
How Diversely Can Language Models Solve Problems?
Exploring the Algorithmic Diversity of Model-Generated Code

Anonymous ACL submission

Abstract

Language models (LMs) have exhibited impres-001
sive abilities in generating code from natural002
language requirements. In this work, we high-003
light the diversity of code generated by LMs004
as a critical criterion for evaluating their code005
generation capabilities. There is a lack of stud-006
ies focused on assessing the diversity of gener-007
ated code, which overlooks its importance in008
code LMs. Therefore, we propose a system-009
atic approach to evaluate code diversity, intro-010
ducing various metrics with inter-code similar-011
ity. Specifically, we introduce code clustering012
methods that leverages LMs’ capabilities in013
code understanding and reasoning, resulting in014
a set of metrics that represent the number of015
algorithms in model-generated solutions. We016
extensively investigate the property of model-017
generated solutions by contrasting them with018
human-written ones and quantifying the impact019
of various factors on code diversity: model020
size, temperature, instruction tuning, and prob-021
lem complexity. Our analysis demonstrates022
that model-generated solutions exhibit low al-023
gorithmic diversity, which was neglected by024
the research community. Moreover, we ex-025
plore methods to increase code diversity by026
combining solutions from different models and027
increasing sampling temperatures. Our findings028
highlight that code diversity can be enhanced029
with the help of heterogeneous models and set-030
ting temperature beyond 1.0 that has not been031
fully explored due to the functional correctness032
degradation. To facilitate our research direc-033
tion, we publicly share our code and datasets034
through open-source repositories.035

1 Introduction036

There’s more than one way to do it.

A motto for the Perl programming language
Larry Wall

Language models (LMs) should produce cor-037

rect and diverse implementations (Li et al., 2016;038

Le Bronnec et al., 2024; Tekin et al., 2024). Re-039

cently, language models that generate code, called 040

Code LMs, have garnered attention due to their 041

practical availability. Code LMs (Guo et al., 2024; 042

CodeGemma et al., 2024; Rozière et al., 2024; Star- 043

Coder2, 2024) mainly focus on enhancing their 044

correctness with a single solution as the current 045

state of code generation evaluation systems only 046

measures the functional correctness (Austin et al., 047

2021; Chen et al., 2021; Wang et al., 2022; Ben Al- 048

lal et al., 2022). However, the diversity of generated 049

code is another important criterion for measuring 050

their potentials. For instance, models tend to pro- 051

duce correct code when they are allowed to gener- 052

ate a large number of candidate implementations. 053

Therefore, researchers promote diversity by adjust- 054

ing sampling temperature to increase the probabil- 055

ity of generating correct code (Renze, 2024). It 056

indicates that diversity is one crucial aspect to iden- 057

tify the hidden value in code LMs. In addition, the 058

diversity of generated code represents their ability 059

to come up with creative ideas for a problem and 060

instantiate them through programming languages, 061

which reflects the core intellectual property for pro- 062

gramming. 063

Nevertheless, there exist limited studies focusing 064

on analyzing the diversity of generated code. In 065

the literature on evaluating the capabilities of code 066

LMs, Hendrycks et al. (2021); Yadav et al. (2024); 067

Matton et al. (2024) focus only on functional cor- 068

rectness without exploring various implementation 069

patterns in the generated code. Recently, Zhuo 070

(2024); Tong and Zhang (2024) introduce auto- 071

matic metrics to evaluate several other aspects such 072

as usefulness of generated code, but they do not 073

measure how much the model-generated solutions 074

vary algorithmically. This tendency overlooks the 075

potential ability of code LMs and hinders the op- 076

portunity for LMs to learn to think of diverse ideas 077

when generating code. 078

In this work, we aim to systematically investigate 079

algorithmic diversity encoded in code LMs with 080

1

the following research questions:081

• Q1: How can we design a quantifiable metric for082

algorithmic diversity of model-generated code?083

• Q2: How different is algorithmic diversity be-084

tween human-written and model-generated code?085

• Q3: Which factors in model development, e.g.,086

instruction tuning or quantization, affect algorith-087

mic diversity of generated solutions?088

To this end, we propose clustering-based evalua-089

tion metrics to estimate the number of algorithms090

within a set of solutions. Our approach leverages091

Large Language Models (LLMs) to determine the092

algorithmic equivalence between two different im-093

plementations through reasoning. With these pre-094

dictions, solutions are clustered based on their al-095

gorithmic similarity, resulting in two distinct met-096

rics that quantify the number of unique algorithms:097

DA@K and EA. When further considering the re-098

lationship between the number of solutions and the099

number of algorithms, we introduce an Algorith-100

mic Diversity Curve along with its corresponding101

metric, i.e., NAUADC.102

Our experimental results provide new insights in103

Code LMs that were previously unavailable. First,104

we found that human-generated solutions are more105

diverse than the correct solutions generated by lan-106

guage models. Our algorithmic diversity curve107

analysis shows that although models generate many108

correct solutions, they contain fewer unique algo-109

rithms than humans. In addition, we explore the110

impact of different model series, model size, sam-111

pling temperature, and instruction tuning in terms112

of diversity. Our experimental results show a dif-113

ferent algorithmic diversity trend even though they114

show similar functional correctness scores. Lastly,115

we explore several approaches to enhance the di-116

versity in a solution pool by using merged solution117

and high temperature sampling, suggesting the im-118

portance of introducing heterogeneous models and119

exploring their generation space more aggressively120

through high-temperature sampling.121

2 Related work122

2.1 Code Language Model Evaluation123

Evaluating language models’ code generation ca-124

pabilities has become an intriguing research topic125

in our community (Chen et al., 2021; Ben Allal126

et al., 2022). Since code solutions can be read-127

ily validated through test case execution, recent128

studies (Liu et al., 2023a; Wang et al., 2023) have129

primarily focused on functional correctness, over- 130

looking other important aspects of generated code. 131

There exist few studies to fuse fuzzy metrics with 132

the syntactic code structure such as AST (Ren et al., 133

2020) or capture the code semantics with masked 134

language models, i.e., CodeBERTScore (Zhou 135

et al., 2023), but they often failed to effectively 136

represent code semantics. Recently, as incorporat- 137

ing LMs into general evaluation pipeline boosts 138

the evaluation quality (Liu et al., 2023b; Fu et al., 139

2024), Zhuo (2024); Tong and Zhang (2024) intro- 140

duce LMs to evaluate the code semantics, e.g., ICE 141

Score or CodeJudge. 142

Along with this literature, our work first presents 143

an effective methodology to analyze the code diver- 144

sity through LMs in terms of algorithmic behavior. 145

This aspect has not been fully explored by the com- 146

munity, and we comprehensively investigate code 147

diversity embedded within code LMs. 148

2.2 Diversity Evaluation 149

Diversity acts as a core virtue for building language 150

generation systems (Li et al., 2016). It is a core 151

factor for constructing general instruction-tuned 152

language models (Xu et al., 2024; Bukharin et al., 153

2024; Shypula et al., 2025). These trends have also 154

been verified for code LMs (Wei et al., 2024; Luo 155

et al., 2024; Wang et al., 2024). However, there 156

exists limited progress in evaluating the diversity 157

encoded in code LMs. 158

Properly evaluating the diversity has been a long- 159

standing research topic (Tevet and Berant, 2021; 160

Pillutla et al., 2021; Lu et al., 2024). To do this, we 161

often utilize the predicted relevance between two 162

texts such as sentences or code snippets (Gao et al., 163

2021; Lee et al., 2022; Feng et al., 2020; Lu et al., 164

2021; Zakeri-Nasrabadi et al., 2023). Particularly, 165

several approaches have been developed to capture 166

code relevance, e.g., token-based (Sajnani et al., 167

2016), learning-based (Zakeri-Nasrabadi and Parsa, 168

2022), or hybrid techniques (Perez and Chiba, 169

2019). However, they failed to properly capture 170

the semantic relevance in coding domain due to 171

their complexity. 172

Building on this line of research, we introduce 173

LMs’ reasoning ability for measuring the diversity 174

of code LMs. Moreover, we integrate a clustering 175

method with this similarity to derive a intuitive 176

measures for representing code diversity. 177

2

Algorithm 1 Solution clustering algorithm

Require: A set of solutions S = {s1, ...sN}
Ensure: C = {C1, ..., CM} s.t. Ci = {s1, ..., sj}
C ← ∅
while S ≠ ∅ do

