

CROSS-MODAL ALIGNMENT AND HUMAN PREFERENCE LEARNING FOR FINE-GRAINED MUSIC-GUIDED IMAGE GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Mapping temporally evolving musical affect into coherent visual imagery is a challenging instance of cross-modal generation: audio is abstract, layered, and subjective, whereas images are static and concrete. We present MusePainter, a general framework that integrates structured cross-modal alignment with multi-axis preference learning to achieve fine-grained controllability in generative models. MusePainter first extracts structured descriptors capturing structural, stylistic, and affective dimensions of music, which serve as controllable guidance for image synthesis. To handle subjectivity, we introduce a preference optimization scheme that disentangles emotional consistency, semantic alignment, and creative appeal, and optimizes them independently. Experiments on curated benchmarks and user studies demonstrate that MusePainter surpasses strong audio-to-image and audio→text→image baselines in semantic fidelity, stylistic congruence, and affective resonance. While developed for music-to-image, the framework’s components—such as interpretable descriptors and multi-axis preference optimization—may also extend to other modalities, offering potential insights for broader controllable cross-modal generation.

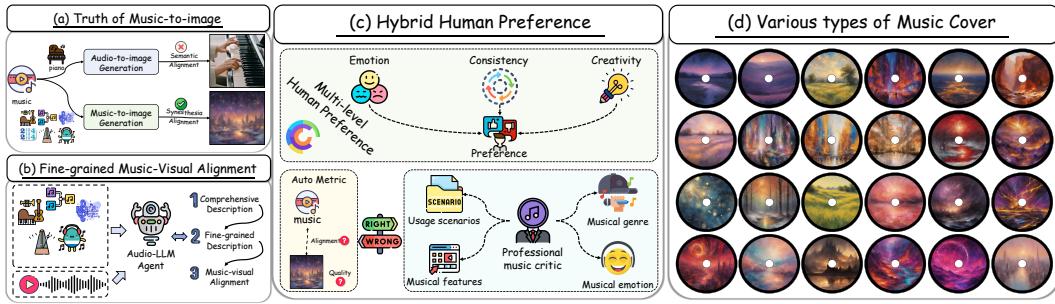


Figure 1: A simple schematic diagram is used to illustrate the tasks and main contributions of this MusePainter.

1 INTRODUCTION

Music evokes vivid and subjective imagery, yet translating temporally evolving musical affect into coherent visuals remains an unsolved challenge in cross-modal generation. Unlike environmental sounds that correspond to concrete sources (e.g., traffic or footsteps), music is abstract, layered, and emotionally dynamic. Bridging this gap is scientifically valuable: it requires models to integrate symbolic, stylistic, and affective representations across modalities, pushing beyond the literal semantic mappings that dominate existing multimodal systems.

Recent progress in audio-to-image generation Sung-Bin et al. (2023); Zhao et al. (2022) has demonstrated that cross-modal models can produce visually plausible results for concrete sounds. However, when the input is abstract and time-varying music, these systems fail to capture emotional nuance and stylistic coherence. **First, the challenge of cross-modal**

054 **alignment for abstract affect** (Figure 1a): music evolves continuously across melody, rhythm, and
 055 harmony, whereas images are static snapshots. Capturing this mapping demands structured repres-
 056 entations that preserve layered musical semantics. **Second, the dilemma of subjectivity in evalua-
 057 tion and control:** different listeners may associate the same melody with vastly different imagery Juslin
 058 (2010), making universal ground truth impossible. Objective metrics such as CLIP or FAD can-
 059 not fully reflect emotional resonance, while existing pipelines lack mechanisms for fine-grained,
 060 preference-aware control.

061 To address these challenges, we introduce **MusePainter**, a framework that couples interpretable
 062 music-theoretic descriptors with human preference learning for fine-grained and controllable music-
 063 to-image generation. MusePainter first deconstructs music into its foundational, fine-grained at-
 064 tributes, analyzing elements such as melody, rhythm, harmony, instrumentation, and overall struc-
 065 ture to capture the music’s emotional texture in a structured manner. This deep musical under-
 066 standing transcends mere acoustic features to interpret the theoretical underpinnings of the music (Figure
 067 1 (b)). Another key innovation is the Hybrid Human Preference mechanism (Figure 1 (c)). Recog-
 068 nizing the highly personal nature of emotional and aesthetic interpretation, our system is designed
 069 to learn from individual preferences. This allows the framework to adapt its visual style to match a
 070 user’s personal aesthetic and emotional response, thereby generating more meaningful and expres-
 071 sive imagery. This approach directly confronts the challenge of subjectivity that has long limited
 072 previous attempts. Our contributions are threefold:

073 **(1).Problem formalization:** We systematically analyze the semantic gap in music-to-image gener-
 074 ation, highlighting abstract emotional alignment and subjective evaluation as two core challenges.

075 **(2).Framework and method:** We propose MusePainter, a three-stage pipeline that integrates struc-
 076 tured music descriptor extraction, cross-modal visual prompt construction, and multi-axis reinforce-
 077 ment learning from human feedback.

078 **(3).Benchmark and validation:** We curate a descriptive album art benchmark (Figure 1d) and con-
 079 duct extensive experiments. Results show that MusePainter outperforms strong audio-to-image and
 080 audio→text→image baselines in semantic fidelity, stylistic congruence, and affective resonance,
 081 validated through both expert-annotated metrics and user studies.

082 2 RELATED WORK

083 **Audio-to-Image Generation.** Early audio-to-image generation (AIG) methods using direct CNN-
 084 based mappings Wan et al. (2019); Lee et al. (2022) were hindered by poor cross-modal semantic
 085 alignment Chen & Akata (2021); Mazumder & P (2021); Sun & Liang (2020). Subsequent work
 086 improved alignment through specialized strategies Qin et al. (2023); Sung-Bin et al. (2023) and large
 087 pre-trained models like CLIP Wu & Bello (2022); Guzhov et al. (2022); Kreuk et al. (2022). Despite
 088 these advances, the semantic granularity of audio embeddings remains coarse, limiting their ability
 089 to capture fine-grained and affective details. To circumvent this, a recent paradigm shift involves us-
 090 ing text as an intermediary to leverage powerful text-to-image (T2I) models Lee et al. (2023); Yariv
 091 et al. (2023); Qin et al. (2024); Wang et al. (2023). However, this audio-to-text conversion often
 092 discards the nuanced, non-linguistic emotional expressions inherent in music, making the resulting
 093 images emotionally shallow—a limitation our work directly addresses.

