
Published as a conference paper at ICLR 2023

LEARNING RELU NETWORKS TO HIGH UNIFORM
ACCURACY IS INTRACTABLE

Julius Berner1,˚, Philipp Grohs1,2,3,˚, and Felix Voigtlaender4,˚

1Faculty of Mathematics, University of Vienna, Austria
2Research Network Data Science @ Uni Vienna, University of Vienna, Austria

3RICAM, Austrian Academy of Sciences, Austria
4Mathematical Institute for Machine Learning and Data Science (MIDS), Catholic University of

Eichstätt-Ingolstadt, Germany
˚All authors contributed equally

ABSTRACT

Statistical learning theory provides bounds on the necessary number of training
samples needed to reach a prescribed accuracy in a learning problem formulated
over a given target class. This accuracy is typically measured in terms of a gen-
eralization error, that is, an expected value of a given loss function. However, for
several applications — for example in a security-critical context or for problems in
the computational sciences — accuracy in this sense is not sufficient. In such cases,
one would like to have guarantees for high accuracy on every input value, that is,
with respect to the uniform norm. In this paper we precisely quantify the number
of training samples needed for any conceivable training algorithm to guarantee a
given uniform accuracy on any learning problem formulated over target classes
containing (or consisting of) ReLU neural networks of a prescribed architecture.
We prove that, under very general assumptions, the minimal number of training
samples for this task scales exponentially both in the depth and the input dimension
of the network architecture.

1 INTRODUCTION

The basic goal of supervised learning is to determine a function1 u : r0, 1sd Ñ R from (possibly
noisy) samples pupx1q, . . . , upxmqq. As the function u can take arbitrary values between these
samples, this problem is, of course, not solvable without any further information on u. In practice,
one typically leverages domain knowledge to estimate the structure and regularity of u a priori, for
instance, in terms of symmetries, smoothness, or compositionality. Such additional information
can be encoded via a suitable target class U Ă Cpr0, 1sdq that u is known to be a member of. We
are interested in the optimal accuracy for reconstructing u that can be achieved by any algorithm
which utilizes m point samples. To make this mathematically precise, we assume that this accuracy
is measured by a norm } ¨ }Y of a suitable Banach space Y Ą U . Formally, an algorithm can thus
be described by a map A : U Ñ Y that can query the function u at m points xi and that outputs a
function Apuq with Apuq « u (see Section 2.1 for a precise definition that incorporates adaptivity
and stochasticity). We will be interested in upper and lower bounds on the accuracy that can be
reached by any such algorithm — equivalently, we are interested in the minimal number m of point
samples needed for any algorithm to achieve a given accuracy ε for every u P U . This m would then
establish a fundamental benchmark on the sample complexity (and the algorithmic complexity) of
learning functions in U to a given accuracy.

The choice of the Banach space Y — in other words how we measure accuracy — is very crucial
here. For example, statistical learning theory provides upper bounds on the optimal accuracy in terms
of an expected loss, i.e., with respect to Y “ L2pr0, 1sd,dPq, where P is a (generally unknown)

1In what follows, the input domain r0, 1sd could be replaced by more general domains (for example Lipschitz
domains) without any change in the later results. The unit cube r0, 1sd is merely chosen for concreteness.

1

Published as a conference paper at ICLR 2023

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

Figure 1: Even though the training of neural networks from data samples may achieve a small error
on average, there are typically regions in the input space where the pointwise error is large. The target
function in this plot is given by x ÞÑ logpsinp50xq` 2q` sinp5xq (based on Adcock & Dexter, 2021)
and the model is a feed-forward neural network. It is trained on m “ 1000 uniformly distributed
samples according to the hyperparameters in Tables 1 and 2 and achieves final L1 and L8 errors of
2.8 ¨ 10´3 and 0.19, respectively. The middle and right plots are zoomed versions of the left plot.

data generating distribution (Devroye et al., 2013; Shalev-Shwartz & Ben-David, 2014; Mohri et al.,
2018; Kim et al., 2021). This offers a powerful approach to ensure a small average reconstruction
error. However, there are many important scenarios where such bounds on the accuracy are not
sufficient and one would like to obtain an approximation of u that is close to u not only on average,
but that can be guaranteed to be close for every x P r0, 1sd. This includes several applications in
the sciences, for example in the context of the numerical solution of partial differential equations
(Raissi et al., 2019; Han et al., 2018; Richter & Berner, 2022), any security-critical application, for
example, facial ID authentication schemes (Guo & Zhang, 2019), as well as any application with
a distribution-shift, i.e., where the data generating distribution is different from the distribution in
which the accuracy is measured (Quiñonero-Candela et al., 2008). Such applications can only be
efficiently solved if there exists an efficient algorithm A that achieves uniform accuracy, i.e., a small
error supuPU }u´Apuq}L8pr0,1sdq with respect to the uniform norm given by Y “ L8pr0, 1sdq, i.e.,
}f}L8pr0,1sdq :“ esssupxPr0,1sd |fpxq|.

Inspired by recent successes of deep learning across a plethora of tasks in machine learning (LeCun
et al., 2015) and also increasingly the sciences (Jumper et al., 2021; Pfau et al., 2020), we will be
particularly interested in the case where the target class U consists of — or contains — realizations
of (feed-forward) neural networks of a specific architecture2. Neural networks have been proven and
observed to be extremely powerful in terms of their expressivity, that is, their ability to accurately
approximate large classes of complicated functions with only relatively few parameters (Elbrächter
et al., 2021; Berner et al., 2022). However, it has also been repeatedly observed that the training of
neural networks (e.g., fitting a neural network to data samples) to high uniform accuracy presents a big
challenge: conventional training algorithms (such as SGD and its variants) often find neural networks
that perform well on average (meaning that they achieve a small generalization error), but there are
typically some regions in the input space where the error is large (Fiedler et al., 2023); see Figure 1
for an illustrative example. This phenomenon has been systematically studied on an empirical level
by Adcock & Dexter (2021). It is also at the heart of several observed instabilities in the training
of deep neural networks, including adversarial examples (Szegedy et al., 2013; Goodfellow et al.,
2015) or so-called hallucinations emerging in generative modeling, e.g., tomographic reconstructions
(Bhadra et al., 2021) or machine translation (Müller et al., 2020).

Note that additional knowledge on the target functions could potentially help circumvent these issues,
see Remark 1.3. However, for many applications, it is not possible to precisely describe the regularity
of the target functions. We thus analyze the case where no additional information is given besides the
fact that one aims to recover a (unknown) neural network of a specified architecture and regularization
from given samples – i.e., we assume that U contains a class of neural networks of a given architecture,
subject to various regularization methods. This is satisfied in several applications of interest, e.g.,
model extraction attacks (Tramèr et al., 2016; He et al., 2022) and teacher-student settings (Mirzadeh
et al., 2020; Xie et al., 2020). It is also in line with standard settings in the statistical query literature,

2By architecture we mean the number of layers L, as well as the number of neurons in each layer.

2

Published as a conference paper at ICLR 2023

in neural network identification, and in statistical learning theory (Anthony & Bartlett, 1999; Mohri
et al., 2018), see Section 1.1.

For such settings we can rigorously show that learning a class of neural networks is prone to
instabilities. Specifically, any conceivable learning algorithm (in particular, any version of SGD),
which recovers the neural network to high uniform accuracy, needs intractably many samples.
Theorem 1.1. Suppose that U contains all neural networks with d-dimensional input, ReLU activa-
tion function, L layers of width up to 3d, and coefficients bounded by c in the `q norm. Assume that
there exists an algorithm that reconstructs all functions in U to uniform accuracy ε from m point
samples. Then, we have

m ě

ˆ

Ω

32d

˙d

¨ ε´d, where Ω :“

$

&

%

1
8¨32{q

¨ cL ¨ d1´ 2
q if q ď 2

1
48 ¨ c

L ¨ p3dqpL´1qp1´ 2
q q if q ě 2.

Theorem 1.1 is a special case of Theorem 2.2 (covering Y “ Lppr0, 1sdq for all p P r1,8s, as well
as network architectures with arbitrary width) which will be stated and proven in Section 2.3.

To give a concrete example, we consider the problem of learning neural networks with ReLU
activation function, L layers of width at most 3d, and coefficients bounded by c to uniform accuracy
ε “ 1{1024. According to our results we would need at least

m ě 2d ¨ cdL ¨ p3dqdpL´2q

many samples — the sample complexity thus depends exponentially on the input dimension d, the
network width, and the network depth, becoming intractable even for moderate values of d, c, L (for
d “ 15, c “ 2, and L “ 7, the sample size m would already have to exceed the estimated number of
atoms in our universe). If, on the other hand, reconstruction only with respect to the L2 norm were
required, standard results in statistical learning theory (see, for example, Berner et al., 2020) show
that m only needs to depend polynomially on d. We conclude that uniform reconstruction is vastly
harder than reconstruction with respect to the L2 norm and, in particular, intractable. Our results are
further corroborated by numerical experiments presented in Section 3 below.
Remark 1.2. For other target classes U , uniform reconstruction is tractable (i.e., the number of
required samples for recovery does not massively exceed the number of parameters defining the class).
A simple example are univariate polynomials of degree less than m which can be exactly determined
from m samples. One can show similar results for sparse multivariate polynomials using techniques
from the field of compressed sensing (Rauhut, 2007). Further, one can show that approximation rates
in suitable reproducing kernel Hilbert spaces with bounded kernel can be realized using point samples
with respect to the uniform norm (Pozharska & Ullrich, 2022). Our results uncover an opposing
behavior of neural network classes: There exist functions that can be arbitrarily well approximated
(in fact, exactly represented) by small neural networks, but these representations cannot be inferred
from samples. Our results are thus highly specific to classes of neural networks.
Remark 1.3. Our results do not rule out the possibility that there exist training algorithms for neural
networks that achieve high accuracy on some restricted class of target functions, if the knowledge
about the target class can be incorporated into the algorithm design. For example, if it were known
that the target function can be efficiently approximated by polynomials one could first compute an
approximating polynomial (using polynomial regression which is tractable) and then represent the
approximating polynomial by a neural network. The resulting numerical problem would however be
very different from the way deep learning is used in practice, since most neural network coefficients
(namely those corresponding to the approximating polynomial) would be fixed a priori. Our results
apply to the situation where such additional information on the target class U is not available and no
problem specific knowledge is incorporated into the algorithm design besides the network architecture
and regularization procedure.