s ∼ S ▷ Sample a solution
S ← S \{s}, C′ ← {s} ▷ Initialize a cluster
for all s′ ∈ S do

if AlgoSim(s, s′) = Same then
S ← S \ {s′}, C′ ← C′ ∪ {s′}

end if
end for
C ← C ∪ {C′} ▷ Insert new cluster

end while

3 Algorithmic Diversity Metrics178

In this section, we introduce clustering-based met-179

rics that measure algorithmic diversity of solutions.180

3.1 Preliminary181

Inferring algorithmic discrepancy between two182

codes through LLMs We design a reasoning-183

based similarity measure, named AlgoSim, to ef-184

fectively capture the algorithmic discrepancy be-185

tween two codes. Motivated by Fu et al. (2024),186

we utilize the instruction-tuned language models to187

explain their algorithmic behaviors separately and188

then determine their algorithmic difference condi-189

tioned on self-generated explanations. The models190

are prompted to produce a binary decision, i.e.,191

similar or different. Our prompt is presented in192

Appendix F.193

Clustering solutions based on algorithmic differ-194

ence We introduce a simple yet effective cluster-195

ing algorithm to express the diversity inside a set196

of solutions. Specifically, given a sufficient num-197

ber of codes for a problem, we initialize a set of198

solution clusters and iteratively update this set by199

comparing each solution with each cluster. If the200

current solution introduces a new algorithm that201

is different from those of existing clusters, then202

we create a new cluster for this solution in the set.203

Otherwise, we assign the solution into the cluster204

that has a similar algorithm. We outline the overall205

procedure in Algorithm 1.206

3.2 M1: The Number of Distinct Algorithms207

We quantify algorithmic diversity by estimating208

the number of distinct algorithms (DA) within209

a given solution set of size N . Conceptually, DA210

corresponds to the number of solution clusters in 211

the clustering results. Thus, we define DA as the 212

total count of these clusters for a problem. How- 213

ever, in practice, the number of available solutions 214

(N) varies across different problems, affecting the 215

estimation of DA. For instance, introductory prob- 216

lems often have a large pool of solutions, while 217

more challenging problems tend to have fewer. 218

Decoupling the available solution set size N and 219

the evaluation set size K We derive an efficient 220

estimate for DA@K given an available solution set 221

with size N , where K and N are typically differ- 222

ent. A straightforward approach is to use Monte 223

Carlo estimation by sampling K solutions from the 224

set. However, achieving accurate estimates requires 225

multiple sampling iterations, making it computa- 226

tionally expensive. To address this, we propose an 227

efficient and accurate method to estimate DA@K 228

directly from a solution set of size N , eliminating 229

the need for repeated sampling. 230

Definition 3.1. An efficient estimate of DA@K 231

from a solution set of size N is as follow: 232

DA@K =

M∑
m=1

(
1−

(
N−sm

K

)(
N
K

))
. (1) 233

where M is the number of solution clusters and sm 234

is the size of m-th cluster. 235

To derive this estimate, we interpret DA@K as 236

the expected count of clusters that contribute at 237

least one solution within the sampled set of size 238

K. By leveraging the linearity of expectation, this 239

simplifies to the sum of the probabilities that each 240

cluster is represented in the sampled subset. 241

DA@K =

M∑
m=1

E
[
p
(
∃s|s ∈ SK ∧ s ∈ Cm

)]
242

where SK ∼ S is a sampled solution set with size 243

K and Cm is the m-th cluster. To compute the 244

expectation for group m, we follow these steps: 245

1. We calculate the probability of not selecting the 246

group. It can be calculated as the ratio between 247

two values: the number of sampled sets that do 248

not contain any solution in the group m and the 249

total number of possible sampled sets. 250

2. We take the complement of this probability to 251

obtain the likelihood of sampling at least one 252

solution in each group. 253

Finally, we add each expectation to obtain DA@K. 254

3

3.2.1 Algorithmic Diversity Curve255

We develop the Algorithmic Diversity Curve256

(ADC) to express the trend between the number257

of solutions and our proposed metrics. The curve258

plots the relationship between the number of solu-259

tions (K) on the horizontal axis and DA@K values260

on the vertical axis. To create the ADC, we gen-261

erate a grid of K values and estimate the DA@K262

at each point using Definition 3.1. Motivated by263

MAUVE (Pillutla et al., 2021), we introduce Nor-264

malized Area Under ADC (NAUADC) as a gen-265

eralized metric that captures the average number266

of distinct algorithms across different solution set267

sizes. To calculate NAUADC, we measure the area268

under ADC and normalize it with respect to the269

width of the curve.270

3.3 M2: The Effective Number of Algorithms271

We use the concept of uncertainty to measure al-272

gorithmic diversity. Motivated by the concept of273

diversity index (Spellerberg and Fedor, 2003) and274

semantic uncertainty (Kuhn et al., 2023), we define275

the effective number of algorithms (EA) using276

the following equation:277

EA = exp

(
−

M∑
m=1

pm ln pm

)
(2)278

where pm := |Cm|
N is the empirical estimate of im-279

plementing a solution with algorithm m. Unlike280

DA@K which counts unique algorithms, EA ex-281

amines the distribution pattern of diverse imple-282

mentations across the solution set. This helps us283

understand how evenly the model implements var-284

ious algorithms. For instances, EA will be low if285

solutions predominantly use the same algorithm,286

even if the model can occasionally generate novel287

approaches across multiple attempts.288

4 Experiments289

We analyze the algorithmic diversity encoded in290

model-generated solutions and discover their po-291

tential in code generation task.292

4.1 Experimental Setup293

General settings We investigate algorithmic di-294

versity of generated solutions using the APPS295

dataset (Hendrycks et al., 2021). We group the296

problems by their original sources as the number297

of collected human-written solutions varies (Ta-298

ble 1). We select two sources, i.e., AtCoder and299

Difficulty Source Problem Solution

Introductory AtCoder 403 97.57±6.56
CodeForces 294 18.07±7.69

Interview AtCoder 252 82.46±25.36
CodeForces 2376 17.73±9.00

Competition AtCoder 41 34.51±35.80
CodeForces 264 14.26±9.45

Table 1: Statistics of the APPS test dataset. We report
the number of problems and the average (w/ stdev) num-
ber of human-written solutions for a single problem.

