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I. INTRODUCTION AND MOTIVATION

Guaranteeing safe and efficient control for autonomous
robotic systems is a long-standing challenge. Unlike humans,
who rely on intuition and experience without explicit models,
robots can leverage multi-modal sensor data, prior knowledge
of their own dynamics, and computational reasoning to make
informed decisions. This capability has the potential to not
only enable reliable performance but also generate inter-
pretable, robust, and theoretically grounded control policies.
The overarching vision of my research is to design robots that
match and ultimately surpass humans in terms of motion and
manipulation capabilities in complex and dynamic environ-
ments, where real-time sensory data integration is essential,
and various sources of uncertainty are inevitable.

Despite considerable progress in robotics and control theory,
existing techniques for motion planning and control have
inherent limitations. Classical model-based approaches (e.g.,
certificate-based and optimal control) offer strong theoretical
guarantees but often struggle to scale to high-dimensional
systems and complex environments. In contrast, data-driven
methods (e.g., reinforcement learning (RL)) achieve impres-
sive performance yet typically lack formal guarantees of safety,
stability, and robustness, making their deployment in safety-
critical applications challenging.

My research focuses on developing safe and robust control
strategies that account for various sources of uncertainty,
including model inaccuracies, sensor noise, state estimation
errors, and uncertainties arising from neural representations,
such as learned models of robot dynamics, environment, and
robot geometry. I integrate control barrier functions (CBFs)
and control Lyapunov functions (CLFs) with robust, proba-
bilistic, and distributionally robust optimization to ensure real-
time safety and stability under uncertainty. These methods
have been validated on both ground mobile robots and 6-
dimensional manipulators, demonstrating feasibility for real-
world deployment (Fig. 1). At the intersection of learning and
control, I develop learning-based control policies with formal
stability guarantees. I utilize a generalized notion of Lyapunov
function to certify modern RL policies by augmenting their
value functions and enforcing multi-step decrease conditions

Ultimately, my research seeks to unify control-theoretic
guarantees with learning-based adaptability, enabling high-
performance autonomous robots in real-world environments
while providing safety and stability guarantees.

II. PAST AND CURRENT RESEARCH

My research merges control-theoretic rigor with learning-
based representations to address the fundamental challenge of
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Fig. 1: Demonstrations of safe control under uncertainty for a
ground mobile robot and a 6-DoF manipulator, both utilizing
neural shape representations of their bodies.

safe, efficient robotic control under uncertainty. In particu-
lar, I extend classical certificate functions (e.g., CBFs, CLFs)
to robust, probabilistic, and distributionally robust formula-
tions, and demonstrate their efficacy across various robotic
systems in complex and dynamic environments.

A. Safe Control under Uncertainty

Ensuring safe control under uncertainty remains a core chal-
lenge for autonomous robot systems. Control barrier functions
(CBFs) provide a principled, real-time method for enforcing
safety in control-affine systems by solving a quadratic program
that adjusts nominal inputs to maintain forward invariance
of a safe set [3, 2]. Due to their computational efficiency,
CBFs have been successfully deployed across robotic domains
[48, 45, 39, 15]. However, most early work assumes that the
CBF, system dynamics, and robot states are precisely known,
which is often invalid in real-world deployments with noisy
onboard sensors. My research addresses these limitations by
systematically incorporating sensor noise, dynamic inaccura-
cies, and state estimation errors into the CBF framework.

A central challenge in safe control synthesis is obtaining
accurate, efficient geometric representations of both the envi-
ronment and the robot itself. In [28], I tackled this by using
neural networks to learn a signed distance function (SDF) [41]
of obstacles from onboard sensor data. Unlike conventional
approaches that assume a priori known barriers, my method
incrementally learns the SDF using range measurements. By
explicitly taking the estimation error bounds of the learned
SDF and its gradient into account, I formulated a robust control
barrier constraint, which led to a novel second-order cone
programming formulation for safe control synthesis. Building
on this, I extended my research to consider uncertainty not
only in environment perception but also in neural system
dynamics approximations [29]. I developed both probabilistic
and robust formulations of CBF constraints, allowing the
control synthesis problem to handle uncertainty in both barrier



function and system dynamics estimates.
Although recent work has considered uncertainty in CBF-

based safety filters [6, 10, 46, 4, 9, 23, 1, 17], they often
address a single source (e.g., model or barrier error) in
isolation. In contrast, real-world robots face compounded
uncertainties from various sources (e.g., localization, sensor,
geometry estimations), which interact in nonlinear ways and
are hard to model explicitly. This motivates my use of distri-
butionally robust optimization (DRO), which handles multiple
uncertainties without requiring precise bounds or distributions.

