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ABSTRACT

Adversarial training (AT) has been considered one of the most effective methods for
making deep neural networks robust to adversarial attacks. However, AT can lead
to a phenomenon known as robust overfitting where the test robust error gradually
increases during training, resulting in a large robust generalization gap. In this
paper, we present a novel interpretation of robust overfitting from the perspective
of feature attribution. We find that at the best checkpoint of AT, the model tends
to involve more cross-class features, which are shared by multiple classes, in
its decision-making process. These features are useful for robust classification.
However, as AT further squeezes the training robust loss, the model tends to make
decisions based on more class-specific features, giving rise to robust overfitting.
We also provide theoretical evidence for this understanding using a synthetic data
model. In addition, our understanding can also justify why knowledge distillation
is helpful for mitigating robust overfitting, and we further propose a weight-average
guided knowledge distillation AT approach for improved robustness.

1 INTRODUCTION

As the existence of adversarial examples (Goodfellow et al., 2014) has led to significant safety
concerns of deep neural networks (DNNs), a series of methods (Papernot et al., 2016; Cohen et al.,
2019; Chen et al., 2023) for defending against this threat have been proposed. Adversarial training
(AT) (Madry et al., 2017), which adds adversarial perturbations to samples in the training loop and
encourages the model to distinguish these perturbed samples, has been considered one of the most
effective ways to make the DNNs more robust to adversarial attacks (Athalye et al., 2018). AT can be
formulated as the following min-max optimization problem:

min
θ
L(θ), where L(θ) = 1

N

N∑
i=1

max
∥δi∥p≤ϵ

ℓ(f(θ, xi + δi), yi), (1)

where θ represents the model parameter, ℓ is the loss function (such as cross-entropy loss), (xi, yi) is
the i-th sample-label pair in the training set for 1 ≤ i ≤ N , and ϵ is the perturbation bound.

Despite the success in improving adversarial robustness, AT can also lead to a phenomenon known
as robust overfitting (Rice et al., 2020). During AT, a model may achieve its best test robust error
at a certain epoch, but the test robust error will gradually increase in the latter stage of training. By
contrast, the training robust error consistently decreases, resulting in a large robust generalization gap.
As robust overfitting exposes a fundamental limitation in AT, several techniques have been introduced
to address this issue, such as knowledge distillation (Chen et al., 2021). However, there is still a
lack of complete understanding regarding the underlying mechanism of how such robust overfitting
occurs.

In this paper, we characterize the phenomenon of robust overfitting from the perspective of feature
attribution. Specifically, we divide the features learned by the model into cross-class features and
class-specific features. The cross-class features are shared among multiple classes in the classification
task, e.g. the feature wheels shared by the automobile and truck classes in the CIFAR-10 dataset.
We investigate how these features are used in the decision-making process of the model in AT.
Intriguingly, we observe that at the best checkpoint during AT, the model relies more on cross-class
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features than at later checkpoints. In contrast, at later checkpoints where robust overfitting occurs,
the model tends to make decisions based on more class-specific features that are specified to only one
class.

Motivated by this observation, we propose a novel interpretation of robust overfitting. During the
initial stage of AT, the model learns both class-specific and cross-class features simultaneously, since
these features are both helpful for reducing robust loss when this loss is large. However, as training
progresses and the robust loss decreases to a certain degree, the model begins to abandon cross-class
features and makes decisions based mainly on class-specific features. This is because cross-class
features raise positive logits on other classes and yield non-zero robust loss in AT. Therefore, the
model tends to abandon these features to further decrease the robust loss. However, these cross-class
features are helpful for robust classification (e.g., a feature shared by classes y1, y2 helps the model
distinguish samples from class y1 to other classes y3, · · · , yn), and using only class-specific features
is insufficient to achieve the best robust accuracy. This results in a decline in robust test accuracy and
leads to robust overfitting.

We provide both empirical and theoretical evidence to support this interpretation. First, we propose a
metric to characterize the usage of the cross-class features for a certain model. Then, among different
perturbation norms, datasets, and architectures, we show that the overfitted models consistently tend to
use fewer cross-class features. We further provide theoretical evidence to support this understanding
using a synthetic dataset that decouples cross-class and class-specific features. In our theoretical
framework, we show that cross-class features are more sensitive to robust loss, but they are indeed
helpful for robust classification.

In addition, our understanding can justify how knowledge distillation helps alleviate robust over-
fitting (Chen et al., 2021) by showing that knowledge distillation can preserve cross-class features
during AT. Furthermore, we aim to introduce a better teacher model to characterize more precise
cross-class features. Motivated by the fact that weight averaging can improve robustness in AT (Wang
& Wang, 2022), we propose utilizing such a model as the teacher model for better knowledge distilla-
tion in AT. Experiment demonstrates that our approach exhibits better robustness performance than
previous approaches.

Our contributions can be summarized as follows:

1. We propose a novel interpretation of robust overfitting in AT. We show that a key factor of
robust overfitting is that in order to achieve lower robust loss, the model tends to reduce the
reliance on cross-class features, which are actually helpful for robust classification.

2. We provide both empirical and theoretical evidence to support our proposed understanding.
Empirically, we illustrate that overfitted models in AT use fewer cross-class features than
the best checkpoints. We also substantiate these assertions in a synthetic data model with
decoupled cross-class and class-specific features.

3. Our understanding also shows that knowledge distillation helps mitigate robust overfitting
by preserving these features. Considering weight-averaged models can provide better
information on cross-class features, we propose to use such models for knowledge distillation
in AT for improved robustness.

2 BACKGROUND AND RELATED WORK

2.1 ADVERSARIAL TRAINING AND ROBUST OVERFITTING

Adversarial training (AT) has been widely recognized as one of the most effective approaches to
improving the robustness of models. The optimization objective of AT is shown in equation (1). For
the inner maximization, Projected Gradient Descent (PGD) is generally used to craft the adversarial
example:

xt+1 = ΠB(x,ϵ)(x
t + α · sign(∇xℓ(θ;x

t, y))), (2)

where Π is the function that projects the sample onto an allowed region of perturbation, i.e., B(x, ϵ) =
{x′ : ∥x′ − x∥p ≤ ϵ}, and α controls the step size of gradient ascent.However, AT suffers from the
problem of robust overfitting (Rice et al., 2020). As shown in Figure 1, the model may perform best
on the test dataset at a certain epoch during AT, but in the later stages, the model’s performance on
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(a) Train robust accuracy (b) Test robust accuracy

Figure 1: Train and test robust accuracy of AT on CIFAR-10 dataset with ℓ∞-norm perturbation
bound ϵ ∈ {2/255, 4/255, 6/255, 8/255}.

the test data gradually worsens. Meanwhile, the model’s robust error on the training data continues to
decrease, leading to a significant generalization gap in adversarial training. Moreover, the commonly
used perturbation bound ϵ (e.g. [0, 8/255] for ℓ∞-norm) in AT, a relatively large ϵ suffers from more
severe robust overfitting. By contrast, for a small ϵ = 2/255, this effect is relatively less pronounced.

2.2 UNDERSTANDING AND ALLEVIATING ROBUST OVERFITTING

To address the robust overfitting issue in AT, several techniques have been introduced from var-
ious perspectives. For example, introducing low curvature activation (Singla et al., 2021), data
augmentation (Rebuffi et al., 2021b; Li & Spratling, 2023) and temporal ensembling (Dong et al.,
2022) are helpful to mitigate robust overfitting. One series of works attempted to understand and
alleviate this overfitting by attributing robust overfitting to the sharpness of the weight loss land-
scape (Li et al., 2018) and propose to introduce flatness as a regularization (Wu et al., 2020; Yu
et al., 2022) to mitigate this effect. Another representative method is injecting smoothening dur-
ing AT (Chen et al., 2021), which introduces knowledge distillation (Hinton et al., 2015) in AT
to smooth the logits and leverage stochastic weight averaging (SWA) (Izmailov et al., 2018) to
smooth the weights. The loss function of AT with knowledge distillation can be formulated as

minθ E(x,y)∼Dtrain

[
max

∥δ∥p≤ϵ
ℓ̃(θ; θ1, θ2, x+ δ, y)

]
, where

ℓ̃(θ ; θ1, θ2, x+δ, y) = (1−λ1−λ2)ℓCE(f(θ, x+δ), y)+

2∑
i=1

λiKD(f(θ, x+δ), f(θi, x+δ)) (3)

where ℓCE is the cross-entropy loss, and KD is the knowledge distillation function (details in
Appendix G.2), and θ1 and θ2 are the robust-/standard-trained self-teachers, respectively. SWA can
be expressed as

θT
SWA =

n θT−1
SWA + θT

n+ 1
, (4)

where T is the current training epoch, n is the number of checkpoints involved in weight averaging
and θSWA represents the averaged model parameter. While these methods have been proven useful in
mitigating robust overfitting, there is still a lack of comprehensive understanding of the underlying
mechanisms of how robust overfitting occurs and why knowledge distillation is useful in mitigating
it.

