
Under review as a conference paper at ICLR 2023

CONTINUAL LEARNING BASED ON SUB-NETWORKS
AND TASK SIMILARITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) has two main objectives: preventing catastrophic forgetting
(CF) and encouraging knowledge transfer (KT) across tasks. The existing literature
mainly tries to overcome CF. Although some papers have focused on both CF
and KT, they may still suffer from CF because of their ineffective handling of
previous tasks and/or poor task similarity detection mechanisms to achieve KT.
This work presents a new CL method that addresses the above issues. First, it
overcomes CF by isolating the knowledge of each task via a learned mask that
indicates a sub-network. Second, it proposes a novel technique to compute how
important each mask is to the new task, which indicates how the new task is
similar to an underlying old task. Similar tasks can share the same mask/sub-
network for KT, while dissimilar tasks use different masks/sub-networks for CF
prevention. Comprehensive experiments have been conducted using a range of
NLP problems, including classification, generation, and extraction to show that the
proposed method consistently outperforms prior state-of-the-art baselines.1

1 INTRODUCTION

This paper studies continual learning (CL) of a sequence of natural language processing (NLP)
tasks in the task continual learning (Task-CL) setting. It deals with both catastrophic forgetting
(CF) (McCloskey & Cohen, 1989) and knowledge transfer (KT) across tasks. In Task-CL, the task
ID is provided for each test case in testing. In learning, after a task is learned, its data is no longer
accessible. Another CL setting is class continual learning (Class-CL), which provides no task ID in
testing and it solves a different type of problems.

Existing research in CL has almost exclusively focused on overcoming CF (Kirkpatrick et al., 2016;
Serrà et al., 2018; Wortsman et al., 2020). Limited work has being done on KT except (Ke et al.,
2020; 2021; Wang et al., 2022). But KT is particularly important for NLP because many tasks in
NLP share similar knowledge that can be leveraged to achieve better accuracy. We humans are also
particularly good at leveraging prior knowledge to help learn new skills. To achieve KT in learning
a new task, CAT (Ke et al., 2020) first detects previous tasks that are similar to the current task
so that the current task learning can leverage the knowledge learned from the similar past tasks.
CAT uses the hard-attention mechanism in HAT (Serrà et al., 2018) to deal with CF, which masks
out those important neurons for each task so that the training of new tasks cannot change them in
back-propagation. However, different tasks can share neurons. This approach has a major problem
for KT that is very hard, if not impossible, to solve. After the similar previous tasks are detected,
CAT opens the masks of these tasks so that the new task learning can modify their parameters to
achieve both forward and backward KT. This clearly helps KT. But this can cause CF for dissimilar
tasks that share parameters with those similar tasks. CAT’s task similarity comparison method based
on the transfer learning performance can be quite inaccurate too. The KT methods in (Ke et al., 2021;
Wang et al., 2022) are based on instance-level feature similarity comparison using dot product or
cosine, which can be inaccurate as well (see experiment results in Sec. 4.2).

To deal with these issues, we would like to have (1) a learning method that can isolate the knowledge
of each task without parameter overlapping among tasks to deal with harmful interference in KT and
(2) a task similarity detection method that is directly related to the loss of previous tasks (even though
we do not have their data) for more accurate similar task detection.

1The code has been uploaded as supplementary materials.

1



Under review as a conference paper at ICLR 2023

For (1), we draw inspiration from the sub-network masking idea in (Wortsman et al., 2020), where
the underlying backbone network is fixed but a binary mask is learned to find a sub-network for each
task, which encodes the model for the task. The mask is basically a set of binary gates that indicates
which parameters in the backbone network should be used for a task model. Thus, different task
models have no interference to cause CF although sub-networks of multiple tasks can share neurons
and parameters because the underlying backbone network is fixed and shared by all tasks. Although
this helps learn a sub-network to achieve no interference (CF) in transfer, the original (Wortsman
et al., 2020), by design, cannot do KT. It is still very challenging to detect task similarity and to know
what level of similarity is similar enough to ensure positive transfer. If a wrong similarity threshold is
used, CF will be serious. To this end, we propose a novel method to detect similarity in (2).

For (2), we propose to determine whether a previous task k is similar to the current task t by assessing
the importance of the mask (which represents the model or sub-network of a task) for the previous
task k to the current task t. To compute the importance score, we make use of an effective idea
from the network pruning community (Michel et al., 2019). In Michel et al. (2019), the gradient
on each parameter is serving as the importance of the parameter. The less important parameters
(determined by a threshold) are regarded as unimportant and removed to reduce the network size.
However, it is not obvious how we can compute the importance of each mask with its sub-network
to the current task and how to determine whether the current task is similar enough to a previous
task based on the importance so that they can perform KT. This paper proposes a novel method to
perform the above two functions. A set of virtual/dummy gate variables are introduced to represent
the mask/sub-network so that we can compute the gradient of each mask/sub-network. The gradient,
based on the current task data and directly related to current task loss, serves as the importance of
the mask/sub-network to the current task. The more important a mask/sub-network is, it is more
likely that the previous task that has used the mask is similar to the current task. To mitigate the
possible forgetting, a novel importance comparison mechanism is also proposed to take the previous
task gradient into account.

Based on the proposed idea, a new method, called TST (Task-CL based on Sub-networks and Task
similarity), is proposed. TST is evaluated using datasets for classification, generation, and extraction
with similar tasks and dissimilar tasks. The results demonstrate the high effectiveness of TST.

In summary, this paper makes two key contributions.
1. It proposes a new Task-CL method TST based on sub-networks and task similarity. TST not

only overcomes CF but also enables effective KT. For KT, it learns the current task in the
sub-network of a previous task without interference with any other tasks and thus will not
cause any CF for the other tasks. This cannot be achieved by other existing methods.

2. It proposes a novel task similarity detection method based on gradients computed on masks.
This method is simple and yet highly effective. It is instrumental for effective KT.

2 RELATED WORK

Continual learning. Existing CL work mainly focused on overcoming CF: (1) Regularization-based
approaches (Kirkpatrick et al., 2016; Lee et al.; Seff et al., 2017; Zenke et al., 2017; Rusu et al.,
2016) add a regularization in the loss to penalize changes to parameters that are important to previous
tasks. (2) Gradient projection (Zeng et al., 2019) ensures the gradient updates occur in the orthogonal
direction to the input of old tasks. (3) Parameter isolation (Serrà et al., 2018; Ke et al., 2020; Mallya
& Lazebnik, 2018; Fernando et al., 2017; Wortsman et al., 2020) learns a dedicated sub-network for
each task and masks it out in learning new tasks. (3) Replay-based approaches (Rebuffi et al., 2017;
Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Wang et al., 2020), retain some training data of
old tasks and use them in learning a new task. The methods in (Shin et al., 2017; Kamra et al., 2017;
Rostami et al., 2019; He & Jaeger, 2018) learn data generators and generate old task data for learning
a new task. These are clearly very different from our method as we don’t use any replay data.

Continual learning in NLP. Above existing approaches usually do not use a pre-trained model.
However, in NLP, almost all recent CL/non-CL techniques use pre-trained language models (LMs).
We categorize them into 3 types based on which part in the pre-trained LM is trainable. The first one
below belongs to replay or regularization families and last two types belong to parameter-isolation. (1).
Transformer-updating based - this family updates the Transformer directly. IDBR (Huang et al., 2021)
disentangles task-shared and task-specific knowledge in BERT via regularizations. LAMOL (Sun

2



Under review as a conference paper at ICLR 2023

et al., 2020) is a replay method based on GPT-2. It generates previous task samples before learning
the new task. (2). Prompt-based - a prompt (Lester et al., 2021) is an added structure to the input
layer. C-PT (Zhu et al., 2022) learns a separate prompt for each task. L2P (Wang et al., 2022) learns
a prompt pool for all tasks and prevents CF by choosing the matched prompt and allowing transfer by
sharing the same prompt pool. (3). Adapter-based - an adapter (Houlsby et al., 2019) is an added
structure in each layer of the Transformer. AdapterCL (Madotto et al., 2020) trains a separate adapter
for each task. It thus has no CF or KT. CTR (Ke et al., 2021) trains a shared adapter for all tasks. It
prevents CF via task masks (Serrà et al., 2018) and achieves KT via capsule networks (Sabour et al.,
2017). Our method TST also belongs to this family but TST updates the mask instead of the adapter.
It needs no replay samples or regularization and can effectively detect the task similarity based on the
mask importance. We have discussed the advantages of TST in Sec. 1.

