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ABSTRACT

This work presents Causal Drift Generator (CaDrift), a time-dependent synthetic
data generator framework based on Structural Causal Models (SCMs). The frame-
work produces a virtually infinite combination of data streams with controlled
shift events and time-dependent data, making it a tool to evaluate methods under
evolving data. CaDrift synthesizes various distributional and covariate shifts by
drifting mapping functions of the SCM, which change underlying cause-and-effect
relationships between features and the target. In addition, CaDrift models occa-
sional perturbations by leveraging interventions in causal modeling. Experimental
results show that, after distributional shift events, the accuracy of classifiers tends
to drop, followed by a gradual retrieval, confirming the generator’s effectiveness
in simulating shifts. The framework has been made available on GitHub1.

1 INTRODUCTION

In the current era of data, mining high-speed data streams is more important than ever, mainly due
to the advent of social media (Yogi et al., 2024), Internet of Things (IoT) (Houssein et al., 2024),
and other continuous data sources. Unlike batch-based Machine Learning (ML) configurations, data
streams arrive sequentially, posing a possibly infinite flow of data. These streams are often non-
independent and identically distributed (iid) and non-stationary, meaning that the data distribution
potentially changes over time, a phenomenon known as concept drift (or concept shift) (Lu et al.,
2019). This scenario can be found in a vast variety of research areas, such as healthcare (Jothi et al.,
2015), census analysis (Chakrabarty & Biswas, 2018), and fraud detection (Hernandez Aros et al.,
2024). Under such circumstances, ML models are expected to perform well on incoming instances,
recognize the distributional changes, and adapt accordingly.

Evaluating models under these conditions requires benchmarks that capture not only the non-
stationary nature of data but also realistic relationship between features and labels. However, most
existing synthetic generators for data streams fall short: they rely mainly on linear or probabilistic
functions, and the generated samples are inherently iid, despite concept shift events (Gama et al.,
2004; Bifet et al., 2009a; Komorniczak, 2025).

To address these limitations, this work proposes Causal Drift Generator (CaDrift), a novel time-
dependent synthetic data stream generator with controlled drift events. CaDrift leverages Structural
Causal Models (SCMs), commonly used for the generation of synthetic tabular data (Hollmann
et al., 2025). To induce time dependence, CaDrift combines exponentially weighted moving aver-
age (EWMA) and autoregressive noise on cause-and-effect functions of the causal model, inducing
serial correlation across instances. CaDrift can generate an infinite variety of time-dependent tabu-
lar datasets with many types of concept shift events, including distributional, covariate, severe, and
local shifts, in varying rates of change, e.g., abrupt and gradual. Experimental evaluation shows
that the proposed framework generates challenging data streams with serial dependence, requiring
learners to adapt to new data distributions introduced by changes in causal relationships.

To the best of our knowledge, this is the first work to generate time-dependent synthetic datasets
with controlled events of concept shift using SCMs. Therefore, the main highlights of this paper
are: 1) We present a time-dependent Structural Causal Model (SCM) generator framework capable
of generating a virtually infinite combination of synthetic tabular datasets that evolve over time; 2)

1Available on supplementary material during revision.
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CaDrift enables the generation of synthetic data streams with controllable shift events (distributional,
covariate, abrupt, etc.) that affect the performance of classifiers.

2 BACKGROUND

Classification. Classification is a supervised learning task that aims to assign a label y ∈ Y =
{y1, y2, . . . , yk} to an input X ∈ X ⊆ Rd. To do so, a classifier must maximize the a posteriori
probability P (y|X) of the correct label.

Concept Drift. Concept drift (Gama et al., 2014) is a prevalent phenomenon in data stream mining.
A data stream can be defined as a sequence of instances S = {I1, I2, . . . , It} such that It = (Xt, yt)
corresponds to an instance arriving at time t. Concept drift occurs when the arriving data distribution
changes over time.

Concept drift is usually divided into two types (Gama et al., 2014): real concept drift, also known
as distributional shift, and virtual concept drift, or covariate shift. Other types of drifts are usually
derived from these two. Assuming a starting data distribution Pt(y|X) at time t, a distributional
shift happens when Pt(y|X) ̸= Pt+δ(y|X) for any δ > 0 (Lu et al., 2019). This means that the
probability of a label y being assigned to an input vector X changes over time. Hence, a model
trained on the concept at time t may not classify instances on the concept t + δ properly, bringing
the need for models to adapt to distributional shifts in a timely fashion.

Covariate Shift happens when Pt(X) ̸= Pt+δ(X), i.e., the data distribution changes in the feature
space but the posterior probability P (y|X) remains unaffected (Lu et al., 2019). As an example,
think of an object detection model that has been trained to detect cars. If this model were trained
using data only from sunny days, it would never see cars in rainy or snowy conditions. However, the
“true” concept definition of what a car is remains unchanged regardless of weather conditions.

Concept drift is also categorized depending on the rate of change, where we have abrupt, gradual,
and incremental drifts (Lu et al., 2019). Abrupt concept drift happens when a change occurs sud-
denly, in a single time step. Under a gradual concept drift, there is a period of coexistence between
concepts in which two different distributions arrive in the data stream before the new concept en-
tirely takes place. Lastly, incremental concept drift is characterized by a slight change at every time
step.

Furthermore, concept drift may have a cyclic behavior, often called recurrent concept drift, which
happens when an old concept returns. The most intuitive example is the change of seasons. Every
year, seasonal changes at specific periods (spring, summer, fall, and winter) can be seen as recurrent.
For more details regarding concept drift, refer to (Bayram et al., 2022; Lu et al., 2019).

3 RELATED WORK

Synthetic Data Generation. Synthetic data generation is a key tool for evaluating models in con-
trolled environments, as it avoids data privacy concerns while enabling insights into known sce-
narios. Recently, synthetic generation has gained much attention due to the growing interest in
developing Large Tabular Models (LTMs), where access to large and diverse training data is crucial.