3 PROPOSED UNDERSTANDING

In this section, we elaborate on our proposed understanding of robust overfitting in AT via cross-
class features. We first present a metric of cross-class feature usage for a model in AT. Then, with
comprehensive empirical evidence, we demonstrate how robust overfitting occurs based on the
dynamics of the model learns and abandons these features during AT.
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3.1 MEASURING THE USAGE OF CROSS-CLASS (ROBUST) FEATURES

Consider a K-class classification task where data from each class y ∼ Y has a data distribution
x ∼ Dy. Let f(·) = Wg(·) represent a classifier, where g is the feature extractor with n dimension
and W ∈ RK×n is the linear layer. For a given a sample x from the i-th class, the output logit for the

i-th class is f(x)i = W [i]T g(x) =
n∑

j=1

g(x)jW [i, j], where W [i] is the i-th row of W . Intuitively,

g(x)jW [i, j] represents how the j-th feature influences the logit of the i-th class prediction of f(x).
Thus we use Ai(x) = (g(x)1W [i, 1], · · · , g(x)nW [i, n]) as the attribution vector for the sample x
on class i, where the j-th element denotes the weight of the j-th feature.

Characterizing Cross-class Features We consider the similarity of attribution vectors. If the
attribution vectors of samples x1 and x2 are highly similar, the model tends to use more features
shared by them when calculating their logits on their classes. On the other hand, if the attribution
vectors of x1 and x2 are almost orthogonal, the model uses fewer shared features or they just do not
share features.

This observation can be generalized to the classes. We model the feature attribution vector of a given
class as the average of the vectors of the test samples in this class. Further, since we are considering
feature attribution in the context of adversarial robustness, we only consider the attribution of robust
features (Tsipras et al., 2018) for classifying adversarial examples. Thus, we craft adversarial
examples and analyze their attributions to measure the usage of shared robust features.

As discussed, we can measure the usage of cross-class robust features shared by two given classes with
the similarity of their attribution vectors. Therefore, we construct the feature attribution correlation
matrix using the cosine similarity between the attribution vectors: C[i, j] = Ai·Aj

∥Ai∥2·∥Aj∥2
.

The complete algorithm of calculating matrix C is shown in Algorithm 2 in Appendix. For two
classes indexed by i and j, C[i, j] denotes the similarity of their feature attribution vector, which a
higher value indicates the model uses more features shared by these classes.

Numerical Metric To further support our claims, we propose a numerical metric named Class
Attribution Similarity (CAS) defined on the correlation matrix C: CAS(C) =

∑
i ̸=j max(C[i, j], 0).

The max function is used since we only focus on the positive correlations, and the negative elements
are small (see Figure 2) and do not affect our analysis. CAS can quantitatively reflect the usage of
cross-class features for a certain checkpoint.

3.2 CHARACTERIZING ROBUST OVERFITTING THROUGH CROSS-CLASS FEATURES

(a) Epoch 70 (Under-fitted) (b) Epoch 108 (Best-fitted) (c) Epoch 200 (Over-fitted)
RA= 42.6%, CAS= 18.2 RA= 47.8%, CAS= 25.6 RA= 42.5%, CAS= 9.0

Figure 2: Feature Attribution Correlation Matrix of models at different stages in AT, with their robust
accuracy (RA) and CAS.

Based on the proposed measurement, we first visualize the feature attribution correlation matri-
ces of vanilla AT. The model is trained on the CIFAR-10 dataset (Krizhevsky et al., 2009) using
PreActResNet-18 (He et al., 2016) for 200 epochs, and it achieved its best test robust accuracy
at the 108th epoch. More details can be found in Section 5.2. As shown in Figure 2, the model
demonstrates a fair overlapping effect on feature attribution at the 70th epoch. Specifically, there

4



Under review as a conference paper at ICLR 2024

are several non-diagonal elements C[i, j] in the correlation matrix C that exhibit a relatively large
value (in deeper blue), which indicates that the model leverages more features shared by the classes
indexed by i and j when classifying adversarial examples from these two classes. Therefore, the
model has already learned several cross-class features in the initial stage of AT. Moreover, when the
model achieves its best robustness at the 108th epoch, the overlapping effect on feature attribution
becomes clearer, with more non-diagonal elements in C exhibiting larger values. This is also verified
by the increase in CAS. However, at the end of AT, where the model is overfitted, the overlapping
effect significantly decays, which indicates the model uses fewer cross-class features. We provide
more correlation matrices of the model at different epochs in Appendix B.

This surprising effect motivates us to propose the following interpretation of robust overfitting. We
identify two kinds of learning mechanisms in AT: (1) Learning class-specific features, i.e., the features
that are exclusive to only one class; (2) Learning cross-class features, i.e., the same or similar features
shared by more than one class. During the initial phase of AT, the model simultaneously learns
exclusive class-wise features and cross-class features. Both of these features help achieve robust
generalization and reduce training robust loss. However, once the training robust error is reduced to
a certain degree, it becomes difficult for the model to further decrease it by optimizing cross-class
features. This is because the features shared with other classes tend to raise positive logit on the
shared classes. Thus, to further reduce the training robust loss, the model begins to reduce its reliance
on cross-class features and bias more weight on class-specific features. Meanwhile, due to the strong
memorization ability of DNNs in AT (Dong et al., 2022), the model also memorizes the training
samples along with their corresponding adversarial examples, which further reduces the training
robust error. This overall procedure can optimize training robust error but can also hurt test robust
error by forgetting cross-class features, leading to a decrease in test robust accuracy and resulting in
robust overfitting. We further provide more comprehensive empirical evidence on this explanation in
the following.

3.3 MORE COMPREHENSIVE STUDY

In this section, we conduct a more comprehensive study of our proposed understanding with various
empirical evidence.

(a) ϵ = 2/255 (b) ϵ = 4/255 (c) ϵ = 6/255 (d) ϵ = 8/255
∆ CAS= 4.1 ∆ CAS= 8.9 ∆ CAS= 13.8 ∆ CAS= 16.6

Figure 3: The differences between the feature attribution correlation matrices (Cbest − Clast) and
CAS of the best and the last checkpoint with various training perturbation bound ϵ.

Comparing with different perturbation bound ϵ In Figure 3, we show the differences of the feature
attribution correlation matrices and CAS between the best and last checkpoint of AT with various
perturbation bounds ϵ. The difference between the two matrices indicates how many cross-class
features are abandoned by the model from the best checkpoint to the last. When ϵ = 2/255, there
is no significant difference between the best and last checkpoint. This is consistent with the fact
that AT with small ϵ does not severely overfit, as shown in Figure 1. However, as ϵ increases, AT
exhibits more overfitting effects, and the difference becomes more significant. This also verifies that
the forgetting of cross-class features is a key factor of robust overfitting.

We offer a further explanation as to why larger perturbations cause more severe robust overfitting.
Intuitively, AT with a larger perturbation bound ϵ results in a more rigid robust loss. During AT with
a large ϵ, cross-class features are more likely to be eliminated by the model to reduce training robust
loss. We prove this claim in Theorem 1 in the next section.
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While we mainly focus on AT with practically used ϵ (e.g., [0, 8/255] for ℓ∞-AT), it is also observed
that for extremely large ϵ(> 8/255), the effect of robust overfitting begins to decline (Wei et al.,
2023a). Our interpretation is also compatible with this phenomenon, which we discuss in Appendix C.
In brief, cross-class features are more sensitive under extremely large ϵ, making them even harder to
learn at the initial stage resulting in fewer forgetting of these features in the latter stage of AT.

