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ABSTRACT

Mapping temporally evolving musical affect into coherent visual imagery is a
challenging instance of cross-modal generation: audio is abstract, layered, and
subjective, whereas images are static and concrete. We present MusePainter, a
general framework that integrates structured cross-modal alignment with multi-
axis preference learning to achieve fine-grained controllability in generative mod-
els. MusePainter first extracts structured descriptors capturing structural, stylis-
tic, and affective dimensions of music, which serve as controllable guidance for
image synthesis. To handle subjectivity, we introduce a preference optimization
scheme that disentangles emotional consistency, semantic alignment, and creative
appeal, and optimizes them independently. Experiments on curated benchmarks
and user studies demonstrate that MusePainter surpasses strong audio-to-image
and audio→text→image baselines in semantic fidelity, stylistic congruence, and
affective resonance. While developed for music-to-image, the framework’s com-
ponents—such as interpretable descriptors and multi-axis preference optimiza-
tion—may also extend to other modalities, offering potential insights for broader
controllable cross-modal generation.
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Figure 1: A simple schematic diagram is used to illustrate the tasks and main contributions of this
MusePainter.

1 INTRODUCTION

Music evokes vivid and subjective imagery, yet translating temporally evolving musical affect into
coherent visuals remains an unsolved challenge in cross-modal generation. Unlike environmental
sounds that correspond to concrete sources (e.g., traffic or footsteps), music is abstract, layered,
and emotionally dynamic. Bridging this gap is scientifically valuable: it requires models to inte-
grate symbolic, stylistic, and affective representations across modalities, pushing beyond the literal
semantic mappings that dominate existing multimodal systems.

Recent progress in audio-to-image generation Sung-Bin et al. (2023); Zhao et al. (2022) has demon-
strated that cross-modal models can produce visually plausible results for concrete sounds. How-
ever, when the input is abstract and time-varying music, these systems fail to capture emotional
nuance and stylistic coherence. Two core obstacles stand out. First, the challenge of cross-modal
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alignment for abstract affect (Figure 1a): music evolves continuously across melody, rhythm, and
harmony, whereas images are static snapshots. Capturing this mapping demands structured represen-
tations that preserve layered musical semantics. Second, the dilemma of subjectivity in evaluation
and control: different listeners may associate the same melody with vastly different imagery Juslin
(2010), making universal ground truth impossible. Objective metrics such as CLIP or FAD can-
not fully reflect emotional resonance, while existing pipelines lack mechanisms for fine-grained,
preference-aware control.

To address these challenges, we introduce MusePainter, a framework that couples interpretable
music-theoretic descriptors with human preference learning for fine-grained and controllable music-
to-image generation. MusePainter first deconstructs music into its foundational, fine-grained at-
tributes, analyzing elements such as melody, rhythm, harmony, instrumentation, and overall struc-
ture to capture the music’s emotional texture in a structured manner. This deep musical understand-
ing transcends mere acoustic features to interpret the theoretical underpinnings of the music (Figure
1 (b)). Another key innovation is the Hybrid Human Preference mechanism (Figure 1 (c)). Recog-
nizing the highly personal nature of emotional and aesthetic interpretation, our system is designed
to learn from individual preferences. This allows the framework to adapt its visual style to match a
user’s personal aesthetic and emotional response, thereby generating more meaningful and expres-
sive imagery. This approach directly confronts the challenge of subjectivity that has long limited
previous attempts. Our contributions are threefold:
(1).Problem formalization: We systematically analyze the semantic gap in music-to-image gener-
ation, highlighting abstract emotional alignment and subjective evaluation as two core challenges.
(2).Framework and method: We propose MusePainter, a three-stage pipeline that integrates struc-
tured music descriptor extraction, cross-modal visual prompt construction, and multi-axis reinforce-
ment learning from human feedback.
(3).Benchmark and validation: We curate a descriptive album art benchmark (Figure 1d) and con-
duct extensive experiments. Results show that MusePainter outperforms strong audio-to-image and
audio→text→image baselines in semantic fidelity, stylistic congruence, and affective resonance,
validated through both expert-annotated metrics and user studies.