094 **Audio-related Cross-Modal Alignment.** Cross-modal alignment for audio has largely mirrored
 095 advances in the text–image domain, with contrastive learning frameworks Radford et al. (2021);
 096 Wu et al. (2023b) becoming foundational. This led to powerful models like AudioCLIP Guzhov
 097 et al. (2022) and CLAP Elizalde et al. (2023), which learn shared embedding spaces for robust
 098 audio–text understanding. The state of the art is represented by models such as ImageBind Girdhar
 099 et al. (2023), which unifies six modalities into a single space using images as a central anchor. Yet
 100 a critical limitation persists: these models are optimized to align concrete, event-based semantics.
 101 Their architectures are not designed to capture the abstract, evolving, and emotional contours that
 102 characterize music, creating a gap that motivates our work.

103 **RLHF in T2I Tasks.** Reinforcement Learning from Human Feedback (RLHF) is increasingly re-
 104 placing automated metrics Heusel et al. (2017); Hessel et al. (2021) for aligning text-to-image (T2I)
 105 models with human preferences. Reward models vary in their approach, from providing **holistic**
 106 **scores** to capture overall image quality, as in ImageReward Xu et al. (2023); Wu et al. (2023a), to
 107 offering **fine-grained feedback** on specific flaws Liang et al. (2024). Generative models are then

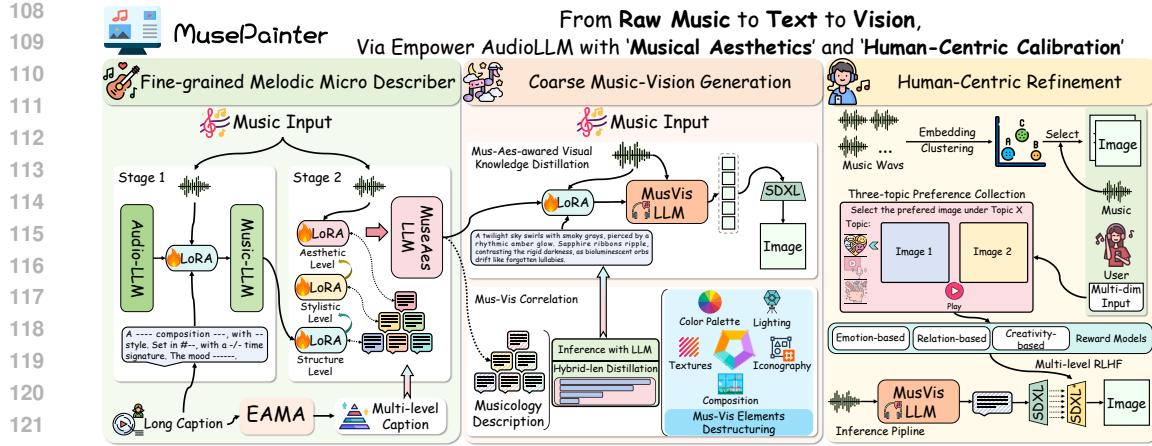


Figure 2: The overall architecture of our proposed *MusePainter* framework. The framework consists of three main stages. (1) Fine-grained Melodic Micro Descriptor, (2) Coarse Music-Vision Generation, (3) Human-Centric Refinement.

fine-tuned using these preferences, with algorithms evolving from early RL methods Black et al. (2023); Fan et al. (2023) to the more direct and efficient Direct Preference Optimization (DPO) Wallace et al. (2024); Yang et al. (2024); Clark et al. (2023); Hiranaka et al. (2024). However, nearly all existing methods optimize for a *single fused objective*, whereas in music-guided generation, preferences are inherently multi-dimensional (e.g., emotional consistency vs. creative appeal). This motivates our design of a multi-axis preference optimization scheme that treats each axis independently.

3 METHODOLOGY

3.1 OVERVIEW

As depicted in Figure 2, our *MusePainter* framework enables a controllable transformation from music to vision through three tightly coupled components. First, the **Fine-grained Melodic Micro Descriptor (FMMD)** extracts structured descriptors spanning structural, stylistic, and affective dimensions of music. Second, the **Coarse Music-Vision Generation (CMVG)** maps these descriptors into visual prompts and synthesizes an initial image with a diffusion backbone. Finally, the **Human-Centric Refinement (HCR)** aligns outputs with human judgments by disentangling multiple preference axes (emotional, semantic, creative) and optimizing them independently. Together, these modules address the core limitations of prior approaches: inadequate handling of abstract musical semantics and lack of fine-grained, preference-aware controllability.

3.2 FINE-GRAINED MELODIC MICRO DESCRIPTOR

Our approach to fine-grained melodic description unfolds in two stages. First, the Expert-guided Agent-based Music Analysis (EAMA) module converts unstructured, long-form text into a set of structured, high-quality descriptors. Second, these descriptors guide a two-stage, coarse-to-fine finetuning of MuseAes-LLM. This process instills a hierarchical understanding, starting with holistic alignment and progressively refining it with micro-level structural and stylistic details.