Comparing on other norms, datasets, and architectures We also investigate this effect in AT
with ℓ2-norm, CIFAR-100 (Krizhevsky et al., 2009) and TinyImagenet datasets (mnmoustafa, 2017),
and vision transformer architecture (Touvron et al., 2021). Due to the space limitation, we leave
the compared feature attribution correlation matrices and their corresponding CAS in Appendix D.
Interestingly, similar to the effect demonstrated in ℓ∞-norm AT with convolutional architecture
(PreActResNet-18) on the CIFAR-10 dataset, in these settings the best checkpoints consistently use
more cross-class features than the last checkpoints, verifies that our proposed understanding also
holds in AT under various settings.

Visualization of saliency map To further analyze the feature attribution of AT at different stages,
we compare the saliency maps on several examples that are correctly classified by the best but
misclassified by the last checkpoint under adversarial attack, as shown in Figure 4 (a). The saliency
map is derived by Grad-CAM (Selvaraju et al., 2017) on the true labeled classes. Taking the first
column as an example, the classes automobile and truck share similar features like wheels. The best
checkpoint pays more attention to the overall car including the wheel, whereas the last checkpoint
solely focuses on the circular car roof that is exclusive to automobiles. This explains why the last
checkpoint misclassifies this sample, for it only identifies this local feature for the true class and
does not leverage holistic feature information from the image. The other five samples also exhibit a
similar effect, with exclusive features being the mane for horse, the frog eyes for frog, the feather
for bird, and the antlers for deer. Since the final checkpoint makes decisions based only on these
limited features, it fails to leverage comprehensive features for classification, making the model more
vulnerable to adversarial attacks.

(a) Saliency maps visualization (b) AT+KD (best) (c) AT+KD (last)
RA= 48.1%, CAS= 25.7 RA= 46.2%, CAS= 24.1

Figure 4: (a): Visualization of saliency map with GradCAM. The top row shows the original sample,
and the middle and bottom rows show the saliency map on adversarial examples of the best and
the last checkpoint, respectively. (b), (c): the best and the last checkpoint of AT with knowledge
distillation, and their Robust Accuracy (RA) and CAS.

Knowledge distillation mitigates robust overfitting Our understanding can also explain why
knowledge distillation is a helpful technique for mitigating robust overfitting. In the process of AT
with knowledge distillation, the teacher model adeptly captures the cross-class features present in
the training data, and provides more precise labels by considering both class-specific and cross-class
features. This stands in contrast to vanilla AT with one-hot labels, which primarily emphasizes
class-specific features and may inadvertently suppress cross-class features in the model weights. The
incorporation of cross-class features, backed by both our empirical findings and theoretical insights
highlighting their significance for enhanced robustness, enables knowledge distillation to effectively
mitigate robust overfitting by preserving these crucial features. We present a comparison between
the best and last checkpoint of AT with knowledge distillation in Figure 4 (b) and (c), where no
significant differences between the two matrices, nor a large gap between their CAS. Therefore,
we conclude that AT with knowledge distillation helps mitigate robust overfitting by identifying
cross-class features and providing more precise labels by considering these features.
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4 THEORETICAL INSIGHTS

In this section, we provide theoretical evidence with a synthetic data model.

4.1 DATA DISTRIBUTION AND HYPOTHESIS SPACE

In this theoretical framework, we introduce a data distribution with class-specific and cross-class
feature decomposition, along with a hypothesis space with linear functions.

Data distribution We consider a tertiary classification task, where each class owns an exclusive
feature xE,i, and every two classes have a shared cross-class feature xC,j . The features for each
sample can be formulated as {xE,j , xC,j |1 ≤ j ≤ 3} ∈ R6. The data distribution is similar to the
model applied in robust and non-robust features (Tsipras et al., 2018), but we only focus on the inner
relation between robust features (class-specific or cross-class) and omit the non-robust features. As
discussed above, we model the data distribution of the i-th class yi as Di =:

xEj
| y = i ∼

{
N (µ, σ2) if j = i

0 w.p. 1 if j ̸= i
, xCj

| y = i ∼
{
N (µ, σ2) if j ̸= i

0 w.p. 1 if j = i
, (5)

where i ∈ {1, 2, 3}, and µ, σ > 0. We also assume σ <
√
πµ to control the variance.

Hypothesis space We introduce a linear model f(x) in this classification task, which gives i-th
logit for sample x by f(x)i =

∑
j w

E
i,jxE,j +

∑
j w

C
i,jxC,j . However, there are 6 parameters in

the data samples, making this linear model hard to analyze. Thus we simplify the model based on
the following observations. First, we can simply keep wE

i,j = 0 for i ̸= j and wC
i,i = 0 due to the

corresponding data distribution is identity to 0. Further, we set wE
1,1 = wE

2,2 = wE
3,3 = w1 and

wC
i,j = w2(i ̸= j) due to symmetry. Finally, we assume w1, w2 ≥ 0 since µ > 0. Overall, the

hypothesis space is {fw : w = (w1, w2), w1, w2 ≥ 0} and fw(x) calculates its i-th logit by

fw(x)i = w1xE,i + w2(xC,j1 + xC,j2), where {j1, j2} = {1, 2, 3}\{i}. (6)

Now we consider adversarially training fw with ℓ∞-norm perturbation bound ϵ < µ
2 . We

also add a regularization term λ
2 ∥w∥

2
2 to the overall loss function, which can be modeled as

Ei∼py
{Ex∼Di

max
∥δ∥p≤ϵ

ℓ(w;x+ δ)}+ λ
2 ∥w∥

2
2, where

ℓ(w;x+ δ) = max
∥δ∥∞≤ϵ

(max
j ̸=i

fw(x+ δ)j − fw(x+ δ)i). (7)

4.2 MAIN RESULTS

Cross-class features are more sensitive to robust loss We show that under the robust training loss
(7), the model tends to abandon xC by setting w2 = 0 if ϵ is larger than a certain threshold. However,
any ϵ ∈ (0, µ

2 ) returns a positive w1, as stated in Theorem 1. This result indicates that cross-class
features are more sensitive to robust loss and are more likely to be eliminated in AT compared to
class-specific features, even when they share the same mean value µ.

Theorem 1 There exists a ϵ0 ∈ (0, 1
2µ), for AT by optimizing the robust loss (7) with ϵ ∈ (0, ϵ0), the

output function obtains w2 > 0; for AT with ϵ ∈ (ϵ0,
1
2µ), the output function returns w2 = 0. By

contrast, AT with ϵ ∈ (0, 1
2µ) always obtains w1 > 0.

This claim is also consistent with our discussion on AT with different ϵ in Section 3.3. Recall that AT
with larger ϵ tends to compress more cross-class features as shown in Figure 3. This observation can
be verified by Theorem 1 that cross-class features are more likely to be eliminated during AT with
larger ϵ, which causes more severe robust overfitting.

Cross-class features are helpful for robust classification Although decreasing the value of w2 may
reduce the robust training error, we demonstrate in Theorem 2 that using a positive w2 is always more
beneficial for robust classification than simply setting w2 to 0.
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Theorem 2 For any class y, consider weights w1 > 0, w2 ∈ [0, w1], and ϵ ∈ (0, µ
2 ). When sampling

x from the distribution of class y, increasing the value of w2 enhances the possibility of the model
assigning a higher logit to class y than to any other classes y′ ̸= y under adversarial attack. In
other words, the probability Prx∼Dy

[fw(x + δ))y > fw(x + δ)y′ ,∀δ : ∥δ∥∞ ≤ ϵ] monotonically
increases with w2 within the range [0, w1].