We also complement the lower bounds of Theorem 1.1 with corresponding upper bounds.
Theorem 1.4. Suppose that U consists of all neural networks with d-dimensional input, ReLU
activation function, L layers of width at most B, and coefficients bounded by c in the `q norm. Then,
there exists an algorithm that reconstructs all functions in U to uniform accuracy ε from m point
samples with

m ď Cd ¨ ε´d, where C :“

#?
d ¨ cL if q ď 2

d1´ 1
q ¨ cL ¨BpL´1qp1´ 2

q q if q ě 2.

3

Published as a conference paper at ICLR 2023

Theorem 1.4 follows from Theorem 2.4 that will be stated in Section 2.4. We refer to Remark B.4 for
a discussion of the gap between the upper and lower bounds.

Remark 1.5. Our setting allows for an algorithm to choose the sample points px1, . . . , xmq in
an adaptive way for each u P U ; see Section 2.1 for a precise definition of the class of adaptive
(possibly randomized) algorithms. This implies that even a very clever sampling strategy (as would
be employed in active learning) cannot break the bounds established in this paper.

Remark 1.6. Our results also shed light on the impact of different regularization methods. While
picking a stronger regularizer (e.g., a small value of q) yields quantitative improvements (in the sense
of a smaller Ω), the sample size m required for approximation in L8 can still increase exponentially
with the input dimension d. However, this scaling is only visible for very small ε.

1.1 RELATED WORK

Several other works have established “hardness” results for neural network training. For example, the
seminal works by Blum & Rivest (1992); Vu (1998) show that for certain architectures the training
process can be NP-complete. By contrast, our results do not directly consider algorithm runtime at
all; our results are stronger in the sense of showing that even if it were possible to efficiently learn a
neural network from samples, the necessary number of data points would be too large to be tractable.

We also want to mention a series of hardness results in the setting of statistical query (SQ) algorithms,
see, e.g., Chen et al. (2022); Diakonikolas et al. (2020); Goel et al. (2020b); Reyzin (2020); Song
et al. (2017). For instance, Chen et al. (2022) shows that any SQ algorithm capable of learning ReLU
networks with two hidden layers and width polypdq up to L2 error 1{polypdq must use a number
of samples that scales superpolynomially in d, or must use SQ queries with tolerance smaller than
the reciprocal of any polynomial in d. In such SQ algorithms, the learner has access to an oracle
that produces approximations (potentially corrupted by adversarial noise) of certain expectations
ErhpX,upXqqs, where u is the unknown function to be learned, X is a random variable representing
the data, and h is a function chosen by the learner (potentially subject to some restrictions, e.g. Lips-
chitz continuity). The possibility of the oracle to inject adversarial (instead of just stochastic) noise
into the learning procedure — which does not entirely reflect the typical mathematical formulation of
learning problems — is crucial for several of these results. We also mention that due to this possibility
of adversarial noise, not every gradient-based optimization method (for instance, SGD) is strictly
speaking an SQ algorithm; see also the works by Goel et al. (2020a, Page 3) and Abbe et al. (2021)
for a more detailed discussion.

There also exist hardness results for learning algorithms based on label queries (i.e., noise-free
point samples), which constitutes a setting similar to ours. More precisely, Chen et al. (2022) show
that ReLU neural networks with constant depth and polynomial size constraints are not efficiently
learnable up to a small squared loss with respect to a Gaussian distribution. However, the existing
hardness results are in terms of runtime of the algorithm and are contingent on several (difficult and
unproven) conjectures from the area of cryptography (the decisional Diffie-Hellmann assumption
or the “Learning with Errors” assumption); the correctness of these conjectures in particular would
imply that P ‰ NP. By contrast, our results are completely free of such assumptions and show that
the considered problem is information-theoretically hard, not just computationally.

As already hinted at in the introduction, our results further extend the broad literature on statistical
learning theory (Anthony & Bartlett, 1999; Vapnik, 1999; Cucker & Smale, 2002b; Bousquet et al.,
2003; Vapnik, 2013; Mohri et al., 2018). Specifically, we provide fully explicit upper and lower
bounds on the sample complexity of (regularized) neural network hypothesis classes. In the context
of PAC learning, we analyze the realizable case, where the target function is contained in the
hypothesis class (Mohri et al., 2018, Theorem 3.20). Contrary to standard results, we do not pose any
assumptions, such as IID, on the data distribution, and even allow for adaptive sampling. Moreover,
we analyze the complexity for all Lp norms with p P r1,8s, whereas classical results mostly deal
with the squared loss. As an example of such classical results, we mention that (bounded) hypothesis
classes with finite pseudodimension D can be learned to squared L2 loss ε with OpDε´2q point
samples; see e.g., Mohri et al. (2018, Theorem 11.8). Bounds for the pseudodimension of neural
networks are readily available in the literature; see e.g., Bartlett et al. (2019). These bounds imply
that learning ReLU networks in L2 is tractable, in contrast to the L8 setting.

4

Published as a conference paper at ICLR 2023

Another related area is the identification of (equivalence classes of) neural network parameters from
their input-output maps. While most works focus on scenarios where one has access to an infinite
number of queries (Fefferman & Markel, 1993; Vlačić & Bölcskei, 2022), there are recent results
employing only finitely many samples (Rolnick & Kording, 2020; Fiedler et al., 2023). Robust
identification of the neural network parameters is sufficient to guarantee uniform accuracy, but it
is not a necessary condition. Specifically, proximity of input-output maps does not necessarily
imply proximity of corresponding neural network parameters (Berner et al., 2019). More generally,
our results show that efficient identification from samples cannot be possible unless (as done in the
previously mentioned works) further prior information is incorporated. In the same spirit, this restricts
the applicability of model extraction attacks, such as model inversion or evasion attacks (Tramèr
et al., 2016; He et al., 2022).

Our results are most closely related to recent results by Grohs & Voigtlaender (2021) where target
classes consisting of neural network approximation spaces are considered. The results of Grohs &
Voigtlaender (2021), however, are purely asymptotic. Since the asymptotic behavior incurred by the
rate is often only visible for very fine accuracies, the results of Grohs & Voigtlaender (2021) cannot
be applied to obtain concrete lower bounds on the required sample size. Our results are completely
explicit in all parameters and readily yield practically relevant bounds. They also elucidate the role of
adaptive sampling and different regularization methods.

1.2 NOTATION

For d P N, we denote by Cpr0, 1sdq the space of continuous functions f : r0, 1sd Ñ R. For a finite set
I and paiqiPI P RI , we write

ř

iPI ai :“ 1
|I|

ř

iPI ai. For m P N, we write rms :“ t1, . . . ,mu. For
A Ă Rd, we denote by Ao the set of interior points of A. For any subset A of a vector space V , any
c P R, and any y P V , we further define y ` c ¨A :“ ty ` ca : a P Au. For a matrix W P Rnˆk and
q P r1,8q, we write }W }`q :“

`
ř

i,j |Wi,j |
q
˘1{q

, and for q “ 8 we write }W }`8 :“ maxi,j |Wi,j |.
For vectors b P Rn, we use the analogously defined notation }b}`q .

2 MAIN RESULTS

This section contains our main theoretical results. We introduce the considered classes of algorithms
in Section 2.1 and target classes in Section 2.2. Our main lower and upper bounds are formulated and
proven in Section 2.3 and Section 2.4, respectively.

2.1 ADAPTIVE (RANDOMIZED) ALGORITHMS BASED ON POINT SAMPLES

As described in the introduction, our goal is to analyze how well one can recover an unknown
function u from a target class U in a Banach space Y based on point samples. This is one of the main
problems in information-based complexity (Traub, 2003), and in this section we briefly recall the
most important related notions.

Given U Ă Cpr0, 1sdq X Y for a Banach space Y , we say that a map A : U Ñ Y is an adaptive
deterministic method using m P N point samples if there are f1 P r0, 1s

d and mappings

fi :
`

r0, 1sd
˘i´1

ˆ Ri´1 Ñ r0, 1sd, i “ 2, . . . ,m, and Q :
`

r0, 1sd
˘m
ˆ Rm Ñ Y

such that for every u P U , using the point sequence xpuq “ px1, . . . , xmq Ă r0, 1s
d defined as

x1 “ f1, xi “ fipx1, . . . , xi´1, upx1q, . . . , upxi´1qq, i “ 2, . . . ,m, (1)

the map A is of the form Apuq “ Qpx1, . . . , xm, upx1q, . . . , upxmqq P Y .