Network pruning as importance computation. It is known that many parameters in a neural
network are redundant and can be pruned (Li et al., 2021; Lai et al., 2021). This has also been shown
for pre-trained Transformer (Chen et al., 2020; Lin et al., 2020; Gao et al., 2021; Michel et al., 2019;
Voita et al., 2019). One method is to discard the parameters with small absolute values (Han et al.,
2015; Guo et al., 2016). Other methods prune at higher levels. In a Transformer-based model, these
include pruning the attention head (Michel et al., 2019; Voita et al., 2019; McCarley et al., 2019) and
pruning sub-layers in a standard Transformer layer (Fan et al., 2020; Sajjad et al., 2020). However,
the above methods are not directly applicable to us as we need to compute the importance of mask to
detect task similarity, while the above approaches are all for the importance of network parameters.

3 PROPOSED TST TECHNIQUE

TST is designed for both CF prevention and KT (knowledge transfer). Most of existing methods
focus on CF prevention. The few methods that also do KT are based on HAT, which, as we discussed
in Sec. 1, cannot completely isolates the parameters for different tasks and the shared parameters still
cause forgetting when updating the sub-networks for similar tasks. This work borrows the idea of
sub-network masking from (Wortsman et al., 2020), which trains a mask to isolate a sub-network for
a task with the network parameters fixed. Thus, different tasks have no interference to cause CF.

The proposed method maintains a a shared mask pool. In learning a new task, the system first
computes the importance of each mask in the pool to the new task based on the gradient of a virtual
gate variable representing the mask (Sec. 3.2). Based on the mask importance, if the mask of a
previous task is likely to improve both the previous task and the current task, the mask and its
underlying sub-network will be used to train the current new task for KT (Sec. 3.3). If such a mask
is not found, the unused mask in the pool will be trained to find a new sub-network for the task so
that it will not cause CF for any previous task. The whole process is illustrated in Figure 1, which
is based on the adapter in a pre-trained Transformer framework (Houlsby et al., 2019)2. Both the
adapter (randomly initialized) and the pre-trained Transformer are fixed. Only the mask, which is
applied only to the adapter, is trained to find a sub-network in the adapter for each task.

3.1 SUB-NETWORK MASKING AND MASK POOL

Let the mask pool with K masks be {M (k)}Kk=1 (K is a hyper-parameter). To learn a task, a mask is
selected from the pool and trained. Each mask M (k) is of the same size as the parameter set (W ) of
the inserted adapter. The detailed mask training is given in Appendix B. A mask is always binary and
indicates a sub-network by element-wise multiplying with the adapter parameters,

o(k) = f(x,W ⊗M (k)), (1)

where ⊗ is element-wise multiplication, f refers to the adapter. W is fixed and shared by all tasks.
Only M (k) is trainable. W ⊗M (k) represents a sub-network and can be indicated by mask M (k).

3.2 COMPUTING MASK IMPORTANCE

Since the network weights are always fixed, a simple way to perform CL is to use a different mask
for each task so that the resulting sub-networks for different tasks will not affect each other. This

2Details of adapter is given in Appendix A.

3



Under review as a conference paper at ICLR 2023

Figure 1: Illustration of TST (from left to right). There are K masks in the mask pool, where each
mask is of the same size as the adapter weight and always binary (Appendix B) before learning.
When a new task t comes, TST first multiplies each mask with an virtual gate variable (with value
of 1). The resulting gated masks are then combined via summation to produce the combined mask
for importance computation (Eq. 2). (A) shows the mask importance computation (Sec. 3.2). We
mask the adapter using the combined mask M impt and compute the gradient of each virtual gate
variable via cross-entropy loss (LCE). The normalized magnitude of the resulting gradient serves
as the importance of each mask to the current task t (Eqs. 4 and 5). (B) shows the mask selection
(Sec. 3.3). We take the mask with the highest importance as candidate mask a and select a mask using
the saved importance of the previous task that used the mask. Only the mask of higher importance for
the current task data is selected. Otherwise, we select an unused mask u. (Eqs. 6 and 7) (C) shows
the mask training (Sec. 3.4). Using the selected mask q, we can mask the adapter and train the mask
with cross-entropy. As a result, we share the same mask for similar tasks and isolate the mask from
dissimilar tasks, achieving both forgetting prevention and knowledge transfer (KT).

gives us a chance to safely update the masks of sub-networks of similar tasks without affecting any
other tasks. However, this cannot achieve KT (knowledge transfer), which is a main goal of this
paper. Thus, before learning a new task, we propose to select a mask for KT based on task similarity,
where each task may use the same mask as a previous task (for KT) or a unused mask in the pool.
The intuition is that if two tasks are similar, they can share the same mask from the pool to encourage
knowledge transfer; otherwise, the new task should select a unused mask to avoid forgetting. We
present how to compute the task similarity next.

Virtual gate variables. Intuitively, if a mask is important for two different tasks, the two tasks are
similar. This motivates us to compute the importance of each mask in the pool to the current task
based on its data. To this end, we introduce a set of gate variables, {g(k)}Kk=1, where each variable
corresponds to a mask in the pool. The variable serves as a proxy for computing the gradient on each
mask, which is used to compute the importance of the mask to the current task. We call these virtual
gate variables since each g(k) is initialized to 1, and is not changed. This is because we only need its
gradient to compute the importance of a mask and will not use the gradient to update any parameter.
We first define the virtual network of masks for our importance computation (see Figure 1(A)),

M impt =

K∑
k=1

(g(k) ∗M (k)), (2)

where g(k) is a scalar-valued gate variable and M (k) is a mask. Eq. 2 basically combines all masks
(g(k) ∗M (k)) so that we can compute the gradient on each gate variable based on the current task
data. The resulting combined mask, M impt, is then used to mask the adapter, similar to Eq. 1

oimpt = f(x,W ⊗M impt), (3)

4



Under review as a conference paper at ICLR 2023

oimpt can be used to compute the loss based on the current task data and the gradient on each gate
variable g(k) gives us the importance of the corresponding mask M (k).

Mask importance based on the gradients of gate variables. To compute the mask importance, we
borrow the idea from neural network punning (Michel et al., 2019). Given the data from the current
task t, Dt = {(xn

t ,y
n
t )}Nn=1, the importance of a mask is estimated with a gradient-based score.

I
(k)
t =

1

N

N∑
n=1

|∇n
g(k) |, (4)

where ∇g(k) is the gradient on the gate variable g(k),

∇n
g(k) =

∂Limpt(xn
t ,y

n
t )

∂g(k)

, (5)

where Limpt (impt stands for importance) is a problem-specific loss function3. Again, the gradient in
Eq. 5 is only for importance computation and is not used to update the parameters. Only the final
selected mask is trained in Sec. 3.4.

Limpt for mask importance. Eq. 4 offers a way to compute the mask importance w.r.t. a given loss
Limpt. A nature idea is to use the cross-entropy loss4, LCE, as Limpt. By doing so, we can easily get
the importance scores of all masks in the mask pool to the current task5. Note that the resulting
importance score I

(k)
t is saved for each task.

3.3 SELECTING A MASK TO LEARN TASK t BASED ON MASK IMPORTANCE

Recall that the goal of computing mask importance is to find the task similarity and select a mask for
the current task based on it. To achieve this, we propose a 2-step mechanism:

(1) Find the mask with highest importance as the candidate for knowledge transfer. We leverage
the importance scores computed using the data of the current task t, {I(k)t }Kk=1. Intuitively, the
highest score indicates the most useful sub-network for task t. If this sub-network has been used by a
previous task, it indicates the previous task’s sub-network is helpful to task t and the two tasks are
very likely to be similar. Formally, in learning task t, we first get the highest importance to task t,

I
(a)
t = max({I(1)t ...I

(K)
t }). (6)

where a is the ID of the most useful/important mask (sub-network) to the current task t. The previous
task that has used M (a), denoted as task s6, is then the candidate similar previous task to task t.

(2) Select a mask for task t. We cannot simply say that the previous task s is similar to current
task t. We want to ensure that the update of the mask for s by t will not cause forgetting for s, and
can result in improvement for both. Eq. 6 is only about whether a previous used sub-network M (a)

can help task t, it does not consider whether the updating of the M (a) by t will cause forgetting for
s. Therefore, we need one more step to be confident that forgetting is unlikely to occur due to the
updating of M (a) by t’s data. Since task s’s data is no longer accessible, we propose to use the saved
importance score (I(a)s ) computed using s’s data for mask a to achieve the goal7. This is because
I
(a)
s is computed from the previous task s’s data when we were in task s and is directly related to the

3This paper focuses on supervised tasks. Future work will extent TST to unsupervised tasks like topic
modeling (Gupta et al., 2020).

4Different problems in our experiments (generation, classification and extraction) all use cross-entropy loss.
5To facilitate the importance comparison, the importance scores for each mask k is normalized so that the

importance scores for all masks have a mean of 0 and standard deviation of 1. To simplify the notation, we use
the same I

(k)
t to represent the normalized importance of mask M (k) computed from current task t.