Knowledge distillation preserves cross-class features Finally, we show that knowledge distillation
helps preserve the cross-class features, which provide a justification on why this method can alleviate
robust overfitting. Note that due to the symmetry of distributions and weights among classes, we
apply label smoothing to simulate knowledge distillation (which we justify in Section E.4 in detail)
and rewrite the robust loss as Ei∼py{Ex∼Di max

∥δ∥p≤ϵ
ℓLS(w;x+ δ)}+ λ

2 ∥w∥
2
2, where

ℓLS(w;x+ δ) = (1− β)[ max
∥δ∥∞≤ϵ

(max
j ̸=i

fw(x+ δ)j − fw(x+ δ)i)]−
β

2

∑
j ̸=i

fw(x+ δ)j (8)

and β < 1
3 is the interpolation ratio of label smoothing. In Theorem 3 and Corollary 1, we show

that not only the label smoothed loss (8) enables larger perturbation bound ϵ for utilizing cross-class
features, but also returns larger w2. This explains that preserving the cross-class features is the reason
why knowledge distillation helps mitigate robust overfitting.

Theorem 3 Consider AT with knowledge distillation loss (8). There exists an ϵ1 ∈ (0, µ
2 ) with

ϵ1 > ϵ0 derived in Theorem 1, such that for ϵ ∈ (0, ϵ1), the output function obtains w2 > 0; for
ϵ ∈ (ϵ1,

1
2µ), the output function returns w2 = 0.

Corollary 1 Let w∗
2(ϵ) be the value of w2 returned by AT with (7), and wLS

2 (ϵ) be the value of w2

returned by label smoothed loss (8). Then, for ϵ ∈ (0, ϵ1), we have wLS
2 (ϵ) > w∗

2(ϵ).

All proofs can be found in Appendix E. To summarize, our theoretical analysis demonstrates that
cross-class features are more sensitive to robust loss, yet helpful for robust classification. We also
show that knowledge distillation can mitigate robust overfitting by preserving the cross-class features.

5 BETTER KNOWLEDGE DISTILLATION FURTHER IMPROVES ROBUSTNESS

In this section, we propose an improved knowledge distillation approach to further enhance adversarial
robustness and mitigate robust overfitting in AT.

5.1 WEIGHT AVERAGE GUIDED KNOWLEDGE DISTILLATION

Based on our understanding which explains that knowledge distillation can help alleviate robust over-
fitting by preserving cross-class features, we aim to introduce a better teacher model for knowledge
distillation which can characterize more precise cross-class feature distribution. Motivated by the
fact that weight-averaged models exhibit better robustness in AT (Wang & Wang, 2022), we propose
leveraging the weight-averaged model as the teacher model for knowledge distillation, which also
outperforms vanilla knowledge distillation in terms of computational cost since it does not require a
pre-trained robust model.

The loss function is similar to Equation (3), but with the robust-trained teacher replaced by an
averaged model and the standard-trained teacher removed. The loss function can be formulated as

max
∥δ∥p≤ϵ

ℓ̃(θ ; θ̄, x+δ, y), where ℓ̃(θ ; θ̄, x+δ, y) = (1−λ)ℓCE(f(θ, x+δ), y) + λKD(f(θ, x+δ), f(θ̄, x+δ))

(9)
where θ̄ represents the parameter of the weight averaged model in AT, and λ is the interpolation

ratio.

However, some modifications are needed. First, the weight-averaged model requires warm-up before
it is applied for knowledge distillation. Second, if we directly start to apply loss (9) at a specific
checkpoint, we observe a catastrophic forgetting that the test accuracy drops significantly, which
may be due to a drastic change in the loss function. Therefore, we introduce a (piecewise) linear
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Table 1: Comparison of our method with vanilla AT and AT+KDSWA.

Dataset Method Robust Acc. (%) Clean Acc. (%)
Best Last Best Last

CIFAR-10
AT 47.8 ±0.2 42.5 ±0.2 82.7 ±0.5 84.5 ±0.3
AT + KDSWA 49.8 ±0.4 49.6 ±0.2 83.8 ±0.6 84.7 ±0.4
AT + WAKE 50.4 ±0.3 50.1 ±0.2 83.9 ±0.3 84.9 ±0.3

CIFAR-100
AT 24.7 ±0.2 19.6 ±0.3 55.6 ±0.5 57.4 ±0.2
AT + KDSWA 26.1 ±0.3 25.7 ±0.2 58.6 ±0.5 59.1 ±0.2
AT + WAKE 26.8 ±0.3 26.5 ±0.2 59.5 ±0.4 59.7 ±0.1

Tiny-Imagenet
AT 18.0 ±0.3 14.4 ±0.4 45.5 ±0.6 48.3 ±0.4
AT + KDSWA 19.9 ±0.3 19.4 ±0.3 49.7 ±0.4 50.4 ±0.3
AT + WAKE 20.4 ±0.2 19.9 ±0.2 50.2 ±0.3 50.8 ±0.2

scheduler to set the λ in (9) to stabilize the training process. The λ is set to 0 initially, and then
gradually increases to the target after a certain checkpoint. Overall, we name our proposed method as
Weight Average guided KnowledgE distillation (WAKE), and the complete algorithm is elaborated
in Algorithm 2 in Appendix G.

5.2 EXPERIMENT

Settings We conduct experiment on CIFAR-{10, 100} (Krizhevsky et al., 2009) and Tiny-
Imagenet (mnmoustafa, 2017) datasets using PreActResNet-18 (PRN-18) (He et al., 2016) model.
Following the best settings in (Rice et al., 2020), we train the model using SGD with a momentum of
0.9, weight decay of 5×10−4, and an initial learning rate of 0.1. We compare our method with vanilla
AT and KDSWA (Chen et al., 2021). Following the same settings as in AT+KDSWA, we train 200
epochs for CIFAR datasets and 100 epochs for Tiny-Imagenet. During AT, we apply a 10-step PGD
attack with a ℓ∞-norm perturbation bound ϵ = 8/255 and a step size of α = 2/255. For WAKE, we
set the maximum interpolation ratio to λ = 0.8 and the knowledge distillation temperature to T = 2
for WAKE. The distillation warm-up starts and ends at epochs 90 and 110 for CIFAR datasets and at
epochs 40 and 60 for Tiny-Imagenet. We use AutoAttack (AA.) (Croce & Hein, 2020) for reliable
robustness evaluation, and conduct five independent experiments for each method and report the
mean result and standard deviation. We also conduct experiments on AT with ℓ2-norm, CIFAR-100
and TinyImagenet dataset, and vision transformer architecture, and show the results in Appendix F.

Improving robustness and alleviating overfitting Table 1 shows the overall comparison of our
method and the baselines. From the results, we can see that in terms of adversarial robustness, our
AT+WAKE outperforms vanilla AT and AT+KDSWA in all three datasets, both at the best and last
checkpoints, since the better teacher models can characterize more precise cross-class features.In
addition, regarding clean accuracy, AT+WAKE also outperforms vanilla AT and AT+KDSWA on
these datasets, showing that our method achieves a better clean vs. robustness trade-off (Tsipras et al.,
2018; Zhang et al., 2019). Overall, our proposed WAKE further improves adversarial robustness and
mitigates robust overfitting in AT, and also has the advantage of lower computational cost.

6 CONCLUSION

In this paper, we provide a novel interpretation of robust overfitting in AT through the lens of feature
attribution. We point out that during AT, in order to achieve lower training robust loss, the model’s
tendency to reduce its reliance on cross-class features is a key factor in robust overfitting. We
empirically verify this claim by measuring the dependence on cross-class features of the model at
different stages in AT under various settings, along with other empirical evidence including analysis
of saliency maps and knowledge distillation-based methods. We also provide theoretical insights
demonstrating that cross-class features are more sensitive to training robust loss, but are actually
helpful for robust classification. Based on this understanding, we finally propose a weight-average
guided knowledge distillation method that further boosts adversarial robustness.
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A ALGORITHM FOR CALCULATING THE FEATURE ATTRIBUTION
CORRELATION MATRIX

We present the complete algorithm of calculating the feature attribution correlation matrix in Al-
gorithm 2. For each class, we first calculate the feature attribution vectors for each test adversarial
sample, then calculate the mean of these vectors as the feature attribution vector of this class. Finally,
we calculate the cosine similarity of the vectors as the measure of cross-class feature usage for each
pair of two classes.