A common strategy relies on SCM-based synthetic generators, which model cause-and-effect be-
tween nodes. Examples include TabPFN (Hollmann et al., 2025), TabICL (Qu et al., 2025), and
Mitra (Zhang & Robinson, 2025). Drift-resilient TabPFN (Helli et al., 2024) is the drift-aware vari-
ant of TabPFN, which induces distributional shifts through a second SCM, achieved by modifying
edges between nodes. However, this approach still does not explicitly account for temporal depen-
dencies or serial correlation.

In contrast, TabForestPFN (den Breejen et al., 2025), instead of using SCM-based synthetic gener-
ators, generates data using tree-based models overfitted on randomly generated features and targets,
aiming to expose the model to a wide variety of decision frontiers during training.

Large Language Models (LLMs) have also been utilized for generating tabular synthetic data.
Borisov et al. (2023) has presented Generation of Realistic Tabular data (GReaT), an LLM that has
been fine-tuned on tabular data and then used to sample synthetic data. Goyal & Mahmoud (2025)
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also utilizes fine-tuned LLMs for generating synthetic data from a source dataset, aiming to preserve
data privacy. However, LLMs may not be a good approach to generate synthetic tabular data due to
tokenization, which implies that each continuous feature is a set of tokens, e.g., “1”→ “.”→ “15”.
For that reason, LLMs have been observed not to deal well with continuous features (van Breugel &
van der Schaar, 2024). Furthermore, since LLMs are trained on a multitude of popular benchmarks,
their reliability in generating synthetic data should be questioned, primarily due to data leakage.

Concept Drift Generators. Studies of concept drift usually rely on a set of generators, such as
SEAConcepts (Street & Kim, 2001), STAGGER (Schlimmer & Granger, 1986), and RandomRBF
(Bifet et al., 2009b). These synthetic generators are still widely used today to evaluate classification
models under the concept drift perspective (Barboza et al., 2025; Guo et al., 2025). More recently,
Open World Data Stream Generator with Concept Non-stationarity (OWDSG) (Komorniczak, 2025)
introduced concept drift on the Madelon generator (Guyon et al., 2003) by changing the clusters that
define classes.

RealDriftGenerator (Lin et al., 2024) generates synthetic data streams from a source dataset. Con-
cept drift is induced through Clip Swap, a method that splits the feature values of source datasets
into fragments and swaps their positions in the stream. An EWMA is utilized to make the transition
between clipped values smoother, thus introducing a drift width.

In most generators, feature values are sampled randomly and do not account for time dependence,
such as SEA (Street & Kim, 2001) and Sine (Gama et al., 2004). They can help evaluate how
learners react to changes in the decision rule, but do not offer much diversity or complexity.

Thus, there remains a lack of synthetic generators for drifting data streams that can capture complex,
high-order relationships and simulate a wide variety of shifts to which learners must adapt. Even
though RealDriftGenerator (Lin et al., 2024) claims to simulate synthetic time-dependent drifting
data streams, it still needs a source data stream and does not account for causal relationships be-
tween features. In contrast, other generators account for random sampling of data instances, and are
inherently iid. CaDrift fills these gaps by providing a causal, time-dependent, and synthetic genera-
tion of data samples, with controlled drift events that affect causal relationships across features and
the target. To the best of our knowledge, this is the first synthetic generator based on SCMs with
temporal dynamics across generated samples. In Table 1, we show how CaDrift contrasts with other
synthetic generators.

Table 1: Concept matrix of state-of-the-art synthetic generators.

Method Causal Time-dependent Generates drift No source

STAGGER (Schlimmer & Granger, 1986) X X
SEA (Street & Kim, 2001) X X
Sine (Gama et al., 2004) X X

RandomRBF (Bifet et al., 2009b) X X
TabPFN (Hollmann et al., 2025) X X

Drift-resilient TabPFN (Helli et al., 2024) X X X
TabICL (Qu et al., 2025) X X

TabForestPFN (den Breejen et al., 2025) X
GReaT (Borisov et al., 2023)
(Goyal & Mahmoud, 2025)

RealDriftGenerator (Lin et al., 2024) X X
OWDSG (Komorniczak, 2025) X X

CaDrift X X X X

4 TIME-DEPENDENT STRUCTURAL CAUSAL MODELS

We propose Causal Drift Generator (CaDrift), an SCM-based framework to generate synthetic time-
dependent data streams that model high-order relationships between features and targets. Structural
Causal Models (SCMs) (Pearl, 2010) models cause-and-effect relationships on Directed Acyclic
Graphs (DAGs). First, let us define SCM, as described by Peters et al. (2017):

Definition 1 (SCM) An SCMM with graph C → E consists of two assignments:

C := Nc (1)
E := fE(C) +NE , (2)

3
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where NE and Nc are noise variables such that NE ⊥⊥ NC . In this model, C stands for cause and
E represents the effect. With SCMs, we generate complex cause-and-effect high-order relationships
between variables and the target, guided by deterministic effect mapping functions fE with added
Gaussian noise. The advantage of using causal models, as opposed to linear or purely probabilistic
models commonly used in existing data stream generators (Gama et al., 2004; Komorniczak, 2025),
is their ability to provide information about the consequences of actions (causes) (Pearl, 1995).

It is important to note that, when generating synthetic data streams, one must account for the non-iid
nature of data found in a stream. However, the definition of SCM presented considers iid data sam-
ples. For that reason, we introduce two components to induce time dependence: 1) an exponentially
weighted moving average (EWMA) (Roberts, 1959) to the root nodes distribution, and 2) an au-
toregressive noise N

(t)
E to root and inner nodes. The autoregressive noise induces serial correlation

between feature values, while EWMA acts as a smoothing factor for the values propagated in the
stream. The EWMA is defined as:

Zt = (1− α)Zt−1 + αXt (3)

such that Zt denotes the current average, α ∈ [0, 1] is the smoothing parameter, and Xt the current
observation at time t. In our framework, the value of Xt is defined by either a Normal or Uniform
distribution, since the EWMA is used upon root nodes. Now, in order to introduce the autoregressive
noise N

(t)
E on the SCM definition, we have:

Definition 2 (Time-dependent SCM) The effect function of a time-dependent SCMM with graph
C → E consists of:

E(t) := fE(C) +N
(t)
E , (4)

with N
(t)
E = ρN

(t−1)
E + ϵ(t), (5)

where ϵ(t) ∼ N (0, σ2) is a Gaussian noise, and ρ ∈ [0, 1] controls the temporal smoothness of the
autoregressive noise N

(t)
E that makes the next instance in the stream subtly depend on the previous.