6If multiple tasks have selected mask a, we use the task with the highest importance as task s. We realize the
mask has been updated if it is shared by multiple tasks and the importance needs to be updated as well, which we
do not do. Our current simple approach works well in our experiments. We leave the issue to our future work.

7I
(a)
s is computed and saved after training task s (to ease the notation, we still use the same I

(a)
s ). This is to

ensure that I(a)s is computed based on the trained mask and is comparable to I
(a)
t .

5



Under review as a conference paper at ICLR 2023

previous task loss. For mask a, we now have two importance scores; I(a)t computed from the current
task t and I

(a)
s computed from the previous task s which learned the mask a. We then compare their

values and select the mask via,

q =

{
a, I

(a)
t > I(a)s

u, otherwise,
(7)

where u refers to any mask in the pool that has not been selected and used by a previous task. The
above inequality can tell us whether the updating of the mask a by the current task is likely to help the
previous task s. The rationale for Eq. 7 is that I(a)s refers to the normalized magnitude of the gradient
that can decrease the previous task loss most. Based on the concept of gradient-based importance
in (Michel et al., 2019), since mask a is more important to the current task t than to the previous task
s, the current task can potentially improve task s and vice versa to achieve KT. It is thus reasonable
to use the mask a (and its associated sub-network) to also learn the current task t. If mask a is not as
important to the current task t as to the previous task s, the current task data is unlikely to help the
previous task s and vice versa, and a unused mask in the pool should be used to learn t to avoid CF
on any previous task. Our empirical results show that Eq. 7 works well.

3.4 TRAINING THE SELECTED SUB-NETWORK

Using the selected mask M (q) for the current task, we can train the task by plugging M (q) in Eq. 1
with the cross-entropy loss LCE.

4 EXPERIMENTS

We now evaluate the proposed system TST. We first learn all tasks sequentially. After that, their task
models are tested using their respective test sets. TST does not use any replay data.

4.1 DATASETS AND BASELINES

Datasets: We use the five datasets covering a wide range of NLP problems, including classification,
generation, and extraction. We introduce each of them bellow. For detailed datasets statistics, please
see Appendix C. (1). ASC (Aspect Sentiment Classification). This dataset is from (Ke et al., 2021)
and has 19 tasks. Each task classifies the opinion (positive, negative, or neutral) in a review sentence
at the aspect-level of a product or service. For example, “The picture is good but the sound is poor”
about a TV expresses a positive opinion about the aspect “picture” and a negative opinion about the
aspect “sound.” (2). CCD (Continual Classification Dataset). This is a text classification dataset
(de Masson d’Autume et al., 2019) that is popular in continual learning for NLP. It contains 5 tasks
include AGNews (news classification), Yelp (sentiment analysis), Amazon (sentiment analysis),
DBpedia (Wikipedia article classification) and Yahoo (questions and answers categorization).8 (3).
SUM (ConvoSum). This is a conversational abstractive summarization dataset with 6 tasks or domains
(Fabbri et al., 2021). Given conversation from a domain, the system generates its summary. (4).
DRG (Dialogue Response Generation). This is a popular task-oriented dialogue response dataset
(Multi-WoZ2.0) (Ramadan et al., 2018) with 5 tasks/domains. Given the intent and dialogue state
(slot-value pairs containing messages to express), the system is expected to generate a response. (5).
NER (Named Entity Recognition). This data consists of 5 tasks, including conll03 (Sang & Meulder,
2003), wikigold (Balasuriya et al., 2009), btc (Derczynski et al., 2016), re3d (Laboratory, 2017), and
gum (Zeldes, 2017). Each task needs to classify mentions into pre-defined entity types. 9

Among the 5 datasets, two of them (ASC and NER) have similar tasks and our goal is to achieve both
CF prevention and KT. Three of them (SUM, CCD, DRG) consist of dissimilar tasks that have little
shared knowledge to transfer. Then the main goal is to ensure there is little or no CF.

Baselines. We setup 12 baselines, including both non-continual and continual learning (CL) methods.

8Since each of these datasets is quite large, we randomly sampled 500 samples from each class for each task
due to our resource limitations.

9Due to resource limitations, we randomly sampled 200 samples for each task.

6



Under review as a conference paper at ICLR 2023

Non-CL baselines: Comb/MTL and Comb/MTL (Adapter) 10 train tasks in a multi-task or data
combined setting, where the former trains the whole LM and the latter trains only the adapter. These
two are widely accepted as upper bounds of continual learning. ONE builds a separate model
for each task by fine-tuning the LM, which clearly has no knowledge transfer (KT) or CF. ONE
(Adapter) (Madotto et al., 2020) trains an adapter for each task separately (called AdapterCL in its
original paper). ONE (Prompt) (Zhu et al., 2022) trains a prompt for each task (called C-PT in its
original paper).

CL baselines. The CL setting includes an naive continual learning (NCL) method where the system
learns the tasks one by one with no mechanism to deal with CF or to encourage transfer, and 7
state-of-the art task continual learning (Task-CL) methods.

The 7 CL baselines include: 4 adapter-based methods CTR (Ke et al., 2021), HAT (Serrà et al., 2018),
SupSup (Wortsman et al., 2020) and CAT (Ke et al., 2020). They all train a shared adapter while
SupSup trains a sub-network mask on the fixed adapter. HAT is one of the most effective Task-CL
methods with little forgetting. CTR (Ke et al., 2021) encourages transfer via capsule networks and
transfer routing. SupSup uses the similar sub-network masking method as TST but without any
consideration on knowledge transfer. CAT and CTR are two systems that deal with both CF and
KT. 1 prompt-based method L2P (Wang et al., 2022), which trains a prompt pool to transfer task
knowledge and a key-value pair prompt selection strategy to select the task-specific prompt (it thus
deals with both KT and CF); 2 baselines that modify the Transformer: LAMOL (Sun et al., 2020) is
a pseudo-replay method using GPT-2. EWC (Kirkpatrick et al., 2016) is a regularization method.

4.2 EVALUATION RESULTS AND ANALYSIS

Since we need a backbone LM that can do both classification and generation, we adopt BARTLARGE
(Lewis et al., 2020) as our LM. Fine-tuning of BART follows the standard practice 11. Due to space
limits, detailed hyperparameters are given in Appendix D. Since the order of the tasks in a sequence
may impact the final results, we ran 5 randomly sampled task sequences. We compute different
metrics for different types of tasks using their standard metrics.12 Table 1 gives the average result of
each system on all tasks of each dataset over the 5 random task sequences. Note that LAMOL for
NER is not included as it is not obvious how to adapt LAMOL for token-level classification.

Superiority of TST. Table 1 shows that TST clearly outperforms all baselines for tasks with shared
knowledge (ASC and NER), and has no forgetting for tasks with little shared knowledge (SUM, CCD
and DRG). Below, we discuss additional observations.
(1). TST achieves both CF prevention and knowledge transfer (KT). Using ONE as control, we can
see TST outperforms ONE in two datasets (ASC and NER) with similar tasks, indicating effective
KT. TST achieves similar results to ONE in other datasets, indicating effective CF prevention. We
can also see TST is very similar to MTL/Comb. This again shows the effectiveness of TST.

(2). TST is more effective than the baseline CL systems (EWC, HAT, SupSup, LAMOL) that only
deal with CF. This is because regularization-based EWC sacrifices accuracy for overcoming CF and
parameter-isolation based SupSup prevents any possible knowledge transfer (KT) and is thus poorer
in ASC and NER as these two datasets contain similar tasks. The other 3 datasets all consists of very
dissimilar tasks with little shared knowledge to transfer, so TST is similar to the baselines that only
deal with CF like SupSup. HAT has little KT in classification tasks, which makes ASC poorer. It has
forgetting in generation tasks as it cannot isolate parameters in the shared LM head. LAMOL has
only weak CF prevention and KT as it highly relies on the replay data, which could be of low quality.

(3). TST is also more effective than the baseline CL systems that try to deal with both CF and KT
(CAT, CTR and L2P). Among these systems, L2P performs the worst due to the poor prompt selection

10For classification datasets (ASC, CCD and NER), we conduct a multi-task learning (MTL) experiment. For
generation datasets (SUM and DRG), it is not possible to use MTL as the language modeling head on top of
BART is a linear layer with weights tied to the input embeddings. We follow the standard practice (e.g., Qin &
Joty (2022); Madotto et al. (2020)) and pool all data together to train a single shared head (called “Comb”).

11For the ASC tasks, we adopt the ASC formulation in (Xu et al., 2019), where the aspect term and sentence
are concatenated via </s>. The opinion is predicted using the average over all tokens.