Algorithm 1: Feature Attribution Correlation Matrix
Input: A DNN classifier f with feature extractor g and linear layer W ; Test dataset

D = {Dy : y ∈ Y}; Perturbation margin ϵ;
Output: A correlation matrix C measuring the cross-class feature usage
/* Record robust feature attribution */
for y ∈ Y do

Ay ← (0, · · · , 0) /* initialization as a n-dim vector */
for x ∈ Dy do

δ ← argmax∥δ∥≤ϵ ℓCE(f(x+ δ), y) /* untargeted PGD Attack */
Ay += g(x+ δ)⊙W [y] /* point-wise multiplication */

Ay ← Ay / |Dy| /* Average */

for 1 ≤ i, j ≤ |Y| do
C[i, j]← Ai·Aj

∥Ai∥2·∥Aj∥2
/* Cosine similarity */

return C

B MORE FEATURE ATTRIBUTION CORRELATION MATRICES AT DIFFERENT
EPOCHS

Epoch 10 Epoch 30 Epoch 50 Epoch 70 Epoch 90
CAS= 16.7 CAS= 17.8 CAS= 17.9 CAS= 18.2 CAS= 19.7
RA=36.9% RA=41.2% RA=41.5% RA=42.6% RA=42.8%

Epoch 110 Epoch 130 Epoch 150 Epoch 170 Epoch 190
CAS= 23.6 CAS= 18.9 CAS= 15.6 CAS= 13.8 CAS= 9.1
RA=47.5% RA=46.4% RA=44.7% RA=43.3% RA=42.8%

Figure 5: Feature attribution correlation matrices, and their corresponding robust accuracy (RA),
CAS at different epochs.

We present more feature attribution correlation matrices at different epochs in Figure 5. The training
detail is the same as that of our experiment (Section 5.2), and the test robust accuracy is plotted in
Figure 1(b) (red line, ϵ = 8/255). From the matrices we can see that at the initial stage of AT (10th -
90th Epochs), the model has already learned several cross-class features, and the overlapping effect
of class-wise feature attribution achieves the highest at the 110th epoch among the shown matrices.
However, for the later stages, where the model starts overfitting, this overlapping effect gradually
vanishes, and the model tends to make decisions with fewer cross-class features.
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C REGARDING EXTREMELY LARGE ϵ

While our interpretation is consistent with the fact that for practically used ϵ ∈ [0, 8/255], larger ϵ
leads to more significant robust overfitting in AT, it is also compatible with the phenomenon of for
extremely large ϵ(> 8/255), the effect of robust overfitting begins to decline (Wei et al., 2023a). We
justify this below.

Recall that our main interpretation for robust overfitting is that during the initial stage of AT, the
model learns both class-specific and cross-class features. As training progresses and the robust loss
decreases, the model begins to forget cross-class features, which leads to robust overfitting. Regarding
AT with extremely large ϵ , as we proved in Theorem 1, the more rigid robust loss makes the model
even harder to learn cross-class features at the initial stage of AT. Given that fewer cross-class features
are learned, the forgetting effect of these features is weakened, thus mitigating robust overfitting.

This claim is verified by the following study. We conduct additional experiments on AT with extremely
large perturbation bounds ϵ = 12/255 and 16/255, and compare them with ϵ = 8/255. We report
the CAS and robust accuracy at the 10th, best, and last epochs in the following table.

Table 2: Comparison of robust accuracy (RA) and CAS on AT with large ϵ.
Epoch 10 Best Last

ϵ for AT CAS / RA CAS / RA CAS / RA

8/255 16.7/36.9% 25.6/47.8% 9.0/42.5%
12/255 15.6/29.8% 18.9/38.7% 8.7/34.1%
16/255 14.4/23.8% 17.5/31.3% 8.4/28.1%

The table shows that the CAS (usage of cross-class features) of large ϵ is less than that of ϵ = 8/255
during the initial stage of AT (10th Epoch). This verifies our claim that the more rigid robust loss
of large ϵ makes it even harder for the model to learn cross-class features at the initial stage of AT.
Furthermore, the CAS of the best Epoch for large ϵ is significantly smaller than that of ϵ = 8/255,
further supporting our claim that these models struggle to learn cross-class features. Comparing the
gap of CAS between the best and last epochs, we find that the gap for large ϵ is smaller than that of
ϵ = 8/255, which is consistent with the gap between the best and last robust accuracy. Therefore,
we can conclude that the mitigation of robust overfitting with large ϵ can be explained by the less
forgetting of cross-class features, which is compatible with our interpretation.

D MORE COMPARISON UNDER VARIOUS SETTINGS

D.1 COMPARISON ON MORE DATASETS

We illustrate the comparison of the feature attribution correlation matrices and the corresponding
robust accuracy and CAS of the best checkpoint and the last checkpoint on the CIFAR-100 and
the TinyImagenet datasets in Figure 6 and Figure 7, respectively. We can see that there are still
significant differences between matrices and CAS derived from the best and the last checkpoint of
AT on other datasets.

D.2 COMPARISON ON ℓ2-NORM AT

We show the comparison of the feature attribution correlation matrices of the best checkpoint and the
last checkpoint of ℓ2-norm AT (ϵ = 128/255) on CIFAR-10 dataset in Figure 8 (a)(b). We can see
that there are still significant differences between matrices and CAS derived from the best and the
last checkpoint of ℓ2-norm AT.

D.3 COMPARISON ON TRANSFORMER ARCHITECTURE

We show the comparison of the feature attribution correlation matrices of the best checkpoint and the
last checkpoint of AT on CIFAR-10 dataset with Vision Transformer architecture (Deit-Ti Touvron
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(a) CIFAR-100 Best (b) CIFAR-100 Last
RA= 24.7%, CAS= 569 RA= 19.6%, CAS= 352

Figure 6: Feature attribution correlation matrices on CIFAR-100 dataset.

(a) TinyImagenet Best (b) TinyImagenet Last
RA= 18.0%, CAS= 1548 RA= 14.4%, CAS= 998

Figure 7: Feature attribution correlation matrices on ℓ2-norm AT and Visual Transformer architecture.

(a) ℓ2-AT best (b) ℓ2-AT last (c) DeiT-Ti best (d) DeiT-Ti last

Figure 8: Feature attribution correlation matrices on ℓ2-norm AT and Visual Transformer architecture.
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et al. (2021)) in Figure 8 (c)(d). We can see that there are still significant differences between matrices
and CAS derived from the best and the last checkpoint of AT with transformer architecture.

D.4 INSTANCE-WISE ANALYSIS

We also conduct a similar study by calculating the feature attribution correlation matrices for the best
and the last checkpoints of ℓ∞ and ℓ2-AT and their corresponding CAS instance-wisely, and the
results are shown in Figure 9. When considering classes i and j, for each sample x from class i, we
identify its most similar counterpart x′ from class j. We then calculate their cosine similarity and
average the results over all samples in class i.

In this context, x′ can be interpreted as the sample in class j that shares the most cross-class features
with x among all samples in class j. This metric provides a meaningful way to quantify the utilization
of cross-class features. We did attempt to average over all sample pairs (x, x′) in classes i and j,
but due to high variance among samples, each element in the correlation matrix C hovered near 0
throughout all epochs in adversarial training, rendering it unable to provide meaningful information.

(a) ℓ∞-AT best (b) ℓ∞-AT last (c) ℓ2-AT best (d) ℓ2-AT last
CAS=34.9 CAS=25.6 CAS=27.0 CAS=14.9

Figure 9: Instance-wise feature attribution correlation matrices

Consistent with the results for class-wise attribution vectors, it is still observed that there is a
significant decrease in the usage of cross-class features from the best checkpoint to the last for both
ℓ∞ and ℓ2-AT. This observation further substantiates our understanding of robust overfitting.