The set of all deterministic methods using m point samples is denoted by AlgmpU, Y q. In addition to
such deterministic methods, we also study randomized methods defined as follows: A tuple pA,mq
is called an adaptive random method using m P N point samples on average if A “ pAωqωPΩ where
pΩ,F ,Pq is a probability space, and where m : Ω Ñ N is such that the following conditions hold:

1. m is measurable, and Erms ď m;
2. @u P U : ω ÞÑ Aωpuq is measurable with respect to the Borel σ-algebra on Y ;

5

Published as a conference paper at ICLR 2023

3. @ω P Ω : Aω P AlgmpωqpU, Y q.

The set of all random methods using m point samples on average will be denoted by AlgMC
m pU, Y q,

since such methods are sometimes called Monte-Carlo (MC) algorithms.

For a target class U , we define the optimal (randomized) error as

errMC
m pU, Y q :“ inf

pA,mqPAlgMC
m pU,Y q

sup
uPU

E r}u´Aωpuq}Y s . (2)

We note that AlgmpU, Y q Ă AlgMC
m pU, Y q, since each deterministic method can be interpreted as a

randomized method over a trivial probability space.

2.2 NEURAL NETWORK CLASSES

We will be concerned with target classes related to ReLU neural networks. These will be defined in
the present subsection. Let % : RÑ R, %pxq “ maxt0, xu, be the ReLU activation function. Given a
depth L P N, an architecture pN0, N1, . . . , NLq P NL`1, and neural network coefficients

Φ “
`

pW i, biq
˘L

i“1
P
ŚL

i“1

`

RNiˆNi´1 ˆ RNi
˘

,

we define their realization RpΦq P CpRN0 ,RNLq as

RpΦq :“ φL ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ1

where % is applied componentwise and φi : RNi´1 Ñ RNi , x ÞÑW ix` bi, for i P rLs. Given c ą 0
and q P r1,8s, define the class

Hq
pN0,...,NLq,c

:“
!

RpΦq : Φ P
ŚL

i“1

`

RNiˆNi´1 ˆ RNi
˘

and }Φ}`q ď c
)

,

where }Φ}`q :“ max1ďiďL maxt}W i}`q , }b
i}`qu.

To study target classes related to neural networks, the following definition will be useful.
Definition 2.1. Let U,H Ă Cpr0, 1sdq. We say that U contains a copy of H, attached to u0 P U with
constant c0 P p0,8q, if u0 ` c0 ¨H Ă U.

2.3 LOWER BOUND

The following result constitutes the main result of the present paper. Theorem 1.1 readily follows
from it as a special case.
Theorem 2.2. Let L P Ně3, d,B P N, p, q P r1,8s, and c P p0,8q. Suppose that the target
class U Ă Cpr0, 1sdq contains a copy of Hq

pd,B...,B,1q,c with constant c0 P p0,8q, where the B in

pd,B, . . . , B, 1q appears L´ 1 times. Then, for any s P N with s ď min

B
3 , d

(

we have

errMC
m pU,Lppr0, 1sdqq ě c0 ¨

Ω

p32sq1`
s
p
¨m´

1
p´

1
s ,

where

Ω :“

#

1
8¨32{q

¨ cL ¨ s1´ 2
q if q ď 2

1
48 ¨ c

L ¨BpL´1qp1´ 2
q q if q ě 2.

Proof. This follows by combining Theorem A.5 with Lemmas A.2 and A.3 in the appendix.

Remark 2.3. For p ! 8, the bound from above does not necessarily imply that an intractable
number of training samples is needed. This is a reflection of the fact that efficient learning is possible
(at least if one only considers the number of training samples and not the runtime of the algorithm) in
this regime. Indeed, it is well-known in statistical learning theory that one obtains learning bounds
based on the entropy numbers (w.r.t. the L8 norm) of the class of target functions, when the error is
measured in L2, see, for instance, Cucker & Smale (2002a, Proposition 7). The ε-entropy numbers
of a class of neural networks with L layers and w (bounded) weights scale linearly in w,L and

6

Published as a conference paper at ICLR 2023

logarithmically in 1{ε, so that one gets tractable L2 learning bounds. By interpolation for Lp norms
(noting that in our case the target functions are bounded, so that the L8 reconstruction error is
bounded, even though the decay with m is very bad), this also implies Lp learning bounds, but these
get worse and worse as pÑ8. We remark that these learning bounds are based on empirical risk
minimization, which might be computationally infeasible (Vu, 1998); since our lower bounds should
hold for any feasible algorithm (irrespective of its computational complexity), this means that one
cannot expect to get an intractable lower bound for p ! 8 in our setting.

The idea of the proof of Theorem 2.2 (here only presented for u0 “ 0 and s “ d, which implies that
B ě 3d) is as follows:

1. We first show (see Lemmas A.2 and A.3) that the neural network set Hq
pd,B,...,B,1q,c contains

a large class of “bump functions” of the form λ ¨ ϑM,y. Here, ϑM,y is supported on the set
y ` r´ 1

M , 1
M s

d and satisfies }ϑM,y}Lppr0,1sdq — M´d{p, where M P N and y P r0, 1sd can be
chosen arbitrarily; see Lemma A.1. The size of the scaling factor λ “ λpM, c, q, d, Lq depends
crucially on the regularization parameters c and q. This is the main technical part of the proof,
requiring to construct suitable neural networks adhering to the imposed `q restrictions on the
weights for which λ is as big as possible.

2. If one learns using m points samples x1, . . . , xm and if M “ Opm1{dq, then a volume packing
argument shows that there exists y P r0, 1sd such that ϑM,ypxiq “ 0 for all i P rms. This means
that the learner cannot distinguish the function λ ¨ ϑM,y P Hq

pd,B,...,B,1q,c from the zero function

and will thus make an error of roughly }λ ¨ ϑM,y}Lp — λ ¨M´d{p. This already implies the lower
bound in Theorem 2.2 for the case of deterministic algorithms.

3. To get the lower bound for randomized algorithms using m point samples on average, we
employ a technique from information-based complexity (see, e.g., Heinrich, 1994): We again
set M “ Opm1{dq and define py`q`PrM{2sd as the nodes of a uniform grid on r0, 1sd with width
2{M . Using a volume packing argument, we then show that for any choice of m sampling points
x1, . . . , xm, “at least half of the functions ϑM,y` avoid all the sampling points”, i.e., for at least
half of the indices `, it holds that ϑM,y`pxiq “ 0 for all i P rms. A learner using the samples
x1, . . . , xm can thus not distinguish between the zero function and λ ¨ ϑM,y` P Hq

pd,B,...,B,1q,c

for at least half of the indices `. Therefore, any deterministic algorithm will make an error of
Ωpλ ¨M´d{pq on average with respect to `.

4. Since each randomized algorithm A “ pAωqωPΩ is a collection of deterministic algorithms and
since taking an average commutes with taking the expectation, this implies that any randomized
algorithm will have an expected error of Ωpλ ¨M´d{pq on average with respect to `. This easily
implies the stated bound.

As mentioned in the introduction, we want to emphasize that well-trained neural networks can indeed
exhibit such bump functions, see Figure 1 and Adcock & Dexter (2021); Fiedler et al. (2023).

2.4 UPPER BOUND

In this section we present our main upper bound, which directly implies the statement of Theorem 1.4.

Theorem 2.4. Let L, d P N, q P r1,8s, c P p0,8q, and N1, . . . , NL´1 P N. Then, we have

errMC
m

`

Hq
pd,N1,...,NL´1,1q,c

, L8pr0, 1sdq
˘

ď

#?
d ¨ cL ¨m´

1
d if q ď 2

?
d ¨ cL ¨ p

?
d ¨N1 ¨ ¨ ¨NL´1q

1´ 2
q ¨m´

1
d if q ě 2.

Proof. This follows by combining Lemmas B.2 and B.3 in the appendix.

Let us outline the main idea of the proof. We first show that each neural network
RpΦq P Hq

pN0,...,NLq,c
is Lipschitz-continuous, where the Lipschitz constant can be conveniently

bounded in terms of the parametersN0, . . . , NL, c, q, see Lemma B.2 in the appendix. In Lemma B.3,
we then show that any function with moderate Lipschitz constant can be reconstructed from samples
by piecewise constant interpolation.

7

Published as a conference paper at ICLR 2023

3 NUMERICAL EXPERIMENTS

Having established fundamental bounds on the performance of any learning algorithm, we want
to numerically evaluate the performance of commonly used deep learning methods. To illustrate
our main result in Theorem 2.2, we estimate the error in (2) by a tractable approximation in a
student-teacher setting. Specifically, we estimate the minimal error over neural network target
functions (“teachers”) pU Ă Hq

pd,N1,...,NL´1,1q,c
for deep learning algorithms pA Ă AlgMC

m pU,Lpq

via Monte-Carlo sampling, i.e.,

xerrm

´

pU,Lp; pA
¯

:“ inf
pA,mqP pA supuP pU

ř

ωPpΩ

´

ř

jPrJs

`

upXjq ´AωpuqpXjq
˘p
¯1{p

, (3)

where pXjq
J
j“1 are independent evaluation samples uniformly distributed on3 r´0.5, 0.5sd and pΩ

represents the seeds for the algorithms.