12Specifically, we use Macro-F1 and accuracy for the sequence-level classification tasks (ASC and CCD),
where Macro-F1 (MF1) is the primary metric because highly imbalanced classes in ASC introduce biases in
accuracy. We use Rouge score (R1, R2 and RL) for SUM, BLEU score for DRG and F1 for NER.

7



Under review as a conference paper at ICLR 2023

Scenario Data SUM ASC CCD DRG NER
Model R1 R2 RL MF1 Acc MF1 Acc BLEU F1

Non-CL

Comb/MTL 39.3861 10.3258 35.0513 0.9228 0.9482 0.9057 0.9055 0.2529 0.6333
Comb/MTL (Adapter) 38.8423 11.3795 34.8061 0.9217 0.9465 0.9109 0.9114 0.2450 0.6061

ONE 39.0738 10.7076 35.2501 0.8555 0.9150 0.9107 0.9109 0.2414 0.5933
ONE (Adapter) 38.9000 11.5449 35.2323 0.8395 0.9090 0.9078 0.9081 0.2342 0.5669
ONE (Prompt) 30.6709 7.2285 27.5339 0.7646 0.8554 0.8623 0.8628 0.1267 0.4590

CL

NCL 32.6824 6.8418 29.1898 0.8925 0.9304 0.8508 0.8510 0.2231 0.4919
EWC 32.6362 7.1160 29.0004 0.8836 0.9260 0.8727 0.8737 0.1830 0.5176
HAT 37.1127 10.4009 33.5331 0.8933 0.9328 0.9021 0.9023 0.2147 0.5231

SupSup 38.3660 11.6289 34.7497 0.8898 0.9335 0.9098 0.9100 0.2471 0.5893
LAMOL 10.8817 1.3885 6.8711 0.8462 0.9017 0.5444 0.6704 0.1996 —

CAT 37.2350 10.5304 33.7733 0.8431 0.8898 0.9082 0.9090 0.2172 0.5073
CTR 37.3360 10.7305 33.6853 0.8886 0.9294 0.9054 0.9058 0.2139 0.5185
L2P 26.6538 4.8220 23.8983 0.7481 0.8464 0.8535 0.8554 0.0852 0.4422

TST (forward) 38.7075 11.3096 34.8344 0.9118 0.9457 0.9123 0.9125 0.2447 0.6159
TST 38.7758 11.3652 34.9935 0.9161 0.9453 0.9104 0.9103 0.2425 0.6169

Table 1: Performance for different type of tasks, averaged over 5 random sequences (the standard
deviation is reported in Appendix E. The results of individual sequences are reported in Appendix F).
“—” means not applicable. TST (forward) is the average test performance of each task when it was
first learned (refer to the text in Sec. 4.2). We bold the best performance within CL baselines.

Scenario Data SUM ASC CCD DRG NER
Model R1 R2 RL MF1 Acc MF1 Acc BLEU F1

CL

NCL 8.3709 5.5409 5.9023 -0.0044 0.0031 0.0567 0.0564 0.0301 0.1549
EWC 2.5835 1.6784 2.0420 0.0781 0.0278 0.0894 0.0817 0.0078 0.0753
HAT 1.0993 1.2171 0.7840 -0.0088 -0.0036 -0.0007 -0.0008 0.0148 -0.0344

SupSup 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LAMOL 3.9017 1.4158 2.3189 -0.0188 -0.0152 0.3226 0.2730 0.0229 —

CAT 1.8510 1.4146 1.3684 0.0205 0.0081 -0.0013 -0.0021 0.0226 0.0081
CTR 1.4349 0.9002 0.8590 -0.0038 -0.0008 -0.0027 -0.0027 0.0191 0.0058
L2P 7.2695 3.5268 4.6789 0.0030 0.0054 0.0094 0.0082 0.0342 0.0096
TST 0.3456 0.3051 0.2469 -0.0097 -0.0026 0.0075 0.0078 0.0133 -0.0062

Table 2: Forgetting rate - averages over 5 random sequences. Positive forgetting rate indicates
forgetting while negative forgetting rate indicates knowledge transfer.

(we can see it is even poorer than ONE (prompt), indicating that its selection causes forgetting). CAT
performs better, but still has a large gap compared to TST, due to its inaccurate similarity detection
and ineffectiveness in handling previous tasks. CTR is the best one among the three, but it is still
worse than TST because of the inaccurate instance-level similarity detection.

(4). Sub-network masking on adapters helps TST achieve good results. TST uses adapters and we can
see ONE (Adapter) is much better than ONE (Prompt) and is similar to ONE. The performance of
prompt-based CL baseline L2P is much worse than other baselines. This is because prompts do not
have sufficient trainable parameters, which are also randomly initialized and can be difficult to train.

Knowledge transfer and forgetting prevention. To validate TST’s effectiveness in dealing with
forgetting with a sequence of dissimilar tasks, we compute the Forgetting Rate (Liu et al., 2020),
FR = 1

t−1

∑t−1
i=1 Ai,i − At,i

13, where Ai,i is the forward performance of task i and At,i is the
performance of task i after training the last task t. We average over all tasks except the last one
because the last task obviously has no forgetting. We report the forward results (TST (forward)) and
forgetting rate FR (averaged over 5 random task sequences) for all datasets in Table 2. Regarding
forward performance, TST (forward) is clearly better than ONE, indicating effective forward transfer
(learned tasks help the new task). Regarding backward transfer, We can see negative forgetting rates
in ASC and NER, indicating some positive backward transfer (the training of a new task helps some
old tasks). For the other 3 dissimilar datsets, we can see that TST has only slight forgetting. We can
also see that the baselines have much larger forgetting comparing to TST. One exception is SupSup,
which has no forgetting because it trains different masks/sub-networks for different tasks. This is
certainly good for forgetting prevention but makes knowledge transfer impossible.

Effectiveness of task similarity detection. Comparing the forgetting rate in Table 2, we can see
that TST has only a very slight forgetting compared to baselines, indicating the effectiveness of its

13Mehta et al. (2021) defined a different forgetting rate. Appendix G will argue that ours is more effective.

8



Under review as a conference paper at ICLR 2023

Scenario Data SUM ASC CCD DRG NER
Model R1 R2 RL MF1 Acc MF1 Acc BLEU F1

Non-CL
ONE 39.0738 10.7076 35.2501 0.8555 0.9150 0.9107 0.9109 0.2414 0.5933

ONE (Adapter) 38.9000 11.5449 35.2323 0.8395 0.9090 0.9078 0.9081 0.2342 0.5669
ONE (Prompt) 30.6709 7.2285 27.5339 0.7646 0.8554 0.8623 0.8628 0.1267 0.4590

CL

TST (w/o pool) 29.9746 7.1159 27.2446 0.9088 0.9427 0.8760 0.8778 0.1959 0.4836
TST (w/o similarity) 38.3660 11.6289 34.7497 0.8898 0.9335 0.9098 0.9100 0.2471 0.5893

TST (w/o comparison) 34.8660 9.6079 31.4729 0.9084 0.9421 0.8931 0.8923 0.2180 0.5493
TST 38.7758 11.3652 34.9935 0.9161 0.9453 0.9104 0.9103 0.2425 0.6169

Table 3: Ablation experiment results - averages over 5 random sequences (the standard deviation is
reported in Appendix E). We bold the best performance within CL baselines.

Scenario Data SUM ASC CCD DRG NER
Model R1 R2 RL MF1 Acc MF1 Acc BLEU F1

CL

TST (w/o pool) 8.9037 4.7496 5.7680 -0.0055 -0.0008 0.0413 0.0400 0.0494 0.1603
TST (w/o similarity) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TST (w/o comparison) 2.7010 1.4196 1.9688 -0.0079 -0.0039 0.0202 0.0214 0.0299 0.0850
TST 0.3456 0.3051 0.2469 -0.0097 -0.0026 0.0075 0.0078 0.0133 -0.0062

Table 4: Forgetting rate for ablation experiment results.

similarity detection. CAT, CTR and L2P all have much more forgetting than TST except on the
CCD data, indicating they have poorer similarity detection. To provide more evidences, we show
the task similarity detection results for TST in Appendix H. For NER, we see that tasks “conll2003”,
“wikigold” and “btc” use the same mask (indicating they are similar). This makes sense as they
all share the same named entity classes while the other tasks have different named entities. In
contrast, CAT, which is the only baseline that does task-level similarity detection, finds all NER
tasks dissimilar. In SUM, TST finds “icsi” and “ami” to be similar (sharing a mask). This is also
reasonable because both tasks are summarization on meetings while the others are conversations of
diverse forms. Similarly, TST finds “Yelp” and “Amazon” to be similar in CCD because they are all
sentiment classification tasks. CAT finds no similarity in both CCD and SUM tasks and produces
worse results. Regarding ASC and DRG, it is hard to say which system is better as ASC tasks are all
somehow similar and all tasks of DRG are dissimilar, but we see from the results in Table 1 that TST
is better. Similarity detection results of different orders and random seeds are reported in Appendix I.