2 RELATED WORK

Audio-to-Image Generation. Early audio-to-image generation (AIG) methods using direct CNN-
based mappings Wan et al. (2019); Lee et al. (2022) were hindered by poor cross-modal semantic
alignment Chen & Akata (2021); Mazumder & P (2021); Sun & Liang (2020). Subsequent work
improved alignment through specialized strategies Qin et al. (2023); Sung-Bin et al. (2023) and large
pre-trained models like CLIP Wu & Bello (2022); Guzhov et al. (2022); Kreuk et al. (2022). Despite
these advances, the semantic granularity of audio embeddings remains coarse, limiting their ability
to capture fine-grained and affective details. To circumvent this, a recent paradigm shift involves us-
ing text as an intermediary to leverage powerful text-to-image (T2I) models Lee et al. (2023); Yariv
et al. (2023); Qin et al. (2024); Wang et al. (2023). However, this audio-to-text conversion often
discards the nuanced, non-linguistic emotional expressions inherent in music, making the resulting
images emotionally shallow—a limitation our work directly addresses.

Audio-related Cross-Modal Alignment. Cross-modal alignment for audio has largely mirrored
advances in the text–image domain, with contrastive learning frameworks Radford et al. (2021);
Wu et al. (2023b) becoming foundational. This led to powerful models like AudioCLIP Guzhov
et al. (2022) and CLAP Elizalde et al. (2023), which learn shared embedding spaces for robust
audio–text understanding. The state of the art is represented by models such as ImageBind Girdhar
et al. (2023), which unifies six modalities into a single space using images as a central anchor. Yet
a critical limitation persists: these models are optimized to align concrete, event-based semantics.
Their architectures are not designed to capture the abstract, evolving, and emotional contours that
characterize music, creating a gap that motivates our work.

RLHF in T2I Tasks. Reinforcement Learning from Human Feedback (RLHF) is increasingly re-
placing automated metrics Heusel et al. (2017); Hessel et al. (2021) for aligning text-to-image (T2I)
models with human preferences. Reward models vary in their approach, from providing holistic
scores to capture overall image quality, as in ImageReward Xu et al. (2023); Wu et al. (2023a), to
offering fine-grained feedback on specific flaws Liang et al. (2024). Generative models are then
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Figure 2: The overall architecture of our proposed MusePainter framework. The framework consists
of three main stages. (1) Fine-grained Melodic Micro Describer, (2) Coarse Music-Vision Genera-
tion, (3) Human-Centric Refinement.

fine-tuned using these preferences, with algorithms evolving from early RL methods Black et al.
(2023); Fan et al. (2023) to the more direct and efficient Direct Preference Optimization (DPO) Wal-
lace et al. (2024); Yang et al. (2024); Clark et al. (2023); Hiranaka et al. (2024). However, nearly all
existing methods optimize for a single fused objective, whereas in music-guided generation, pref-
erences are inherently multi-dimensional (e.g., emotional consistency vs. creative appeal). This
motivates our design of a multi-axis preference optimization scheme that treats each axis indepen-
dently.

3 METHODOLOGY

3.1 OVERVIEW

As depicted in Figure 2, our MusePainter framework enables a controllable transformation from
music to vision through three tightly coupled components. First, the Fine-grained Melodic Mi-
cro Describer (FMMD) extracts structured descriptors spanning structural, stylistic, and affective
dimensions of music. Second, the Coarse Music-Vision Generation (CMVG) maps these descrip-
tors into visual prompts and synthesizes an initial image with a diffusion backbone. Finally, the
Human-Centric Refinement (HCR) aligns outputs with human judgments by disentangling mul-
tiple preference axes (emotional, semantic, creative) and optimizing them independently. Together,
these modules address the core limitations of prior approaches: inadequate handling of abstract
musical semantics and lack of fine-grained, preference-aware controllability.

3.2 FINE-GRAINED MELODIC MICRO DESCRIBER

Our approach to fine-grained melodic description unfolds in two stages. First, the Expert-guided
Agent-based Music Analysis (EAMA) module converts unstructured, long-form text into a set of
structured, high-quality descriptors. Second, these descriptors guide a two-stage, coarse-to-fine
finetuning of MuseAes-LLM. This process instills a hierarchical understanding, starting with holis-
tic alignment and progressively refining it with micro-level structural and stylistic details.
Expert-guided Agent-based Music Analysis (EAMA). To obtain fine-grained semantic represen-
tations from long-form music descriptions, we introduce the Expert-guided Agent-based Music
Analysis (EAMA) module (Fig. 3). Given a music clip x and its text description t, EAMA’s goal is
to extract a structured set of descriptors D(t) across six dimensions: instrument, style, key, time sig-
nature, tempo, and mood. The process begins with specialized LLM-based agents, each prompted
to extract and rephrase content for a single dimension i:

di = Agent(i)LLM(t). (1)
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Figure 3: Framework of Expert-guided Agent-based Music Analysis (EAMA) module, which con-
sists of Hybrid Filter and Multi-level Musicology Description.