CodeForces, which contain sufficient number of 300

problems and human solutions per difficulty bin. 301

For model-generated solutions, we employ state-of- 302

the-art code LMs including Deepseek Coder (Guo 303

et al., 2024), Qwen2.5 Coder (Hui et al., 2024) 304

with their quantized versions (Lin et al., 2024) and 305

proprietary models, i.e., OpenAI GPT models (Ope- 306

nAI, 2024). With these models, we use sampling 307

temperature 1.0 with nucleus sampling 0.95 and 308

generate at most 1024 tokens until EOS token is 309

produced. The open-sourced models generate 100 310

solutions per problem and the proprietary models 311

generate 20 solutions per problem due to their ex- 312

pensive costs. We extract code solutions from the 313

completions using a simple regex pattern that cap- 314

tures the first markdown codeblock. The generated 315

solutions are executed with test cases to verify their 316

functional correctness. 317

Settings for diversity metrics For inferring 318

AlgoSim, we employ the Llama-3.1-8B-Instruct 319

model (Llama, 2024) to assess algorithmic rele- 320

vance between two implementations. This model is 321

chosen for its strong instruction-following capabili- 322

ties while remaining computationally feasible on a 323

single NVIDIA A100 GPU. We vary K from 1 to 324

25 to draw the ADC curve and analyze the trends 325

of DA@K as the solution set size increases. The 326

NAUADC is calculated based on these settings. 327

4.2 Diversity Analysis on Correct Solutions 328

We analyze functionally correct solutions gener- 329

ated by models and collected solutions written by 330

human from the perspective of algorithmic diver- 331

sity. Table 2 reports the Pass@10 score with our 332

proposed metrics, EA and NAUADC, to examine 333

the relationship between diversity and functional 334

correctness across different solution sets. In addi- 335

tion, we present the Algorithmic Diversity Curve 336

in Figure 1, highlighting key differences between 337

4

Difficulty introductory interview competition

Model Pass@10 EA NAUADC Pass@10 EA NAUADC Pass@10 EA NAUADC

Source: AtCoder

Deepseek-6.7B-Base 0.6683 1.653 1.900 0.1313 1.354 1.454 0.0073 1.000 1.000
Deepseek-6.7B-Instruct 0.7637 1.536 1.747 0.2114 1.578 1.733 0.0155 1.333 1.321
Deepseek-6.7B-Instruct-AWQ 0.7361 1.516 1.741 0.1798 1.484 1.637 0.0046 1.000 1.000
Deepseek-33B-Instruct-AWQ 0.8772 1.548 1.780 0.3223 1.607 1.814 0.0097 1.000 1.000
GPT-4o-mini-2024-07-18 0.9219 1.283 1.443 0.4518 1.293 1.444 0.1279 1.211 1.350
GPT-4o-2024-08-06 0.9367 1.216 1.302 0.5612 1.333 1.409 0.1185 1.137 1.136

Human 2.080 2.353 2.817 3.042 2.484 2.722

Source: CodeForces

Deepseek-6.7B-Base 0.1100 1.382 1.496 0.1234 1.458 1.573 0.0495 1.418 1.461
Deepseek-6.7B-Instruct 0.1993 1.462 1.643 0.2215 1.548 1.714 0.0991 1.438 1.555
Deepseek-6.7B-Instruct-AWQ 0.1864 1.609 1.762 0.2048 1.532 1.677 0.0972 1.472 1.608
Deepseek-33B-Instruct-AWQ 0.3149 1.719 1.952 0.3492 1.654 1.862 0.1834 1.576 1.776
GPT-4o-mini-2024-07-18 0.5757 1.517 1.777 0.5870 1.358 1.548 0.3642 1.459 1.610
GPT-4o-2024-08-06 0.6327 1.380 1.507 0.6263 1.351 1.482 0.4534 1.419 1.559

Human 2.305 2.609 2.198 2.499 2.209 2.530

Table 2: Functional correctness and algorithmic diversity on the APPS dataset. The best results are marked in bold.

human-written and model-generated solutions.338

Findings 1. Model-generated solutions show low339

algorithmic diversity. Our algorithmic diversity340

curve clearly illustrates that model-generated solu-341

tions exhibit significantly less algorithmic variety342

than human-written solutions. As shown in Fig-343

ure 1a, humans can discover an average of three dis-344

tinct algorithms, whereas the model develops only345

two for AtCoder-introductory problems when gen-346

erating 25 correct solutions on average (DA@25).347

This empirical findings are reflected in the EA and348

NAUADC scores in Table 2, where human-written349

solutions consistently achieve higher scores than350

model-generated ones. This implies that even when351

we train other models with these model-generated352

solutions, they are unlikely to learn generalized353

problem-solving strategies due to the lack of algo-354

rithmic diversity encoded in these solution set.355

Findings 2. Algorithmic diversity varies depend-356

ing on problem semantics. We demonstrate that357

the problems from different sources and difficulty358

show different trends in terms of algorithmic diver-359

sity. For AtCoder-introductory problems, we ob-360

serve that while using larger models like Deepseek-361

33B-Instruct-AWQ improves Pass@10 score, it362

did not lead to greater algorithmic diversity (Ta-363

ble 2). However, there exists notable increment364

in algorithmic diversity scores for CodeForces365

problems. Our analysis reveals that the AtCoder-366

introductory problems typically require straight-367

forward problem-solving approaches, while others 368

demand more code-level algorithmic variability, 369

particularly elicited from larger models. 370

Findings 3. Human solutions also contain re- 371

dundant algorithms. In Table 2, human-written 372

solutions mostly consist of two distinct algorithms 373

per problem, despite humans’ superior ability to 374

explore diverse algorithmic approaches. There 375

are two possible explanations for this limited al- 376

gorithmic diversity. First, the problems may be too 377

semantically straightforward to solve, suggesting 378

there is little value in approaching them differently. 379

Second, the problems may be so challenging that 380

humans have yet to discover alternative algorithms. 381

We speculate that the first explanation accounts 382

for the lower diversity observed in the introduc- 383

tory problems. Through our manual inspection, 384

we confirm that most human solutions in the in- 385

troductory problems converge on the same algo- 386

rithm. We attribute this phenomenon to the dataset 387

originating from educational platforms designed to 388

help students reinforce their programming skills by 389

reimplementing well-known approaches. 390

Findings 4. GPT-4o series exhibits low algo- 391

rithmic diversity. Our experimental results show 392

that powerful proprietary models has low algorith- 393

mic diversity compared to their open-source coun- 394

terparts regardless of problem complexity or the 395

original source. It implies that GPT-4o models are 396

effective at finding one correct solution, but they 397

5

(a) Introductory, AtCoder (b) Interview, AtCoder (c) Competition, AtCoder

(d) Introductory, CodeForces (e) Interview, CodeForces (f) Competition, CodeForces

Figure 1: The Algorithmic Diversity Curve of the human solution set and model ones for the APPS dataset.

struggle to identify alternative valid approaches.398

In contrast, Deepseek models show relatively high399

diversity even though they produce less correct so-400

lution compared to GPT-4o models. With these401

diverse solutions, we can derive the high-level ab-402

stract concept of how to solve a problem that cannot403

be acquired from one single solution.404

Findings 5. The effect of instruction tuning on405

algorithmic diversity varies depending on prob-406

lem difficulty. When comparing the Deepseek-407

base and Deepseek-instruct models, algorithmic408

diversity shows different patterns: instruction tun-409

ing decreases algorithmic diversity in AtCoder-410

introductory problems, but increases it in other411

problems. A key distinction between AtCoder-412

introductory problems and others lies in their cor-413

rectness scores. Based on Pass@10 scores, most414

AtCoder introductory problems are easily solvable415

by the models, whereas others pose significant chal-416

lenges. This suggests that instruction tuning favors417

single, straightforward answers for simple prob-418

lems while promoting the exploration of multiple419

approaches for complex problems.420

4.3 Diversity Analysis on Merged Solutions421

One simple approach to increasing the diversity of422

solutions could be integrating solution sets derived423

from different models. To validate the effectiveness424

of this approach, we merge solutions from different425

Qwen Deepseek GPT EA NAUADC

Source: AtCoder

✓ ✓ 1.597 (+0.049) 1.837 (+0.057)
✓ ✓ 1.357 (+0.013) 1.533 (+0.015)
✓ ✓ 1.550 (+0.002) 1.759 (−0.021)
✓ ✓ ✓ 1.563 (+0.015) 1.771 (−0.009)