Ablation study. We want to know whether (1) the proposed mask pool, (2) the similarity detection
and (3) the importance comparison are helpful. To answer (1), we conduct the ablation experiment
TST (w/o pool), where we use only one single mask/sub-network in the pool for all tasks. To answer
(2), we conduct the experiment TST (w/o similarity), where we remove the similarity detection and
use different masks for different tasks (thus no CF or KT). To answer (3), we conduct experiment
TST (w/o comparison), where we remove the importance comparison and simply use the mask with
the highest importance based on the current task data as the mask for learning the current task.

Tables 3 and 4 show the ablation results and the corresponding forgetting rates. We can see that the full
TST gives the best average result, indicating that every component helps. Additional observations are:
(1) TST’s gain is partially from the mask pool as TST (w/o pool) is poorer on average, particularly for
those datasets having little shared knowledge; (2) Similarity detection helps as TST (w/o similarity)
gives worse performance. (3) Our importance comparison is effective. We see that TST (w/o
comparison) is poorer, indicating the importance comparison learning in TST helps mitigate CF.

5 CONCLUSION

This paper studied task continual learning (Task-CL) on a wide range of NLP problems using pre-
trained BART model as backbone to achieve both CF prevention and knowledge transfer (KT). The
key novelty of the proposed technique TST is the novel task similarity detection method based on
mask importance. The importance is computed to find a similar task so that effective KT and CF
prevention can be achieved. CF is prevented by using a different mask while KT is achieved by
sharing the same mask. Experimental results showed that TST markedly improves the performance
of both the new task and the old tasks via KT and is also effective at overcoming CF.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Dominic Balasuriya, Nicky Ringland, Joel Nothman, Tara Murphy, and James R. Curran. Named
entity recognition in wikipedia. In Iryna Gurevych and Torsten Zesch (eds.), Proceedings of
the 1st 2009 Workshop on The People’s Web Meets NLP: Collaboratively Constructed Seman-
tic Resources@IJCNLP 2009, Suntec, Singapore, August 7, 2009, pp. 10–18. Association for
Computational Linguistics, 2009.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In ICLR, 2019.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020.

Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019.

Leon Derczynski, Kalina Bontcheva, and Ian Roberts. Broad twitter corpus: A diverse named entity
recognition resource. In Nicoletta Calzolari, Yuji Matsumoto, and Rashmi Prasad (eds.), COLING
2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference:
Technical Papers, December 11-16, 2016, Osaka, Japan, pp. 1169–1179. ACL, 2016.

Alexander R. Fabbri, Faiaz Rahman, Imad Rizvi, Borui Wang, Haoran Li, Yashar Mehdad, and
Dragomir R. Radev. Convosumm: Conversation summarization benchmark and improved ab-
stractive summarization with argument mining. In Chengqing Zong, Fei Xia, Wenjie Li, and
Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pp. 6866–6880.
Association for Computational Linguistics, 2021.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SylO2yStDr.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. CoRR, 2017.

Yang Gao, Nicolo Colombo, and Wei Wang. Adapting by pruning: A case study on bert. arXiv
preprint arXiv:2105.03343, 2021.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. NIPS, 29,
2016.

Pankaj Gupta, Yatin Chaudhary, Thomas A. Runkler, and Hinrich Schütze. Neural topic model-
ing with continual lifelong learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 3907–3917. PMLR, 2020. URL http://proceedings.
mlr.press/v119/gupta20a.html.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Xu He and Herbert Jaeger. Overcoming catastrophic interference using conceptor-aided backpropa-
gation. In ICLR, 2018.

10

http://arxiv.org/abs/1308.3432
https://openreview.net/forum?id=SylO2yStDr
http://proceedings.mlr.press/v119/gupta20a.html
http://proceedings.mlr.press/v119/gupta20a.html


Under review as a conference paper at ICLR 2023

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), ICML, 2019.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning
for text classification with information disentanglement based regularization. arXiv preprint
arXiv:2104.05489, 2021.

Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative dual memory network for continual
learning. CoRR, 2017.

Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar and
dissimilar tasks. In NeurIPS, 2020.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and
knowledge transfer in continual learning. Advances in Neural Information Processing Systems, 34,
2021.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. CoRR, 2016.

Defence Science Technology Laboratory. Relationship and entity extraction evaluation dataset. 2017.
URL https://github.com/dstl/re3d.

Cheng-I Jeff Lai, Yang Zhang, Alexander H Liu, Shiyu Chang, Yi-Lun Liao, Yung-Sung Chuang,
Kaizhi Qian, Sameer Khurana, David Cox, and Jim Glass. Parp: Prune, adjust and re-prune for
self-supervised speech recognition. NeurIPS, 34, 2021.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In NIPS.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
EMNLP, 2021.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 7871–7880.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.703. URL
https://doi.org/10.18653/v1/2020.acl-main.703.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. Differentiable subset pruning of transformer heads.
Transactions of the Association for Computational Linguistics, 9:1442–1459, 2021.

Zi Lin, Jeremiah Zhe Liu, Zi Yang, Nan Hua, and Dan Roth. Pruning redundant mappings in
transformer models via spectral-normalized identity prior. arXiv preprint arXiv:2010.01791, 2020.

Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-class
incremental learning without forgetting. In CVPR, 2020.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NIPS, 2017.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Seungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, and Zhiguang Wang. Continual learning in task-oriented dialogue systems. arXiv
preprint arXiv:2012.15504, 2020.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In CVPR, 2018.

11

https://github.com/dstl/re3d
https://doi.org/10.18653/v1/2020.acl-main.703


Under review as a conference paper at ICLR 2023

JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a bert-based question
answering model. arXiv preprint arXiv:1910.06360, 2019.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation. 1989.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investigation
of the role of pre-training in lifelong learning. CoRR, abs/2112.09153, 2021. URL https:
//arxiv.org/abs/2112.09153.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

Chengwei Qin and Shafiq R. Joty. LFPT5: A unified framework for lifelong few-shot language
learning based on prompt tuning of T5. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=HCRVf71PMF.

Osman Ramadan, Paweł Budzianowski, and Milica Gasic. Large-scale multi-domain belief tracking
with knowledge sharing. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, volume 2, pp. 432–437, 2018.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. In CVPR, 2017.

Mohammad Rostami, Soheil Kolouri, and Praveen K. Pilly. Complementary learning for overcoming
catastrophic forgetting using experience replay. In IJCAI, 2019.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR, 2016.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In NIPS,
2017.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. arXiv preprint arXiv:2004.03844, 2020.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Walter Daelemans and Miles Osborne (eds.), Proceedings
of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation with
HLT-NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003, pp. 142–147. ACL, 2003.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial nets.
CoRR, abs/1705.08395, 2017.

Joan Serrà, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In ICML, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NIPS, 2017.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. Lamol: Language modeling is all you need for
lifelong language learning. In ICLR, 2020. URL https://openreview.net/forum?id=
Skgxcn4YDS.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In CVPR, 2022.

Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos, and Jaime Carbonell. Efficient meta lifelong-
learning with limited memory. In EMNLP, 2020.

12

https://arxiv.org/abs/2112.09153
https://arxiv.org/abs/2112.09153
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=Skgxcn4YDS
https://openreview.net/forum?id=Skgxcn4YDS


Under review as a conference paper at ICLR 2023

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), NeurIPS, 2020.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. BERT post-training for review reading comprehension
and aspect-based sentiment analysis. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
NAACL-HLT, 2019.

Amir Zeldes. The GUM corpus: creating multilayer resources in the classroom. Lang. Resour.
Evaluation, 51(3):581–612, 2017. doi: 10.1007/s10579-016-9343-x. URL https://doi.
org/10.1007/s10579-016-9343-x.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continuous learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie Huang. Continual prompt tuning for dialog state
tracking. arXiv preprint arXiv:2203.06654, 2022.

13

https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x


Under review as a conference paper at ICLR 2023

A ADDITIONAL DETAILS ABOUT ADAPTER

TST leverages adapter to do masking. An adapter is trainable parameters inserted to each Transformer
layers, which adapts the output distribution of a pre-trained LM without modifying its original weights
(the original LM is fixed). An adapter block is simply a 2-layer fully connected network with layer
normalization and residual connections. Figure 2 illustrate the LM with adapter.

Figure 2: Architecture of Transformer with adapters. An adapter (blue component) is inserted in each
layer. Only the blue and green boxes are trainable while the LM is fixed during training.