Expert-guided Agent-based Music Analysis (EAMA). To obtain fine-grained semantic representations from long-form music descriptions, we introduce the **Expert-guided Agent-based Music Analysis (EAMA)** module (Fig. 3). Given a music clip x and its text description t , EAMA’s goal is to extract a structured set of descriptors $\mathcal{D}(t)$ across six dimensions: instrument, style, key, time signature, tempo, and mood. The process begins with specialized LLM-based agents, each prompted to extract and rephrase content for a single dimension i :

$$d^i = \text{Agent}_{\text{LLM}}^{(i)}(t). \quad (1)$$

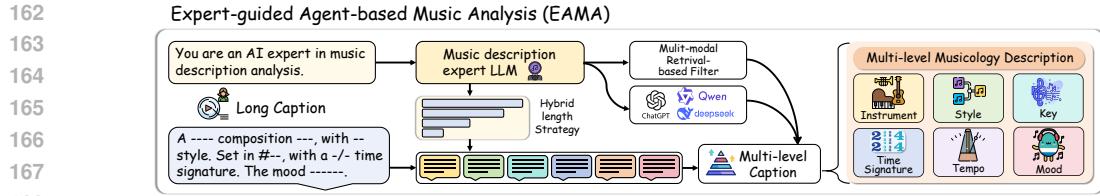


Figure 3: Framework of Expert-guided Agent-based Music Analysis (EAMA) module, which consists of Hybrid Filter and Multi-level Musicology Description.

To ensure diversity, our *hybrid-length generation strategy* produces candidate descriptions $\mathcal{L}_i = \{d_{20}^i, d_{50}^i, d_{70}^i\}$ at three token lengths (20, 50, 70), corresponding to concise, balanced, and expressive abstraction levels. To mitigate hallucinations and ensure factual grounding, we employ a *hybrid filtering mechanism*. For each dimension i , we compute a multi-agent agreement score s^{agree} and a cross-modal consistency score s^{cross} :

$$s^{\text{agree}}(d^i) = \frac{1}{N} \sum_{n=1}^N \text{sim}(d^i, \text{Agent}_n(t)), \quad s^{\text{cross}}(d^i, x) = \text{CLAP}(x, d^i) + \text{ImageBind}(x, d^i). \quad (2)$$

We then retain the descriptor with the highest combined score $s^{\text{agree}} + s^{\text{cross}}$. This yields a final output of structured, multi-granularity descriptors:

$$\mathcal{D}(t) = \{\mathcal{L}_{\text{instr}}, \dots, \mathcal{L}_{\text{mood}}\}. \quad (3)$$

Two-stage Music-LLM Finetune. We develop *MuseAes-LLM* by finetuning a Qwen-Audio Chu et al. (2023) base model in two stages. The intuition is that coarse-level finetuning first ensures global semantic alignment, while fine-grained hierarchical learning subsequently injects detailed control over structural, stylistic, and affective aspects.

Stage 1: Coarse-level Alignment. We align the model with holistic music descriptions by finetuning on (x, t) pairs, where x is the input audio. The coarse-level objective is:

$$\mathcal{L}_{\text{coarse}} = \mathbb{E}_{(x, t)} [-\log P(t | x; \theta_{\text{coarse}})]. \quad (4)$$

Stage 2: Fine-grained Hierarchical Learning. Next, we perform descriptor-level tuning. The descriptors are grouped into three semantic levels: Structural ($\{d^{\text{sig}}, d^{\text{tempo}}, d^{\text{key}}\}$), Stylistic ($\{d^{\text{instr}}, d^{\text{style}}\}$), and Aesthetic ($\{d^{\text{mood}}\}$). This is optimized via a hierarchical multi-task loss:

$$\mathcal{L}_{\text{fine}} = \sum_{l \in \{\text{struct, style, aesthetic}\}} \lambda_l \cdot \mathbb{E}_{(x, d^l)} [-\log P(d^l | x; \theta_{\text{fine}})], \quad (5)$$

where d^l is the concatenated descriptor for level l , and λ_l is its corresponding weight. To further enhance the model’s capacity to interpret musical attributes, we adopt an *instruction-style finetuning strategy*: each descriptor dimension is paired with a tailored prompt (e.g., “Describe the emotional tone of this music”), so that the model learns to answer specific evaluative queries in a controlled manner.

3.3 COARSE MUSIC-VISION GENERATION (CMVG)

To bridge music and vision, we map our three-tiered music descriptors (structural, stylistic, aesthetic) to five visual dimensions: color palette, lighting, iconography, composition, and textures. We then introduce **MusVis-LLM**, a dedicated model trained to generate structured visual descriptions directly from audio. This module serves as a critical bridge between music understanding and visual synthesis, providing controllable coarse grounding for subsequent refinement.

Hybrid-Length Visual Description Distillation. We first construct pseudo-ground-truth visual descriptions for each music clip. A reasoning-focused LLM (LLM_{inf}) is prompted to infer a textual description for each of the five visual dimensions. To balance conciseness and expressiveness, we employ a *Hybrid-Length Distillation* strategy. For each visual dimension v , the LLM generates outputs of three fixed lengths (20, 50, and 70 tokens), corresponding to factual, balanced, and

expressive abstraction levels. Empirically, we find that different lengths capture complementary properties: shorter (20-token) captions reduce hallucination but may omit details, longer (70-token) captions provide rich stylistic cues at the cost of factual precision, while medium-length (50-token) captions strike the best balance (see Fig. 4). As shown in the figure, the 50-token outputs maximize the balanced score while maintaining low hallucination, justifying our choice of 20/50/70 as anchor lengths. The 50-token candidate is then refined by distilling knowledge from the 70-token (teacher) and 20-token (reference) variants, combining detailed stylistic cues with factual grounding:

$$\hat{y}_v = \text{Distill}(y_v^{50}; y_v^{70}, y_v^{20}). \quad (6)$$

This process ensures that the resulting description preserves both accuracy and stylistic richness.