Source: CodeForces

✓ ✓ 1.759 (+0.040) 1.980 (+0.028)
✓ ✓ 1.814 (+0.126) 2.093 (+0.168)
✓ ✓ 1.862 (+0.143) 2.141 (+0.189)
✓ ✓ ✓ 1.922 (+0.203) 2.196 (+0.244)

Table 3: Algorithmic diversity of a merged solution
set on APPS introductory problems. Qwen, Deepseek,
and GPT stand for Qwen2.5-Coder-32B-Instruct-AWQ,
Deepseek-coder-33B-Instruct-AWQ, and gpt-4o-2024-
08-06, respectively. The numbers in parentheses in-
dicate the improvement relative to the highest perfor-
mance achieved by any individual model.

models and evaluate them in Table 3. 426

Our empirical investigations indicate that amal- 427

gamating solutions derived from diverse models 428

yields varying degrees of diversity enhancement. 429

Primarily, the AtCoder problems show negligible 430

enhancement or fail to augment diversity even upon 431

the consolidation of their respective solutions. It 432

suggests that merging these solutions is not an 433

effective approach to address the limited diver- 434

sity. Conversely, for CodeForces problems, we 435

observe a substantial increase in diversity given 436

6

Figure 2: The impact of sampling temperature on cor-
rectness and algorithmic diversity. Dataset: APPS intro-
ductory, Model: Deepseek-coder-33B-Instruct-AWQ.

a merged solution set. This suggests that these437

models employ different approaches when imple-438

menting CodeForces challenges, enhancing the het-439

erogeneity of the merged solution set.440

Moreover, it is noteworthy that the choice of441

models incorporated into the merged set signifi-442

cantly impacts algorithmic diversity. The integra-443

tion of Deepseek and GPT solutions results in a444

relatively small increase in diversity compared to445

integrations involving Qwen solutions. This can446

be attributed to the substantial similarity between447

Deepseek and GPT in their algorithmic foundations448

and development paradigms. While merging all449

available models achieves the highest solution di-450

versity, these findings emphasize the critical impor-451

tance of selecting models with distinctive solution-452

generating capabilities, particularly when working453

with limited model combinations.454

4.4 Sampling Temperature Analysis455

We investigate how the sampling temperature456

affects the algorithmic diversity of generated457

code. We sample 50 problems from the APPS-458

introductory problems, and generate 100 solutions 459

per problem with the sampling temperatures rang- 460

ing from 0.2 to 1.4 in increments of 0.2. The func- 461

tional correctness and diversity scores across dif- 462

ferent temperature settings are reported in Figure 2. 463

The results clearly illustrate the correlation between 464

the sampling temperature and algorithmic diversity. 465

As the sampling temperature increases, both EA 466

and NAUADC scores gradually rise. However, 467

when evaluating CodeForces problems at a temper- 468

ature of 1.4, we observe a significant drop in EA 469

and NAUADC scores, likely due to the model’s 470

reduced stability in generating correct solutions. 471

We emphasize that simply comparing Pass@1 472

and Pass@10 scores appears insufficient for under- 473

standing the diversity of model-generated solutions. 474

As the sampling temperature increases from 0.2 to 475

1.0, we observe an increase in Pass@10 scores ac- 476

companied by a decrease in Pass@1 scores, align- 477

ing with previous research. Within this range, in- 478

creasing the diversity of model generation based 479

on high temperature increases the probability of 480

finding the right solution; that is, diversity posi- 481

tively correlates with accuracy. Once the tempera- 482

ture exceeds 1.0, however, the Pass@10 begins to 483

decline due to a higher prevalence of incorrect so- 484

lutions. Nevertheless, the algorithmic diversity of 485

valid solutions continues to increase at the highest 486

sampling temperatures. Our study emphasizes the 487

significance of high-temperature sampling, which 488

has been largely overlooked due to existing evalua- 489

tion methods solely focusing on accuracy. 490

4.5 Qualitative analysis on AlgoSim 491

We analyze AlgoSim behavior of through our man- 492

ual inspection. Some representative examples are 493

listed up in Table 4. We confirm that the logical 494

progression of AlgoSim follows a four-step struc- 495

ture: (1) problem overview, (2) solution methodol- 496

ogy analysis, (3) comparative logical assessment, 497

and (4) conclusive determination. We discover that 498

while the model can effectively explain the logi- 499

cal progression of solutions, it struggles to identify 500

which aspect should be compared in this context, 501

e.g., the underlying logic or the intended purposes 502

of those solutions. In our prompt, we request the 503

model to compare and analyze the logic between 504

the given two solutions, as they share the same 505

objective of problem-solving. We anticipate this is- 506

sue will be naturally resolved as LLMs’ reasoning 507

capabilities continue to advance. 508

7

AlgoSim Human Completion

Positive Positive

To classify ... (omitted) ... The previous solution calculates the number of possible passwords
by cubing the input number N, which is equivalent to N^3. ... (omitted) ... The given solution
also calculates the number of possible passwords by cubing the input number N, but it explicitly
multiplies N by itself three times (N * N * N). ... (omitted) ... Based on this analysis, the given
solution leverages similar logic to the previous solution, but with a more explicit and step-by-step
approach. Decision: similar to the previous solution.

Negative Negative

To classify ... (omitted) ... The previous solution uses the formula N^3 to calculate the number
of possible passwords. This is a mathematical approach that directly calculates the result without
iterating over all possible combinations. The given solution, on the other hand, uses a brute-force
approach by iterating over all possible combinations of digits from 1 to N and counting them. ...
(omitted) ... Therefore, the given solution does not leverage similar logic to the previous solution.
It uses a novel approach to solve the problem. Decision: a novel approach.

Positive Negative

To classify ... (omitted) ... The previous solution calculates the number of possible passwords by
cubing the input number N ... (omitted) ... The given solution uses the itertools.product function
to generate all possible combinations of 3 digits from 1 to N, and then prints the length of this
list. ... (omitted) ... Comparing the two solutions, we can see that the given solution uses a
more explicit and iterative approach to generate all possible combinations, whereas the previous
solution uses a mathematical formula to calculate the result directly. However, both solutions are
based on the same underlying logic, which is to count the number of possible combinations of 3
digits from 1 to N. Therefore, the given solution leverages similar logic to the previous solution,
but with a more explicit and iterative approach. Decision: similar to the previous solution.

Table 4: Qualitative examples from AlgoSim completion. We color the explanation for the first solution to teal
while those for the second solution to purple. We point out the misleading sentence as red. The model should
compare how to count the number of possible combinations.

Edit distance x ≤ 100 100 < x ≤ 500 500 < x

Claude-3.5 0.60 0.75 0.70
GPT-4o 0.65 0.70 0.60
Human 0.91 0.78 0.72

κ - 0.58 0.25

Table 5: AlgoSim acceptance ratio results. We addi-
tionally report survey responses from recent LLMs. κ
indicates Cohen’s Kappa across human annotators.