D.5 REGULAR TRAINING

We also extend our experimental scope to include regular training on the CIFAR-10 dataset. The
experimental settings mirror those outlined in Section 5, with the sole distinction being the absence
of perturbations in regular training. The results are shown in Figure 10. Specifically, considering that
regular training prioritizes natural generalization and exhibits minimal robustness, we have calculated
the feature attribution vectors using clean examples. These vectors were computed for epochs
{50, 100, 150, 200}. Notably, the results reveal a lack of clear differences between them, particularly
in the latter stages (150th and 200th), where the training tends to converge. This observation is
consistent with the characteristic of regular training, which typically does not exhibit overfitting.

(a) Epoch 50 (b) Epoch 100 (c) Epoch 150 (d) Epoch 200
CAS=7.3 CAS=8.4 CAS=9.8 CAS=10.2

Figure 10: Feature attribution correlation matrices for regular training at different stages. Color bar
scaled to [0, 0.5].
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D.6 CATASTROPHIC OVERFITTING IN FAST-AT

In addition to robust overfitting in adversarial training, there is also a phenomenon called Catastrophic
Overfitting (Wong et al., 2020) observed in Fast (single step) adversarial training, where the model
quickly decreases its robustness after a certain epoch of training. We also extend our investigations to
include Fast-AT for the CIFAR-10 dataset, employing an ℓ∞-norm perturbation bound of ϵ = 8/255.
The feature attribution correlation matrices before and after the catastrophic overfitting are shown in
Figure 11. It is clear that after catastrophic overfitting, there is a significant reduction in the usage of
cross-class features. This observation aligns with our understanding, indicating that the model also
tends to forget cross-class features after exhibiting catastrophic overfitting.

(a) Before Catastrophic Overfitting (b) After Catastrophic Overfitting

Figure 11: Feature attribution correlation matrices for Fast adversarial training before and after
catastrophic overfitting happens.

E PROOFS FOR THEOREMS

E.1 PRELIMINARIES

First we present some preliminaries, and then review the data distribution, the hypothesis space and
the optimization objective.

Notations Let N (µ, σ) be the normal distribution with mean µ and variance σ2. We denote
ϕ(x) = 1√

2π
e−

x2

2 and Φ(x) =
∫ x

−∞
1√
2π

e−
t2

2 dt = Pr .(N (0, 1) < x) as its probability density
function and distribution function.

Data distribution For i ∈ {1, 2, 3}, the sample of the i-th class is

(xE,1, xE,2, xE,3, xC,1, xC,2, xC,3) ∈ R6, (10)

follows a distribution{
xE,j |(yi = j) ∼ N (µ, σ2)

xE,j |(yi ̸= j) = 0
,

{
xC,j |(yi ̸= j) ∼ N (µ, σ2)

xC,j |(yi = j) = 0
, (11)

and µ, σ > 0. We also assume σ <
√
πµ to control the variance.

Hypothesis space The hypothesis space is {fw : w = (w1, w2), w1, w2 ≥ 0} and fw(x) calculates
its i-th logit by

fw(x)i = w1xE,i + w2(xC,j1 + xC,j2), where {j1, j2} = {1, 2, 3}\{i}. (12)

Optimization objective Consider adversarially training fw with ℓ∞-norm perturbation bound
ϵ < µ

2 . We hope that given sample x ∼ Di, under any perturbation {δ : ∥δ∥∞ ≤ ϵ}, the f(x+ δ)i is
larger than any f(x+ δ)j as much as possible. We also add a regularization term λ

2 ∥w∥
2
2 to the loss

function.

Overall, the loss function can be formulated as

L(fw) = Ei[Ex∼Di max
∥δ∥∞≤ϵ

(max
j ̸=i

fw(x+ δ)j − fw(x+ δ)i)] +
λ

2
∥w∥22. (13)
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E.2 PROOF FOR THEOREM 1

Theorem 1 There exists a ϵ0 ∈ (0, 1
2µ), for AT by optimizing the robust loss (13) with ϵ ∈ (0, ϵ0), the

output function obtains w2 > 0; for AT with ϵ ∈ (ϵ0,
1
2µ), the output function returns w2 = 0. By

contrast, AT with ϵ ∈ (0, 1
2µ) always obtains w1 > 0.

To prove Theorem 1, we need the following lemmas.

Lemma 1 Suppose that X,Y ∼ N (0, 1), and they are independent. Let Z = max{X,Y }, then
E[Z] = 1√

π
.

proof. Let p(·) and F (·) be the probability density function and distribution function of Z, respectively.
Then, for any z ∈ R,

F (z) = Pr(Z < z) = Pr(max{X,Y } < z) = Pr(X < z) · Pr(Y < z) = Φ2(z), (14)

and we have
p(z) = F ′(z) = [Φ2(z)]′ = 2ϕ(z)Φ(z). (15)

Thus,

E[Z] =

∫ +∞

−∞
2zϕ(z)Φ(z)dz

= 2

∫ +∞

−∞
z · 1√

2π
e−

z2

2 (

∫ z

−∞

1√
2π

e−
t2

2 dt)dz

= − 1

π

∫ +∞

−∞
(

∫ z

−∞
e−

t2

2 dt)d(e−
z2

2 )

= − 1

π
[e−

z2

2

∫ z

−∞
e−

t2

2 dt]+∞
−∞ +

1

π

∫ +∞

−∞
e−

z2

2 e−
z2

2 dz

= 0 +
1

π

∫ +∞

−∞
e−z2

dz =
1√
π
.

(16)

Lemma 2 Given x = (xE,1, xE,2, xE,3, xC,1, xC,2, xC,3) ∼ D1, ϵ ∈ (0, µ
2 ) and w = (w1, w2),

then δ = (−ϵ, ϵ, ϵ, ϵ,−ϵ,−ϵ) is a solution for δ = arg max
∥δ∥∞≤ϵ

[max
j ̸=1

fw(x+ δ)j − fw(x+ δ)1].

proof. Denote δ = (δE,1, δE,2, δE,3, δC,1, δC,2, δC,3). Note that for x ∼ D1, we have xE,2 = xE,3 =
xC,1 = 0. Then,

max
j ̸=1

fw(x+ δ)j − fw(x+ δ)1

= max
j∈{2,3}

[w1δE,2 + w2δC,1 + w2(xC,3 + δC,3), w1δE,3 + w2δC,1 + w2(xC,2 + δC,2)]

− w1(xE,1 + δE,1)− w2(xC,2 + δC,2 + xC,3 + δC,3)

=w2δC,1 + max
j∈{2,3}

[w1δE,2 + w2(xC,3 + δC,3), w1δE,3 + w2(xC,2 + δC,2)]

− w1(xE,1 + δE,1)− w2(xC,2 + δC,2 + xC,3 + δC,3).

(17)

Since w1, w2 ≥ 0, it is clear that δE,1 = −ϵ, δE,2 = δE,3 = δC,1 = ϵ are the optimal values for
maximizing (17). As for δC,2 and δC,3, to prove that δC,2 = δC,2 = −ϵ are the optimal values, by
variable simplification (a′ = δC,2, b

′ = δC,3) and dividing by w2 we only need to show that

max{a+ a′, b+ b′} − a′ − b′ ≤ max{a− ϵ, b− ϵ}+ 2ϵ (18)

under the constraint |a′| ≤ ϵ and |b′| ≤ ϵ. Note that (18) is equivalent to

max{a+ a′, b+ b′} − a′ − b′ ≤ max{a, b}+ ϵ

⇔max{a+ a′, b+ b′} ≤ max{a, b}+ a′ + b′ + ϵ

⇔max{a+ a′, b+ b′} ≤ max{a+ a′ + b′ + ϵ, b+ a′ + b′ + ϵ}.
(19)
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Since |b′| ≤ ϵ, we have b′+ϵ ≥ 0 and hence a+a′ ≤ a+a′+b′+ϵ ≤ max{a+a′+b′+ϵ, b+a′+b′+ϵ}.
Similarly, b+ b′ ≤ max{a+ a′ + b′ + ϵ, b+ a′ + b′ + ϵ} and finally we have max{a+ a′, b+ b′} ≤
max{a+ a′ + b′ + ϵ, b+ a′ + b′ + ϵ}. Clearly when a′ = b′ = −ϵ, the equal sign holds.