We obtain teacher networks u P H8
pd,N1,...,NL´1,1q,c

by sampling their coefficients Φ componentwise

according to a uniform distribution on r´c, cs. For every algorithm pA,mq P pA and seed ω P pΩ
we consider point sequences xpuq uniformly distributed in r´0.5, 0.5sd with mpωq “ m. The
corresponding point samples are used to train the coefficients of a neural network (“student”) using
the Adam optimizer (Kingma & Ba, 2015) with exponentially decaying learning rate. We consider
input dimensions d “ 1 and d “ 3, for each of which we compute the error in (3) for 4 different
sample sizes m over 40 teacher networks u. For each combination, we train student networks
with 3 different seeds, 3 different widths, and 3 different batch-sizes. In summary, this yields
2 ¨ 4 ¨ 40 ¨ 3 ¨ 3 ¨ 3 “ 8640 experiments each executed on a single GPU. The precise hyperparameters
can be found in Tables 1 and 3 in Appendix C.

Figure 2 shows that there is a clear gap between the errors xerrmppU,L
p; pAq for p P t1, 2u and p “ 8.

Especially in the one-dimensional case, the rate xerrmppU,L
8; pAq w.r.t. the number of samples m also

seems to stagnate at a precision that might be insufficient for certain applications. Figure 3 illustrates
that the errors are caused by spikes of the teacher network which are not covered by any sample.
Note that this is very similar to the construction in the proof of our main result, see Section 2.3.

In general, the rates worsen when considering more teacher networks pU and improve when consider-
ing further deep learning algorithms pA, including other architectures or more elaborate training and
sampling schemes. Note, however, that each setting needs to be evaluated for a number of teacher net-
works, sample sizes, and seeds. We provide an extensible implementation4 in PyTorch (Paszke et al.,
2019) featuring multi-node experiment execution and hyperparameter tuning using Ray Tune (Liaw
et al., 2018), experiment tracking using Weights & Biases and TensorBoard, and flexible experiment
configuration. Building upon our work, research teams with sufficient computational resources can
provide further numerical evidence on an even larger scale.

4 DISCUSSION AND LIMITATIONS

Discussion. We derived fundamental upper and lower bounds for the number of samples needed
for any algorithm to reconstruct an arbitrary function from a target class containing realizations of
neural networks with ReLU activation function of a given architecture and subject to `q regularization
constraints on the network coefficients, see Theorems 2.2 and 2.4. These bounds are completely
explicit in the network architecture, the type of regularization, and the norm in which the reconstruc-
tion error is measured. We observe that our lower bounds are severely more restrictive if the error is
measured in the uniform L8 norm rather than the (more commonly studied) L2 norm. Particularly,
learning a class of neural networks with ReLU activation function with moderately high accuracy
in the L8 norm is intractable for moderate input dimensions, as well as network widths and depths.
We anticipate that further investigations into the sample complexity of neural network classes can
eventually contribute to a better understanding of possible circumstances under which it is possible to
design reliable deep learning algorithms and help explain well-known instability phenomena such

3To have centered input data, we consider the hypercube r´0.5, 0.5sd in our experiments. Note that this does
not change any of the theoretical results.

4The code can be found at https://github.com/juliusberner/theory2practice.

8

https://github.com/juliusberner/theory2practice

Published as a conference paper at ICLR 2023

102 103 104 105

m

10−4

10−3

êr
r m

d = 1

102 103 104 105

m

10−3

10−2

10−1

d = 3

L∞

L2

L1

Figure 2: Evaluation of the error in (3) for p P t1, 2,8u, input dimensions d P t1, 3u, sample sizes
m P t102, 103, 104, 105u, and hyperparameters given in Tables 1 and 3.

−0.3 0.0 0.3

0.00

0.04

0.08

0.12

−0.38 −0.36 −0.34

0.112

0.116

0.120

−0.200 −0.175 −0.150

0.052

0.056

0.060

0.064
model

target

samples

Figure 3: Target function (“teacher”), samples, and model of the deep learning algorithm (“student”)
attaining the min-max value in (3) for m “ 100 and p “ 8 in the experiment depicted in Figure 2.
The middle and right plots are zoomed versions of the left plot. The L8 error p2.7 ¨ 10´3q is about
one magnitude larger than the L2 and L1 errors p3.9 ¨10´4 and 2.4 ¨10´4q, which is caused by spikes
of the teacher network between samples.

as adversarial examples. Such an understanding can be beneficial in assessing the potential and
limitations of machine learning methods applied to security- and safety-critical scenarios.

Limitations and Outlook. We finally discuss some possible implications and also limitations of
our work. First of all, our results are highly specific to neural networks with the ReLU activation func-
tion. We expect that obtaining similar results for other activation functions will require substantially
new methods. We plan to investigate this in future work.

The explicit nature of our results reveal a discrepancy between the lower and upper bound, especially
for high dimensions. We conjecture that both the current upper and lower bounds are not quite
optimal. Determining to which extent one can tighten the bounds is an interesting open problem.

Our analysis is a worst-case analysis in the sense that we show that for any given algorithm A, there
exists at least one u in our target class U on which A performs poorly. The question of whether
this poor behavior is actually generic will be studied in future work. One way to establish such
generic results could be to prove that our considered target classes contain copies of neural network
realizations attached to many different u’s.

Finally, we consider target classes U that contain all realizations of neural networks with a given
architecture subject to different regularizations. This can be justified as follows: Whenever a deep
learning method is employed to reconstruct a function u by representing it approximately by a neural
network (without further knowledge about u), a natural minimal requirement is that the method
should perform well if the sought function is in fact equal to a neural network. However, if additional
problem information about u can be incorporated into the learning problem it may be possible to
overcome the barriers shown in this work. The degree to which this is possible, as well as the
extension of our results to other architectures, such as convolutional neural networks, transformers,
and graph neural networks will be the subject of future work.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The research of Julius Berner was supported by the Austrian Science Fund (FWF) under grant
I3403-N32 and by the Vienna Science and Technology Fund (WWTF) under grant ICT19-041. The
computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC).
Felix Voigtlaender acknowledges support by the DFG in the context of the Emmy Noether junior
research group VO 2594/1-1.

REFERENCES

E. Abbe, P. Kamath, E. Malach, C. Sandon, and N. Srebro. On the power of differentiable learning
versus PAC and SQ learning. Advances in Neural Information Processing Systems, 34:24340–
24351, 2021.

Ben Adcock and Nick Dexter. The gap between theory and practice in function approximation with
deep neural networks. SIAM Journal on Mathematics of Data Science, 3(2):624–655, 2021.

Martin Anthony and Peter L Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight vc-dimension and pseudodimension
bounds for piecewise linear neural networks. The Journal of Machine Learning Research, 20(1):
2285–2301, 2019.

Julius Berner, Dennis Maximilian Elbrächter, and Philipp Grohs. How degenerate is the parametriza-
tion of neural networks with the relu activation function? Advances in Neural Information
Processing Systems, 32, 2019.

Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error: Empirical
risk minimization over deep artificial neural networks overcomes the curse of dimensionality in
the numerical approximation of Black–Scholes partial differential equations. SIAM Journal on
Mathematics of Data Science, 2(3):631–657, 2020.

Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The Modern Mathematics of
Deep Learning, pp. 1–111. Cambridge University Press, 2022.

Sayantan Bhadra, Varun A Kelkar, Frank J Brooks, and Mark A Anastasio. On hallucinations in
tomographic image reconstruction. IEEE transactions on medical imaging, 40(11):3249–3260,
2021.

Avrim L Blum and Ronald L Rivest. Training a 3-node neural network is NP-complete. Neural
Networks, 5(1):117–127, 1992.

Edward K Blum and Leong Kwan Li. Approximation theory and feedforward networks. Neural
networks, 4(4):511–515, 1991.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory.
In Summer School on Machine Learning, pp. 169–207, 2003.

S. Chen, A. Gollakota, A. R. Klivans, and R. Meka. Hardness of noise-free learning for two-hidden-
layer neural networks. arXiv preprint arXiv:2202.05258, 2022.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc. (N.S.),
39(1):1–49, 2002a. ISSN 0273-0979.

Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 39(1):1–49, 2002b.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition,
volume 31. Springer Science & Business Media, 2013.

I. Diakonikolas, D. Kane, and N. Zarifis. Near-optimal SQ lower bounds for agnostically learning
halfspaces and ReLUs under Gaussian marginals. Advances in Neural Information Processing
Systems, 33:13586–13596, 2020.

10

Published as a conference paper at ICLR 2023

Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. Deep neural network
approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623, 2021.

Charles Fefferman and Scott Markel. Recovering a feed-forward net from its output. Advances in
neural information processing systems, 6, 1993.

Christian Fiedler, Massimo Fornasier, Timo Klock, and Michael Rauchensteiner. Stable recovery of
entangled weights: Towards robust identification of deep neural networks from minimal samples.
Applied and Computational Harmonic Analysis, 62:123–172, 2023.

G. B. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and Applied
Mathematics. John Wiley & Sons, second edition, 1999.

S. Goel, A. Gollakota, Z. Jin, S. Karmalkar, and A. Klivans. Superpolynomial lower bounds for
learning one-layer neural networks using gradient descent. In International Conference on Machine
Learning, pp. 3587–3596, 2020a.

S. Goel, A. Gollakota, and A. Klivans. Statistical-query lower bounds via functional gradients.
Advances in Neural Information Processing Systems, 33:2147–2158, 2020b.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In 3rd International Conference on Learning Representations, 2015.

Philipp Grohs and Felix Voigtlaender. Proof of the theory-to-practice gap in deep learning
via sampling complexity bounds for neural network approximation spaces. arXiv preprint
arXiv:2104.02746, 2021.