To ensure diversity, our hybrid-length generation strategy produces candidate descriptions Li =
{di20, di50, di70} at three token lengths (20, 50, 70), corresponding to concise, balanced, and expres-
sive abstraction levels. To mitigate hallucinations and ensure factual grounding, we employ a hybrid
filtering mechanism. For each dimension i, we compute a multi-agent agreement score sagree and a
cross-modal consistency score scross:

sagree(di) =
1

N

N∑
n=1

sim(di,Agentn(t)), scross(di, x) = CLAP(x, di) + ImageBind(x, di). (2)

We then retain the descriptor with the highest combined score sagree + scross. This yields a final
output of structured, multi-granularity descriptors:

D(t) = {Linstr, . . . ,Lmood}. (3)

Two-stage Music-LLM Finetune. We develop MuseAes-LLM by finetuning a Qwen-Audio Chu
et al. (2023) base model in two stages. The intuition is that coarse-level finetuning first ensures
global semantic alignment, while fine-grained hierarchical learning subsequently injects detailed
control over structural, stylistic, and affective aspects.
Stage 1: Coarse-level Alignment. We align the model with holistic music descriptions by finetuning
on (x, t) pairs, where x is the input audio. The coarse-level objective is:

Lcoarse = E(x,t) [− logP (t | x; θcoarse)] . (4)

Stage 2: Fine-grained Hierarchical Learning. Next, we perform descriptor-level tuning. The
descriptors are grouped into three semantic levels: Structural ({dsig, dtempo, dkey}), Stylistic
({dinstr, dstyle}), and Aesthetic ({dmood}). This is optimized via a hierarchical multi-task loss:

Lfine =
∑

l∈{struct,style,aesthetic}

λl · E(x,dl)

[
− logP (dl | x; θfine)

]
, (5)

where dl is the concatenated descriptor for level l, and λl is its corresponding weight. To further
enhance the model’s capacity to interpret musical attributes, we adopt an instruction-style finetuning
strategy: each descriptor dimension is paired with a tailored prompt (e.g., “Describe the emotional
tone of this music”), so that the model learns to answer specific evaluative queries in a controlled
manner.

3.3 COARSE MUSIC-VISION GENERATION (CMVG)

To bridge music and vision, we map our three-tiered music descriptors (structural, stylistic, aes-
thetic) to five visual dimensions: color palette, lighting, iconography, composition, and textures. We
then introduce MusVis-LLM, a dedicated model trained to generate structured visual descriptions
directly from audio. This module serves as a critical bridge between music understanding and visual
synthesis, providing controllable coarse grounding for subsequent refinement.
Hybrid-Length Visual Description Distillation. We first construct pseudo-ground-truth visual
descriptions for each music clip. A reasoning-focused LLM (LLMinf) is prompted to infer a tex-
tual description for each of the five visual dimensions. To balance conciseness and expressiveness,
we employ a Hybrid-Length Distillation strategy. For each visual dimension v, the LLM gener-
ates outputs of three fixed lengths (20, 50, and 70 tokens), corresponding to factual, balanced, and

4
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expressive abstraction levels. Empirically, we find that different lengths capture complementary
properties: shorter (20-token) captions reduce hallucination but may omit details, longer (70-token)
captions provide rich stylistic cues at the cost of factual precision, while medium-length (50-token)
captions strike the best balance (see Fig. 4). As shown in the figure, the 50-token outputs maximize
the balanced score while maintaining low hallucination, justifying our choice of 20/50/70 as anchor
lengths. The 50-token candidate is then refined by distilling knowledge from the 70-token (teacher)
and 20-token (reference) variants, combining detailed stylistic cues with factual grounding:

ỹv = Distill(y50v ; y70v , y20v ). (6)

This process ensures that the resulting description preserves both accuracy and stylistic richness.

Figure 4: Performance metrics for vi-
sual description evaluated at different
output lengths. The red dotted line rep-
resents the Balanced Score, which is a
combined metric of the other two.