Proof for Theorem 1. First, due to symmetry, optimizing (13) is equivalent to optimize

Ex∼D1 [ max
∥δ∥∞≤ϵ

(max
j ̸=1

fw(x+ δ)j − fw(x+ δ)1)] +
λ

2
∥w∥22. (20)

Further, by Lemma 2 we can replace δ with its optimal value and transform the optimization objective
above as

Ex̂∼D̂1
(max
j ̸=i

fw(x̂)j − fw(x̂)i)] +
λ

2
∥w∥22, (21)

where D̂1 is the adversarial data distribution:

x̂E,j ∼
{
N (µ− ϵ, σ2), j = 1

ϵ, j ̸= 1
, x̂C,j ∼

{
N (µ− ϵ, σ2), j ̸= 1

ϵ, j = 1
. (22)

Now we calculate the expectation in (21).

Ex̂∼D̂1
[(max fw(x̂)j − fw(x̂)i)] +

λ

2
∥w∥22

=Ex̂∼D̂1
[max(w1ϵ+ w2ϵ+ w2x̂C,3, w1ϵ+ w2ϵ+ w2x̂C,2)− w1x̂E,1 − w2(x̂C,2 + x̂C,3)] +

λ

2
∥w∥22

=Ex̂∼D̂1
[w1ϵ+ w2ϵ+ w2 max(x̂C,3, x̂C,2)− w1x̂E,1 − w2(x̂C,2 + x̂C,3)] +

λ

2
∥w∥22

=w1ϵ+ w2ϵ+ w2Ex̂∼D̂1
[max(x̂C,3, x̂C,2)] + Ex̂∼D̂1

[−w1x̂E,1 − w2(x̂C,2 + x̂C,3)] +
λ

2
∥w∥22

=w1ϵ+ w2ϵ+ w2Ex̂∼D̂1
[max(x̂C,3, x̂C,2)] + [−w1(µ− ϵ)− 2w2(µ− ϵ)] +

λ

2
∥w∥22.

(23)

Finally, since x̂C,3, x̂C,2 ∼ (µ− ϵ, σ2) and they are independent, by Lemma 1 we have

E[max(
x̂C,3 − (µ− ϵ)

σ
,
x̂C,2 − (µ− ϵ)

σ
)] =

1√
π
, (24)

hence Ex̂∼D̂1
[max(x̂C,3, x̂C,2)] = µ− ϵ+ σ√

π
.

Therefore, the optimizing objective can be simplified as

L(fw) = (−µ+ 2ϵ)w1 + (−µ+ 2ϵ+
σ√
π
)w2 +

λ

2
(w2

1 + w2
2). (25)

For w2, we have
∂L
∂w2

= −µ+ 2ϵ+
σ√
π
+ λw2. (26)

Recall that σ <
√
πµ. Let ϵ0 = 1

2 (µ−
σ√
π
) ∈ (0, µ

2 ). By analysing the sign of (26), it is clear that
for ϵ ∈ (0, ϵ0), the optimal w2 for minimizing the loss function (25) is

w2 =
µ− 2ϵ− σ√

π

λ
. (27)

However, for ϵ ∈ (ϵ0,
µ
2 ),

∂L
∂w2

is always negative, thus the returned w2 by AT is w2 = 0 under the
constraint w2 ≥ 0.

By contrast,
∂L
∂w1

= −µ+ 2ϵ+ λw1, (28)
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and for ϵ ∈ (0, µ
2 ), the optimal w1 for minimizing the loss function (25) is always positive:

w1 =
µ− 2ϵ

λ
> 0. (29)

This ends our proof.

E.3 PROOF FOR THEOREM 2

Theorem 2 For any w1 > 0 and ϵ ∈ (0, µ
2 ), if w2 ∈ [0, w1], a larger w2 increases the possibility of

the model distinguishing the adversarial examples from any other given class.

To prove Theorem 2, we need the following lemma.

Lemma 3 Suppose that X,Y ∼ N (1, σ2
1) and they are independent, σ1 > 0. Let Zt = X + tY

where t > 0. Denote u(t) = Pr(Zt > 0), then u(t) is monotonically increasing at t for t ∈ [0, 1].

proof. Note that Zt = X + tY ∼ N (1 + t, (1 + t2)σ2
1). Thus, the distribution function of Zt is

Φt(z) = Φ( z−1−t√
1+t2σ1

), and

u(t) = 1− Φt(0) = 1− Φ(
−1− t√
1 + t2σ1

) = Φ(
1 + t√
1 + t2σ1

),

u′(t) = p(
1 + t√
1 + t2σ1

)

√
1 + t2σ1 − (1 + t) tσ1√

1+t2

(1 + t2)σ2
1

= p(
1 + t√
1 + t2σ1

)
(1 + t2)− (1 + t)t

(1 + t2)
√
1 + t2σ1

= p(
1 + t√
1 + t2σ1

)
1− t

(1 + t2)
√
1 + t2σ1

.

(30)

Therefore, for t ∈ (0, 1), u′(t) > 0 and u(t) is monotonically increasing at t for t ∈ [0, 1].

Proof for Theorem 2. Due to symmetry, it’s suffice to show that given w1, for w2 ∈ [0, w1], the
probability

Pr(fw(x̂)1 > fw(x̂)2), x̂ ∼ D̂1 (31)
is monotonically increasing at w2. Note that

fw(x̂)1 − fw(x̂)2 = w1(x̂E,1 − x̂E,2) + w2(x̂C,2 − x̂C,1),

x̂E,1 − x̂E,2 ∼ N (µ− 2ϵ, 2σ2),

x̂C,2 − x̂C,1 ∼ N (µ− 2ϵ, 2σ2).

(32)

By dividing w1 · (µ− 2ϵ), and let t = w2

w1
, X =

x̂E,1−x̂E,2

µ−2ϵ and Y =
x̂C,2−x̂C,1

µ−2ϵ , from Lemma 3 we
know that the probability

Pr(fw(x̂)1 − fw(x̂)2 > 0) (33)
is monotonically increasing at t = w2

w1
, and hence increasing at w2. This ends our proof.

E.4 PROOF FOR THEOREM 3 AND COROLLARY 1

Simplification of knowledge distillation as label smoothing. In this context, the term ’symmetry’
specifically refers to the symmetry of logits for the other two classes when taking the expectation
in the loss function (equation 10). When considering data from class y, both the distribution of
features xE,i and xCi for the other two classes, as well as their respective weights w1 and w2, exhibit
symmetry respectively. Consequently, after applying knowledge distillation, the expectation for logits
of the other two classes in the objective loss function (equation 10) becomes identical. To simplify
this process, we can employ label smoothing.

We prove Theorem 3 and Corollary 1 in the following. Recall that we define the robust loss under
knowledge distillation as

LLS(fw) = Ei{Ex∼Di(1−β)[ max
∥δ∥∞≤ϵ

(max
j ̸=i

fw(x+δ)j−fw(x+δ)i)]−
β

2

∑
j ̸=i

fw(x+δ)j}+
λ

2
∥w∥22.

(34)
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Theorem 3 Consider AT with knowledge distillation loss (34). There exists an ϵ1 > ϵ0, such that for
ϵ ∈ (0, ϵ1), the output function obtains w2 > 0; for ϵ ∈ (ϵ1,

1
2µ), the output function returns w2 = 0.

Proof for Theorem 3. Similar to the proof for Theorem 1, the optimization objective (34) can be
simplified as

LLS(fw) = (1− β)[(−µ+ 2ϵ)w1 + (−µ+ 2ϵ+
σ√
π
)w2]− β[ϵw1 + µw2] +

λ

2
(w2

1 + w2
2)

= [(1− β)µ+ (2− 3β)ϵ]w1 + [(1− β)(2ϵ+
σ√
π
)− µ]w2 +

λ

2
(w2

1 + w2
2).

(35)

Thus
LLS

w2
= (1− β)(2ϵ+

σ√
π
)− µ+ λw2, (36)

and let ϵ1 = 1
2 (

µ
1−β −

σ√
π
) > ϵ0, similar to the analysis for ϵ0, we have for ϵ ∈ (0, ϵ1), the output

function obtains w2 > 0; for ϵ ∈ (ϵ1,
1
2µ), the output function returns w2 = 0. This ends our proof.