Mus-Aes-aware Visual Knowledge Distillation. The distilled outputs for all five dimensions are concatenated into a single structured prompt:

$$\tilde{y} = \text{concat}(\tilde{y}_{\text{color}}, \tilde{y}_{\text{lighting}}, \dots, \tilde{y}_{\text{textures}}). \quad (7)$$

This prompt \tilde{y} acts as a pseudo-label to finetune MusVis-LLM on music-to-text generation, with the training objective:

$$\mathcal{L}_{\text{musvis}} = \mathbb{E}_{(x, \tilde{y})} [-\log P(\tilde{y} | x; \theta_{\text{musvis}})]. \quad (8)$$

During inference, MusVis-LLM generates structured visual descriptions from audio input x , which are then passed into a diffusion-based text-to-image model (e.g., SDXL) to synthesize a coarse visual output. This stage provides interpretable and controllable grounding, which is further refined in the Human-Centric Refinement (HCR) module.

3.4 HUMAN-CENTRIC REFINEMENT (HCR)

To align image generation with human preferences, we implement a multi-task Reinforcement Learning from Human Feedback (RLHF) pipeline. This process refines the generator independently across three preference axes without fusing reward signals, thereby avoiding reward collapse and enabling interpretable control. The pipeline involves three stages:

Cluster-based Candidate Selection. To create informative data for annotation, we first cluster all music clips in the ImageBind embedding space using k -means. For each music clip x , we then form an annotation triplet $\{z_{\text{orig}}, z^+, z^-\}$. The positive candidate z^+ is the image with the highest embedding similarity to x within the same cluster. The negative candidate z^- is randomly sampled from the most distant cluster. This contrastive sampling increases the difficulty of the comparison and enhances the strength of the human preference signal.

Multi-Topic Preference Annotation. Human annotators provide feedback on three separate topics: *emotional consistency*, *semantic content alignment*, and *creative aesthetic appeal*. Annotators score each candidate pair sequentially on these topics, yielding three independent preference datasets $\{\mathcal{D}_e, \mathcal{D}_c, \mathcal{D}_{cr}\}$. Unlike most prior RLHF work that collapses feedback into a single scalar objective, we treat these axes separately to preserve their distinct roles and to support fine-grained control.

Multi-level RLHF. Using the collected annotations, we train three separate reward models (RMs): *Emo-RM*, *Con-RM*, and *Cre-RM*, parameterized by $\{\theta_e, \theta_c, \theta_{cr}\}$. Each is optimized on its respective preference dataset \mathcal{D}_k using a pairwise ranking loss:

$$\mathcal{L}_{\text{RM}_k} = -\mathbb{E}_{(t, z_i, z_j) \sim \mathcal{D}_k} [\log \sigma(f_{\theta_k}(t, z_i) - f_{\theta_k}(t, z_j))]. \quad (9)$$

We then fine-tune the image generator (e.g., SDXL) by treating each preference as an independent task. For each axis k , we define a separate RLHF loss:

$$\mathcal{L}_{\text{RLHF}, k} = -\mathbb{E}_{x, z_0} [f_{\theta_k}(x, z_0)], \quad k \in \{e, c, cr\}. \quad (10)$$

The final training objective combines the original pre-training loss with the axis-specific RLHF loss, weighted by a hyperparameter λ_k :

$$\mathcal{L}_k = \mathcal{L}_{\text{pre}} + \lambda_k \mathcal{L}_{\text{RLHF}, k}, \quad (11)$$

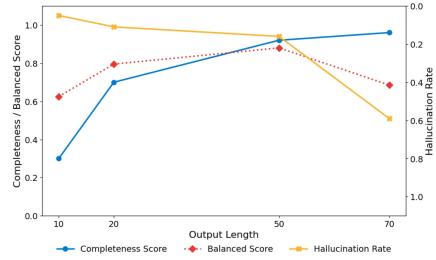


Figure 4: Performance metrics for visual description evaluated at different output lengths. The red dotted line represents the Balanced Score, which is a combined metric of the other two.

270 where λ_k is tuned via validation experiments. Unlike alternating or fused-reward schemes, our
 271 approach directly optimizes one axis at a time, ensuring stability while preserving targeted improvements.
 272 Overall, this multi-axis RLHF framework enables controllable refinement of the generator.
 273 It provides interpretable gains on each dimension of human preference—emotional, semantic, and
 274 creative—while avoiding the instability and loss of diversity that arise from reward fusion.
 275

276 4 EXPERIMENTS

277 4.1 EXPERIMENT SETTINGS

280 **Datasets.** Our training set consists of approximately 56,000 music-text pairs. This includes 50,000
 281 pairs from the Flux-Music dataset Fei et al. (2024) and 6,000 clips of Chinese-style music. For the
 282 latter, we generated detailed descriptions from metadata and summaries, which were then filtered
 283 for quality by a multimodal agent. For evaluation, we utilize two standard benchmarks: Music-
 284 Caps Agostinelli et al. (2023) and Song-Describer Manco et al. (2023). MusicCaps provides 5,500
 285 10-second audio clips, each with high-quality annotations from professional musicians. The Song-
 286 Describer dataset contains 706 licensed, high-fidelity recordings, which allows for assessing model
 287 generalization on professionally produced music.

288 **Implementation Details.** Our framework is implemented in PyTorch with mixed-precision
 289 (CUDA 11.6, NVIDIA Apex) on a single server equipped with four NVIDIA A100 GPUs (40 GB
 290 each). The full training pipeline—including music encoder fine-tuning, vision synthesis, and RLHF
 291 refinement—requires approximately 150 GPU hours. We employ AdamW and PPO optimizers, a
 292 cosine learning-rate scheduler with warmup, and fix all random seeds to ensure reproducibility.
 293