Furthermore, we conducted a human evaluation509

study to assess how AlgoSim effectively distin-510

guishes algorithmic differences between two lex-511

ically different implementations. We categorize512

solution pairs according to their lexical difference,513

quantified through edit distance, into 3 groups and514

extract 20 representative cases from each group.515

We gathered survey responses to evaluate whether516

the participants agree with the AlgoSim’s reason-517

ing about algorithmic analysis and their predictions.518

Further details can be found in Appendix D.519

We report survey statistics in Table 5. The accep-520

tance ratio exceeded 0.6 on average, demonstrating521

their capability of distinguishing algorithmic differ-522

ence. One notable trend is that human acceptance523

and the corresponding agreement decrease as prob-524

lem complexity increases. This phenomenon is525

attributed to the inherently subjective nature of the526

concept of logic. For instance, someone consid-527

ers BFS and DFS algorithms as the same graph 528

traversal logic while others don’t. 529

5 Conclusion 530

Throughout this work, we comprehensively ana- 531

lyze the code diversity of model-generated solu- 532

tions. We develop clustering-based metrics, namely 533

DA@K, EA, and NAUADC, leveraging LLMs’ 534

capabilities to effectively contrast code semantics 535

across different codes. These metrics yield mean- 536

ingful indicators, i.e., the mean algorithmic count 537

within solution sets, while accounting for the distri- 538

bution of generated solutions. Our extensive anal- 539

ysis unveils previously unexplored findings about 540

code diversity. First, we identify the algorithmic 541

redundancy inside model-generated solutions. Es- 542

pecially, our algorithmic diversity curve reveals 543

that the model struggles to devise novel algorithms, 544

despite generating numerous correct solutions. Fi- 545

nally, we investigate multiple methods to improve 546

algorithmic diversity through solution merging and 547

adjusting sampling temperature, showing that com- 548

bining solutions from heterogeneous models and 549

generating with extremely high sampling tempera- 550

ture effectively amplifies algorithmic variety. 551

We hope that our findings facilitate further re- 552

search aimed at enhancing code diversity to gener- 553

ate more diverse and correct codes. 554

8

Limitations555

We identify a few limitations during our experi-556

ments and provide promising research directions557

for facilitating research about code diversity.558

First, even though we provide a robust estima-559

tor for DA@K, it does not reflect code diversity560

properly if it produces less than two solutions for a561

problem, where it often occurs in challenging prob-562

lems such as APPS-competition problems. There-563

fore, analyzing diversity with a reduced number564

of correct solutions or without them becomes a565

promising research topic.566

Second, our diversity analysis heavily rely on567

reasoning ability in large language models, necessi-568

tating substantial computational resources. There-569

fore, efficiently contrasting two codes with small570

language models specialized on analyzing their al-571

gorithm becomes a promising research direction.572

Finally, our human study revealed that the in-573

terpretation of logic varies among individuals. Al-574

though the participants establish their own stan-575

dards of logic and provide consistent survey re-576

sponse, the criteria among participants occasionally577

lack global concordance.578

Ethical consideration579

In our research, we have exclusively utilized open-580

source language models (LMs) and datasets. This581

ensures transparency and allows the broader re-582

search community to replicate and build upon our583

work without legal or proprietary constraints. Also,584

we recruited graduate students in computer science585

to evaluate code similarity, ensuring their involve-586

ment was voluntary and informed. We do not in-587

tend harm or overlook significant ethical issues.588

References589

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten590
Bosma, Henryk Michalewski, David Dohan, Ellen591
Jiang, Carrie Cai, Michael Terry, Quoc Le, and592
Charles Sutton. 2021. Program synthesis with large593
language models.594

Loubna Ben Allal, Niklas Muennighoff, Logesh595
Kumar Umapathi, Ben Lipkin, and Leandro596
von Werra. 2022. A framework for the eval-597
uation of code generation models. https:598
//github.com/bigcode-project/599
bigcode-evaluation-harness.600

Alexander Bukharin, Shiyang Li, Zhengyang Wang,601
Jingfeng Yang, Bing Yin, Xian Li, Chao Zhang, Tuo602

Zhao, and Haoming Jiang. 2024. Data diversity mat- 603
ters for robust instruction tuning. In Findings of the 604
Association for Computational Linguistics: EMNLP 605
2024, pages 3411–3425, Miami, Florida, USA. Asso- 606
ciation for Computational Linguistics. 607

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 608
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 609
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 610
Greg Brockman, et al. 2021. Evaluating large 611
language models trained on code. arXiv preprint 612
arXiv:2107.03374. 613

Team CodeGemma, Heri Zhao, Jeffrey Hui, Joshua 614
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, 615
Christopher A. Choquette-Choo, Jingyue Shen, Joe 616
Kelley, Kshitij Bansal, Luke Vilnis, Mateo Wirth, 617
Paul Michel, Peter Choy, Pratik Joshi, Ravin Kumar, 618
Sarmad Hashmi, Shubham Agrawal, Zhitao Gong, 619
Jane Fine, Tris Warkentin, Ale Jakse Hartman, Bin 620
Ni, Kathy Korevec, Kelly Schaefer, and Scott Huff- 621
man. 2024. Codegemma: Open code models based 622
on gemma. 623

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 624
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 625
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 626
BERT: A pre-trained model for programming and 627
natural languages. In Findings of the Association 628
for Computational Linguistics: EMNLP 2020, pages 629
1536–1547, Online. Association for Computational 630
Linguistics. 631

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei 632
Liu. 2024. GPTScore: Evaluate as you desire. In 633
Proceedings of the 2024 Conference of the North 634
American Chapter of the Association for Computa- 635
tional Linguistics: Human Language Technologies 636
(Volume 1: Long Papers), pages 6556–6576, Mexico 637
City, Mexico. Association for Computational Lin- 638
guistics. 639

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 640
SimCSE: Simple contrastive learning of sentence em- 641
beddings. In Proceedings of the 2021 Conference 642
on Empirical Methods in Natural Language Process- 643
ing, pages 6894–6910, Online and Punta Cana, Do- 644
minican Republic. Association for Computational 645
Linguistics. 646

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 647
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 648
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 649
feng Liang. 2024. Deepseek-coder: When the large 650
language model meets programming – the rise of 651
code intelligence. 652

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 653
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 654
Samir Puranik, Horace He, Dawn Song, and Jacob 655
Steinhardt. 2021. Measuring coding challenge com- 656
petence with APPS. In Thirty-fifth Conference on 657
Neural Information Processing Systems Datasets and 658
Benchmarks Track (Round 2). 659

9

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://aclanthology.org/2024.findings-emnlp.195
https://aclanthology.org/2024.findings-emnlp.195
https://aclanthology.org/2024.findings-emnlp.195
http://arxiv.org/abs/2406.11409
http://arxiv.org/abs/2406.11409
http://arxiv.org/abs/2406.11409
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2024.naacl-long.365
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-660
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,661
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,662
Yichang Zhang, An Yang, Rui Men, Fei Huang,663
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-664
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren665
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-666
nical report.667

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.668
Semantic uncertainty: Linguistic invariances for un-669
certainty estimation in natural language generation.670
In The Eleventh International Conference on Learn-671
ing Representations.672

Florian Le Bronnec, Alexandre Verine, Benjamin Ne-673
grevergne, Yann Chevaleyre, and Alexandre Al-674
lauzen. 2024. Exploring precision and recall to assess675
the quality and diversity of LLMs. In Proceedings676
of the 62nd Annual Meeting of the Association for677
Computational Linguistics (Volume 1: Long Papers),678
pages 11418–11441, Bangkok, Thailand. Association679
for Computational Linguistics.680

Seonghyeon Lee, Dongha Lee, Seongbo Jang, and681
Hwanjo Yu. 2022. Toward interpretable semantic tex-682
tual similarity via optimal transport-based contrastive683
sentence learning. In Proceedings of the 60th Annual684
Meeting of the Association for Computational Lin-685
guistics (Volume 1: Long Papers), pages 5969–5979,686
Dublin, Ireland. Association for Computational Lin-687
guistics.688