Corollary 1 Let w∗
2(ϵ) be the value of w2 returned by AT with (13), and wLS

2 (ϵ) be the value of w2

returned by label smoothed loss (34). Then, for ϵ ∈ (0, ϵ1), we have wLS
2 (ϵ) > w∗

2(ϵ).

Proof for Corollary 1. For ϵ ∈ (0, ϵ1), by analysing the sign of (36), we have

wLS
2 (ϵ) =

µ− (1− β)(2ϵ+ σ√
π
)

λ
, (37)

and recall that in the proof for Theorem 1 we have

w∗
2(ϵ) =

µ− (2ϵ+ σ√
π
)

λ
, (38)

thus it is clear that

wLS
2 (ϵ)− w∗

2(ϵ) =
β(2ϵ+ σ√

π
)

λ
> 0. (39)

This ends our proof.

F MORE EXPERIMENTS OF WAKE

We also conduct experiments comparing WAKE and baselines in other settings to further demonstrate
its effectiveness in terms of improving robustness and mitigating robust overfitting.

F.1 ℓ2-NORM AT

We conduct experiments on ℓ2-norm AT with ϵ = 128/255 on CIFAR-10 dataset. The settings are
the same as those of CIFAR-10 in Section 5.2. The results are shown in Table 3.

Table 3: Comparison of WAKE with vanilla AT and AT+KDSWA on ℓ2-norm.

Dataset Method Robust Acc. (%) Clean Acc. (%)
Best Last Best Last

CIFAR-10
AT 67.3 64.5 88.6 88.7
AT + KDSWA 68.9 68.3 89.4 89.7
AT + WAKE 70.4 70.2 89.9 90.1

Results clearly show the advantage of WAKE over vanilla AT and KDSWA in terms of mitigating
robust overfitting for ℓ2-norm AT.
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F.2 COMBINATION WITH OTHER METHODS

We conduct experiments on TRADES (Zhang et al., 2019) on CIFAR-10 dataset. The settings are
the same as those of CIFAR-10 in Section 5.2. We follow the hyperparameters of TRADES from its
original papers. The results are shown in Table 4.

Table 4: Comparison of WAKE with vanilla AT and AT+KDSWA combined with TRADES.

Dataset Method Robust Acc. (%) Clean Acc. (%)
Best Last Best Last

CIFAR-10
TRADES 48.3 46.9 82.5 83.7
TRADES + KDSWA 50.1 49.5 82.9 83.3
TRADES + WAKE 50.7 50.4 83.8 84.1

Consistent with the results in the paper, these results clearly show that WAKE can also be combined
with other advanced methods to further mitigate robust overfitting and improve adversarial robustness.

F.3 TRANSFORMER ARCHITECTURE

We conduct experiments on transformer architecture DeiT-Ti (Touvron et al., 2021) on CIFAR-10
dataset. The settings are the same as those of CIFAR-10 in Section 5.2, and the robustness is evaluated
using PGD-20. The results are shown in Table 5.

Table 5: Comparison of WAKE with vanilla AT and AT+KDSWA on DeiT-Ti architecture.

Dataset Method Robust Acc. (%) Clean Acc. (%)
Best Last Best Last

CIFAR-10
AT 50.0 47.7 79.4 79.6
AT + KDSWA 50.4 49.5 79.6 79.8
AT + WAKE 50.6 50.3 80.1 80.4

Consistent with the results in the paper, these results clearly show that WAKE can also work on
transformer architecture to further mitigate robust overfitting and improve adversarial robustness.

G DETAILS FOR WAKE IMPLEMENTATION

G.1 ALGORITHM FOR WAKE

We provide a detailed implementation algorithm of WAKE in Algrithm 2.

G.2 DETAILS OF THE KNOWLEDGE DISTILLATION FUNCTION

Following Chen et al. (2021), the knowledge distillation (Hinton et al., 2015) function can be defined
as:

KD(f(θstudent;x), f(θteacher;x)) = KL[softmax(
f(θstudent;x)

T
), softmax(

f(θteacher;x)

T
)], (40)

where KL(·, ·) is the Kullback-Leibler divergence and T is the distillation temperature.

H ADDITIONAL RELATED WORK
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Algorithm 2: Weight Average guided KnowledgE Distillation (WAKE)

Input: A DNN classifier fθ(·) with parameter θ; Train dataset D = {(xi, yi)}Ni=1; Batch size m;
Initial perturbation margin ϵ; Train epochs N ; Learning rate η; Weight average decay rate
α; Knowledge distillation warm-up start epoch ts and end epoch te; hyper-parameter λ.

Output: A robust classifier f̄θ̄ with less overfitting
for t← 1, 2, · · · , T do

for Every minibatch (x,y) in trainset D do
δ ← max∥δ∥p≤ϵ ℓCE(f(θ, x+ δ), y);
if t > ts then

ỹ ← f(θ̄, x+ δ)(stop gradient);
if t < te then

λt ← t−ts
te−ts

· λ;

else
λt ← 1;

θ ← θ − η∇θ[(1− λt)ℓCE(f(θ, x+ δ), y) + λt · KD(f(θ;x+ δ), ỹ))].;
else

θ ← θ − η∇θ[ℓCE(f(θ, x+ δ), y)];
if t < te then

θ̄ ← αθ̄ + (1− α)θ;

return fθ̄;

H.1 ADVERSARIAL TRAINING AND ADVERSARIAL ROBUSTNESS

The adversarial robustness and adversarial training has become popular research topic since the
discovery of adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014), which uncovers that
DNNs can be easily fooled to make wrong decisions by adversarial examples that are crafted by adding
small perturbations to normal examples. The malicious adversaries can conduct adversarial attacks
by crafting adversarial examples, which cause serious safety concerns regarding the deployment of
DNNs. Following this discovery, various types of adversarial attack methods have been proposed,
including gradient-based (Carlini & Wagner, 2017b; Liu et al., 2022), query-based (Andriushchenko
& Flammarion, 2020; Bai et al., 2019), decision-based (Brendel et al., 2017; Chen et al., 2020) and
demonstration-based (Wang et al., 2023; Wei et al., 2023b) attacks on various models and tasks.

In response to such adversarial threats, numerous defense approaches have also been proposed, such
as adversarial example detection (Grosse et al., 2017; Tian et al., 2018) and purification (Bai et al.,
2019; Nie et al., 2022), parameter regularization (Jakubovitz & Giryes, 2018; Wei et al., 2023c),
randomized smoothing (Cohen et al., 2019; Levine & Feizi, 2020), among which adversarial training
methods (Madry et al., 2017; Wang et al., 2019) has been considered as the most promising defending
method against adversarial attacks (Carlini & Wagner, 2017a; Athalye et al., 2018). Through
this research thread, there are also other perspectives on improving adversarial training, including
architecture design (Huang et al., 2021; Mo et al., 2022), data augmentation (Rebuffi et al., 2021b;a),
optimization objective design (Wang et al., 2020; Pang et al., 2022).

H.2 ADVERSARIAL ROBUSTNESS DISTILLATION

Besides adversarial training, there are also several papers on distilling adversarial robustness from
teacher models (Goldblum et al., 2020; Zhu et al., 2021; Zi et al., 2021; Huang et al., 2023; Yue et al.,
2023). Similar to conventional knowledge distillation (Hinton et al., 2015; Gou et al., 2021), this
thread works toward training an adversarially robust student model with a robust teacher model. By
designing proper distilling objectives and algorithms, these works can enhance the robustness of the
trained student model.

There are several differences between our proposed WAKE method and these adversarial robustness
distillation methods. First, WAKE is designed to mitigate robust overfitting in adversarial training,
which is different from existing work typically for improving adversarial robustness. To the best of
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our knowledge, the KDSWA (Chen et al., 2021) is the only existing distillation method designed
for the same purpose, thus we only include KDSWA and the vanilla adversarial training method as
baselines in experiments. Moreover, WAKE uses the weight-averaged model as the teacher model,
which does not require a given robust teacher model. Therefore, not only WAKE can save large
amounts of computational resources, but also its robustness is not dependent on another teacher
model.
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