroka, mykel, lall}@stanford.edu

Abstract. Satisfiability modulo theories (SMT) is a core tool in formal
verification. While the SMT-LIB specification language can be used to
interact with theorem proving software, a high-level interface allows for
faster and easier specifications of complex SMT formulae. In this paper
we present a novel open-source package for interacting with SMT-LIB
compliant solvers in the Julia programming language.

Keywords: satisfiability modulo theories· julia· smt-lib· interface

1 Introduction

Theorem proving software is one of the core tools of formal verification, model
checking, and synthesis. This paper introduces Satisfiability.jl, a Julia
package providing a high-level representation for SMT formulae including propo-
sitional logic, integer and real-valued arithmetic, and bitvectors.

Julia is a dynamically typed functional language ideal for scientific computing
due to its use of type inference, multiple dispatch, and just-in-time compilation
to improve performance [6] [14]. Satisfiability.jl provides a novel interface
for SMT solving in Julia, taking advantage of language features to simplify the
process of specifying SMT problems.

1.1 Prior Work

Many theorem provers have been developed over the years. Some notable provers
include Z3 [13] and cvc5 [3], both of which expose APIs in languages including
C++ and Python. However, provers are low-level tools intended to be integrated
into other software. Higher-level interfaces have been published for other common
languages: PySMT [9], JavaSMT [2], and ScalaSMT [8] are all actively maintained.
In C++, the SMT-Switch library provides an interface similar to the SMT-LIB
language itself [12].

⋆ This research was supported by Ford Motor Co. under the Stanford-Ford Alliance,
agreement number 235158.

ar
X

iv
:2

30
9.

08
77

8v
2

 [
cs

.L
O

]
 1

6
D

ec
 2

02
3

2 E. Soroka et al.

SMT solving in Julia has previously relied on wrapped C++ APIs to access
specific solvers. However, wrapped APIs often do not match the style or best
practices of a specific language. Thus an idiomatic Julia interface can make
formal verification more closely integrated with Julia.

1.2 The SMT-LIB Specification Language

SMT-LIB is a low-level specification language designed to standardize interac-
tions with theorem provers. At time of writing, the current SMT-LIB standard is
version 2.6; we used this version of the language specification when implement-
ing our software. To disambiguate between SMT (satisfiability modulo theories)
and this specification language, we always refer to the language as SMT-LIB.
Knowledge of SMT-LIB is not required to use Satisfiability.jl. Our software
provides an abstraction on top of SMT-LIB, thus we refrain from an in-depth
description of the language; for a full description, readers are referred to the
published standard [5]. For an in-depth treatment of computational logic and
the associated decision procedures, readers are referred to the books [7] [10].

2 Package Design

Our software provides a simple interface for solving satisfiability problems by
automatically generating the underlying SMT-LIB commands and interpreting
the solver responses. The basic unit of an SMT formula is the expression, which
implements a tree structure capable of representing arbitrarily complex formulae.

Variables, expressions, and constants. Vector- and matrix-valued variables are
arrays of single-valued expressions; thus operators can be broadcast using Julia’s
built in array functionality. Julia’s type system prevents invalid expressions from
being constructed. For example, ¬x is only valid if x is of type BoolExpr.

The current version of our software supports propositional logic, integer and
real-valued arithmetic, and bitvectors (support for other SMT-LIB theories is
planned in future versions).Our BoolExpr, IntExpr and RealExpr types inter-
operate with Julia’s native Bool, Int, and Float64 types. Bitvector expressions
interoperate with unsigned Julia integers of the appropriate size.

Expressions are simplified where possible: not(not(expr)) simplifies to expr
and nested conjunctions or disjunctions are flattened. Numeric constants are
wrapped in Expr types, simplified, and promoted as necessary: for example,
adding two wrapped constants 1 + 2.5 results in a single wrapped value of 3.5.