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,689
and Bill Dolan. 2016. A diversity-promoting ob-690
jective function for neural conversation models. In691
Proceedings of the 2016 Conference of the North692
American Chapter of the Association for Computa-693
tional Linguistics: Human Language Technologies,694
pages 110–119, San Diego, California. Association695
for Computational Linguistics.696

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-697
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,698
Xingyu Dang, Chuang Gan, and Song Han. 2024.699
Awq: Activation-aware weight quantization for llm700
compression and acceleration. In MLSys.701

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and702
LINGMING ZHANG. 2023a. Is your code gener-703
ated by chatgpt really correct? rigorous evaluation704
of large language models for code generation. In705
Advances in Neural Information Processing Systems,706
volume 36, pages 21558–21572. Curran Associates,707
Inc.708

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,709
Ruochen Xu, and Chenguang Zhu. 2023b. G-eval:710
NLG evaluation using gpt-4 with better human align-711
ment. In Proceedings of the 2023 Conference on712
Empirical Methods in Natural Language Processing,713
pages 2511–2522, Singapore. Association for Com-714
putational Linguistics.715

Team Llama. 2024. The llama 3 herd of models.716

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 717
Svyatkovskiy, Ambrosio Blanco, Colin Clement, 718
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong 719
Zhou, Linjun Shou, Long Zhou, Michele Tufano, 720
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare- 721
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 722
2021. Codexglue: A machine learning benchmark 723
dataset for code understanding and generation. 724

Yining Lu, Dixuan Wang, Tianjian Li, Dongwei Jiang, 725
and Daniel Khashabi. 2024. Benchmarking language 726
model creativity: A case study on code generation. 727

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 728
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 729
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder: 730
Empowering code large language models with evol- 731
instruct. In The Twelfth International Conference on 732
Learning Representations. 733

Alexandre Matton, Tom Sherborne, Dennis Aumiller, 734
Elena Tommasone, Milad Alizadeh, Jingyi He, 735
Raymond Ma, Maxime Voisin, Ellen Gilsenan- 736
McMahon, and Matthias Gallé. 2024. On leakage 737
of code generation evaluation datasets. In Findings 738
of the Association for Computational Linguistics: 739
EMNLP 2024, pages 13215–13223, Miami, Florida, 740
USA. Association for Computational Linguistics. 741

Team OpenAI. 2024. Gpt-4o system card. 742

Daniel Perez and Shigeru Chiba. 2019. Cross-language 743
clone detection by learning over abstract syntax trees. 744
In 2019 IEEE/ACM 16th International Conference 745
on Mining Software Repositories (MSR), pages 518– 746
528. 747

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, 748
John Thickstun, Sean Welleck, Yejin Choi, and Zaid 749
Harchaoui. 2021. Mauve: Measuring the gap be- 750
tween neural text and human text using divergence 751
frontiers. In Advances in Neural Information Pro- 752
cessing Systems, volume 34, pages 4816–4828. Cur- 753
ran Associates, Inc. 754

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, 755
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio 756
Blanco, and Shuai Ma. 2020. Codebleu: a method 757
for automatic evaluation of code synthesis. 758

Matthew Renze. 2024. The effect of sampling temper- 759
ature on problem solving in large language models. 760
In Findings of the Association for Computational 761
Linguistics: EMNLP 2024, pages 7346–7356, Mi- 762
ami, Florida, USA. Association for Computational 763
Linguistics. 764

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 765
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 766
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 767
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 768
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 769
Grattafiori, Wenhan Xiong, Alexandre Défossez, 770
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar- 771
tin, Nicolas Usunier, Thomas Scialom, and Gabriel 772

10

http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2409.12186
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://doi.org/10.18653/v1/2024.acl-long.616
https://doi.org/10.18653/v1/2024.acl-long.616
https://doi.org/10.18653/v1/2024.acl-long.616
https://doi.org/10.18653/v1/2022.acl-long.412
https://doi.org/10.18653/v1/2022.acl-long.412
https://doi.org/10.18653/v1/2022.acl-long.412
https://doi.org/10.18653/v1/2022.acl-long.412
https://doi.org/10.18653/v1/2022.acl-long.412
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/43e9d647ccd3e4b7b5baab53f0368686-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2407.09007
http://arxiv.org/abs/2407.09007
http://arxiv.org/abs/2407.09007
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://aclanthology.org/2024.findings-emnlp.772
https://aclanthology.org/2024.findings-emnlp.772
https://aclanthology.org/2024.findings-emnlp.772
http://arxiv.org/abs/2410.21276
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1109/MSR.2019.00078
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://aclanthology.org/2024.findings-emnlp.432
https://aclanthology.org/2024.findings-emnlp.432
https://aclanthology.org/2024.findings-emnlp.432

Synnaeve. 2024. Code llama: Open foundation mod-773
els for code.774

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chan-775
chal K. Roy, and Cristina V. Lopes. 2016. Sourcer-776
ercc: Scaling code clone detection to big-code. In777
2016 IEEE/ACM 38th International Conference on778
Software Engineering (ICSE), pages 1157–1168.779

Alexander Shypula, Shuo Li, Botong Zhang, Vishakh780
Padmakumar, Kayo Yin, and Osbert Bastani. 2025.781
Does instruction tuning reduce diversity? a case study782
using code generation.783

Ian F Spellerberg and Peter J Fedor. 2003. A tribute784
to claude shannon (1916–2001) and a plea for more785
rigorous use of species richness, species diversity786
and the ‘shannon–wiener’index. Global ecology and787
biogeography, 12(3):177–179.788

Team StarCoder2. 2024. Starcoder 2 and the stack v2:789
The next generation.790

Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Si-791
hao Hu, and Ling Liu. 2024. LLM-TOPLA: Efficient792
LLM ensemble by maximising diversity. In Find-793
ings of the Association for Computational Linguistics:794
EMNLP 2024, pages 11951–11966, Miami, Florida,795
USA. Association for Computational Linguistics.796

Guy Tevet and Jonathan Berant. 2021. Evaluating the797
evaluation of diversity in natural language generation.798
In Proceedings of the 16th Conference of the Euro-799
pean Chapter of the Association for Computational800
Linguistics: Main Volume, pages 326–346, Online.801
Association for Computational Linguistics.802

Weixi Tong and Tianyi Zhang. 2024. CodeJudge: Eval-803
uating code generation with large language models.804
In Proceedings of the 2024 Conference on Empiri-805
cal Methods in Natural Language Processing, pages806
20032–20051, Miami, Florida, USA. Association for807
Computational Linguistics.808

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang,809
Zijian Wang, Mingyue Shang, Varun Kumar, Sam-810
son Tan, Baishakhi Ray, Parminder Bhatia, Ramesh811
Nallapati, Murali Krishna Ramanathan, Dan Roth,812
and Bing Xiang. 2023. ReCode: Robustness eval-813
uation of code generation models. In Proceedings814
of the 61st Annual Meeting of the Association for815
Computational Linguistics (Volume 1: Long Papers),816
pages 13818–13843, Toronto, Canada. Association817
for Computational Linguistics.818

Yejie Wang, Keqing He, Guanting Dong, Pei Wang,819
Weihao Zeng, Muxi Diao, Weiran Xu, Jingang Wang,820
Mengdi Zhang, and Xunliang Cai. 2024. Dolph-821
Coder: Echo-locating code large language models822
with diverse and multi-objective instruction tuning.823
In Proceedings of the 62nd Annual Meeting of the824
Association for Computational Linguistics (Volume 1:825
Long Papers), pages 4706–4721, Bangkok, Thailand.826
Association for Computational Linguistics.827

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F Xu, 828
and Graham Neubig. 2022. Mconala: a benchmark 829
for code generation from multiple natural languages. 830
arXiv preprint arXiv:2203.08388. 831