This allows the noise term to carry memory of past values, introducing temporal correlation across
consecutive samples, making generated samples non-iid. The autoregressive noise is applied to all
continuous-valued nodes in CaDrift. Given that values of root nodes are assigned through EWMA,
by merging Equations 3 and 4, the effect function fxr

of a root node x
(t)
r at time t, is computed as:

x(t)
r = (1− α)x(t−1)

r + αθ +N (t)
xr

(6)

where θ is sampled from a Normal or Uniform distribution.

Causal Drift Generator. In CaDrift, each feature refers to a node in the graph, where each one
carries its own mapping function fE(C), e.g., a small neural network, which defines how parent
nodes (causes) influence its value. Figure 1a shows the structure of an SCM node, as represented by
a Directed Acyclic Graph (DAG), and Figure 1b depicts an example of a DAG with five features.

To generate a single data sample, the parents’ information is passed down to their descendants, where
the values of each node depend on the cause-and-effect relationships. Another possibility in the
proposed model is to have features depending on the target node. This models relationships where
the interest variable can affect other features, such as a disease increasing the number of antibodies
and causing symptoms, as also made in previous SCM generators (Hollmann et al., 2025).

The root nodes of the sample DAG (x1 and x2) are initialized by either a Normal or Uniform distri-
bution. The values of inner nodes (e.g., x3 and x4) are defined through a mapping function such as
a small neural network. For detailed information about the mapping functions used in this work, see
Appendix A.

CaDrift requires the initialization of the mappers before starting the generation of data samples. In
contrast to the causal generator presented by Hollmann et al. (2025), which randomly initializes ML
models, e.g., MLP, decision tree; our generator, in addition to the random initialization of small

4
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Parents Children

Node

(a) Representation of an SCM
node. Its value x depends on the
mapping function f(C), where C
are the node’s parents.

(b) An example of DAG without
interventions.

(c) An example of an intervened
DAG where the value of x3 is not
defined by the cause-effect rela-
tionship.

Figure 1: Representation of a node in a causal graph and how interventions are included to the
feature x3.

neural networks, directly fits the models to the distribution of the parents’ values on target values,
ensuring explicit causal propagation along the graph. We opt not to use random tree-based models,
like other generators (Hollmann et al., 2025; Qu et al., 2025), due to the risk of having splits that
are outside the parents’ distribution, which could lead to small variation in the underlying causal
chain or single-class outputs. This also allows us to have more explicit shift events. For detailed
information about the target functions, refer to Appendix B.

After initialization, the generator is ready to produce data samples by propagating values through the
graph, respecting the learned mappings and underlying causal dependencies. CaDrift can generate a
large variety of datasets that propagate cause-and-effect relationships between features and the target
without the need for a source dataset, like other generators do (Lin et al., 2024). Thus, the generated
datasets do not violate constraints of data privacy or leakage. In addition, unlike other SCM-based
synthetic generators, CaDrift introduces time dependence into feature values.

Interventions to Simulate Perturbations. We leverage the concept of interventions in causal mod-
eling (Pearl, 2010) to simulate environmental perturbations. Interventions are applied by forcing
values to specific features without accounting for the cause-and-effect relations from their parent
nodes, mimicking real-world perturbations such as equipment failures, environmental shocks, or
deliberate overrides.

In practice, this is achieved by ignoring all of the edges that reach the intervened node, and a value
is attributed to the node regardless of its mapping function, as in Figure 1c, where the intervened
feature is x3. Therefore, the value of the intervened node is not measured by its usual effect function
fx3

(x1, x2). Instead, CaDrift forces values to intervene in features based on Normal or Uniform
distributions in the case of continuous features, and random categories for categorical features.

The effect in the causal chain after this intervention can be described using do-calculus, as introduced
by Pearl (1995). The resulting distribution of the label node after the intervention on x3 is denoted
as P (y|do(x3)), where the do notation refers to an intervention. For a Normal distribution, we can
write this as P (y|do(x3 ∼ N (µ, σ2)). By incorporating such interventions in a small proportion of
the generated examples, we introduce occasional deviations, thus simulating noise and perturbations.

Introducing Shifts. To simulate concept shifts, CaDrift modifies mapping functions between nodes,
thus modifying causal relationships. Modification in a single node affects the causal chain of its
descendants in the graph. This way, it is possible to induce various types of shifts. Below, we
describe how common types of shifts are induced in CaDrift:

• Distributional Shift: Simulated by changing mapping functions in the edges between
nodes and by drifting the node mapper of the target label. Changing mapping functions
alters how one feature affects another, which in turn modifies the downstream causal chain.
When modifying the target node mapper, we are drifting fy(C), causing it to change the
posterior probability P (y|X), given that features X are causes, direct or indirect, of y.

• Covariate Shift: To change the data distribution P (X) in the input space, we change the
parameters of the Normal/Uniform distributions used to generate the values for the root
nodes in the causal graph. Changes in parameters of root nodes do not affect cause-and-
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Covariate Shift Distributional Shift Severe Shift Distributional Shift

Figure 2: Samples generated by CaDrift using a DAG with six nodes – five features and one target.
Each color refers to a different class.

effect relationships fE(C), but induce them to move to a different area in the feature space,
which is propagated to the downstream nodes.

• Severe Shift: Simulated by inverting the outcome of the mapper function in the output
between two different classes, i.e., changing the outcome of fy(C).

• Local Shift: This is a subtype of covariate shift, which happens when the distribution of
the input space of a single feature changes. It can be generated using the same strategy as
in the covariate shift, but affecting a single feature.

In addition, by considering the rate of change, we introduce a parameter ∆ that defines the length of
the drift window, allowing for abrupt, gradual, and incremental shifts. Abrupt shift happens in one
step in time, thus, ∆ = 1. Gradual and incremental, on the other hand, have ∆ > 1. In a gradual
shift, two concepts coexist during ∆ time steps, while in the incremental shift, there are small steps in
distribution at each arrived instance starting at time t, until the new concept is completely established
at time t+∆. We can also simulate recurrent concept shift, where an old state of nodes in the graph
is retrieved, thus returning to an old concept.