294 **Evaluation Metrics: Metrics for Music-to-Text.** We adopt *Frechet Audio Distance (FAD)* Kil-
 295 gour et al. (2019), *Kullback–Leibler divergence (KL)* Kreuk et al., *CLAP score* Elizalde et al. (2023),
 296 and *Fréchet Distance (FD)* for quantitative evaluation. FAD and FD capture distributional discrep-
 297 ancies between real and generated audio embeddings, KL measures divergence in predicted label
 298 distributions, while CLAP score quantifies audio–text alignment via multimodal embedding similar-
 299 ity. **Metrics for Music-to-Image.** We employ **Image–Music Similarity Metric (IMSM)** Chowd-
 300 hury et al. (2024) to assess alignment between generated music and conditioning images, leveraging
 301 CLIP- and CLAP-based cross-modal similarities. We evaluate artistic fidelity using **BAID** Yi et al.
 302 (2023), which provides normalized aesthetic scores for synthesized images. In addition, we compute
 303 **CLIP** Radford et al. (2021) similarity between image and text features, and **IMAGEBIND** Girdhar
 304 et al. (2023) scores for vision-to-text (Vis2Tex) and vision-to-audio (Vis2Aud) correlations, enabling
 305 a fine-grained assessment of multimodal alignment. To provide a holistic evaluation, we introduce
 306 the **Balanced Expressiveness Score (BES)**, defined as $BES = 2.0S_i + 1.0S_s - 2.5P_e$, where S_i
 307 denotes the *Intuitive Score* (e.g., energy–saturation correlation), S_s the *Stylistic Score* (e.g., aesthetic
 308 mappings such as negative energy–brightness), and P_e the *Extreme Penalty* capturing harmful bi-
 309 ases. BES synthesizes these factors into a single measure that balances intuitive grounding with
 310 stylistic creativity. Higher BES values indicate a model that better achieves both expressive fidelity
 311 and robust alignment.

312 4.2 RESULT ANALYSIS FOR MUSIC-TO-TEXT

313 We evaluate MusePainter’s ability in music-to-text generation through quantitative experiments on
 314 MusicCaps and Song Describe. We employ two complementary evaluation protocols: (1) *cap-*
 315 *tion–reference similarity*, measured by cosine similarity between generated and ground-truth texts
 316 using CLIP (A), LongCLIP (B), and CLAP (C); (2) *audio–caption alignment*, measured by cosine
 317 similarity between audio and generated caption embeddings using CLAP. As shown in Table 6,
 318 MusePainter achieves competitive results. On MusicCaps, it matches Qwen-audio on A (0.864) and
 319 B (0.914), though ACT_BART still leads across most text-similarity metrics. On Song Describe,
 320 MusePainter attains the best audio–text alignment with a CLAP score of 0.501, outperforming
 321 ACT_BART (0.445) and Qwen-audio (0.447). A paired Student’s *t*-test indicates that this improve-
 322 ment over ACT_BART is statistically significant ($p < 0.05$). We further assess caption quality in a
 323 downstream text-to-music generation setting (Table 5). MusePainter consistently achieves superior
 324 audio quality scores, obtaining the lowest FD (2.084) and FAD (2.988) on Song Describe, as well

324
 325 Table 1: Objective comparison of music generation models on the MusicCaps and Song Describe
 326 benchmarks. Our model, MusePainter (highlighted), is evaluated against other music- and text-
 327 conditioned methods. Lower is better (\downarrow) for KL, FD, and FAD; higher is better (\uparrow) for CLAP. The
 328 best results are highlighted in pink .

329 330 331 model	text	music	332 333 334 Musiccaps				335 336 337 Song describe			
			KL \downarrow	FD \downarrow	FAD \downarrow	CLAP \uparrow	KL \downarrow	FD \downarrow	FAD \downarrow	CLAP \uparrow
ACT_BART	x	✓	0.861	2.522	7.125	0.254	1.629	2.553	3.275	0.202
qwen	x	✓	0.904	2.638	6.902	0.234	1.677	2.305	3.372	0.223
MusePainter	x	✓	0.868	2.172	6.522	0.208	1.612	2.084	2.988	0.224
MusicGEN	✓	x	1.229	2.106	3.802	0.310	1.01	2.179	5.38	0.18
Mousai	✓	x	1.592	2.867	7.530	0.23	0.742	-	8.320	0.29
MusicControlNet	✓	x	-	-	10.81	0.22	-	-	-	-
JASCO	✓	x	1.78	-	6.05	0.26	1.39	-	4.97	0.22

339
 340 Table 2: Experimental Results for Music Caption Task. “A”, “B” and “C” denote CLIP, LongCLIP
 341 and CLAP, respectively. The best results are highlighted in pink .

342 343 model	344 Musiccaps			345 Song describe		
	346 CLIP \uparrow	347 LongCLIP \uparrow	348 CLAP \uparrow	349 CLIP \uparrow	350 LongCLIP \uparrow	351 CLAP \uparrow
ACT_BART	0.902	0.939	0.567	0.868	0.912	0.445
Qwen-audio	0.864	0.914	0.461	0.857	0.904	0.447
MusePainter	0.864	0.914	0.459	0.867	0.911	0.501

350 as the best FD (2.172) and FAD (6.522) on MusicCaps. It also ranks second-best in KL divergence
 351 across both datasets. Overall, these results demonstrate that MusePainter’s captions not only achieve
 352 strong semantic similarity but are also highly effective for downstream music generation, producing
 353 audio closer to ground truth as reflected by distributional metrics.

355 4.3 ANALYSIS OF MUSIC-TO-IMAGE GENERATION TASK

356
 357 Figure 5: Qualitative Comparison of Music-to-Image Generation. For each audio sample, we show
 358 its four annotations (Scenario, Genre, Mood, Feature) alongside the image generated by Muse-
 359 Painter, and compare it with the image produced by Qwen-audio via its visual-text pipeline.
 360
 361

362 **Qualitative Analysis** Figure 10 presents a qualitative comparison of Music-to-Image genera-
 363 tion between MusePainter and the Qwen-audio visual-text pipeline. Across the four annota-
 364 tion dimensions—Scenario, Genre, Mood, and Feature—MusePainter demonstrates superior
 365 semantic alignment and scene coherence. For instance, given the prompt “Corporate Video +
 366 Easy Listening + Hopeful + Soothing,” Qwen-audio generated a softly colored stag at sun-
 367 set. While visually appealing, this image lacks the spatial and professional context of a cor-
 368 porate video. In contrast, MusePainter produced an expansive, warmly lit architectural interior
 369 with silhouetted figures, successfully conveying both the corporate setting and the intended
 370 optimistic, calming mood. Similarly, for “Car Commercial + Rock + Exciting + Cool,” Qwen-
 371 audio’s output was an abstract vortex of mechanical parts. MusePainter, however, rendered a
 372 dynamic, high-speed motorcycle, effectively capturing the excitement and “cool” aesthetic of
 373