Uninterpreted functions. An uninterpreted function is a function where the
input-output mapping is not known. When uninterpreted functions appear in
an SMT formula, the task of the solver is to determine whether a function that
satisfies the given formula exists. Uninterpreted functions in Satisfiability.jl
use Julia’s metaprogramming capabilities to generate functions returning either
SMT expressions or (if a satisfying assignment is known), the correct value when
evaluating a constant.

Satisfiability.jl: Satisfiability Modulo Theories in Julia 3

Operators. Boolean and arithmetic operators are implemented as defined in
SMT-LIB [5]. Design decisions were made to bring some SMT-LIB operators in
line with Julia’s conventions; the SMT-LIB extract operator, which indexes into
a BitVector, is represented by Julia [] indexing, and ==, not the SMT-LIB =, is
used to construct equality constraints. Where possible, Julia symbolic operators
take on their appropriate SMT-LIB meanings.

Additionally, Satisfiability.jl provides some convenient extensions to
the SMT-LIB standard syntax. Julia functions such as sum and prod (which call
+ and *, respectively) can be used to construct expressions. In addition to its
standard meaning, the SMT-LIB distinct operator can accept an iterable of
expressions, in which case distinct(x1,... ,xn) constructs a formula where
each xi must take on a unique value. Numeric types IntExpr and RealExpr can
be mixed using Julia’s type promotion functionality to call the SMT-LIB con-
version functions to_int and to_real. Boolean expressions can be mixed with
numeric types using ite (if-then-else): given Boolean z, ite(z, 1 0) converts
z to an SMT-LIB Integer and ite(z, 1.0, 0.0) converts z to an SMT-LIB
Real. This matches the behavior of Z3.

Interacting with solvers. Internally, our package uses Julia’s Process library to
interact with a solver via input and output pipes. This supports the interactive
nature of SMT-LIB, which necessitates a two-way connection with the solver,
and simplifies the process of making solvers available to Satisfiability.jl; the user
simply ensures the solver can be invoked from their machine’s command line.
Users may customize the command used to invoke a solver, providing a single
mechanism for customizing solver flags and interacting with any SMT-LIB solver.

3 Usage

Variables. New variables are declared using the @satvariable macro, which
behaves similarly to the @variable macro in JuMP.jl [11]. The @satvariable
macro takes two arguments: a variable name with optional size and shape (for
creating vector-valued and matrix-valued variables) and the variable type.

@satvariable(x, Bool) # Single BoolExpr
@satvariable(y[1:m, 1:n], Int) # m x n-vector of IntExprs
@satvariable(z[1:n], BitVector, 8) # n-vector of 8-bit BitVectorExprs

Uninterpreted functions. Uninterpreted functions are declared using the
@uninterpreted macro, which generates a Julia function with the correct input
and output type.

julia> @uninterpreted(f, Int, Bool)
julia> @satvariable(x, Int)
julia> sat!(¬f(-1), f(1)) # check satisfiability of a given expression
:SAT
julia> (f(-1), f(1))
(false, true)

4 E. Soroka et al.

Operators. Julia’s Unicode support allows many operators to be defined using
their mathematical symbols. Operators represented by non-ASCII symbols may
also be invoked using their ASCII text names. Operator precedence and asso-
ciativity follow Julia’s internal rules, described in [1]. Users are encouraged to
parenthesize expressions, as some precedence rules give unexpected results. For
example:

(x,y,z) = @satvariable(a[1:3], Bool)
x⇒y ∧ y⇒z # this is x ⇒ (y ∧ y ⇒ z)
(x⇒y) ∧ (y⇒z) # this is (x ⇒ y) ∧ (y ⇒ z)
and(implies(x,y), implies(y,z)) # equivalent ASCII formulation