In Figure 2 we show batches generated by CaDrift using the DAG shown in Figure 1b. The features
in the x and y axes are x4 and x5, two parents of the target y. The cause-and-effect relationship
functions of this graph, by omitting the noise terms, can be written as:

• x1 ∼ N (µ, σ2)

• x2 ∼ U(a, b)
• x3 = fx3

(x1, x2)

• x4 = fx4
(x3)

• x5 = fx5
(x3)

• y = fy(x3, x4, x5)

There is a concept shift between each of the batches. For simplification purposes, only abrupt shifts
are considered in this example. Specific details about mapping and target functions and how each
shift is introduced in the stream, with more examples of class distributions generated by CaDrift,
can be found in Appendix H.

From batch 1 to batch 2, we notice that the covariate shift did not affect the decision boundary
between classes, but the feature space moved towards a different area, as expected. From batch 2
to batch 3, the distributional shift has affected the decision boundary significantly, as well as the
severe shift from batch 3 to 4, where we see clearly that two classes have swapped. Finally, the
distributional shift that occurs in batch 5 also clearly affects the decision boundary. Suggestion:
Even though this is a low-dimensional example, it offers us a visualization of CaDrift’s power in
generating controllable shift events and affecting data distribution and class boundaries. CaDrift has
been made available on GitHub2.

5 EXPERIMENTS

Experimental Setup The experiments in this paper are divided into two parts: 1) performance
evaluation, to which we assess the performance of ML models on classifying data streams generated,
and 2) stationarity tests, where we assess CaDrift’s capability on generating non-iid samples.

The data stream baselines and the hyperparameters used in the experiments are presented in Ap-
pendix I. To run the data stream baselines, we use the (Bifet et al., 2010a) framework We apply

2Source code available on supplementary material during revision.
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the same implementation to adapt TabPFN (Hollmann et al., 2025) for data streams as described by
Lourenço et al. (2025), running on an NVIDIA A6000 GPU.

5.1 THE IMPACT OF SHIFT EVENTS

We begin by experimenting with datasets generated from the sample DAG shown in Figure 1b
(datasets 1-3). Dataset 1 corresponds to the same example presented in Figure 2. Using the same
DAG, we construct two additional datasets by varying the mapping functions and the drift events.
A detailed description of the DAGs used in these experiments is provided in Appendix H, and the
class distribution for datasets 2 and 3 is presented in Figure 6, also in Appendix H.

To assess performance on more complex settings, datasets 4 and 5 are generated with 10 and 25
features, respectively. Finally, datasets 6-8 are derived from larger graphs with 100-200 nodes, from
which we randomly subsample features to form the final datasets. This subsampling emulates real-
world scenarios where not all causal factors are observable or measurable (e.g., we do not know
every variable that contributes to cancer development or market fluctuations). Information such as
sample size, number of classes, balancing, etc., can be found in Table 8 (Appendix H). We also run
experiments on popular synthetic generators for drifting data streams: SEA (Street & Kim, 2001),
Sine (Gama et al., 2004), and RandomRBF (Bifet et al., 2009b), to which 10,000 instances were
sampled using the river library (Montiel et al., 2021). On the SEA and Sine datasets, drift events
happen every 2,500 instances. On RandomRBF, there is an incremental drift that persists throughout
the whole stream, induced by, at each step, changing the position of the centroids.

Table 2 shows the average accuracy and average rank on the baselines. The baselines’ prequential
accuracy on the generated samples is shown in Figure 3. The sliding window size used to calculate
the prequential accuracy and the initial training size of baselines is set to 100 on datasets 1-6. For
datasets 7 and 8 (100,000 instances), we set the size of the prequential accuracy window to 1,000 in
order to obtain a smoother prequential curve (Bifet et al., 2015).

Table 2: Average accuracy of baselines on datasets generated by CaDrift.

Dataset IncA-DES TabPFNStream ARF LevBag OAUE HT LAST

1 86.92 68.71 87.96 77.50 62.38 59.08 86.17
2 70.88 67.17 73.83 73.42 45.33 53.00 67.67
3 86.54 75.29 84.50 82.38 75.04 76.92 78.21
4 67.69 86.19 66.97 65.30 67.23 45.51 66.43
5 91.61 96.85 94.91 94.47 88.99 88.08 91.17
6 73.59 80.37 76.78 75.14 72.36 66.23 69.58
7 32.73 35.76 35.95 35.99 35.75 34.68 34.48
8 74.95 78.95 79.01 79.56 79.44 77.63 77.24
SEA 96.55 97.49 96.56 95.61 92.95 91.30 91.61
Sine 96.32 85.77 95.79 87.75 79.92 52.92 89.81
RandomRBF 62.44 65.85 64.20 55.07 51.05 51.82 51.82
Average 77.78 77.26 79.23 76.71 69.94 64.54 75.24
Av. Rank 3.4 3.2 2.1 3.2 5.3 6.2 4.8

We observe that, on datasets 1 and 2, the covariate shift introduced at the 500th instance produces
no visible drop in classifier performance – an expected behavior, as covariate shift preserves causal
relationships between nodes while shifting the regions of the feature space being sampled. We can
also observe that methods that incorporate some adaptation strategy, such as ARF and LevBag,
exhibit better resilience to distributional shifts than HT and even TabPFNStream, which carries no
adaptation strategy.

Interestingly, the performance of TabPFN is better for the first two concepts; however, its classifi-
cation performance drops after the first distributional shift. This happens because TabPFN’s context
window is set to 1,000 instances, while concepts in datasets 1-3 lasted for 500 instances. Hence,
TabPFN had instances from two different concepts in its context window. This could be easily con-
toured by defining a smaller context sliding window. However, in real-world applications, concept
duration is usually unknown. Bigger sliding windows facilitate learning of stable concepts, while
smaller ones lead to quicker adaptation, a phenomenon known as the stability-plasticity dilemma
(Mermillod et al., 2013).
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(a) Dataset 1 – DSL. (b) Dataset 2 – DSL. (c) Dataset 3 – DS. (d) Dataset 4 – D.