Guodong Guo and Na Zhang. A survey on deep learning based face recognition. Computer vision
and image understanding, 189:102805, 2019.

Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and Jinwen He. Towards security threats of deep
learning systems: A survey. IEEE Transactions on Software Engineering, 48(5):1743–1770, 2022.

S. Heinrich. Random approximation in numerical analysis. In Functional analysis, volume 150 of
Lecture Notes in Pure and Appl. Math., pp. 123–171. Dekker, New York, 1994.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep neural networks for
classification. Neural Networks, 138:179–197, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference for Learning Representations, 2015.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 5191–5198, 2020.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

11

Published as a conference paper at ICLR 2023

Mathias Müller, Annette Rios Gonzales, and Rico Sennrich. Domain robustness in neural machine
translation. In Proceedings of the 14th Conference of the Association for Machine Translation in
the Americas, pp. 151–164, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32, pp.
8024–8035, 2019.

D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C. Foulkes. Ab initio solution of the
many-electron schrödinger equation with deep neural networks. Phys. Rev. Research, 2:033429,
Sep 2020.

Kateryna Pozharska and Tino Ullrich. A note on sampling recovery of multivariate functions in the
uniform norm. SIAM Journal on Numerical Analysis, 60(3):1363–1384, 2022.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. Dataset
shift in machine learning. MIT Press, 2008.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Holger Rauhut. Random sampling of sparse trigonometric polynomials. Applied and Computational
Harmonic Analysis, 22(1):16–42, 2007.

L. Reyzin. Statistical queries and statistical algorithms: Foundations and applications. arXiv preprint
arXiv:2004.00557, 2020.

Lorenz Richter and Julius Berner. Robust sde-based variational formulations for solving linear pdes
via deep learning. In International Conference on Machine Learning, pp. 18649–18666, 2022.

David Rolnick and Konrad Kording. Reverse-engineering deep relu networks. In International
Conference on Machine Learning, pp. 8178–8187, 2020.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014.

L. Song, S. Vempala, J. Wilmes, and B. Xie. On the complexity of learning neural networks. Advances
in neural information processing systems, 30, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction APIs. In 25th USENIX security symposium (USENIX Security 16),
pp. 601–618, 2016.

Joseph F Traub. Information-based complexity. In Encyclopedia of Computer Science, pp. 850–854.
John Wiley & Sons, 2003.

Vladimir Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks,
10(5):988–999, 1999.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Verner Vlačić and Helmut Bölcskei. Neural network identifiability for a family of sigmoidal
nonlinearities. Constructive Approximation, 55(1):173–224, 2022.

V.H. Vu. On the infeasibility of training neural networks with small mean-squared error. IEEE
Transactions on Information Theory, 44(7):2892–2900, 1998.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10687–10698, 2020.

12

Published as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Λ2,1

Λ4,1

Λ4, 32

Figure 4: Plots of the function ΛM,σ in Equation (4) for pM,σq P tp2, 1q, p4, 1q, p4, 3
2 qu.

A PROOF OF THE LOWER BOUND IN SECTION 2.3

A.1 CONSTRUCTION OF HAT FUNCTIONS IMPLEMENTED BY RELU NETWORKS

For d P N, M ą 0, σ P R, s P rds, and y P Rd, define

ΛM,σ : RÑ p´8, 1s, t ÞÑ

"

0 if t ď σ ´ 1
M

1´M ¨ |t´ σ| if t ě σ ´ 1
M ,

(4)

and furthermore

∆
psq
M,y : Rd Ñ p´8, 1s, x ÞÑ

˜

s
ÿ

i“1

ΛM,yipxiq

¸

´ ps´ 1q,

ϑ
psq
M,y : Rd Ñ r0, 1s, x ÞÑ %p∆

psq
M,ypxqq,

where, as before, % : R Ñ R, x ÞÑ maxt0, xu, denotes the ReLU activation function. A plot of
ΛM,σ is shown in Figure 4.

With these definitions, the function ϑpsqM,y satisfies the following properties:

Lemma A.1. For d P N, s P rds, M ě 1, y P r0, 1sd, and p P p0,8s, we have

suppϑ
psq
M,y Ă y ` pM´1 ¨ r´1, 1ss ˆ Rd´sq

and
1

2
¨ p2sq´s{p ¨M´s{p ď }ϑ

psq
M,y}Lppr0,1sdq ď 2s{p ¨M´s{p.

Proof. Let us first give a quick overview of the proof. The statement on the support of ϑpsqM,y follows

by observing that ∆
psq
M,ypxq ą 0 can only happen if ΛM,yipxiq ą 0 for all i P rss. As 0 ď ϑ

psq
M,y ď 1,

the upper bound on the Lppr0, 1sdq norm can then be estimated by the Lebesgue measure of the
intersection of the support of ϑpsqM,y and the hypercube r0, 1sd. For the lower bound we compute the

measure of the intersection with a subset of the support on which it holds that ϑpsqM,y ě
1
2 .

We start by proving the statement on the support of ϑpsqM,y. If 0 ‰ ϑ
psq
M,ypxq, then ∆

psq
M,ypxq ą 0,

meaning
řs
i“1 ΛM,yipxiq ą s ´ 1. Because of ΛM,yipxiq P p´8, 1s for all i P rss, this is only

possible if ΛM,yipxiq ą 0 for all i P rss. Directly from the definition of ΛM,yi (see also Figure 4),
this implies |xi ´ yi| ď 1

M for all i P rss, meaning x P y ` pM´1r´1, 1ss ˆRd´sq. This proves the
first claim.

Regarding the second claim, define y˚ :“ py1, . . . , ysq P Rs, and, for k P N, denote by λk the
Lebesgue measure on Rk. Then, since r0, 1sd X suppϑ

psq
M,y Ă py

˚ `M´1r´1, 1ssq ˆ r0, 1sd´s and

0 ď ϑ
psq
M,y ď 1, we see that

}ϑ
psq
M,y}Lppr0,1sdq ď

`

λs
`

y˚ `M´1 r´1, 1ss
˘˘1{p

“

ˆ

2

M

˙s{p

“ 2s{pM´s{p.

13

Published as a conference paper at ICLR 2023

For the converse estimate, let us also write x˚ “ px1, . . . , xsq for x P Rd. Then, if x P Rd satisfies
x˚ P y˚ ` 1

2Ms r´1, 1ss, we see

yi ´
1

M
ď yi ´

1

2Ms
ď xi ď yi `

1

2Ms
for i P rss.

By definition of ΛM,yi , this implies ΛM,yipxiq “ 1´M ¨ |xi ´ yi| ě 1´ 1
2s and hence

∆
psq
M,ypxq “

˜

s
ÿ

i“1

ΛM,yipxiq

¸

´ ps´ 1q ě s´
1

2
´ ps´ 1q “

1

2
,

so that ϑpsqM,ypxq ě
1
2 .

Finally, it is not difficult to show, that

λd
`

x P r0, 1sd : x˚ P y˚ ` 1
2Ms r´1, 1ss

(˘

“ λs
`

r0, 1ss X py˚ ` 1
2Ms r´1, 1ssq

˘

ě p2Msq´s,

see Grohs & Voigtlaender (2021, Equation (A.1)) for the details. Overall, we thus see

}ϑ
psq
M,y}Lppr0,1sdq ě

1

2
¨ p2Msq´s{p.

Note that a compactly supported (non-trivial) function such as ϑpsqM,y can only be represented by
ReLU networks with more than two layers, see Blum & Li (1991, Section 3). For this reason, we
focus on the case L P Ně3 in this paper. Next, we show that scaled versions of the hat functions
ϑ
psq
M,y can be represented using neural networks of a suitable architecture and with a suitable bound

on the magnitude of the coefficients. We begin with the (more interesting) case where the exponent q
that determines the regularization of the weights satisfies q ě 2.

Lemma A.2. Let d P N, L P Ně3, B P Ně3, c ą 0, q P r2,8s, and s P N with s ď mintB3 , du.
Then, there exists a constant

λ ě cL ¨BpL´1qp1´ 2
q q{12

such that

ν ¨
λ

Ms
¨ ϑ
psq
M,y P H

q
pd,B,...,B,1q,c @M P N, ν P t˘1u, and y P r0, 1sd,

where the B in pd,B, . . . , B, 1q appears L´ 1 times.

Proof. Let M P N, y P r0, 1sd, and ν P t˘1u be fixed. We will now construct the coefficients
ppW 1, b1q, . . . , pWL, bLqq of a neural network with the following properties:

1. The first two layers ppW 1, b1q, pW 2, b2qq output at any of their B output dimensions the function
C1 ¨ Λ

psq
M,y for a suitable scaling factor C1 “ C1pc,M, s,B, qq ą 0.

2. The following activation function yields C1 ¨ ϑ
psq
M,y “ %

`

C1 ¨ Λ
psq
M,y

˘

for all output dimensions.

3. Each of the layers ppW 3, b3q, . . . , pWL´1, bL´1qq scales the previous output by another factor
C2 “ C2pc,B, qq ą 0, leading to the output C1C

L´3
2 ¨ ϑ

psq
M,y in any of the B output dimensions.

This construction uses the fact that all intermediate outputs are positive by construction such that
the intermediate ReLU activation functions % just act as identities.