Mus-Aes-awared Visual Knowledge Distillation. The
distilled outputs for all five dimensions are concatenated
into a single structured prompt:

ỹ = concat(ỹcolor, ỹlighting, . . . , ỹtextures). (7)

This prompt ỹ acts as a pseudo-label to finetune MusVis-
LLM on music-to-text generation, with the training ob-
jective:

Lmusvis = E(x,ỹ) [− logP (ỹ | x; θmusvis)] . (8)

During inference, MusVis-LLM generates structured vi-
sual descriptions from audio input x, which are then
passed into a diffusion-based text-to-image model (e.g.,
SDXL) to synthesize a coarse visual output. This stage
provides interpretable and controllable grounding, which
is further refined in the Human-Centric Refinement (HCR) module.

3.4 HUMAN-CENTRIC REFINEMENT (HCR)

To align image generation with human preferences, we implement a multi-task Reinforcement
Learning from Human Feedback (RLHF) pipeline. This process refines the generator independently
across three preference axes without fusing reward signals, thereby avoiding reward collapse and
enabling interpretable control. The pipeline involves three stages:
Cluster-based Candidate Selection. To create informative data for annotation, we first cluster all
music clips in the ImageBind embedding space using k-means. For each music clip x, we then
form an annotation triplet {zorig, z+, z−}. The positive candidate z+ is the image with the highest
embedding similarity to x within the same cluster. The negative candidate z− is randomly sampled
from the most distant cluster. This contrastive sampling increases the difficulty of the comparison
and enhances the strength of the human preference signal.
Multi-Topic Preference Annotation. Human annotators provide feedback on three separate top-
ics: emotional consistency, semantic content alignment, and creative aesthetic appeal. Annotators
score each candidate pair sequentially on these topics, yielding three independent preference datasets
{De,Dc,Dcr}. Unlike most prior RLHF work that collapses feedback into a single scalar objective,
we treat these axes separately to preserve their distinct roles and to support fine-grained control.
Multi-level RLHF. Using the collected annotations, we train three separate reward models (RMs):
Emo-RM, Con-RM, and Cre-RM, parameterized by {θe, θc, θcr}. Each is optimized on its respective
preference dataset Dk using a pairwise ranking loss:

LRMk
= −E(t,zi,zj)∼Dk

[
log σ

(
fθk(t, zi)− fθk(t, zj)

)]
. (9)

We then fine-tune the image generator (e.g., SDXL) by treating each preference as an independent
task. For each axis k, we define a separate RLHF loss:

LRLHF,k = −Ex,z0

[
fθk(x, z0)

]
, k ∈ {e, c, cr}. (10)

The final training objective combines the original pre-training loss with the axis-specific RLHF loss,
weighted by a hyperparameter λk:

Lk = Lpre + λkLRLHF,k, (11)
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where λk is tuned via validation experiments. Unlike alternating or fused-reward schemes, our
approach directly optimizes one axis at a time, ensuring stability while preserving targeted improve-
ments. Overall, this multi-axis RLHF framework enables controllable refinement of the generator.
It provides interpretable gains on each dimension of human preference—emotional, semantic, and
creative—while avoiding the instability and loss of diversity that arise from reward fusion.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. Our training set consists of approximately 56,000 music-text pairs. This includes 50,000
pairs from the Flux-Music dataset Fei et al. (2024) and 6,000 clips of Chinese-style music. For the
latter, we generated detailed descriptions from metadata and summaries, which were then filtered
for quality by a multimodal agent. For evaluation, we utilize two standard benchmarks: Music-
Caps Agostinelli et al. (2023) and Song-Describer Manco et al. (2023). MusicCaps provides 5,500
10-second audio clips, each with high-quality annotations from professional musicians. The Song-
Describer dataset contains 706 licensed, high-fidelity recordings, which allows for assessing model
generalization on professionally produced music.

Implementation Details. Our framework is implemented in PyTorch with mixed-precision
(CUDA 11.6, NVIDIA Apex) on a single server equipped with four NVIDIA A100 GPUs (40 GB
each). The full training pipeline—including music encoder fine-tuning, vision synthesis, and RLHF
refinement—requires approximately 150 GPU hours. We employ AdamW and PPO optimizers, a
cosine learning-rate scheduler with warmup, and fix all random seeds to ensure reproducibility.