(e) Dataset 5 – DS. (f) Dataset 6 – DSCL. (g) Dataset 7 – D. (h) Dataset 8 – DSCL.

(i) SEA. (j) Sine. (k) RandomRBF.

Figure 3: Prequential accuracies on two sample datasets. Dashed vertical lines indicate shift points.
Shaded areas refer to the length of incremental and gradual shifts. Letters refer to the distributional
shifts applied to the datasets. D stands for distributional, S for severe, C for covariate, and L for
local shifts.

On the incremental and gradual shift events in Figure 3b, we observe drops in performance like
in abrupt shifts. The learning, primarily on the incremental change between instances 1,000 and
1,250, appears to be compromised due to the still-changing concept; however, after the concept is
established, the performance curve exhibits a sharper increase. The behavior is slightly different
during the gradual shift between instances 1,500 and 1,750, where variations in accuracy are ob-
served during the length of the shift, and again with a sharp increase once it is established. HT, on
the other hand, after a decline in accuracy, presents an increase in performance while the shift is still
in progress.

In Figure 3c, we also notice drops in performance on shift events, even on the recurrent shift on the
1,000th data point. IncA-DES, which preserves information from previous concepts (Barboza et al.,
2025), offers improved recovery from the recurrent shift. The gradual change in this dataset exhibits
different behavior, characterized by a slight drop in accuracy over the course of the shift. Still, after
the concept is established, we notice a sharp drop in performance. This suggests that learners were
unable to properly grasp the new concept before it was fully integrated into the stream.

Getting into datasets with higher dimensionality, where we include random shift events with varying
rates of change (abrupt, incremental, gradual, recurrent) in specific points in Figures 3d, 3e, 3f, 3g,
and 3h we also notice that simulated concept shifts stress classifiers and require them to adapt. The
drift events are also diverse, depending on the strategy used to induce them, meaning that some
might not compromise the performance of classifiers, while others need more severe adaptation.

Classifiers tend to quickly learn the decision functions of popular baselines (SEA and Sine), as
shown in Figures 3i and 3j, where they often reach 100% accuracy, despite drift events also requiring
adaptability. The RandomRBF generator appears to be more challenging for the baselines, but drift
events are limited to the moving of centroids. In contrast, CaDrift poses greater and more diverse
challenges. Classifiers that fail to capture the causal relationships between features and the target
struggle to achieve competitive performance. Moreover, each dataset highlights different aspects of
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classifier behavior, revealing both strengths and weaknesses. Additional experiments with limited
label availability are available in Appendix E.

Overall, these results confirm that concept drift events generated by CaDrift pose challenges to
classifiers, necessitating the implementation of proper adaptation strategies. Otherwise, their per-
formance can be compromised. These features make CaDrift suitable for testing a wide range of
time-dependent ML models and adaptive strategies.

5.2 STATIONARITY TESTS

In Table 3 we show the results of the Ljung-box test Ljung & Box (1978) on data stream sampled by
CaDrift datasets without shift events, with five features each, in the form of an ablation study, where
we test each component separately (EWMA and autoregressive noise, AR). Notice that the datasets’
features without any mechanism to induce time dependency, i.e., the iid column, do not reject the
H0 of the test. This behavior should be similar to other SCM synthetic generators (Hollmann et al.,
2025; Qu et al., 2025), as there is no mechanism to induce time dependence. When including
EWMA (α = 0.05), most of the features reject the null hypothesis, i.e., the values that features
assume have serial correlation.

When using the autoregressive noise (AR) with ρ = 0.1, all of the features reject the null hypothesis.
Thus, even with a small value for ρ, the autoregressive noise induces serial correlation in the features,
which propagates to the target node. By merging both components, the Ljung-Box test confirms the
presence of serial correlation in every feature and target. We conduct the same Ljung-box test on
popular synthetic data stream generators in Appendix G, and confirm that instances sampled by
these generators have no serial correlation.

Table 3: Ljung-Box test (20 lags) on synthetic data streams generated by CaDrift with different
strategies for time dependence.

iid EWMA AR EWMA+AR
p-value Reject H0 p-value Reject H0 p-value Reject H0 p-value Reject H0

x1 0.194 N < 0.001 Y < 0.001 Y < 0.001 Y
x2 0.444 N < 0.001 Y < 0.001 Y < 0.001 Y
x3 0.716 N < 0.001 Y < 0.001 Y < 0.001 Y
x4 0.412 N < 0.001 Y < 0.001 Y < 0.001 Y
x5 0.386 N 0.612 N < 0.001 Y < 0.001 Y
y 0.076 N 0.094 N 0.01 Y < 0.001 Y

Complementary experiments, including the impact of the α parameter on EWMA and Autocorre-
lation Function (ACF) plots, can be found in Appendix F. In summary, the autoregressive noise
induces more substantial serial autocorrelation, while EWMA serves as a smoothing factor for the
values assigned to root nodes in the stream, in addition to allowing samples to carry memory from
past instances. The serial correlation propagates through the causal chain until the target node, as
we can observe in Figure 5 in Appendix F.

6 CONCLUSION

In this work, we have presented CaDrift, a causal framework to generate synthetic time-dependent
tabular data with concept drift. CaDrift provides controllable shift events that affect the performance
of classifiers. CaDrift’s flexibility allows the synthesis of distributional, covariate, severe, and local
shifts that may occur at different rate changes, including abrupt, gradual, incremental, and recurrent
settings. Moreover, we confirm that samples generated by CaDrift have serial correlation through
statistical tests, making it a valuable tool to create and evaluate models under evolving data.

Future work includes using the presented framework to replicate causal relationships found in real-
world datasets, thereby introducing shifts in them. Additionally, samples generated by CaDrift
can also work as prior for the training of time-dependent tabular foundation models (van Breugel
& van der Schaar, 2024). We hope this generator supports practitioners and researchers in more
effectively assessing and exploring the challenges and opportunities of drifting data streams.