Working with formulae. The function smt(expr::AbstractExpr) returns the
SMT-LIB representation of expr as a string. If expr is Boolean, smt will also
assert expr. An example is provided below.
julia> @satvariable(x, Bool)
julia> @satvariable(y, Bool)
julia> expr = or(¬x, and(¬x, y))
julia> print(smt(expr))
(declare-fun x () Bool)
(declare-fun y () Bool)
(assert (or (and (not x) y) (not x)))

The function save(e::AbstractExpr, io::IO) writes smt(expr) to a Julia IO
object. The function sat!(expr::BoolExpr, s::solver) calls the given solver
on expr and returns either :SAT, :UNSAT, or :ERROR. If expr is :SAT, the values
of all nested expressions in expr are updated to reflect the satisfying assignment.
If expr is :UNSAT, these values are set to nothing. The sat! function can also be
called on a Julia IO object representing a string of valid SMT-LIB commands,
allowing previously-written SMT-LIB files to be used with Satisfiability.jl.

Interactive solving. SMT-LIB is an interactive interface, allowing users to modify
the assumptions of an SMT problem and issue follow-up commands after a sat
or unsat response. Satisfiability.jl provides an InteractiveSolver object
to support these use cases. In this mode, users can manage the solver’s asser-
tion stack using push!, pop!, and assert!. Calling sat!(interactive_solver)
checks the satisfiability of all current assertions, returning a tuple (status,
satisfying_assignment).

Additionally, Satisfiability.jl exposes a low-level interface, allowing ad-
vanced users to send SMT commands and receive solver responses. (Users are
responsible for ensuring the correctness of these commands and interpreting the
results.) Thus, Satisfiability.jl can aid advanced SMT users by generating
lengthy SMT-LIB statements and programmatically interacting with solvers.

4 Examples
To demonstrate the compact syntax of Satisfiability.jl, we selected the “Pigeon-
hole” benchmark problem from the SMT-LIB benchmark library [4]. Given an

Satisfiability.jl: Satisfiability Modulo Theories in Julia 5

(n+1)×n integer matrix P , the problem is to find a satisfying assignment such
that each element Pij is in {0, 1}; for each row i,

∑n+1
j=1 Pij ≥ 1; and for each

column j,
∑n

i=1 Pi,j ≤ 1. (There are more rows than columns, so the problem is
always unsatisfiable.) The benchmark is defined using the following code.

function pigeonhole(n::Int)
@satvariable(P[1:n+1, 1:n], Int)
rows = BoolExpr[sum(P[i,:]) ≥ 1 for i=1:n+1]
cols = BoolExpr[sum(P[:,j]) ≤ 1 for j=1:n]
status = sat!(rows, cols, P .≥ 0, P .≤ 1, solver=Z3())
return status # should always return :UNSAT

end

We also tested a graph coloring task in which Satisfiability.jl attempts
to find up to 5 colorings for each graph of size n, progressively adding assertions
to exclude previously-found solutions. The following code defines the graph color-
ing task given n (the number of nodes), a list of edges as (i, j) pairs, a maximum
number of colorings to find, and the number of available colors.

function graph_coloring(n::Int, edges, to_find::Int, colors::Int)
@satvariable(nodes[1:n], Int)
limits = and.(nodes .≥ 1, nodes .≤ colors)
conns = cat([nodes[i] != nodes[j] for (i,j) in edges], dims=1)
open(Z3()) do solver
assert!(solver, limits, conns)
i = 1
while i ≤ to_find

status, assignment = sat!(solver)
if status == :SAT

assign!(nodes, assignment)
assert!(solver, not(and(nodes .== value(nodes))))

else
break

end
i += 1

end
end

5 Conclusions

We have developed a Julia package providing a simple, high-level interface to
SMT-LIB compatible solvers. Our package takes advantage of Julia’s function-
ality to construct a simple and extensible interface; we use multiple dispatch to
optimize and simplify operations over constants, the type system to enforce the
correctness of SMT expressions, and Base.Process to interact with SMT-LIB
compliant solvers. Satisfiability.jl is a registered Julia package and can be
downloaded with the command using Pkg; Pkg.add("Satisfiability.jl").
The package documentation is at https://elsoroka.github.io/Satisfiability.jl.

https://elsoroka.github.io/Satisfiability.jl

6 E. Soroka et al.

Acknowledgments. The software architecture of Satisfiability.jl was in-
spired by Convex.jl and JuMP.jl [15] [11]. Professor Clark Barrett provided
important advice on implementing the SMT-LIB theory specifications.