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 832
Lingming Zhang. 2024. Magicoder: Empowering 833
code generation with OSS-instruct. In Proceedings of 834
the 41st International Conference on Machine Learn- 835
ing, volume 235 of Proceedings of Machine Learning 836
Research, pages 52632–52657. PMLR. 837

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 838
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei 839
Lin, and Daxin Jiang. 2024. WizardLM: Empow- 840
ering large pre-trained language models to follow 841
complex instructions. In The Twelfth International 842
Conference on Learning Representations. 843

Ankit Yadav, Himanshu Beniwal, and Mayank Singh. 844
2024. PythonSaga: Redefining the benchmark to 845
evaluate code generating LLMs. In Findings of the 846
Association for Computational Linguistics: EMNLP 847
2024, pages 17113–17126, Miami, Florida, USA. 848
Association for Computational Linguistics. 849

Morteza Zakeri-Nasrabadi and Saeed Parsa. 2022. An 850
ensemble meta-estimator to predict source code testa- 851
bility. Appl. Soft Comput., 129(C). 852

Morteza Zakeri-Nasrabadi, Saeed Parsa, Mohammad 853
Ramezani, Chanchal Roy, and Masoud Ekhtiarzadeh. 854
2023. A systematic literature review on source code 855
similarity measurement and clone detection: Tech- 856
niques, applications, and challenges. Journal of Sys- 857
tems and Software, page 111796. 858

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham 859
Neubig. 2023. CodeBERTScore: Evaluating code 860
generation with pretrained models of code. In Pro- 861
ceedings of the 2023 Conference on Empirical Meth- 862
ods in Natural Language Processing, pages 13921– 863
13937, Singapore. Association for Computational 864
Linguistics. 865

Terry Yue Zhuo. 2024. ICE-score: Instructing large 866
language models to evaluate code. In Findings of the 867
Association for Computational Linguistics: EACL 868
2024, pages 2232–2242, St. Julian’s, Malta. Associa- 869
tion for Computational Linguistics. 870

A Potential Risks 871

In this section, we identify potential risks and sys- 872

tematically elaborate on their precautions. First, 873

the model may produce security-vulnerable code 874

that could be potentially harmful to the user’s sys- 875

tem. This risk can be mitigated by executing model- 876

generated code within a sandboxed environment. 877

Additionally, the analysis results from AlgoSim 878

may lead to biased conclusions among researchers 879

due to the inherent bias in language models (Liu 880

11

http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://openreview.net/forum?id=hMEHnLJyrU
https://openreview.net/forum?id=hMEHnLJyrU
https://openreview.net/forum?id=hMEHnLJyrU
http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2402.19173
https://aclanthology.org/2024.findings-emnlp.698
https://aclanthology.org/2024.findings-emnlp.698
https://aclanthology.org/2024.findings-emnlp.698
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.18653/v1/2021.eacl-main.25
https://aclanthology.org/2024.emnlp-main.1118
https://aclanthology.org/2024.emnlp-main.1118
https://aclanthology.org/2024.emnlp-main.1118
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2024.acl-long.259
https://doi.org/10.18653/v1/2024.acl-long.259
https://doi.org/10.18653/v1/2024.acl-long.259
https://doi.org/10.18653/v1/2024.acl-long.259
https://doi.org/10.18653/v1/2024.acl-long.259
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://aclanthology.org/2024.findings-emnlp.996
https://aclanthology.org/2024.findings-emnlp.996
https://aclanthology.org/2024.findings-emnlp.996
https://doi.org/10.1016/j.asoc.2022.109562
https://doi.org/10.1016/j.asoc.2022.109562
https://doi.org/10.1016/j.asoc.2022.109562
https://doi.org/10.1016/j.asoc.2022.109562
https://doi.org/10.1016/j.asoc.2022.109562
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148

et al., 2023b). We anticipate that this risk will natu-881

rally diminish as future language models evolve to882

become unbiased.883

B Scientific Artifacts884

We leverage publicly available datasets with proper885

citation while maintaining legal compliance and886

ethcial use. While the APPS dataset is licensed887

under CC BY-SA 3.0, the original research pub-888

lication acknowledges potential copyright consid-889

erations for problems sourced from AtCoder and890

CodeForces platforms. The authors cite Fair Use891

§107 to justify their utilization of these problems.892

In accordance with these principles, our research-893

oriented use of this dataset adheres to the Fair Use894

principles, thereby ensuring legal compliance. The895

researchers designated their test dataset specifically896

for evaluation purposes, and we complied with897

their intended usage by analyzing various language898

models for assessment rather than training. Fur-899

thermore, the creators ensured that their dataset900

excluded any personally identifiable information or901

inappropriate content.902

C Computational Experiments903

In this research, we employed a combination of904

open-source and proprietary models, with parame-905

ter sizes ranging from 6.7 to 33 billion. While we906

cannot report the parameter counts of proprietary907

models because they do not disclose that informa-908

tion, we provide their release dates to facilitate the909

replication of our study. The experimental com-910

putations consumed approximately 500 A100-80G911

GPU hours, primarily due to the extensive code912

solution sampling required per problem and the913

quadratic computational complexity involved in914

comparing algorithmic differences between code915

implementations. In addition, we spend more than916

1000 dollars to sample solutions from proprietary917

models. We intend to make the completions pub-918

licly available to ensure accessibility for users who919

may face budget constraints in accessing these re-920

sources.921

D Human Study922

We conduct a human study to measure the quality923

of AlgoSim. In this section, we provide a detailed924

experimental setup to replicate our experiments.925

In the given file, there are solution1 and solution2 for
the same problem in one row.

Rationale is a column that stores the LLM’s reasoning
results of whether the two solutions use the same logic
or not to solve the given problem.

Your task is to look at the two codes and the ratio-
nale results, and if you agree with the model’s idea,
write "Agree", if you do not agree, write "Disagree" and
briefly describe the reason in less than two lines.

All codes passed the test case.

Table 6: Instruction given to the participant.

D.1 Instruction for Human Study 926

The primary objective of our human evaluation 927

study is to assess the acceptability of AlgoSim’s 928

predictions based on human reasoning. To facili- 929

tate this assessment, we present participants with 930

a problem statement, two lexically different solu- 931

tions, and AlgoSim’s output which encompasses 932

both reasoning and predictions. We instructed eval- 933

uators to verify the credibility of the output, ensur- 934

ing it contains no fabricated or erroneous informa- 935

tion that could lead to incorrect conclusions. We 936

present our instruction in human study in Table 6. 937

D.2 Information about Human Participants 938

We recruited eight participants (four undergraduate 939

and four graduate students) who possessed inter- 940

mediate programming skills and demonstrated suf- 941

ficient understanding the solution logic of coding 942

problems used in our study. Prior to commenc- 943

ing our human study, we obtain consent from par- 944

ticipants regarding response collection. If partici- 945

pants decline consent, their responses will not be 946

recorded. Participants who consent to data collec- 947

tion will receive a Starbucks gift card valued at 948

$8 as compensation, which constitutes legitimate 949

remuneration in the country where the study was 950

conducted. 951

E AI Assistants in Research 952

We actively utilize Copilot through Visual Studio 953

Code editor for implementing our code for the ex- 954

periments. All codes have been verified by the 955

authors and thoroughly tested. Furthermore, we 956

initially authored this paper and refined our writ- 957

ing with the assistance of Claude, an AI language 958

model, to effectively communicate our research 959

findings to the academic community. 960

12

Your task is to classify whether a given solution solves
a problem with similar logic to existing solutions or
whether it leverages a novel approach.