378 a rock-themed automotive ad. These examples highlight MusePainter’s strength in translating
 379 multidimensional musical inputs into coherent and semantically faithful visual narratives.
 380

381 **Limitations of General-Purpose**

382 **Evaluation Metrics** We begin by
 383 evaluating several general-purpose
 384 cross-modal metrics—IMSM, ImageBind,
 385 and BAID—on standard
 386 baselines (Table 7). While Music
 387 Des (GEN) achieves the highest
 388 IMSM (14.57 %), and AudioToken
 389 leads on ImageBind (2.4000) and
 390 BAID (5.064), these scores primarily
 391 reflect literal, low-level correspondences
 392 between audio features or their
 393 textual descriptions and the generated
 394 images. Such metrics systematically
 395 reward models that perform direct
 396 semantic mappings (e.g., showing instruments or notation), but they fail to capture the richer *creative*
 397 and *emotional* dimensions essential to music-to-image synthesis. Consequently, high-scoring
 398 models under these benchmarks may still produce visually uninspired or contextually shallow
 399 outputs, highlighting the need for a task-specific evaluation.

Table 3: Comparison of music-to-image generation methods on the IMSM, Imagebind, and BAID metrics. IMSM scores are presented as percentages (%). The best results are highlighted in pink.

Baseline	IMSM (%)	Imagebind	BAID
Sound2Scene	—	0.7541	4.905
AudioToken	—	2.4000	5.064
Music Des (GEN)	14.57	2.0580	4.873
Visual Des (Qwen-ori)	11.70	1.4121	4.569
MusePainter-Emo	11.02	1.5819	4.457
MusePainter-Con	11.22	1.5408	4.498
MusePainter-Cre	11.24	1.4831	4.468

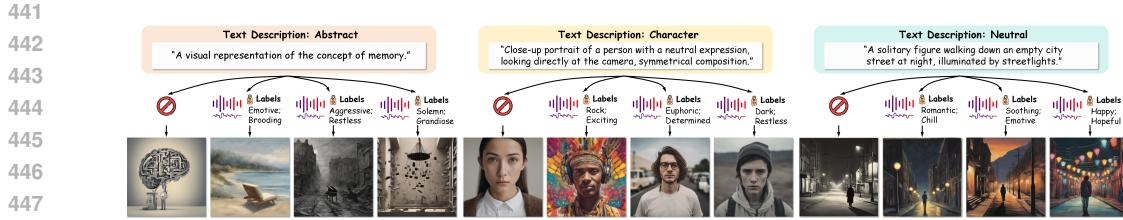
Table 4: Model performance comparison. The weighted average similarity is calculated to better reflect the priorities of the music-to-image generation task. The weights are assigned with a strong emphasis on semantics: **Emotion** (50%), **Usage Scenarios** (30%), **Genre** (15%), and **Feature** (5%). The best results are highlighted in pink.

Model / Method	CLIP & IMAGEBIND Sim. Score				Avg. Similarity [*] ↑	Proposed Metric BES Score ↑
	E	F	G	U		
Sound2Scene-DES	14.23	12.77	15.43	9.34	12.87	0.15
AudioToken	15.22	12.98	16.41	10.25	13.80	0.15
Music Des	17.99	12.95	21.56	10.66	16.07	0.33
Qwen-audio	19.67	13.78	19.99	10.16	16.57	0.17
MusePainter-Emo	20.77	13.91	18.08	12.09	17.42	0.19
MusePainter-Rel	20.60	14.22	17.55	11.65	17.14	0.36
MusePainter-Cre	20.64	14.27	17.13	12.03	17.21	0.20
MP w/o CMVG & HCR	17.72	14.49	21.55	11.60	16.30	0.18
MP w/o HCR	19.23	13.92	18.04	10.72	16.23	0.29
MP-Emo(2k steps)	19.79	13.63	18.28	10.77	16.55	0.18
MP-Rel(2k steps)	20.37	13.66	17.77	10.01	16.54	0.21
MP-Cre(2k steps)	20.12	13.74	16.77	10.88	16.53	0.16

420 **Fine-Grained Semantic Alignment via Expert-Annotated Dimensions** To overcome these
 421 limitations, we introduce a specialized framework based on expert annotations along four semantically
 422 meaningful dimensions: *Emotion*, *Usage Scenario*, *Genre*, and *Characteristics*. Domain experts
 423 labeled reference pairs to establish ground-truth alignments. We then compute per-dimension CLIP
 424 & ImageBind similarity scores and aggregate them into a *Weighted Average Similarity* (Emotion
 425 50 %, Usage Scenario 30 %, Genre 15 %, Characteristics 5 %). We also report our proposed
 426 *Balanced Expressiveness Score* (BES) for holistic assessment (Table 8). As shown in Table 8,
 427 all RLHF-trained variants (MusePainter-Emo, -Rel, -Cre) outperform descriptor-based
 428 and other baselines by a substantial margin. Notably, MusePainter-Emo attains the highest
 429 weighted similarity (17.42), driven by its leading Emotion score (20.77), confirming its effec-
 430 tiveness at capturing affective content. Meanwhile, MusePainter-Rel achieves the top BES
 431 (0.36), demonstrating a balanced integration of emotional resonance and stylistic fidelity. These
 432 quantitative gains validate that our RLHF strategies successfully steer the model toward nuanced

432 semantic alignment.