4. The last layer pWL, bLq now computes the sum of the previous outputs scaled by another
factor C3 “ C3pc,B, qq ą 0 and multiplied by ν, such that the final one-dimensional output
equals νBC1C

L´3
2 C3 ¨ ϑ

psq
M,y . The result follows by setting λ “ BC1C

L´3
2 C3Ms and choosing

the scaling factors C1, C2, and C3 as large as possible, constrained by the width B and the
regularization given by c and q.

14

Published as a conference paper at ICLR 2023

Define r :“ tB{p3squ, noting that r ě 1, since s ď B{3. We first introduce a few notations: We
write 0kˆn for the k ˆ n matrix with all entries being zero; similarly, we write 1kˆn for the k ˆ n
matrix with all entries being one. Furthermore, we denote by pe1, . . . , edq the standard basis of Rd,
and define

Is :“ pe1 | ¨ ¨ ¨ | esq P Rdˆs,

α :“
´

M´1
´y1

2

ˇ

ˇ

ˇ

M´1
´y2

2

ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

M´1
´ys

2

¯

P R1ˆs,

β :“
`

´ y1 | ´y2 | ¨ ¨ ¨ | ´ysq P R1ˆs,

γ :“
´

s´1
s

1
2M

ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

s´1
s

1
2M

¯

“
s´ 1

s

1

2M
¨ 11ˆs P R1ˆs.

(5)

We note that all entries of these matrices and vectors are elements of r´1, 1s. Using these matrices
and vectors, we now define

W 1 :“
c

p3srq1{q

´

Is{2
ˇ

ˇIs
ˇ

ˇ0dˆs
ˇ

ˇ ¨ ¨ ¨
ˇ

ˇIs{2
ˇ

ˇIs
ˇ

ˇ0dˆs

r blocks of pIs{2|Is|0dˆsq

ˇ

ˇ0dˆpB´3rsq

¯T

P RBˆd,

b1 :“
c

p3srq1{q

´

α | β | γ | ¨ ¨ ¨ | α | β | γ

r blocks of pα|β|γq

| 0 | ¨ ¨ ¨ | 0
¯T

P RB ,

and furthermore
W 2 :“

c

p3srBq1{q

´

1Bˆs | ´1Bˆs | ´1Bˆs | ¨ ¨ ¨ | 1Bˆs | ´1Bˆs | ´1Bˆs

r blocks of p1Bˆs|´1Bˆs|´1Bˆsq

| 0BˆpB´3rsq

¯

PRBˆB,

b2 :“ p0 | ¨ ¨ ¨ | 0qT P RB ,
where we note that B ´ 3rs ě 0 since r “ tB{p3squ. It is straightforward to verify that
}W 1}`q , }W

2}`q , }b
1}`q , }b

2}`q ď c. Furthermore, we define

W i :“
c

B2{q
1BˆB and bi :“ p0| ¨ ¨ ¨ |0qT P RB for 3 ď i ď L´ 1,

and finally WL :“ ν¨c
B1{q p1| ¨ ¨ ¨ |1q P R1ˆB and bL :“ p0q P R1. Again, it is straightforward to

verify that }W i}`q , }b
i}`q ď c for 3 ď i ď L ´ 1 and also that }WL}`q , }b

L}`q ď c. Therefore,
setting Φ :“ ppW 1, b1q, . . . , pWL, bLqq, we have RpΦq P Hq

pd,B,...,B,1q,c; it thus remains to verify

that RpΦq “ ν ¨ λ
Ms ¨ ϑ

psq
M,y for a constant λ as in the statement of the lemma.

To see this, we note for any x P Rd and j P rds that

%
`xj

2 `
M´1

´yj
2

˘

´ %pxj ´ yjq “
1
2%
`

xj ´ yj `M
´1

˘

´ %pxj ´ yjq

“

$

’

’

&

’

’

%

0 if xj ď yj ´M
´1

1
2M ¨ p1´M ¨ |xj ´ yj |q if yj ´M´1 ă xj ď yj

1
2M ¨ p1´M ¨ |xj ´ yj |q if xj ą yj

“ 1
2MΛM,yj pxjq.

(6)

For notational convenience we further define φipxq :“ %pW ix` biq for i P rLs. Then, we observe
for x P RB and i P rBs that

rφ2pxqsi “
c

p3rsBq1{q

r´1
ÿ

b“0

s
ÿ

j“1

´

x3sb`j ´ x3sb`s`j ´ x3sb`2s`j

¯

.

Therefore, we see for arbitrary x P Rd and i P rBs that
“`

φ2 ˝ % ˝ φ1
˘

pxq
‰

i
“

c2

p3rsq2{qB1{q

r´1
ÿ

b“0

s
ÿ

j“1

´

%
`xj

2 `
M´1

´yj
2

˘

´ %pxj ´ yjq ´ %
`

s´1
s

1
2M

˘

¯

“
c2

2Mp3rsq2{qB1{q

r´1
ÿ

b“0

s
ÿ

j“1

´

ΛM,yj pxjq ´
s´1
s

¯

“
c2r

2Mp3rsq2{qB1{q
∆
psq
M,ypxq.

15

Published as a conference paper at ICLR 2023

Hence, it holds that

`

% ˝ φ2 ˝ % ˝ φ1
˘

pxq “
c2r

2Mp3rsq2{qB1{q
¨ ϑ
psq
M,ypxq ¨ p1| ¨ ¨ ¨ |1q

T P RB .

Next, for 3 ď i ď L´ 1, we see for arbitrary κ ě 0 and j P rBs that
“`

% ˝ φi
˘`

κ ¨ p1| ¨ ¨ ¨ |1qT
˘‰

j
“ %

`
řB
`“1rW

isj,` κ
˘

“ %pcB1´ 2
q κq “ cB1´ 2

q κ,

meaning
`

% ˝ φi
˘`

κp1 | ¨ ¨ ¨ | 1qT
˘

“ cB1´ 2
q κ ¨ p1 | ¨ ¨ ¨ | 1qT .

Therefore, we conclude

`

% ˝ φL´1 ˝ % ˝ φL´2 ˝ ¨ ¨ ¨ ˝ % ˝ φ1
˘

pxq “
cL´1 r pB1´ 2

q qL´3

2Mp3rsq2{qB1{q
ϑ
psq
M,ypxq ¨ p1 | ¨ ¨ ¨ | 1qT P RB .

All in all, this easily implies

RpΦqpxq “
ν

B1{q

B
ÿ

i“1

cLr pB1´ 2
q qL´3

2Mp3rsq2{qB1{q
ϑ
psq
M,ypxq “ ν ¨

cL pB1´ 2
q qL´2p3rsq1´

2
q

6Ms
ϑ
psq
M,ypxq.

It therefore remains to recall that r “ tB{p3squ ě 1, so that 2r ě 1` r ą B
3s and hence 3rs ě B

2 .
Since also 1´ 2

q ě 0, this implies p3rsq1´
2
q ě pB{2q1´

2
q ě B1´ q

2 {2, which finally shows

λ :“
cL pB1´ 2

q qL´2p3rsq1´
2
q

6
ě
cL ¨BpL´1qp1´ 2

q q

12
.

Now, we also consider the case q ď 2. We remark that in the case q “ 2, the next lemma only
agrees with Lemma A.2 up to a constant factor. This is a proof artifact and is inconsequential for the
questions we are interested in.
Lemma A.3. Let d P N, L P Ně3, B P Ně3, c ą 0, q P r1, 2s, and s P N with s ď mintd, B3 u.
Then, we have

ν ¨
cLs1´ 2

q {p2 ¨ 32{qq

Ms
ϑ
psq
M,y P H

q
pd,B,...,B,1q,c @M P N, ν P t˘1u, and y P r0, 1sd,

where the B in pd,B, . . . , B, 1q appears L´ 1 times.

Proof. The proof idea is similar to the one of Lemma A.2. However, we only realize a scaled version
of the function ϑpsqM,y in the first coordinate of the outputs after the first two layers. As in the proof of
Lemma A.2, we denote by pe1, . . . , edq the standard basis of Rd, and we write 0kˆn and 1kˆn for
the k ˆ n matrices which have all entries equal to zero or one, respectively. Moreover, we use the
matrices and vectors Is, α, β, γ defined in Equation (5). With this setup, define

W 1 :“
c

p3sq1{q
¨
`

Is{2
ˇ

ˇ Is
ˇ

ˇ 0dˆpB´2sq

˘T
P RBˆd,

b1 :“
c

p3sq1{q
¨
`

α
ˇ

ˇβ
ˇ

ˇ γ
ˇ

ˇ 01ˆpB´3sq

˘T
P RB .

Note that these definitions make sense since 2s ď 3s ď B. Further, define b2 :“ p0| ¨ ¨ ¨ |0qT P RB
and

W 2 :“
c

p3sq1{q

ˆ

11ˆs ´11ˆ2s 01ˆpB´3sq

0pB´1qˆs 0pB´1qˆ2s 0pB´1qˆpB´3sq

˙

P RBˆB .

Next, for 3 ď i ď L´ 1, define bi :“ p0| ¨ ¨ ¨ |0qT P RB and

W i :“ c ¨

¨

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 0

˛

‹

‹

‚

P RBˆB ,

16

Published as a conference paper at ICLR 2023

and finally let WL :“ ν ¨ c ¨ p1|0| ¨ ¨ ¨ |0q P R1ˆB and bL :“ p0q P R1. It is straightforward to
verify that }W j}`q ď c and }bj}`q ď c for all 1 ď j ď L. Therefore, RpΦq P Hq

pd,B,...,B,1q,c for

Φ :“ ppW 1, b1q, . . . , pWL, bLqq. It therefore remains to show that RpΦq “ ν ¨ c
Ls

1´ 2
q {p2¨32{q

q

Ms ϑ
psq
M,y.