References

1. (Jul 2023), https://docs.julialang.org/en/v1/manual/mathematical-operations/
#Operator-Precedence-and-Associativity

2. Baier, D., Beyer, D., Friedberger, K.: JavaSMT 3: Interacting with SMT solvers in
java. In: International Conference on Computer Aided Verification. pp. 195–208.
Springer (2021). https://doi.org/10.1007/978-3-030-81688-9_9

3. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Tools and Algorithms for the Construction and Analy-
sis of Systems TACAS 2022. Lecture Notes in Computer Science, vol. 13243, pp.
415–442. Springer (2022). https://doi.org/10.1007/978-3-030-99524-9_24, https:
//doi.org/10.1007/978-3-030-99524-9_24

4. Barrett, C.: SMT-LIB benchmark library (Jun 2017), https://clc-gitlab.cs.uiowa.
edu:2443/SMT-LIB-benchmarks/QF_LIA/-/tree/master/pidgeons

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available
at www.SMT-LIB.org

6. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to
numerical computing. SIAM review 59(1), 65–98 (2017), https://doi.org/10.1137/
141000671

7. Bradley, A.R., Manna, Z.: The calculus of computation: decision procedures with
applications to verification. Springer Science & Business Media (2007)

8. Cassez, F., Sloane, A.M.: ScalaSMT: Satisfiability modulo theory in Scala (tool
paper). In: Proceedings of the 8th ACM SIGPLAN International Symposium on
Scala. pp. 51–55 (2017). https://doi.org/3136000.3136004

9. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

10. Kroening, D., Strichman, O.: Decision procedures. Springer (2016)
11. Lubin, M., Dowson, O., Garcia, J.D., Huchette, J., Legat, B., Vielma, J.P.: JuMP

1.0: Recent improvements to a modeling language for mathematical optimiza-
tion. Mathematical Programming Computation (2023). https://doi.org/10.1007/
s12532-023-00239-3

12. Mann, M., Wilson, A., Zohar, Y., Stuntz, L., Irfan, A., Brown, K., Donovick, C.,
Guman, A., Tinelli, C., Barrett, C.: SMT-switch: a solver-agnostic C++ API for
SMT solving. In: International Conference on Theory and Applications of Satisfi-
ability Testing. pp. 377–386. Springer (2021)

13. de Moura, L.M., Bjørner, N.S.: Z3: An efficient SMT solver. In: International Con-
ference on Tools and Algorithms for Construction and Analysis of Systems (2008).
https://doi.org/10.1007/978-3-540-78800-3_24

14. Perkel, J.M., et al.: Julia: come for the syntax, stay for the speed. Nature
572(7767), 141–142 (2019). https://doi.org/10.1038/d41586-019-02310-3

15. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex opti-
mization in Julia. SC14 Workshop on High Performance Technical Computing in
Dynamic Languages (2014). https://doi.org/10.48550/arXiv.1410.4821

https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://docs.julialang.org/en/v1/manual/mathematical-operations/#Operator-Precedence-and-Associativity
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/tree/master/pidgeons
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/tree/master/pidgeons
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/3136000.3136004
https://doi.org/3136000.3136004
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1038/d41586-019-02310-3
https://doi.org/10.1038/d41586-019-02310-3
https://doi.org/10.48550/arXiv.1410.4821
https://doi.org/10.48550/arXiv.1410.4821

	Satisfiability.jl:Satisfiability Modulo Theories in Julia