B ADDITIONAL DETAILS ABOUT MASK TRAINING

In Sec. 3.1, we mentioned that we train a mask to identify a sub-network for a task without training
the adapter’s weights/parameters (W ). We follow the idea in Wortsman et al. (2020). Specifically, to
train the mask, we learn a randomly initialized score s

(k)
i,j for each entry/parameter wi,j in W . Once

trained, these scores are thresholded to obtain the mask that can indicate a sub-network. Therefore,
the M (k) can be seen as,

M
(k)
i,j = h(s

(k)
i,j ) (8)

where h is a function which outputs 1 for top-n% of the scores in the layer with n as a pre-defined
mask density (we use 80 following the Wortsman et al. (2020)). To make the scores differentiable,
we leverage the “straight-through” trick (Bengio et al., 2013) to update the scores as follows,

s
(k)
i,j = s

(k)
i,j − α∇

s
(k)
i,j

∇
s
(k)
i,j

=
∂L
∂s

(k)
i,j

=
∂L
∂Ij

∂Ij
∂s

(k)
i,j

=
∂L
∂Ij

wi,jOi

(9)

where Ij and Oi refer to the input and output of the units i and j respectively. We note this is efficient
because the adapter size is small. On the disk, we need to store the additional Boolean mask which
takes only 1-bit for each parameter. During continual training, it is possible that we select a trained
mask (Sec. 3.3). In this case, the stored binary mask can be used to initialize the score s

(k)
i,j .

C ADDITIONAL DETAILS ABOUT THE DATASETS

Recall that TST uses five datasets. Here we give their detailed statistics.

(1) ASC. ASC is more than a traditional classification problem because of the additional input of the
aspect and the fact that in the same sentence different aspects can have different opinions. Here we
show more detailed on these datasets in Table 5.

(2) CCD, SUM, DRG and NER. We give their detailed statistic in Table 6

14



Under review as a conference paper at ICLR 2023

Tasks/Domains #Training #Validating #Testing
Speaker 233 S./352 A./287 P./65 N./0 Ne. 30 S./44 A./35 P./9 N./0 Ne. 38 S./44 A./40 P./4 N./0 Ne.
Router 200 S./245 A./142 P./103 N./0 Ne. 24 S./31 A./19 P./12 N./0 Ne. 22 S./31 A./24 P./7 N./0 Ne.

Computer 187 S./283 A./218 P./65 N./0 Ne. 25 S./35 A./23 P./12 N./0 Ne. 29 S./36 A./29 P./7 N./0 Ne.
Nokia6610 209 S./271 A./198 P./73 N./0 Ne. 29 S./34 A./30 P./4 N./0 Ne. 28 S./34 A./25 P./9 N./0 Ne.
Nikon4300 131 S./162 A./135 P./27 N./0 Ne. 15 S./20 A./18 P./2 N./0 Ne. 15 S./21 A./19 P./2 N./0 Ne.

Creative 582 S./677 A./422 P./255 N./0 Ne. 68 S./85 A./42 P./43 N./0 Ne. 70 S./85 A./52 P./33 N./0 Ne.
CanonG3 190 S./228 A./180 P./48 N./0 Ne. 25 S./29 A./21 P./8 N./0 Ne. 24 S./29 A./24 P./5 N./0 Ne.
ApexAD 281 S./343 A./146 P./197 N./0 Ne. 35 S./43 A./16 P./27 N./0 Ne. 28 S./43 A./31 P./12 N./0 Ne.

CanonD500 103 S./118 A./96 P./22 N./0 Ne. 11 S./15 A./14 P./1 N./0 Ne. 13 S./15 A./11 P./4 N./0 Ne.
Canon100 137 S./175 A./123 P./52 N./0 Ne. 19 S./22 A./20 P./2 N./0 Ne. 16 S./22 A./21 P./1 N./0 Ne.

Diaper 166 S./191 A./143 P./48 N./0 Ne. 22 S./24 A./18 P./6 N./0 Ne. 24 S./24 A./22 P./2 N./0 Ne.
Hitachi 152 S./212 A./153 P./59 N./0 Ne. 23 S./26 A./19 P./7 N./0 Ne. 23 S./27 A./14 P./13 N./0 Ne.

Ipod 124 S./153 A./101 P./52 N./0 Ne. 18 S./19 A./14 P./5 N./0 Ne. 19 S./20 A./15 P./5 N./0 Ne.
Linksys 152 S./176 A./128 P./48 N./0 Ne. 19 S./22 A./13 P./9 N./0 Ne. 20 S./23 A./16 P./7 N./0 Ne.

MicroMP3 384 S./484 A./340 P./144 N./0 Ne. 42 S./61 A./48 P./13 N./0 Ne. 51 S./61 A./39 P./22 N./0 Ne.
Nokia6600 298 S./362 A./244 P./118 N./0 Ne. 26 S./45 A./32 P./13 N./0 Ne. 39 S./46 A./30 P./16 N./0 Ne.

Norton 168 S./194 A./54 P./140 N./0 Ne. 17 S./24 A./15 P./9 N./0 Ne. 24 S./25 A./5 P./20 N./0 Ne.
Restaurant 1893 S./3452 A./2094 P./779 N./579 Ne. 84 S./150 A./70 P./26 N./54 Ne. 600 S./1120 A./728 P./196 N./196 Ne.

Laptop 1360 S./2163 A./930 P./800 N./433 Ne. 98 S./150 A./57 P./66 N./27 Ne. 411 S./638 A./341 P./128 N./169 Ne.

Table 5: Statistics of the ASC tasks. S.: number of sentences; A: number of aspects; P., N., and Ne.:
number aspects with positive, negative and neutral opinions, respectively. Note that the “Restaurant”
and “Laptop” have 3 classes of opinion polarities (positive, negative and neutral) while the others
have only 2 classes (positive and negative).

Dataset Tasks/Domains #Training #Validating #Testing #Classes

CCD

Yahoo 4500 500 4840 10
AGnews 1785 199 1756 2
Amazon 898 100 998 2
Dbpedia 6237 693 6748 14

Yelp 900 100 984 4

SUM

icsi 43 10 6 —
ami 97 20 20 —

reddit 201 50 250 —
stack 205 50 250 —
nyt 200 50 250 —

emails 215 50 250 —

DRG

taxi 406 71 56 —
hotel 3366 143 177 —

attraction 298 27 28 —
train 1954 196 262 —

restaurant 569 63 59 —

NER

conll2003 200 3250 3453 9
wikigold 200 170 170 9

btc 200 934 934 9
re3d 200 77 200 21
gum 200 250 1000 23

Table 6: Statistics of the CCD, SUM, DRE and NER datasets. Number of classes is not applicable to
SUM and DRG because they are generation datasets.

D HYPERPARAMETERS

Unless otherwise stated, the same hyper-parameters are used in all experiments. The maximum input
length is set to 128 for all datasets except for SUM which uses 1024 due to its longer sequences.
AdamW optimizer is used. The learning rate is set to 5e-5 for Transformer (search within {5e-2,5e-
3,5e-4,5e-5}), 3e-2 for prompt (search within {3e-1,3e-2,3e-3,3e-4,3e-5}), adapter and classifier. The
prompt length is set to 20 (search within {10,20,50,80,100,150}) and adapter bottleneck size is 64,
following the original papers (Houlsby et al., 2019). The batch size is set to 32 and the number of
training epochs is set to 50 with early stopping. The number of mask K in the mask pool is set to the
same as the number of task. For classification tasks, a separate classification head is used for each
task in the sequence. For generation tasks, a shared LM head is used for all tasks in a sequence. we
further set the number of beams to 4 for beam search and constrain the target length in between 30 to
200. For image-based (EWC, HAT, SupSup, CAT, L2P) and RoBERTa-based (CTR) systems, we

15



Under review as a conference paper at ICLR 2023

adapt them for text classification and generation by replacing their feature extractors with BART. For
LAMOL, we directly run the author provided code. Except for the aforementioned hyper-parameters,
all baseline-specific hyper-parameters follow those in their original papers.

E STANDARD DEVIATIONS

Table 7 reports the standard deviations of the corresponding results in Table 1 (in the main paper)
of TST and the considered baselines over 5 runs with random sequences. We only report the CL
baselines since they are related to the task order. We can see the results of TST is stable. SupSup
trains different mask/sub-networks for different tasks, so it is not related to the task order and not
reported in the table.

Table 8 reports the standard deviations of the corresponding results in Table 3 (in the main paper) of
TST and the considered baselines over 5 runs with random sequences. We can see the results of TST
and its variants are stable. TST (w/o similarity) trains different mask/sub-network for different tasks,
so it is not related to task order and not reported in the table.