You will be given a problem and a previous solution
that has been used to solve that problem. If the given
solution leverages similar logic to the previous solution,
conclude your response with the sentence "Decision:
similar to the previous solution." Otherwise, conclude
your response with the sentence "Decision: a novel
approach." Include your reasoning for performing this
task in your response.

Below, the problem is provided wrapped in the <|PROB-
LEM|> tag, the previous solution is provided wrapped
in the <|PREVIOUS SOLUTION|> tag, and the solution
to be classified is provided within the <|SOLUTION|>
tag.

<|PROBLEM|>
{question}
<|/PROBLEM|>

<|PREVIOUS SOLUTION|>
{past_solution}
<|/PREVIOUS SOLUTION|>

<|SOLUTION|>
{solution}
<|/SOLUTION|>

Table 7: Query for inferring algorithmic difference us-
ing instruction-tuned LLMs.

F Prompt Examples961

Our query for evaluating the algorithmic similarity962

is presented in Table 7.963

G AlgoSim Examples964

To facilitate comprehension of AlgoSim, we965

present several illustrative examples in this section.966

The complete set of examples will be available in967

our Hugging Face repository.968

13

Problem statements

You are given a three-digit positive integer N.

Determine whether N is a palindromic number.

Here, a palindromic number is an integer that reads the same backward as forward in decimal notation.

—–Constraints—–
- 100 ≤ N ≤ 999
- N is an integer.

—–Input—–
Input is given from Standard Input in the following format:
N

—–Output—–
If N is a palindromic number, print Yes; otherwise, print No.

—–Sample Input—–
575

—–Sample Output—–
Yes
N=575 is also 575 when read backward, so it is a palindromic number. You should print Yes.

Solution1

N = input()
if N == N{[}::-1{]}:

print("Yes")
else:

print("No")

Solution2

N = int(input())
print('Yes' if str(N) == str(N){[}::-1{]} else 'No')

Completion

To classify whether the given solution solves the problem with similar logic to the existing solution or leverages a novel approach,
I will analyze the provided problem, previous solution, and the solution to be classified.

The problem requires determining whether a given three-digit positive integer N is a palindromic number. The previous solution
uses Python and checks if the input string N is equal to its reverse using slicing (‘N[::-1]‘). If they are equal, it prints "Yes";
otherwise, it prints "No".

The solution to be classified also uses Python and checks if the input integer N is equal to its reverse by converting it to a string
and then comparing it with its reverse. If they are equal, it prints "Yes"; otherwise, it prints "No".

Upon analyzing both solutions, I notice that they share a similar approach to solving the problem. Both solutions use string
manipulation to reverse the input and compare it with the original input. The main difference lies in the way they convert the
integer to a string, with the previous solution using slicing (‘N[::-1]‘) and the solution to be classified using the ‘str()‘ function.

However, the underlying logic of comparing the input with its reverse remains the same in both solutions. Therefore, I conclude
that the solution to be classified leverages similar logic to the previous solution.
Decision: similar to the previous solution.

Table 8: AlgoSim example (easy). Character-level edit distance between two solutions: 52

14

Problem statements

It is September 9 in Japan now.
You are given a two-digit integer N. Answer the question: Is 9 contained in the decimal notation of N?

—–Constraints—–
- 10 ≤ N ≤ 99

—–Input—–
Input is given from Standard Input in the following format:
N

—–Output—–
If 9 is contained in the decimal notation of N, print Yes; if not, print No.

—–Sample Input—–
29

—–Sample Output—–
Yes
The one’s digit of 29 is 9.

Solution1

N = int(input().strip())
print('Yes' if '9' in str(N) else 'No')

Solution2

N = int(input())
if N % 10 == 9 or N // 10 == 9:

print('Yes')
else:

print('No')

Completion

To classify whether the given solution leverages similar logic to the previous solution or a novel approach, I will analyze the
problem and the solutions provided.

The problem is to determine if the digit 9 is contained in the decimal notation of a two-digit integer N. The constraints are that N
is a two-digit integer between 10 and 99, inclusive.

The previous solution uses a straightforward approach by converting the integer N to a string and checking if the character ’9’ is
present in the string. This approach is simple and effective for this problem.

The given solution, on the other hand, uses a different approach. Instead of converting the integer to a string, it checks if the last
digit (obtained by N % 10) or the first digit (obtained by N // 10) is equal to 9. This approach is based on the fact that a two-digit
integer can be represented as 10a + b, where a is the first digit and b is the last digit. Therefore, checking if a or b is equal to 9 is
equivalent to checking if 9 is contained in the decimal notation of N.

Based on this analysis, the given solution leverages a novel approach compared to the previous solution. The previous solution
uses a string-based approach, while the given solution uses a mathematical approach based on the representation of a two-digit
integer.

Decision: a novel approach.

Table 9: AlgoSim example (easy). Character-level edit distance between two solutions: 55

15

Solution1

from collections import deque

def solve(n):
q = deque([(n, 0)]) # queue to store the current value and its corresponding moves
visited = set() # set to store the visited values

while q:
cur, step = q.popleft()

if cur == 1: # If the current value is 1, then return the moves
return step

if cur in visited: # If the current value has been visited, then skip it
continue
visited.add(cur)

if cur % 6 == 0: # If the current value is divisible by 6, then add two new states to the queue
q.append((cur // 6, step + 1))
q.append((cur * 2, step + 1))

elif cur % 3 == 0: # If the current value is divisible by 3, then only add one new state to the queue
q.append((cur * 2, step + 1))

else: # If the current value is not divisible by 3, then it is not possible to get 1
return -1

Read the number of test cases
t = int(input().strip())

Solve each test case
for _ in range(t):
n = int(input().strip())
print(solve(n))

Solution2

from collections import deque

Check if a number is valid
def is_valid(n):
return 1 <= n <= 10**9

Perform operations
def perform_operations(n):
multiply_by_two = n * 2
divide_by_six = n // 6 if n % 6 == 0 else -1
return [multiply_by_two, divide_by_six]

BFS algorithm
def bfs(n):
visited = {n}
queue = deque([(n, 0)])
while queue:
node, level = queue.popleft()

if node == 1:
return level

for next_node in perform_operations(node):
if is_valid(next_node) and next_node not in visited:

visited.add(next_node)
queue.append((next_node, level + 1))

return -1

Read the number of test cases
t = int(input())

for _ in range(t):
Read the integer n
n = int(input())
Perform BFS from n to 1
print(bfs(n))

Completion

The given problem is to find the minimum number of moves needed to obtain 1 from a given integer n by either multiplying n
by two or dividing n by 6 (if it is divisible by 6 without the remainder). The task is to determine if it’s possible to do that or not.
The previous solution uses a breadth-first search (BFS) algorithm with a queue to store the current value and its corresponding
moves. It also uses a set to store the visited values to avoid revisiting them.
The given solution also uses a BFS algorithm with a queue to store the current value and its corresponding moves. However, it
uses a different approach to perform the operations. Instead of directly multiplying or dividing the current value, it uses a function
p̀erform_operationst̀o generate the next possible values. This function returns a list of two values: the result of multiplying the
current value by 2, and the result of dividing the current value by 6 if it is divisible by 6 without the remainder, or -1 otherwise.
The given solution also uses a function ìs_validt̀o check if a number is within the valid range.
Upon analyzing the given solution, it appears to leverage a similar approach to the previous solution, but with a different
implementation of the operations. The logic of using a BFS algorithm with a queue and a set to store the visited values is similar,
but the way the operations are performed is different.
Therefore, the decision is:
Decision: similar to the previous solution.

Table 10: AlgoSim example (hard). Character-level edit distance between two solutions: 743

16