For notational convenience we define φipxq :“ %pW ix ` biq for i P rLs. Then we note for
3 ď i ď L´ 1 that

`

% ˝ φi
˘

pxq “
`

c ¨ %px1q | 0 | ¨ ¨ ¨ | 0
˘T

. This easily implies
`

% ˝ φL´1 ˝ % ˝ φL´2 ˝ ¨ ¨ ¨ ˝ % ˝ φ3
˘

pxq “
`

cL´3 ¨ %px1q | 0 | ¨ ¨ ¨ | 0
˘T
,

and therefore
`

φL ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ3
˘

pxq “ ν ¨ cL´2 %px1q for x P RB .

Finally, an application of Equation (6) shows that

rp% ˝ φ2 ˝ % ˝ φ1qpxqs1 “
c2

p3sq2{q
%

ˆ s
ÿ

i“1

ˆ

%
`

xi

2 `
M´1

´yi
2

˘

´ %pxi ´ yiq ´ %
`

s´1
s

1
2M

˘

˙˙

“
c2

2M ¨ p3sq2{q
%

ˆˆ s
ÿ

i“1

ΛM,yipxiq

˙

´ ps´ 1q

˙

“
c2

2M ¨ p3sq2{q
%p∆

psq
M,ypxqq “

c2

2M ¨ p3sq2{q
ϑ
psq
M,ypxq.

Overall, we thus see as claimed that

RpΦqpxq “ ν ¨ cL´2 ¨
c2

2M ¨ p3sq2{q
¨ ϑ
psq
M,ypxq “ ν ¨

cLs1´ 2
q {p2 ¨ 32{qq

Ms
¨ ϑ
psq
M,ypxq.

Remark A.4. A straightforward adaptation of the proof shows that the same statement holds for
Hq
pd,B,N2,...,NL´1,1q,c

instead of Hq
pd,B,...,B,1q,c, for arbitrary N2, . . . , NL´1 P N.

A.2 A GENERAL LOWER BOUND

We now show that any target class containing a large number of (shifted) hat functions has a large
optimal error.

Theorem A.5. Let d,m P N, s P rds, and M :“ 8rm1{ss. Assume that U Ă Cpr0, 1sdq satisfies

u0 ` ν ¨
λ

Ms
ϑ
psq
M,y P U @ ν P t˘1u and y P r0, 1sd

for certain λ ą 0 and u0 P Cpr0, 1s
dq. Then,

errMC
m pU,Lppr0, 1sdqq ě

λ{4

p32sq1`
s
p
¨m´

1
p´

1
s @ p P r1,8s.

The general idea of the proof is sketched in Section 2.3. In what follows we provide the technical
details.

Proof. The proof is divided into five steps.

Step 1: Define k :“ rm1{ss and let y` :“ p1,...,1q
8k `

`´p1,...,1q
4k P r0, 1sd for ` P r4ksd. Furthermore,

let Γ :“ r4kss ˆ tp1, . . . , 1qu Ă r4ksd. With

f`,ν :“ u0 ` ν ¨
λ

Ms
ϑ
psq

M,y`
for p`, νq P Γˆ t˘1u, (7)

it holds by assumption that
f`,ν P U @ p`, νq P Γˆ t˘1u. (8)

Furthermore, since M “ 8k, Lemma A.1 and a moment’s thought reveal that

@ p`, νq, p`1, ν1q P Γˆ t˘1u : ` ‰ `1 ñ supppf`,ν ´ u0q
o
X supppf`1,ν1 ´ u0q

o
“ H, (9)

17

Published as a conference paper at ICLR 2023

where we note that supppf`,ν ´ u0q “ suppϑ
psq

M,y`
.

Step 2: Let5 A P Alg2mpU,L
pq be arbitrary and x “ xpu0q “ px1, . . . , x2mq P

`

r0, 1sd
˘2m

as
described before Equation (1). Put

Ix :“
!

` P Γ : @ i P r2ms : ϑ
psq

M,y`
pxiq “ 0

)

.

We now show that
|Ix| ě p4kq

s ´ 2m. (10)

To see this we will estimate the cardinality of the complement set Icx :“ ΓzIx from above. For
` P Icx there must exist i` P r2ms with ϑpsq

M,y`
pxi`q ‰ 0 and hence xi` P supp

`

ϑ
psq

M,y`

˘o
. The map

Icx Ñ r2ms, ` ÞÑ i`, is thus injective due to (9). Therefore |Icx| ď 2m and thus |Ix| ě |Γ| ´ 2m,
which is (10). Furthermore, the definition of Ix, combined with the definition of f`,ν in (7) and the
condition that A can only depend on the samples x and the values of the input function at these
samples, directly imply that

@ p`, νq P Γˆ t˘1u : ` P Ix ñ Apf`,νq “ Apu0q. (11)

Step 3: Recalling our notation for the average in Section 1.2, it holds that

ÿ

`PΓ
νPt˘1u

}f`,ν ´Apf`,νq}Lp “
1

p4kqs

ÿ

`PΓ

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

ě
1

p4kqs

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

(12)

“
|Ix|

p4kqs

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

ě
1

2

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apf`,´1q}Lp `

1

2
}f`,1 ´Apf`,1q}Lp

˙

(13)

“
1

2

ÿ

`PIx

ˆ

1

2
}f`,´1 ´Apu0q}Lp `

1

2
}f`,1 ´Apu0q}Lp

˙

(14)

ě
1

2

ÿ

`PIx

›

›

›

›

λ

Ms
ϑ
psq

M,y`

›

›

›

›

Lp

(15)

ě
1

2
¨ p2sq´

s
p´1

¨ λ ¨M´ s
p´1 (16)

ě
1

2
¨ p2sq´

s
p´1

¨ λ ¨ 16´
s
p´1

¨m´
1
p´

1
s (17)

“
λ

2 ¨ p32sq
s
p`1

¨m´
1
p´

1
s .

Here, (12) follows since Ix Ă Γ; (13) follows from k “ rm
1
s s and (10); (14) follows from (11); (15)

follows from the triangle inequality and (7); (16) follows from Lemma A.1; and (17) follows from
the definition of M , which implies that M ď 8m1{s ` 8 ď 16m1{s.

Step 4: Let pA,mq P AlgMC
m pU,Lpq be arbitrary with A “ pAωqωPΩ for a probability space

pΩ,F ,Pq. Put Ω0 :“ tω P Ω : mpωq ď 2mu. Since the Markov inequality implies that

m ě Erms ě 2m ¨ PpΩc0q,

it follows that

PpΩ0q ě
1

2
. (18)

5For notational convenience, we abbreviate Lp
pr0, 1sdq by Lp in this proof.

18

Published as a conference paper at ICLR 2023

Step 5: We finally estimate for pA,mq as in Step 4 that

sup
uPU

E r}u´Aωpuq}Lps ě
ÿ

`PΓ
νPt˘1u

E r}f`,ν ´Aωpf`,νq}Lps (19)

ě E

»

—

–

1Ω0
pωq

ÿ

`PΓ
νPt˘1u

}f`,ν ´Aωpf`,νq}Lp

fi

ffi

fl

ě PpΩ0q ¨
λ

2 ¨ p32sq
s
p`1

¨m´
1
p´

1
s (20)

ě
λ{4

p32sq
s
p`1

¨m´
1
p´

1
s . (21)

Here, (19) follows from (8); (20) follows from Step 3 (note that Aω P Alg2mpU,L
pq for ω P Ω0);

and (21) follows from (18).

Since pA,mq P AlgMC
m pU,Lpq was arbitrary, this implies the desired statement.

Remark A.6. Close inspection of the proof of Theorem 2.2 shows that one can replace the point
samples upxiq by Tupxiq, where T : U Ñ Cpr0, 1sdq is any local operator6. Since any differential
operator is a local operator, our lower bounds also hold if we measure point samples of a differential
operator applied to u, as it is commonly done in the context of so-called physics-informed neural
networks (Raissi et al., 2019).

B PROOF OF THE UPPER BOUND IN SECTION 2.4

We first provide an auxiliary result which bounds the spectral norm }W }`2Ñ`2 of a matrix W by its
entry-wise `q norm.
Lemma B.1. Let W P RNˆM and q P r1,8s. Then it holds that

}W }`2Ñ`2 ď

#

}W }`q if q ď 2

p
?
NMq1´

2
q ¨ }W }`q if q ě 2.

Proof. We first note that }W }`2 “ }W }F , the Frobenius norm of the matrix W . It is well-known that
the Frobenius norm satisfies }W }`2Ñ`2 ď }W }F . Since we could not locate a convenient reference,
we reproduce the elementary proof: The Cauchy-Schwarz inequality implies that

}Wx}2`2 “
N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

M
ÿ

j“1

Wi,jxj

ˇ

ˇ

ˇ

ˇ

2

ď

N
ÿ

i“1

ˆ M
ÿ

j“1

|Wi,j |
2
M
ÿ

j“1

|xj |
2

˙

“ }W }2`2 ¨ }x}
2
`2 ,

which implies the claim. Thus, we see for q ď 2 that }W }`2Ñ`2 ď }W }`2 ď }W }`q . Clearly, the
same estimate holds for complex-valued matrices and vectors as well.