Scenario Data SUM ASC CCD DRG NER
Model R1 R2 RL MF1 Acc MF1 Acc BLEU F1

CL

NCL ±0.6028 ±0.5458 ±0.6623 ±0.0040 ±0.0027 ±0.0233 ±0.0230 ±0.0060 ±0.0767
EWC ±1.3205 ±0.5331 ±1.1258 ±0.0093 ±0.0063 ±0.0227 ±0.0216 ±0.0217 ±0.0707
HAT ±1.3035 ±0.4912 ±1.1464 ±0.0130 ±0.0042 ±0.0028 ±0.0028 ±0.0094 ±0.0063

LAMOL ±1.2519 ±0.4218 ±0.5231 ±0.0085 ±0.0039 ±0.0317 ±0.0258 ±0.0068 —
CAT ±1.0424 ±0.4027 ±0.9029 ±0.0096 ±0.0021 ±0.0019 ±0.0021 ±0.0051 ±0.0106
CTR ±1.1595 ±0.5189 ±0.9646 ±0.0080 ±0.0030 ±0.0009 ±0.0010 ±0.0127 ±0.0049
L2P ±2.1496 ±0.4747 ±2.0267 ±0.0650 ±0.0361 ±0.0181 ±0.0176 ±0.0216 ±0.0022
TST ±0.5287 ±0.3585 ±0.5175 ±0.0027 ±0.0032 ±0.0049 ±0.0048 ±0.0079 ±0.0031

Table 7: Standard deviations of the corresponding metrics of the proposed TST model and the
baselines on the five different datasets.

Scenario Data SUM ASC CCD DRG NER
Model R1 R2 RL MF1 Acc MF1 Acc BLEU F1

CL
TST (w/o pool) ±0.8603 ±0.3504 ±0.5482 ±0.0049 ±0.0034 ±0.0300 ±0.0287 ±0.0103 ±0.0437

TST (w/o comparison) ±1.0655 ±0.5163 ±0.9594 ±0.0073 ±0.0028 ±0.0098 ±0.0089 ±0.0057 ±0.0374
TST ±0.5287 ±0.3585 ±0.5175 ±0.0027 ±0.0032 ±0.0049 ±0.0048 ±0.0079 ±0.0031

Table 8: Standard deviations of the corresponding metrics of the proposed TST model and the six
ablation experiments.

F RESULTS FOR INDIVIDUAL SEQUENCES

In Table 1, we report the results averaged over 5 random sequences (different task orders). In this
section, we give the results of each sequence in Table 9. We can see that the order indeed affects the
results but not by much. In summary, we believe the average over random sequences in Table 1 can
show us the effectiveness of TST.

Order SUM ASC CCD DRG NER
R1 R2 RL MF1 Acc MF1 Acc BLEU F1

1 39.0532 11.7343 35.4234 0.9144 0.9497 0.9102 0.9104 0.2422 0.6137
2 38.4992 11.0726 34.7320 0.9171 0.9435 0.9081 0.9084 0.2429 0.6137
3 37.9608 10.7857 34.0924 0.9200 0.9466 0.9036 0.9038 0.2376 0.6216
4 37.6063 10.7691 34.0197 0.9130 0.9412 0.9100 0.9093 0.2472 0.6163
5 38.7750 11.2888 34.8252 0.9005 0.9454 0.9109 0.9112 0.2396 0.6192

Table 9: Results for individual domains.

G DIFFERENCE BETWEEN OUR FORGETTING RATE AND THE ONE IN (MEHTA
ET AL., 2021)

Unlike our forgetting rate in Sec. 4, the forgetting rate in (Mehta et al., 2021) is defined as F ′
t =

1
t−1

∑t−1
τ=1 maxτ ′∈{1,...,t−1}(Sτ ′,τ −St,τ ). Since both metrics measure everything from the standing

16



Under review as a conference paper at ICLR 2023

point of the end of continual learning, i.e., after all tasks are learned, we believe our measure is more
reasonable. Let us use some examples to illustrate,

• (1). if task 1 archives the accuracy 0.5 right after its training, it achieves 0.4 after task 2, and
it achieves 0.3 after task 3 (final task). In this case, both measures give the same forgetting
0.2.

• (2). if task 1 archives the accuracy 0.5 right after its training, it achieves 0.8 after task 2, and
it achieves 0.82 after task 3 (final task). If we take max (F ′

t ), then the forgetting is -0.02, but
our method will give -0.32. In this case, our method is more reasonable because it precisely
shows how much backward transfer (negative value here means backward transfer) has been
achieved for task 1 after task 2 and task 3 are learned since both measures evaluate from the
same reference point, i.e., after all tasks are learned (the last task is t in both measures, i.e.,
task 3 in this example).

• (3). If task 1 archives the accuracy 0.5 right after its training, 0.8 after task 2 and 0.4 after
task 3 (final task), our metric will give the forgetting 0.1. F ′

t will give 0.4. This case is
more debatable because F ′

t catches the worst forgetting. But since we evaluate after all tasks
are learned (the reference point is when the last task is learned), again we believe that our
method is more reasonable.

• (4). If task 1 archives the accuracy 0.5 right after its training, 0.1 after task 2 and 0.4 after
task 3 (final task), both metrics will give the forgetting 0.1. In this case, F ′

t does not catch
the worst forgetting of 0.4 (0.5-0.1) in the process. Again, if we agree that we evaluate from
the reference point of when the last task is learned, then both measures are fine in this case.

In summary, while we believe ours is more reasonable, a better metric may be designed in the future
to characterize forgetting and knowledge transfer in the continual learning process.

H COMPARING TASK SIMILARITY DETECTION RESULTS BETWEEN CAT AND
TST

In Sec. 4, we discussed the effectiveness of task similarity comparison and compare the similarity
detection results of TST and CAT. Figure 4 show the task similarity results for TST. Figure 3 shows
the task similarity results on the ASC data for CAT. CAT did not find any similar tasks for the other
datasets. The analysis is already in Sec. 4.

I DETAILED SIMILARITY DETECTION RESULTS FOR TST IN DIFFERENT
SEQUENCES AND RANDOM SEEDS

In this section, we are interested in how the random seeds and the task orders affect the detected
similarity.

We give the detected similar and dissimilar tasks for all datasets in Table 11. The detailed sequences
for these datasets are given in Table 10. We can observe the followings:

(1) The similarity detection results in different task orders and different seeds have some differences
but not much. It is reasonable to have differences as the learning of tasks is quite dynamic.

(2) The effect of random seeds and orders is different across datasets. For example, in SUM, the
similarity detection results in different seeds have differences, which is probably because each task in
SUM is a long document and has more information and easier to detect the similarity. In other datasets,
We can see different orders and seeds made some differences, indicating that it is more difficult to
detect similarity for them, which is probably because the tasks in these datasets are sentence-based
text classification (extraction or generation) and the information contained in a sentence is limited.
Thus, the detection has a larger variance.

In summary, as we discussed in Sec. 4), the task similarity is fuzzy and it is hard to say which task
similarity is actually correct or wrong as there are no ground-truth similarity labels. However, the
average results over random sequences in Table 1 show us the effectiveness of TST.

17



Under review as a conference paper at ICLR 2023

Figure 3: Similarity detection results for ASC of CAT. The y-axis gives the sequence of tasks that
are learned, and the x-axis lists the same set of task names. The yellow cells indicate that the
corresponding tasks are detected by CAT as similar (one task can be similar to multiple tasks but only
the previously learned tasks are considered for the current task) while the purple cells indicate the
tasks are dissimilar or unknown (because they have not been learned). For example row 3 means
when we are learning task “DiaperChamp”, CAT finds it to be dissimilar to any of learned tasks
(“CanonG3” and “Computer”); Row 4 means when we are learning task “Router”, CAT finds it to be
similar to task “DiaperChamp”.

18



Under review as a conference paper at ICLR 2023

(a) ASC

(b) SUM (c) DRG

(d) CCD (e) NER

Figure 4: Similarity detection results of TST (after the continual training of all tasks). X-axis shows
mask IDs and y-axis shows the task names. The yellow cells indicate that the masks are used by
some tasks while the purple cells indicate the masks are not used by their corresponding tasks. If
multiple tasks use the same mask, they are regarded as similar by our system TST. Note that not all
masks are used because different tasks may share the same mask.