433 **Ablation Study** Our ablation results (Table 8, last five lines) show that removing both CMVG and
 434 HCR reduces weighted similarity from 17.42 to 16.30 and BES from 0.19 to 0.18, underscoring
 435 CMVG’s role in coarse semantic grounding. Ablating only HCR yields a similar drop in similarity
 436 (16.23) but a higher BES (0.29), indicating HCR’s importance for stylistic refinement. Early
 437 RLHF checkpoints (2k steps) plateau around 16.5 similarity and BES 0.16–0.21, demonstrating the
 438 necessity of full RLHF training. At 20k steps, the complete models recover and exceed baseline
 439 performance, with MusePainter-Emo reaching 17.42 similarity and MusePainter-Rel achieving the
 440 top BES of 0.36.



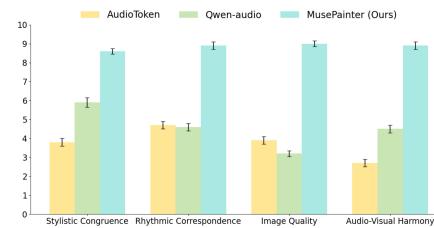
441
 442 Figure 6: Demonstration of Text- and Music-driven Image Generation. We select three types of text
 443 descriptions to vividly showcase MusePainter’s capabilities.
 444
 445
 446
 447

448 **External Experiments** We showcase MusePainter’s ability (Figure 11) to incorporate
 449 music cues as a fine-grained control signal alongside a fixed text prompt across three
 450 scenarios—*Abstract*, *Character*, and *Neutral*. In each quartet, the leftmost image is generated by
 451 a text-only baseline; the three rightward images illustrate how different audio tracks reshape mood
 452 and style while preserving the core concept. For example, for ‘character’ portrait, a “Dark; Restless”
 453 soundtrack yields a brooding, ruin-studded portrait, whereas for ‘neutral’ portrait, “Happy; Hope-
 454 ful” transforms “a solitary figure on an empty street” into a lantern-lit festival scene. These results
 455 confirm that MusePainter effectively leverages audio attributes to achieve nuanced visual variations
 456 beyond text alone.

457
 458
 459
 460
 461
 462 **Human Analysis** We conducted a user study with 16
 463 participants (8 male, 8 female), each of whom rated
 464 outputs from our model (MusePainter) and two base-
 465 lines (AudioToken, Qwen-audio) on a 1–10 Likert scale.
 466 Participants assessed four dimensions—Stylistic Con-
 467 gruence, Rhythmic Correspondence, Image Quality, and
 468 Audio-Visual Harmony. As shown in Figure 12, Muse-
 469 Painter attains the highest mean scores in every category,
 470 underscoring its superior ability to capture musical style,
 471 synchronize visual content with rhythmic structure, gen-
 472 erate high-fidelity images, and produce cohesive music-
 473 visual pairings. Error bars indicate one standard deviation
 474 across all participant ratings.

475 5 CONCLUSION

476 We introduced **MusePainter**, a framework for bridging the semantic and subjective gap in music-to-
 477 image synthesis. Our method combines structured music-theoretic descriptors, LLM-driven visual
 478 synthesis, and multi-axis reinforcement learning from human feedback (RLHF). Experiments show
 479 that MusePainter outperforms strong baselines in semantic fidelity, stylistic coherence, and emo-
 480 tional consistency. These gains are driven by two key innovations: hybrid-length distillation for
 481 robust music–visual grounding, and disentangled multi-axis preference optimization for controllable
 482 alignment. While developed for music-to-image, the framework’s components—interpretable de-
 483 scriptors and multi-axis preference modeling—may extend to other modalities. MusePainter offers
 484 interpretable control and lays the foundation for future explorations into dynamic video synesthesia,
 485 interactive systems, and broader multimodal datasets.



477 Figure 7: Human Analysis of three
 478 methods from four perspectives.
 479
 480
 481
 482
 483
 484
 485

486
487
ETHICS STATEMENT488
489
490
491
Our work investigates cross-modal generation by conditioning image synthesis on musical inputs.
We believe this research can contribute positively to creative AI, enabling novel forms of artistic
expression, advancing understanding of cross-modal alignment, and providing interpretable mecha-
nisms for human-centered generative systems.492
493
494
495
496
497
498
Nevertheless, we acknowledge potential negative impacts. Music-to-image generation could be mis-
used for creating misleading or inappropriate visual content, or for reinforcing stereotypes associ-
ated with certain musical genres or cultures. Our experiments are conducted exclusively on publicly
available benchmark datasets (MusicCaps and Song-Describer), which contain no personally iden-
tifiable information. However, biases inherent in these datasets (e.g., cultural bias toward Western
music styles) may propagate through our model outputs. We encourage further research on bias
detection and mitigation in multimodal generative modeling.499
500
501
502
503
Regarding environmental impact, all experiments were performed on a single NVIDIA A100 GPU
(40GB), with training totaling approximately 150 GPU hours. We recognize the importance of
efficient model design and responsible use of computational resources to reduce the carbon footprint
of large-scale model training.504
505
506
Overall, we emphasize that our framework should be used only for beneficial and creative purposes.
We explicitly discourage applications that may cause harm to individuals, cultures, or society, such
as generating deceptive media or infringing upon artistic copyright.507
508
REPRODUCIBILITY STATEMENT510
511
512
513
We are committed to ensuring the reproducibility of our work. All datasets used in our experiments
are publicly available (MusicCaps Agostinelli et al. (2023), Song-Describer Manco et al. (2023)).
We will release our code and trained checkpoints upon acceptance, together with scripts for prepro-
cessing, training, and evaluation.514
515
516
517
We describe all necessary implementation details in the main paper and supplementary material,
including model architectures (MuseAes-LLM, MusVis-LLM, and SDXL finetuning), optimization
settings (learning rate, batch size, optimizer, scheduler), and data preprocessing pipelines. Fixed
random seeds were used for all experiments to ensure consistent results across runs.518
519
520
521
Our experiments were conducted on a single NVIDIA A100 GPU (40GB). All reported results in
tables and figures can be reproduced using the released code and configuration files. We will also
provide scripts to regenerate the main figures and evaluation metrics directly from trained check-
points to facilitate verification and reuse by the community.523
524
REFERENCES525
526
527
Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
music from text. *arXiv preprint arXiv:2301.11325*, 2023.528
529
530
Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.531
532
533
Yongqin Xian A. Koepke Ying Shan Chen, Yanbei and Zeynep Akata. Distilling audio-visual
knowledge by compositional contrastive learning. In *Conference on Computer Vision and Pattern
Recognition*, pp. 7016–7025, 2021.534
535
536
537
Sanjoy Chowdhury, Sayan Nag, KJ Joseph, Balaji Vasan Srinivasan, and Dinesh Manocha. Melfu-
sion: Synthesizing music from image and language cues using diffusion models. In *Conference
on Computer Vision and Pattern Recognition*, pp. 26826–26835, 2024.538
539
Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
audio-language models. *arXiv preprint arXiv:2311.07919*, 2023.