Now, to handle the case q ě 2, we first note for q “ 8 and W P CNˆM and x P CM that

}Wx}2`2 “
N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

M
ÿ

j“1

Wi,j xj

ˇ

ˇ

ˇ

ˇ

2

ď

N
ÿ

i“1

ˆ M
ÿ

j“1

|Wi,j |
2
M
ÿ

j“1

|xj |
2

˙

ď }x}2`2 ¨ }W }
2
`8 ¨NM.

This proves the claim in case of q “ 8. Finally, for q P p2,8q, we choose θ “ 2
q , so that 1

q “
θ
2`

1´θ
8

.
Thus, applying the Riesz-Thorin interpolation theorem (see, e.g., Folland, 1999, Theorem 6.27) to the
linear map pCNˆM , } ¨ }`q q Ñ pCN , } ¨ }`2q, W ÞÑWx, shows for each x P CM that

}Wx}`2 ď p
?
NMq1´θ ¨ }W }`q “ p

?
NMq1´

2
q ¨ }W }`q ,

which completes the proof7.
6This means that if f “ g on a neighborhood of x P r0, 1sd, then pTfqpxq “ pTgqpxq.
7We consider complex matrices and vectors, since the Riesz-Thorin theorem applies as stated only for the

complex setting.

19

Published as a conference paper at ICLR 2023

Next, let us define the Lipschitz constant Lip`q pφq of a function φ : Rd Ñ Rk with respect to the `2
norm by

Lip`q pφq :“ sup
x,yPRd,x‰y

}φpxq ´ φpyq}`q

}x´ y}`q
.

Note that the Lipschitz constant of an affine-linear mapping x ÞÑWx` b equals the spectral norm
}W }`2Ñ`2 . Thus, we can use the previous lemma to bound the Lipschitz constant of neural network
realizations RpΦq P Hq

pN0,...,NLq,c
in terms of their architecture pN0, . . . , NLq and the regularization

on their weights (given by max1ďiďL maxt}W i}`q , }b
i}`qu ď c).

Lemma B.2. Let L P N, q P r1,8s, c ą 0, and N0, . . . , NL P N. Then, each RpΦq P Hq
pN0,...,NLq,c

satisfies

Lip`2pRpΦqq ď

#

cL if q ď 2

cL ¨ p
?
N0NL ¨N1 ¨ ¨ ¨NL´1q

1´2{q if q ě 2.

Proof. Let RpΦq P Hq
pN0,...,NLq,c

be arbitrary. By definition, this means

RpΦq “ φL ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ1,

where % acts componentwise, and where the affine-linear maps φi : RNi´1 Ñ RNi are of the form
φipxq “W ix` bi, with W i P RNiˆNi´1 and }W i}`q ď c.

The ReLU activation function % : RÑ R, x ÞÑ maxt0, xu, is easily seen to satisfy |%pxq ´ %pyq| ď
|x´ y| for x, y P R. This implies that

Lip`2pRpΦqq “ Lip`2pφ
L ˝ % ˝ φL´1 ˝ ¨ ¨ ¨ ˝ % ˝ φ1q ď

L
ź

i“1

Lip`2pφ
iq. (22)

Lemma B.1 establishes for i P rLs that

Lip`2pφ
iq ď

#

c if q ď 2

c ¨ p
a

Ni´1Niq
1´ 2

q if q ě 2,

which, together with (22), proves the claim.

Note that we can estimate the error of reconstructing Lipschitz continuous functions from samples
by piecewise constant interpolation. Together with Lemma B.2, this allows us to construct a (non-
adaptive, deterministic) algorithm for reconstructing neural networks from samples.

Lemma B.3. Let d P N. Then, for every m P N, there exist points x1, . . . , xm P r0, 1s
d and a map

Θm : Rm Ñ L8pr0, 1sdq satisfying
›

›Θm

`

upx1q, . . . , upxmq
˘

´ u
›

›

L8pr0,1sdq
ď Lip`2puq ¨ 2

?
d ¨m´1{d (23)

for every function u : r0, 1sd Ñ R with Lip`2puq ă 8.

Proof. Let m P N be arbitrary and choose K :“ tm1{du ě 1. Write

tx1, . . . , xKdu “
p1,...,1q

2K `

0
K ,

1
K , . . . ,

K´1
K

(d
noting that r0, 1sd “

Kd
ď

i“1

xi ` r´
1

2K ,
1

2K s
d.

Hence, choosing Qi :“ pxi ` r´
1

2K ,
1

2K s
dqz

Ťi´1
j“1pxj ` r´

1
2K ,

1
2K s

dq, we get r0, 1sd “
ŢKd

i“1Qi,
where the union is disjoint.

Note that Kd ď m and choose arbitrary points xKd`1, . . . , xm P r0, 1s
d. Furthermore, define

Θm : Rm Ñ L8pr0, 1sdq, pa1, . . . , amq ÞÑ
Kd
ÿ

i“1

ai ¨ 1Qi
.

20

Published as a conference paper at ICLR 2023

To prove Equation (23), let u : r0, 1sd Ñ R be arbitrary with Lip`2puq ă 8. For arbitrary
x P r0, 1sd, there then exists a unique i P rKds satisfying x P Qi Ă xi ` r´

1
2K ,

1
2K s

d, and in
particular }x´ xi}`2 ď

?
d{p2Kq. Therefore,

ˇ

ˇΘm

`

upx1q, . . . , upxmq
˘

pxq ´ upxq
ˇ

ˇ “ |upxiq ´ upxq|

ď Lip`2puq ¨ }xi ´ x}`2 ď Lip`2puq ¨

?
d

2K
.

Since x P r0, 1sd was arbitrary, this implies

›

›Θmpupx1q, . . . , upxmqq ´ u
›

›

L8pr0,1sdq
ď Lip`2puq ¨

?
d

2K
.

Finally, we note that K “ tm1{du ě 1 implies 2K ě 1`K ą m1{d, which proves the claim.

Note that the proof above requires to convert a Lipschitz constant with respect to the `2 norm to an
`8 estimate which costs a factor

?
d and contributes to the gap between our lower and upper bound.

Remark B.4. Note that our upper and lower bounds in Theorems 1.1 and 1.4 are asymptotically
sharp with respect to the number of samples m, the regularization parameter c, and the network
depth L but not fully sharp with respect to the multiplicative factor depending on d and q only.
Given m many samples, a combination of Theorems 1.1 and 1.4 shows that the optimal achievable
L8 reconstruction error ε for reconstructing neural networks with L layers up to width 3d and
coefficients bounded by c in the `q norm satisfies
#

1
256¨32{q

¨ cL ¨ d´
2
q ¨m´

1
d

1
1536¨d ¨ c

L ¨ p3dqpL´1qp1´ 2
q q ¨m´

1
d

ď ε ď

?
d ¨ cL ¨m´

1
d if q ď 2

d1´ 1
q ¨ cL ¨ p3dqpL´1qp1´ 2

q q ¨m´
1
d if q ą 2.

+

For moderate input dimensions d the upper and lower bounds are quite tight, but for larger d there
remains a gap. However, in that case the lower bound for m is already intractable (at least if ε ! 1{d
or if c " 1 and L is large) so that the upper bound is merely of academic interest.

21

Published as a conference paper at ICLR 2023

C HYPERPARAMETERS USED IN THE NUMERICAL EXPERIMENTS

Table 1: General hyperparameters for the experiments in Figure 1 and Section 3.
Description Value Variable
Experiment
precision float64
GPUs per training 1 (NVIDIA GTX-1080, RTX-2080Ti, A40, or A100)
Deep learning algorithms
optimizer Adam
initialization of coefficients pW `, b`q Upr´

a

1{N`´1,
a

1{N`´1sq

activation function ReLU %
learning rate scheduler exponential decay
initial / final learning rate 10´4 / 10´6

decay frequency every epoch
Evaluation
number of samples 224 J
distribution of samples Upr´0.5, 0.5sdq
evaluation norm t1, 2,8u p
number of evaluations 5 (evenly spaced over all epochs)

Table 2: Hyperparameters specific to the experiment in Figure 1.
Description Value Variable
Experiment
samples 103 m
dimension 1 d
Target function
sinusoidal function x ÞÑ logpsinp50xq ` 2q ` sinp5xq u
Deep learning algorithm
depth of architecture 22 L
width of architecture 50 N1, . . . , NL´1

batch-size 20
number of epochs 5000

Table 3: Hyperparameters specific to the experiments in Section 3.
Description Value Variable
Experiment
samples t102, 103, 104, 105u m
dimension t1, 3u d
Target functions
number of teachers 40 |pU |
depth of teacher architecture 5 L
width of teacher architecture 32 N1, . . . , NL´1

activation of teacher ReLU %
teacher coefficient norm 8 q
teacher coefficient norm bound 0.5 c
distribution of coefficients Upr´0.5, 0.5sq
Deep learning algorithms
number of seeds 3 |pΩ|
depth of student architecture 5 L
width of student architecture t32, 512, 2048u N1, . . . , NL´1

batch-size t100,m{5,m{50u
number of epochs 500 (if batch-size “ 100), 5000 (else)

22

	Introduction
	Related Work
	Notation

	Main Results
	Adaptive (randomized) algorithms based on point samples
	Neural network classes
	Lower bound
	Upper bound

	Numerical Experiments
	Discussion and Limitations
	Proof of the lower bound in Section 2.3
	Construction of hat functions implemented by ReLU networks
	A general lower bound

	Proof of the upper bound in Section 2.4
	Hyperparameters used in the numerical experiments