19



Under review as a conference paper at ICLR 2023

Dataset Order Sequences

SUM

1 icsi → ami → reddit → stack → nyt → emails
2 nyt → stack → reddit → emails → ami → icsi
3 emails → ami → reddit → nyt → stack → icsi
4 stack → nyt → reddit → emails → ami → icsi
5 reddit → icsi → nyt → ami → stack → emails

ASC

1

CanonG3 → Computer → DiaperChamp → Router → CreativeLabs →
Nokia6610 → Norton → rest → Nikon4300 → HitachiRouter →

MicroMP3 → LinksysRouter → ApexAD2600 → ipod → Nokia6600 →
CanonD500 → Speaker → CanonS100 → laptop

2

laptop → rest → HitachiRouter → CanonS100 → ipod →
ApexAD2600 → Nokia6600 → CanonD500 → CreativeLabs → Norton →
MicroMP3 → Speaker → LinksysRouter → Nokia6610 → Nikon4300 →

CanonG3 → Computer → Router → DiaperChamp

3

CanonD500 → LinksysRouter → Nikon4300 → Norton → Computer →
MicroMP3 → ApexAD2600 → rest → ipod → CanonG3 →

laptop → Nokia6610 → HitachiRouter → Speaker → DiaperChamp →
CanonS100 → Router → Nokia6600 → CreativeLabs

4

CanonG3 → Computer → CanonD500 → Nokia6600 → Nikon4300 →
LinksysRouter → ApexAD2600 → Router → Speaker → laptop →

CanonS100 → rest → Norton → CreativeLabs → ipod →
Nokia6610 → MicroMP3 → DiaperChamp → HitachiRouter

CCD

1 yahoo → agnews → amazon → dbpedia → yelp
2 yahoo → yelp → amazon → dbpedia → agnews
3 amazon → yelp → yahoo → agnews → dbpedia
4 yahoo → dbpedia → yelp → agnews → amazon
5 yahoo → yelp → dbpedia → amazon → agnews

DRG

1 taxi → hotel → attraction → train → restaurant
2 train → attraction → taxi → hotel → restaurant
3 attraction → hotel → restaurant → taxi → train
4 taxi → attraction → hotel → restaurant → train
5 restaurant → attraction → train → taxi → hotel

NER

1 conll2003 → wikigold → btc → re3d → gum
2 btc → conll2003 → wikigold → re3d → gum
3 wikigold → re3d → conll2003 → gum → btc
4 btc → conll2003 → wikigold → gum → re3d
5 wikigold → re3d → gum → conll2003 → btc

Table 10: Random sequence orders of the 5 datasets.

20



Under review as a conference paper at ICLR 2023

Dataset Similar tasks Disismilar tasks

SUM

Order

1 {ami, icsi} nyt, stack,reddits, emails
2 {ami, icsi} nyt, stack,reddits, emails
3 {ami, icsi} nyt, stack,reddits, emails
4 {ami, icsi} nyt, stack,reddits, emails
5 — ami, icsi, nyt, stack,reddits, email

Seed

1 {ami, icsi} nyt, stack,reddits, emails
2 {ami, icsi} nyt, stack,reddits, emails
3 {ami, icsi} nyt, stack,reddits, emails
4 {ami, icsi} nyt, stack,reddits, emails
5 {ami, icsi} nyt, stack,reddits, emails

ASC

Order

1

{CanonG3, Computer, DiaperChamp, Router,
Nokia6610, Norton, Nikon4300, Speaker},

{Creativelab, CanonS100}
{MicroMP3, LinksysRouter, laptop},

{HitachiRouter, Nokia6600}

ApexAD2600, rest, ipod, CanonD500

2

{HitachiRouter, CanonS100,
CanonD500, CreativeLabs,

Speaker,Nokia6610, DiaperChamp },
{ipod, Nokia6600, Norton, LinksysRouter,

Nikon4300, Computer},
{Router, CanonG3}

laptop, rest, ApexAD2600, MicroMP3,

3

{LinksysRouter, Nikon4300},
Norton, ApexAD2600},

{MicroMP3, HitachiRouter,
DiaperChamp, CanonS100},

{rest, ipod, Nokia6610, Speaker},
{CanonG3, laptop}

CanonD500, CreativeLabs,
Nokia6600, Router, Computer

4

{Computer, CanonD500, Nokia6600, Nikon4300,
CreativeLabs, ipod, Nokia6610, HitachiRouter},

{LinksysRouter,},
{laptop, CanonS100, MicroMP3},

{rest, DiaperChamp}, {Norton, ApexAD2600}

CanonG3, Router, Speaker

5

{Router, Computer, rest},
{LinksysRouter, DiaperChamp, CanonD500},

{laptop, Nokia6600, HitachiRouter,
CanonS100, Nokia6610},

{Nikon4300, ipod, CreativeLabs, CanonG3}

Norton, ApexAD2600, MicroMP3, Speaker

Seed

1

{HitachiRouter, CanonS100, CanonD500,
CreativeLabs, Speaker,Nokia6610, DiaperChamp},

{ipod, Nokia6600, Norton,
LinksysRouter, Nikon4300, Computer},

{Router, CanonG3}

laptop, rest, ApexAD2600, MicroMP3,

2

{rest, HitachiRouter, ipod,
Nikon4300, CanonG3, MicroMP3},
{CanonS100, CanonD500, Speaker,

Computer, DiaperChamp},
{Norton, Nokia6610}

laptop, Router, LinksysRouter,
ApexAD2600, Nokia6600, CreativeLabs

3

{rest, ipod, ApexAD2600},
{HitachiRouter, CanonS100, Nokia6600},
{CanonD500, Nokia6610, DiaperChamp},

{CreativeLabs, Norton},
{MicroMP3, LinksysRouter, CanonG3},

{Nikon4300, Computer}

laptop, Router, Speaker

4

{ipod, ApexAD2600},
{CanonD500, DiaperChamp},

{CreativeLabs, MicroMP3, Speaker, LinksysRouter},
{CanonG3, Router}

laptop, rest, HitachiRouter, CanonS100, Nokia6600,
Norton, Nokia6610, Nikon4300, Computer

5

{rest, HitachiRouter, CanonS100, ipod, Norton},
{ApexAD2600, CanonD500, Speaker},

{MicroMP3, LinksysRouter},
{Nikon4300, CanonG3},

{Nokia6610, Router}

laptop, Nokia6600, CreativeLabs, Computer, DiaperChamp

CCD

Order

1 {yelp, amazon} yahoo, dbpedia, agnews
2 {yelp, amazon} yahoo, dbpedia, agnews
3 {yelp, amazon}, {yahoo, agnews} dbpedia
4 {yahoo, dbpedia, yelp} agnews, amazon
5 {yelp, amazon} yahoo, dbpedia, agnews

Seed

1 {yelp, amazon} yahoo, dbpedia, agnews
2 {yelp, dbpedia}, {amazon, agnews} yahoo
3 {yelp, dbpedia} yahoo, amazon, agnews
4 — yelp, dbpedia, yahoo, amazon, agnews
5 — yelp, dbpedia, yahoo, amazon, agnews

DRG

Order

1 {attraction, train} taxi, hotel, restaurant
2 {attraction, train} taxi, hotel, restaurant
3 {attraction, hotel, restaurant} taxi, train
4 {attraction, train} taxi, hotel, restaurant
5 — attraction, train, taxi, hotel, restaurant

Seed

1 {attraction, train} taxi, hotel, restaurant
2 — attraction, train, taxi, hotel, restaurant
3 {attraction, train} taxi, hotel, restaurant
4 — attraction, train, taxi, hotel, restaurant
5 — attraction, train, taxi, hotel, restaurant

NER

Order

1 {conll2003, wikigold, btc} re3d, gum
2 — conll2003, wikigold, btc, re3d, gum
3 {btc, re3d} conll2003, wikigold, gum
4 — conll2003, wikigold, btc, re3d, gum
5 — conll2003, wikigold, btc, re3d, gum

Seed

1 {conll2003, wikigold, btc} re3d, gum
2 — conll2003, wikigold, btc, re3d, gum
3 {re3d, conll2003} wikigold, gum, btc
4 {btc, re3d} conll2003, wikigold, gum
5 — conll2003, wikigold, btc, re3d, gum

Table 11: Similarity detection results for all 5 datasets in different orders and different seeds (based
on order 1). Tasks in “{}” means they are detected as similar. “–” indicates there is no similar tasks
found.

21


	Introduction
	Related Work
	Proposed TST Technique
	Sub-network Masking and Mask Pool
	Computing Mask Importance
	Selecting a Mask to Learn Task t based on Mask Importance
	Training the Selected Sub-Network

	Experiments
	Datasets and Baselines 
	Evaluation Results and Analysis

	Conclusion
	Additional Details about Adapter
	Additional Details about mask training
	Additional Details about the Datasets
	Hyperparameters
	Standard Deviations
	Results for Individual Sequences
	Difference between our forgetting rate and the one in DBLP:journals/corr/abs-2112-09153 
	Comparing Task Similarity Detection Results between CAT and TST
	detailed similarity detection results for TST in different sequences and random seeds 