DRO [20, 12, 47] circumvents the need for explicit uncer-
tainty models by operating directly on sampled data, such as
LiDAR hits or states from standard estimators [21, 11]. By
enforcing a chance constraint over a Wasserstein ambiguity
set [19], it avoids restrictive distributional assumptions. At the
same time, simplistic robot shapes (e.g., circles or spheres)
often over-constrain feasible motions, particularly for manip-
ulators. Recent work instead uses neural SDFs [24, 27, 33] and
configuration-space distance functions [26] to capture complex
geometries more accurately, but these neural representations
introduce uncertainties that are difficult to quantify, reinforcing
the need for a distributionally robust approach.

In my work [31, 36, 35], I propose a novel distribution-
ally robust control barrier constraint that systematically
accounts for uncertainties in state estimation, system dynam-
ics, sensor measurements, and neural shape representations.
Critically, the resulting safe control synthesis problem can be
reformulated as a quadratic program. I validate this approach
on both ground mobile robots and 6-dimensional manipulators
(Fig. 1), demonstrating safe, efficient control under uncertainty
in cluttered, dynamic environments.

B. Stability Certification for Neural Policies

Lyapunov functions (LFs) are a fundamental tool for stabil-
ity analysis of nonlinear systems [44]. Sum-of-squares (SOS)
programming enabled the systematic search for polynomial
LFs [42, 40], but scales poorly in high dimensions and require
polynomial dynamics. Recently, neural networks have been
used to approximate LFs and stabilizing policies [5, 7, 14],
significantly expanding the function space beyond SOS poly-
nomials. However, most existing work assumes deterministic
models, leaving a gap in analyzing Lyapunov stability and
synthesizing stable controllers under model uncertainty.

My research addresses this gap by integrating Lyapunov-
based stability principles with DRO, enabling the synthesis
of neural controllers and certificates that remain valid un-
der model uncertainty. In [30], I introduce the concept of
a distributionally robust Lyapunov function (DR-LF) for
closed-loop systems with parametric uncertainty. The DR-LF
search is formulated as both an SOS programming and a neural
network-based optimization problem, offering a scalable and
efficient framework for certifying stability in probability for
uncertain systems. Building on this, I extend the approach
in [32] to jointly learn neural stabilizing controllers and
Lyapunov certificates for uncertain nonlinear systems.

Most recently, I study the problem of certifying the stability
of closed-loop systems under policies derived from optimal
control and reinforcement learning (RL). We make two key
observations: first, the value function of a given policy can
be augmented with a residual term to construct a valid
stability certificate; second, to certify stability, the classical
step-wise Lyapunov decrease condition can be relaxed to a
multi-step, weighted criterion. Building on these insights, my
work [34] leverages the notion of a generalized Lyapunov
function from [13] to certify the stability of neural policies.
In particular, the value function of a given policy is augmented
with a residual neural network, and the generalized Lyapunov
decrease condition is enforced by jointly optimizing state-
dependent weights. This relaxation enables certification for
modern RL policies [16, 43, 18]. The same formulation also
supports joint training of neural controllers and certificates
using a multi-step Lyapunov loss, resulting in significantly
larger certified regions of attraction.

III. FUTURE WORK

Optimality and Stability: While optimal control and RL
optimize long-term performance, they typically lack stability
guarantees, even within a region of interest. Lyapunov-based
methods offer formal stability certification but are often hard
to construct and scale. My work [34] bridges this gap by intro-
ducing a generalized Lyapunov framework that augments an
RL policy’s value function with a residual neural network and
verifies stability via a relaxed, multi-step decrease condition.
Building on this, my future work will use certificate structures
to guide policy refinement and reward design, aiming to
incorporate stability constraints into learning so that resulting
policies are both high-performing and certifiably stable.

Safety in Contact-Rich Tasks: Conventional safety fil-
ters focus on collision avoidance but often overlook broader
constraints such as force, pressure, and compliance require-
ments [38]. I have recently begun applying our uncertainty-
aware CBF formulations to soft robots operating in anatomical
environments, ensuring safe and reliable contact with vessels.
Moving forward, I will extend these formulations to incorpo-
rate richer constraints, such as contact force limits, and apply
them to contact-rich tasks and dexterous manipulation where
physical interaction is critical.

Whole-Body Motion Planning: Traditional sampling-
based methods [25, 22] often struggle in high-dimensional
spaces due to the exponential growth of possible configura-
tions. My recent work introduces configuration-space bubbles
[35], where each graph node represents a set rather than a sin-
gle configuration, enabling more efficient planning for manip-
ulators in cluttered environments while relying on raw sensor
data. Building on this, I aim to develop efficient and sensor-
driven convex decomposition of the safe configuration space,
enabling the integration of recent advances in optimization-
based motion planning [37, 8]. This direction aims to create
scalable, sensor-driven motion planning for high-dimensional
robots in dynamic and cluttered environments.
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