9
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A MAPPING FUNCTIONS

The mapping functions are used to map the values of nodes based on their parents. For the root
nodes, the mapping functions utilized are based on the Normal and Uniform distributions:

• Normal: N (µ, σ2)

• Uniform: U(a, b)
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Each root node is mapped by one of these two functions, chosen randomly. The parameters (µ,a,b,
and σ) are randomly initialized. For the inner nodes, the mapping functions are ML models trained
to approximate various labeling functions, such as linear, step, or sine, as well as a multilayer percep-
tron (MLP) with random weights initialized using Xavier’s initialization (Glorot & Bengio, 2010),
as also done in TabPFN’s generator (Hollmann et al., 2025). The models considered to map values
of inner nodes are:

• Learned MLP.
• Random MLP.
• Decision Tree.
• Linear regression model optimized through stochastic gradient descent.

Each of these mappers (except the random MLP) assigned to a node learn a target function from the
parent nodes. We use a linear regression model optimized via stochastic gradient descent to allow
incremental updates in node values, and thus simulate incremental drift. Thus, these models aim
at a regression mapping for the nodes’ values. We chose not to use random tree models, such as
other SCM generators (Hollmann et al., 2025), due to the potential for splits that fall outside the
parents’ distribution, which increases the risk of negatively affecting the causal chain, leading to
small variations or single-class outputs. By using target functions, the shifts are also more explicit.

Table 4: Hyperparameters of mapping functions that map cause-and-effect relationships in the SCM.
All mappers were implemented with scikit-learn).

Mapper Hyperparameters

Learned MLP hidden layers = 1, neurons = 10, optimizer =
adam, max iter = 10, activation = relu,
learning rate = 0.001

Random MLP hidden layers = 1, neurons = 10
Decision Tree max depth ∈ [5, 25], criterion =′ squared error′

Regression w/ SGD max iter = 10, penalty = l2, alpha = 0.0001

To induce concept drift on the mappers, we employ different strategies depending on the mapper:
refitting the mapper on a different target function; the weights of the Random MLP are reinitialized;
the linear regression, as it can be trained incrementally, can also be induced incremental concept
drift by, at each time step, fitting the model to an instance sampled with a new target function. The
mappers for categorical features are:

• Categorical Prototype Mapper (Hämäläinen et al., 2017).
• Gaussian Prototype Mapper (Rasmussen, 1999).
• Random Radial Basis Function (Bifet et al., 2009b).
• Rotating Hyperplane (Hulten et al., 2001).

Most of these mappers assign the category based on the proximity of parents’ values to cen-
troids/prototypes. The prototypes and centroids are initialized randomly based on the distribution
of the parent nodes during the initialization process. To introduce concept shift in these functions,
we also employ different strategies: 1) change the prototypes positions; 2) change the distance func-
tion of the Categorical Prototype Mapper; 3) small step in prototypes’ position in each time step to
induce incremental shift; 4) Rotating the hyperplane in incremental steps or suddenly; 5) shift the
outcome of two different classes in order to induce severe shift. A detail regarding our categorical
mappers implementation is that a class can be assigned to more than one centroid, which provides
more complex and diverse decision boundaries.

B TARGET FUNCTIONS

The target functions are those that the mappers learn to map according to the parents’ values. Rather
than simply choosing a target function to map the values, having ML models to learn them intro-
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duces more complexity to the cause-and-effect relationships and includes approximation errors. The
functions can be chosen either randomly or manually for each inner node, and are listed below:

• Linear function: f(X) =
∑d

i=1 wixi + b+ ϵ

• Sine function: f(X) =
∑d

i=1 sinxi + ϵ

• Step function: f(X) =

{
1 + ϵ, if

∑d
i=1 xi > 0

0 + ϵ, otherwise

• Checkerboard function: f(X) =
∑d

i=1⌊xi⌋ mod 2

• Radial Basis Function: f(X) = exp
(
− ||X||2

2σ2

)
+ ϵ

C CADRIFT PSEUDOCODE

The pseudocode for generating data samples with CaDrift is exposed in Algorithm 1, and for sam-
pling a DAG in Algorithm 2. The algorithm receives as parameters the probability pi that samples
receive an intervention, the probability pm that samples have missing features, the dimensionality d,
and the minimum and maximum number of parents for each node. The algorithm starts by sampling
a DAG with d+1 nodes (dimensionality and target node). In Line 2, an empty list for the samples is
initialized. For each sample to be generated, first, it is checked if there will be any intervened node
or missing feature in Lines 6-10.

The sample generation follows the topological order of the graph, starting from root nodes and
traversing to their descendants. For root nodes, the values are mapped through a Normal or Uniform
distribution; thus, there are no parents to map to (Line 16). For inner nodes, the values are computed
according to the effect function fE , which maps cause-and-effect relationships from parents to the
node (Line 18). After traversing the graph and computing the values for each node, the generated
instance is added to the list in Line 23, which is returned in Line 26.

The algorithm to build a DAG (Algorithm 2) starts by initializing a graph G with d + 1 nodes
(including the target) with n roots nodes as roots. The root nodes are randomly assigned to either
a Normal or Uniform mapper in Line 4. For each inner node, the number of parents is chosen
randomly in the range [min parents,max parents]. Random parents are chosen in Line 7, and
the edges are added to each node in Lines 9-10. To each inner node, there is attributed one of the
mapping functions described in Appendix A and one of the target functions described in Appendix
B in Lines 12-13. Finally, a random categorical mapper is chosen to work as the target variable y.

D THE IMPACT OF THE α PARAMETER IN EWMA

Let us assess the evolution of EWMA with different α values along with the autoregressive noise
with ρ = 0.5, shown in Figure 4. Notice that the EWMA acts as a smoothing factor, in which
smaller values of α lead to a smoother evolution of the average over time, while higher values give
more weight to recent values, and thus follow the noise more closely. Hence, the combination of
the autoregressive structure of the generation process and the effect of EWMA results in a smooth
evolution of the values that propagate through the causal chain over time.

E RESULTS WITH PARTIAL LABEL AVAILABILITY

We present results on the datasets used in experiments with partial label availability and a delay
in label arrival. These experiments facilitate the evaluation of methods in an environment closer
to those found in the real world, where ground-truth labels are not readily available. We employ
a delay of 100 instances, and 1 every 2 instances arriving in the stream are labeled (i.e., 50% of
samples are labeled). Results are in Table 5, where values in parentheses refer to the difference in
average accuracy to the test-then-train policy.