Evaluation Metrics: Metrics for Music-to-Text. We adopt Frechet Audio Distance (FAD) Kil-
gour et al. (2019), Kullback–Leibler divergence (KL) Kreuk et al., CLAP score Elizalde et al. (2023),
and Fréchet Distance (FD) for quantitative evaluation. FAD and FD capture distributional discrep-
ancies between real and generated audio embeddings, KL measures divergence in predicted label
distributions, while CLAP score quantifies audio–text alignment via multimodal embedding similar-
ity. Metrics for Music-to-Image. We employ Image–Music Similarity Metric (IMSM) Chowd-
hury et al. (2024) to assess alignment between generated music and conditioning images, leveraging
CLIP- and CLAP-based cross-modal similarities. We evaluate artistic fidelity using BAID Yi et al.
(2023), which provides normalized aesthetic scores for synthesized images. In addition, we compute
CLIP Radford et al. (2021) similarity between image and text features, and IMAGEBIND Girdhar
et al. (2023) scores for vision-to-text (Vis2Tex) and vision-to-audio (Vis2Aud) correlations, enabling
a fine-grained assessment of multimodal alignment. To provide a holistic evaluation, we introduce
the Balanced Expressiveness Score (BES), defined as BES = 2.0Si + 1.0Ss − 2.5Pe, where Si

denotes the Intuitive Score (e.g., energy–saturation correlation), Ss the Stylistic Score (e.g., aesthetic
mappings such as negative energy–brightness), and Pe the Extreme Penalty capturing harmful bi-
ases. BES synthesizes these factors into a single measure that balances intuitive grounding with
stylistic creativity. Higher BES values indicate a model that better achieves both expressive fidelity
and robust alignment.

4.2 RESULT ANALYSIS FOR MUSIC-TO-TEXT

We evaluate MusePainter’s ability in music-to-text generation through quantitative experiments on
MusicCaps and Song Describe. We employ two complementary evaluation protocols: (1) cap-
tion–reference similarity, measured by cosine similarity between generated and ground-truth texts
using CLIP (A), LongCLIP (B), and CLAP (C); (2) audio–caption alignment, measured by cosine
similarity between audio and generated caption embeddings using CLAP. As shown in Table 6,
MusePainter achieves competitive results. On MusicCaps, it matches Qwen-audio on A (0.864) and
B (0.914), though ACT BART still leads across most text-similarity metrics. On Song Describe,
MusePainter attains the best audio–text alignment with a CLAP score of 0.501, outperforming
ACT BART (0.445) and Qwen-audio (0.447). A paired Student’s t-test indicates that this improve-
ment over ACT BART is statistically significant (p < 0.05). We further assess caption quality in a
downstream text-to-music generation setting (Table 5). MusePainter consistently achieves superior
audio quality scores, obtaining the lowest FD (2.084) and FAD (2.988) on Song Describe, as well

6
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Table 1: Objective comparison of music generation models on the MusicCaps and Song Describe
benchmarks. Our model, MusePainter (highlighted), is evaluated against other music- and text-
conditioned methods. Lower is better (↓) for KL, FD, and FAD; higher is better (↑) for CLAP. The
best results are highlighted in pink .

model text music Musiccaps Song describe

KL↓ FD↓ FAD↓ CLAP↑ KL↓ FD↓ FAD↓ CLAP↑

ACT BART x ✓ 0.861 2.522 7.125 0.254 1.629 2.553 3.275 0.202
qwen x ✓ 0.904 2.638 6.902 0.234 1.677 2.305 3.372 0.223
MusePainter x ✓ 0.868 2.172 6.522 0.208 1.612 2.084 2.988 0.224

MusicGEN ✓ x 1.229 2.106 3.802 0.310 1.01 2.179 5.38 0.18
Mousai ✓ x 1.592 2.867 7.530 0.23 0.742 - 8.320 0.29
MusicControlNet ✓ x - - 10.81 0.22 - - - -
JASCO ✓ x 1.78 - 6.05 0.26 1.39 - 4.97 0.22

Table 2: Experimental Results for Music Caption Task. “A”, “B” and “C” denote CLIP, LongCLIP
and CLAP, respectively. The best results are highlighted in pink .

model Musiccaps Song describe

CLIP↑ LongCLIP↑ CLAP↑ CLIP↑ LongCLIP↑ CLAP↑

ACT BART 0.902 0.939 0.567 0.868 0.912 0.445
Qwen-audio 0.864 0.914 0.461 0.857 0.904 0.447
MusePainter 0.864 0.914 0.459 0.867 0.911 0.501

as the best FD (2.172) and FAD (6.522) on MusicCaps. It also ranks second-best in KL divergence
across both datasets. Overall, these results demonstrate that MusePainter’s captions not only achieve
strong semantic similarity but are also highly effective for downstream music generation, producing
audio closer to ground truth as reflected by distributional metrics.