HT is the method that presented the smallest drop in the accuracy – also the one with the smallest
accuracy in test-then-train. In contrast, TabPFNStream had the highest drop, with a difference of
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Algorithm 1 Generate Data (dataset size, pi, pm, d, min parents, max parents )

1: Graph G ← Build DAG(d,min parents,max parents)
2: Initialize samples[node]← [] for each node ∈ G
3: for n = 0 to dataset size do
4: intervened nodes← ∅
5: missing nodes← ∅
6: if random() < pi then
7: Select 1–3 random nodes as intervened nodes
8: end if
9: if random() < pm then

10: Select 1–3 random nodes as missing nodes
11: end if
12: for each node in G.topological order() do
13: if node ∈ intervened nodes then
14: Apply intervention to node
15: else if node is root then
16: node.value← compute value()
17: else
18: node.value← compute value(node.parents)
19: end if
20: Append node.value to samples[node]
21: end for
22: for each node ∈ missing nodes do
23: samples[node][n]← NaN
24: end for
25: end for
26: return samples

Algorithm 2 Build DAG (d, n roots, min parents, max parents)

1: initialize graph G with nodes V ∈ x1, x2, . . . xd+1

2: root nodes← randomly select n roots nodes as roots
3: for node ∈ root nodes do
4: Randomly assign Normal or Uniform distribution to node
5: end for
6: for each non-root node ∈ topological order do
7: choose num parents ∈ [min parents,max parents]
8: select parents from {x1, . . . , xi−1}
9: for each parent in parents do

10: add edge from parent to node
11: end for
12: choose mapping function
13: choose target function
14: end for
15: choose random node with a categorical mapper to be the label y
16: return G

16.78 percentage points compared to the test-then-train policy. We perceive drops in accuracy on
both popular synthetic generators (SEA, Sine, and RandomRBF), as well as on the data streams
generated by CaDrift.

F EXTENDED STATIONARITY TESTS

In Figure 5, we show the ACF Plots of two features (root and inner nodes) and the target of datasets
generated by the sample DAG in Figure 1b, with different values for the parameters α of the EWMA,
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Figure 4: EWMA evolution with different α values. The lines show the raw values generated with
autoregressive noise, and the impact of EWMA on the value depending on the parameter α assigned.

Table 5: Average accuracy of baselines with limited label availability. Values in parenthese refer to
the difference in accuracy compared to the experiments performed in a test-then-train manner.

Dataset IncA-DES TabPFNStream ARF LevBag OAUE HT LAST

1 77.50(9.42) 43.71(25.00) 75.54(12.42) 64.88(12.62) 27.63(34.75) 55.67(3.41) 74.25(11.92)
2 61.25(9.63) 52.33(14.84) 61.29(12.54) 58.00(15.42) 21.75(23.58) 49.17(3.83) 54.79(12.88)
3 79.08(7.46) 74.29(1.00) 77.29(7.21) 76.17(6.21) 75.20(-0.16) 75.96(0.96) 75.96(2.25)
4 61.75(5.94) 29.98(56.21) 57.23(9.04) 59.05(6.25) 56.45(10.78) 42.70(2.81) 63.86(2.57)
5 90.04(1.57) 72.37(24.48) 92.63(2.28) 91.11(3.36) 81.61(7.38) 83.49(4.59) 87.36(3.81)
6 71.11(2.48) 76.51(3.86) 72.94(3.84) 71.19(3.95) 67.18(5.18) 64.33(1.90) 67.10(2.48)
7 33.79(-1.06) 29.91(5.85) 35.86(0.09) 35.81(0.18) 35.46(0.29) 34.56(0.12) 34.31(0.17)
8 73.81(1.14) 77.09(1.86) 78.60(0.41) 79.21(0.35) 78.80(0.64) 77.06(0.57) 77.05(0.19)
SEA 93.25(3.30) 92.61(4.88) 93.86(2.70) 93.24(2.37) 87.06(5.89) 91.86(-0.56) 91.68(-0.07)
Sine 78.23(18.09) 49.44(36.33) 90.26(5.53) 81.66(6.09) 67.24(12.68) 58.27(-5.35) 85.21(4.60)
RandomRBF 57.94(4.50) 63.88(1.97) 57.22(6.98) 51.93(3.14) 49.04(2.01) 51.34(0.48) 51.34(0.48)
Average 70.70(4.63) 60.19(16.78) 72.13(4.72) 69.30(5.17) 58.86(9.95) 62.22(1.59) 69.36(2.45)
Av. Rank 3.09 5.09 1.91 2.82 5.45 5.27 4.18

and the ρ of the autoregressive noise. These plots illustrate the serial correlation of values explicitly,
and the effect propagates to the target node, resulting in autocorrelation in the labels.

Notice that higher values for ρ tend to increase the autocorrelation of both features and target on early
lags, and the autocorrelation gradually decreases as the lag increases – which shows that consecutive
data samples are dependent on each other. When ρ = 0, we see that the autocorrelation on every lag
and α value is negligible.

G LJUNG-BOX TEST ON SYNTHETIC GENERATORS

We conduct the Ljung-box test on popular synthetic data stream generators: RandomRBF (Bifet
et al., 2009b), SEAConcepts (Street & Kim, 2001), and Sine (Gama et al., 2004). Results are shown
in Table 6, and we confirm that popular data stream generators have no serial correlation in either
the features or target. Despite drift events, generated samples are iid. The exception is Random-
RBF, which presents serial correlation on some features, but that does not propagate to the interest
variable.

Table 6: Ljung-Box test (20 lags) on synthetic data streams generated by popular synthetic genera-
tors for data streams.

RandomRBF SEAConcepts Sine
p-value Reject H0 p-value Reject H0 p-value Reject H0

x1 0.011 Y 0.299 N 0.387 N
x2 0.012 Y 0.626 N 0.324 N
x3 0.192 N 0.337 N – N
x4 0.612 N – – – –
y 0.723 N 0.083 N 0.547 N
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Figure 5: The impact of the α and ρ variables on the lagged autocorrelation function. Each row
refers to a different value for α, and each column a different feature (x1, x3 and y).

H INFORMATION OF GENERATED DATASETS

The dataset presented in Figure 2 contains events of covariate shift, distributional shift and severe
shift. Table 7 exposes the information of each node. Furthermore, in the experiments in Section 5.1,
we generate two more datasets using the same DAG, but with different mapping functions and shift
events, and also describe them in Table 7.

Table 8 presents a summary of information regarding the datasets generated for the experiments
in Section 5.1. They were generated using ρ = 0.5, a moderate persistence in the autoregressive
noise, and α = 0.05, which filters the autoregressive noise and makes consecutive samples slightly
dependent on past values.

Regarding the shift events, there were a total of 4 in each sample small-scale dataset, resulting in
five different concepts, each with 500 instances, described in detail in Table 9.

The samples generated by the sample dataset 2 are shown in Figure 6a, and dataset 3 in Figure 6b.
Regarding dataset 2, note that the class distributions change for distributional and severe shifts, with
special attention to the severe shift that occurred in batch 4, where we observe some overlap between
two classes – two concepts coexist while the drift window lasts. The incremental distributional shift
in batch 3 appears to have affected the class distribution since the first step, as suggested by the small
similarity to the previous concept. The action of shift events on the decision boundary varies a lot.

On dataset 3 (Figure 6b), distributional shift also changes the class distribution on the feature space.
The recurrent shift from batch 2 to 3 makes the class distribution the same as in the first batch.
A severe shift, similar to the other datasets, swaps the outcome between two classes. The last
distributional shift, which occurs in batch 5, alters the class distribution of the classes.

I BASELINES

The baseline methods used for evaluating CaDrift are in Table 10. We have used the same hyperpa-
rameters as in the MOA framework, and for IncA-DES, the same as in the original paper (Barboza
et al., 2025). We use the same configuration to adapt TabPFN for data streams as described by
Lourenço et al. (2025). The hyperparameters are described in Table 11.
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Table 7: Information of Mappers and Target Functions of nodes in the sample DAG. Normal and
Uniform distributions carry no target function, as well as the random MLP and the prototype-based
categorical mapper.

Node Mapper Target Function

Dataset 1
x1 Normal Distribution –
x2 Uniform Distribution –
x3 MLP Sine
x4 Random MLP –
x5 Stochastic Gradient Descent Checkerboard
y Prototype-based Categorical Mapper –

Dataset 2
x1 Normal Distribution –
x2 Uniform Distribution –
x3 Decision Tree Linear
x4 Random MLP –
x5 Stochastic Gradient Descent Radial Basis
y RandomRBF Categorical Mapper –

Dataset 3
x1 Normal Distribution –
x2 Uniform Distribution –
x3 Decision Tree Step
x4 Random MLP –
x5 Stochastic Gradient Descent Sine
y Gaussian Categorical Mapper –

Table 8: Information on the datasets used in the experiments. Datasets were generated using α =
0.05 and ρ = 0.5.

Dataset # dim. # classes # concepts % min. class # samples % Missing % Interventions

1 5 4 5 16.48% 2,500 0 0
2 5 5 5 8.76% 2,500 0 0
3 5 3 5 10.4% 2,500 0 0
4 10 10 10 1.98% 10,000 0 10%
5 25 2 10 33.53% 10,000 10% 10%
6 100 3 20 13.46% 10,000 10% 10%
7 10 7 20 0.21% 100,000 0 10%
8 25 2 100 30.90% 100,000 0 10%
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Table 9: Information regarding shift events on the datasets used as examples in the paper. ∆ refers
to the shift length.

Shift Type ∆ Description

Dataset 1
1 Abrupt Covariate Shift 1 Mean of Normal distribution in x1

changed.
2 Abrupt Distributional Shift 1 Position of centroids changed; Target func-

tion of node x5 changed to a Sine Function.
3 Abrupt Severe Shift 1 The outcome between two classes was

swapped.
4 Abrupt Distributional Shift 1 Position of centroids changed; Target func-

tion of node x3 changed to a Step Function.
Dataset 2

1 Abrupt Covariate Shift 1 Mean of Uniform distribution in x2

changed.
2 Incremental Distributional Shift 250 Position of centroids slightly change at

each time step; Target Function of node x5

changed to a Checkerboard Function.
3 Gradual Severe Shift 250 The outcome between two classes was

swapped. During drift length, both con-
cepts are sent.

4 Abrupt Distributional Shift 1 Position of centroids changed; Target func-
tion of node x3 changed to a Sine Function.

Dataset 3
1 Abrupt Distributional Shift 1 Position of centroid changed; Random

MLP of node 4 reinitialized.
2 Abrupt Recurrent Shift 1 State of past concept retrieved.
3 Gradual Severe Shift 250 The outcome between two classes was

swapped. During the shift length, both
concepts are sent together in the stream.

4 Abrupt Distributional Shift 1 Position of centroids changed; Target func-
tion of node x3 changed to a Linear Func-
tion.

(a) Batches of Sample Dataset 2.

(b) Batches of Sample Dataset 3.

Figure 6: Class distribution across batches for datasets sampled by CaDrift.
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Table 10: Baseline methods for drifting data streams.

Method Source Category

HT Domingos & Hulten (2000) Online Learner
LAST Assis et al. (2025) Online Learner
LevBag Bifet et al. (2010b) Ensemble
OAUE Brzezinski & Stefanowski (2014) Ensemble
ARF Gomes et al. (2017) Ensemble
IncA-DES Barboza et al. (2025) Dynamic Ensemble Selection
TabPFNStream Lourenço et al. (2025) Transformer

Table 11: Baselines’ hyperparameters. All ensemble methods use a HT as base classifier.

Method Hyperparameters

HT grace period = 200
LAST change detector : ADWIN
LevBag change detector : ADWIN , ensemble size = 10
OAUE ensemble size = 10, window size = 500
ARF change detector : ADWIN , ensemble size = 100
IncA-DES change detector : RDDM , pool size = 75
TabPFNStream context window = 1, 000, short term window =

750, long term window = 250
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