4.3 ANALYSIS OF MUSIC-TO-IMAGE GENERATION TASK

Scenario
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Mood

Genre

Extreme 
Sports

Rock

Exciting
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Figure 5: Qualitative Comparison of Music-to-Image Generation. For each audio sample, we show
its four annotations (Scenario, Genre, Mood, Feature) alongside the image generated by Muse-
Painter, and compare it with the image produced by Qwen-audio via its visual-text pipeline.

Qualitative Analysis Figure 10 presents a qualitative comparison of Music-to-Image genera-
tion between MusePainter and the Qwen-audio visual-text pipeline. Across the four annota-
tion dimensions—Scenario, Genre, Mood, and Feature—MusePainter demonstrates superior se-
mantic alignment and scene coherence. For instance, given the prompt “Corporate Video +
Easy Listening + Hopeful + Soothing,” Qwen-audio generated a softly colored stag at sun-
set. While visually appealing, this image lacks the spatial and professional context of a cor-
porate video. In contrast, MusePainter produced an expansive, warmly lit architectural interior
with silhouetted figures, successfully conveying both the corporate setting and the intended op-
timistic, calming mood. Similarly, for “Car Commercial + Rock + Exciting + Cool,” Qwen-
audio’s output was an abstract vortex of mechanical parts. MusePainter, however, rendered a
dynamic, high-speed motorcycle, effectively capturing the excitement and ”cool” aesthetic of
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a rock-themed automotive ad. These examples highlight MusePainter’s strength in translat-
ing multidimensional musical inputs into coherent and semantically faithful visual narratives.

Table 3: Comparison of music-to-image generation meth-
ods on the IMSM, Imagebind, and BAID metrics. IMSM
scores are presented as percentages (%). The best results
are highlighted in pink .

Baseline IMSM (%) Imagebind BAID

Sound2Scene – 0.7541 4.905
AudioToken – 2.4000 5.064
Music Des (GEN) 14.57 2.0580 4.873
Visual Des (Qwen-ori) 11.70 1.4121 4.569

MusePainter-Emo 11.02 1.5819 4.457
MusePainter-Con 11.22 1.5408 4.498
MusePainter-Cre 11.24 1.4831 4.468

Limitations of General-Purpose
Evaluation Metrics We begin by
evaluating several general-purpose
cross-modal metrics—IMSM, Im-
ageBind, and BAID—on standard
baselines (Table 7). While Music
Des (GEN) achieves the highest
IMSM (14.57 %), and AudioToken
leads on ImageBind (2.4000) and
BAID (5.064), these scores primarily
reflect literal, low-level correspon-
dences between audio features or their
textual descriptions and the generated
images. Such metrics systematically
reward models that perform direct se-
mantic mappings (e.g., showing instruments or notation), but they fail to capture the richer creative
and emotional dimensions essential to music-to-image synthesis. Consequently, high-scoring
models under these benchmarks may still produce visually uninspired or contextually shallow
outputs, highlighting the need for a task-specific evaluation.

Table 4: Model performance comparison. The weighted average similarity is calculated to better
reflect the priorities of the music-to-image generation task. The weights are assigned with a strong
emphasis on semantics: Emotion (50%), Usage Scenarios (30%), Genre (15%), and Feature (5%).
The best results are highlighted in pink .

Model / Method CLIP & IMAGEBIND Sim. Score Avg. Proposed Metric
E F G U Similarity* ↑ BES Score ↑

Sound2Scene-DES 14.23 12.77 15.43 9.34 12.87 0.15
AudioToken 15.22 12.98 16.41 10.25 13.80 0.15

Music Des 17.99 12.95 21.56 10.66 16.07 0.33
Qwen-audio 19.67 13.78 19.99 10.16 16.57 0.17

MusePainter-Emo 20.77 13.91 18.08 12.09 17.42 0.19
MusePainter-Rel 20.60 14.22 17.55 11.65 17.14 0.36
MusePainter-Cre 20.64 14.27 17.13 12.03 17.21 0.20

MP w/o CMVG & HCR 17.72 14.49 21.55 11.60 16.30 0.18
MP w/o HCR 19.23 13.92 18.04 10.72 16.23 0.29

MP-Emo(2k steps) 19.79 13.63 18.28 10.77 16.55 0.18
MP-Rel(2k steps) 20.37 13.66 17.77 10.01 16.54 0.21
MP-Cre(2k steps) 20.12 13.74 16.77 10.88 16.53 0.16

Fine-Grained Semantic Alignment via Expert-Annotated Dimensions To overcome these limi-
tations, we introduce a specialized framework based on expert annotations along four semantically
meaningful dimensions: Emotion, Usage Scenario, Genre, and Characteristics. Domain experts
labeled reference pairs to establish ground-truth alignments. We then compute per-dimension CLIP
& ImageBind similarity scores and aggregate them into a Weighted Average Similarity (Emotion
50 %, Usage Scenario 30 %, Genre 15 %, Characteristics 5 %). We also report our proposed
Balanced Expressiveness Score (BES) for holistic assessment (Table 8). As shown in Table 8,
all RLHF-trained variants (MusePainter-Emo, -Rel, -Cre) outperform descriptor-based
and other baselines by a substantial margin. Notably, MusePainter-Emo attains the highest
weighted similarity (17.42), driven by its leading Emotion score (20.77), confirming its effec-
tiveness at capturing affective content. Meanwhile, MusePainter-Rel achieves the top BES
(0.36), demonstrating a balanced integration of emotional resonance and stylistic fidelity. These
quantitative gains validate that our RLHF strategies successfully steer the model toward nuanced
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semantic alignment.
Ablation Study Our ablation results (Table 8, last five lines) show that removing both CMVG and
HCR reduces weighted similarity from 17.42 to 16.30 and BES from 0.19 to 0.18, underscoring
CMVG’s role in coarse semantic grounding. Ablating only HCR yields a similar drop in similarity
(16.23) but a higher BES (0.29), indicating HCR’s importance for stylistic refinement. Early
RLHF checkpoints (2k steps) plateau around 16.5 similarity and BES 0.16–0.21, demonstrating the
necessity of full RLHF training. At 20k steps, the complete models recover and exceed baseline
performance, with MusePainter-Emo reaching 17.42 similarity and MusePainter-Rel achieving the
top BES of 0.36.

Figure 6: Demonstration of Text- and Music-driven Image Generation. We select three types of text
descriptions to vividly showcase MusePainter’s capabilities.

External Experiments We showcase MusePainter’s ability (Figure 11) to incorporate mu-
sic cues as a fine-grained control signal alongside a fixed text prompt across three
scenarios—Abstract, Character, and Neutral. In each quartet, the leftmost image is generated by
a text-only baseline; the three rightward images illustrate how different audio tracks reshape mood
and style while preserving the core concept. For example, for ’character’ portrait, a “Dark; Restless”
soundtrack yields a brooding, ruin-studded portrait, whereas for ’neutral’ portrait, “Happy; Hope-
ful” transforms “a solitary figure on an empty street” into a lantern-lit festival scene. These results
confirm that MusePainter effectively leverages audio attributes to achieve nuanced visual variations
beyond text alone.

Figure 7: Human Analysis of three
methods from four perspectives.

Human Analysis We conducted a user study with 16
participants (8 male, 8 female), each of whom rated
outputs from our model (MusePainter) and two base-
lines (AudioToken, Qwen-audio) on a 1–10 Likert scale.
Participants assessed four dimensions—Stylistic Congru-
ence, Rhythmic Correspondence, Image Quality, and
Audio-Visual Harmony. As shown in Figure 12, Muse-
Painter attains the highest mean scores in every category,
underscoring its superior ability to capture musical style,
synchronize visual content with rhythmic structure, gen-
erate high-fidelity images, and produce cohesive music-
visual pairings. Error bars indicate one standard deviation
across all participant ratings.

5 CONCLUSION

We introduced MusePainter, a framework for bridging the semantic and subjective gap in music-to-
image synthesis. Our method combines structured music-theoretic descriptors, LLM-driven visual
synthesis, and multi-axis reinforcement learning from human feedback (RLHF). Experiments show
that MusePainter outperforms strong baselines in semantic fidelity, stylistic coherence, and emo-
tional consistency. These gains are driven by two key innovations: hybrid-length distillation for ro-
bust music–visual grounding, and disentangled multi-axis preference optimization for controllable
alignment. While developed for music-to-image, the framework’s components—interpretable de-
scriptors and multi-axis preference modeling—may extend to other modalities. MusePainter offers
interpretable control and lays the foundation for future explorations into dynamic video synesthesia,
interactive systems, and broader multimodal datasets.
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ETHICS STATEMENT

Our work investigates cross-modal generation by conditioning image synthesis on musical inputs.
We believe this research can contribute positively to creative AI, enabling novel forms of artistic
expression, advancing understanding of cross-modal alignment, and providing interpretable mecha-
nisms for human-centered generative systems.

Nevertheless, we acknowledge potential negative impacts. Music-to-image generation could be mis-
used for creating misleading or inappropriate visual content, or for reinforcing stereotypes associ-
ated with certain musical genres or cultures. Our experiments are conducted exclusively on publicly
available benchmark datasets (MusicCaps and Song-Describer), which contain no personally iden-
tifiable information. However, biases inherent in these datasets (e.g., cultural bias toward Western
music styles) may propagate through our model outputs. We encourage further research on bias
detection and mitigation in multimodal generative modeling.

Regarding environmental impact, all experiments were performed on a single NVIDIA A100 GPU
(40GB), with training totaling approximately 150 GPU hours. We recognize the importance of
efficient model design and responsible use of computational resources to reduce the carbon footprint
of large-scale model training.

Overall, we emphasize that our framework should be used only for beneficial and creative purposes.
We explicitly discourage applications that may cause harm to individuals, cultures, or society, such
as generating deceptive media or infringing upon artistic copyright.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All datasets used in our experiments
are publicly available (MusicCaps Agostinelli et al. (2023), Song-Describer Manco et al. (2023)).
We will release our code and trained checkpoints upon acceptance, together with scripts for prepro-
cessing, training, and evaluation.

We describe all necessary implementation details in the main paper and supplementary material,
including model architectures (MuseAes-LLM, MusVis-LLM, and SDXL finetuning), optimization
settings (learning rate, batch size, optimizer, scheduler), and data preprocessing pipelines. Fixed
random seeds were used for all experiments to ensure consistent results across runs.

Our experiments were conducted on a single NVIDIA A100 GPU (40GB). All reported results in
tables and figures can be reproduced using the released code and configuration files. We will also
provide scripts to regenerate the main figures and evaluation metrics directly from trained check-
points to facilitate verification and reuse by the community.

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
music from text. arXiv preprint arXiv:2301.11325, 2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Yongqin Xian A. Koepke Ying Shan Chen, Yanbei and Zeynep Akata. Distilling audio-visual
knowledge by compositional contrastive learning. In Conference on Computer Vision and Pattern
Recognition, pp. 7016–7025, 2021.

Sanjoy Chowdhury, Sayan Nag, KJ Joseph, Balaji Vasan Srinivasan, and Dinesh Manocha. Melfu-
sion: Synthesizing music from image and language cues using diffusion models. In Conference
on Computer Vision and Pattern Recognition, pp. 26826–26835, 2024.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
audio-language models. arXiv preprint arXiv:2311.07919, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning au-
dio concepts from natural language supervision. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems
(NIPS), 36:79858–79885, 2023.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, and Junshi Huang. Flux that plays music. arXiv
preprint arXiv:2409.00587, 2024.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15180–15190, 2023.

Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. Audioclip: Extending clip to
image, text and audio. In IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), pp. 976–980, 2022.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. pp. 7514–7528, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
Neural Information Processing Systems (NIPS), 30, 2017.

Ayano Hiranaka, Shang-Fu Chen, Chieh-Hsin Lai, Dongjun Kim, Naoki Murata, Takashi Shibuya,
Wei-Hsiang Liao, Shao-Hua Sun, and Yuki Mitsufuji. Hero: Human-feedback efficient reinforce-
ment learning for online diffusion model finetuning. arXiv preprint arXiv:2410.05116, 2024.

Patrik N. Juslin. Handbook of Music and Emotion: Theory, Research, Applications. Oxford Univer-
sity Press, 01 2010. ISBN 9780199230143.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fréchet audio distance:
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