540 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
 541 on differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023.

542

543 Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning au-
 544 dio concepts from natural language supervision. In *IEEE International Conference on Acoustics,
 545 Speech, and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

546 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
 547 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
 548 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems
 549 (NIPS)*, 36:79858–79885, 2023.

550

551 Zhengcong Fei, Mingyuan Fan, Changjian Yu, and Junshi Huang. Flux that plays music. *arXiv
 552 preprint arXiv:2409.00587*, 2024.

553

554 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 555 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Proceedings of
 556 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15180–15190, 2023.

557

558 Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. Audioclip: Extending clip to
 559 image, text and audio. In *IEEE International Conference on Acoustics, Speech, and Signal Pro-
 560 cessing (ICASSP)*, pp. 976–980, 2022.

561

562 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 563 reference-free evaluation metric for image captioning. pp. 7514–7528, 2021.

564

565 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 566 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 567 Neural Information Processing Systems (NIPS)*, 30, 2017.

568

569 Ayano Hiranaka, Shang-Fu Chen, Chieh-Hsin Lai, Dongjun Kim, Naoki Murata, Takashi Shibuya,
 570 Wei-Hsiang Liao, Shao-Hua Sun, and Yuki Mitsufuji. Hero: Human-feedback efficient reinforce-
 571 ment learning for online diffusion model finetuning. *arXiv preprint arXiv:2410.05116*, 2024.

572

573 Patrik N. Juslin. *Handbook of Music and Emotion: Theory, Research, Applications*. Oxford Univer-
 574 sity Press, 01 2010. ISBN 9780199230143.

575

576 Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fréchet audio distance:
 577 A reference-free metric for evaluating music enhancement algorithms. In *Proc. Interspeech 2019*,
 578 pp. 2350–2354, 2019.

579

580 Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
 581 Parikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided audio generation. In *Inter-
 582 national Conference on Learning Representations (ICLR)*.

583

584 Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
 585 Parikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided audio generation. *arXiv
 586 preprint arXiv:2209.15352*, 2022.

587

588 Seung Hyun Lee, Wonseok Roh, Wonmin Byeon, Sang Ho Yoon, Chanyoung Kim, Jinkyu Kim, and
 589 Sangpil Kim. Sound-guided semantic image manipulation. In *Conference on Computer Vision
 590 and Pattern Recognition*, pp. 3377–3386, 2022.

591

592 Taegyeong Lee, Jeonghun Kang, Hyeonyu Kim, and Taehwan Kim. Generating realistic images
 593 from in-the-wild sounds. In *Conference on Computer Vision and Pattern Recognition*, pp. 7160–
 594 7170, 2023.

595

596 Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Carolan, Jiao Sun,
 597 Jordi Pont-Tuset, Sarah Young, Feng Yang, et al. Rich human feedback for text-to-image genera-
 598 tion. In *Conference on Computer Vision and Pattern Recognition*, pp. 19401–19411, 2024.

599

600 I Manco, B Weck, S Doh, M Won, Y Zhang, D Bodganov, Y Wu, K Chen, P Tovstogan, E Benetos,
 601 et al. The song describer dataset: a corpus of audio captions for music-and-language evalua-
 602 tion. In *NeurIPS Machine Learning for Audio Workshop*, 2023.

594 Pravendra Singh Kranti Kumar Parida Mazumder, Pratik and Vinay P. Avgslnet: Audio-visual
 595 generalized zero-shot learning by reconstructing label features from multi-modal embeddings. In
 596 *Conference on Computer Vision and Pattern Recognition*, pp. 3090–3099, 2021.

597

598 Can Qin, Ning Yu, Chen Xing, Shu Zhang, Zeyuan Chen, Stefano Ermon, Yun Fu, Caiming Xiong,
 599 and Ran Xu. Gluegen: Plug and play multi-modal encoders for x-to-image generation. In *Inter-
 600 national Conference on Computer Vision*, pp. 23085–23096, 2023.

601 Xueyang Qin, Lishuang Li, Fei Hao, Meiling Ge, and Guangyao Pang. Multi-level knowledge-
 602 driven feature representation and triplet loss optimization network for image–text retrieval. 61(1):
 603 103575, 2024.

604 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 605 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 606 models from natural language supervision. In *International conference on machine learning*, pp.
 607 8748–8763. PMLR, 2021.

608

609 Prathusha Sarma William Sethares Sun, Zhongkai and Yingyu Liang. Learning relationships be-
 610 tween text, audio, and video via deep canonical correlation for multimodal language analysis. In
 611 *The AAAI Conference on Artificial Intelligence*, pp. 8992–8999, 2020.

612 Kim Sung-Bin, Arda Senocak, Hyunwoo Ha, Andrew Owens, and Tae-Hyun Oh. Sound to visual
 613 scene generation by audio-to-visual latent alignment. In *Conference on Computer Vision and
 614 Pattern Recognition*, pp. 6430–6440, 2023.

615 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 616 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 617 direct preference optimization. In *Conference on Computer Vision and Pattern Recognition*, 2024.

618

619 Chia-Hung Wan, Shun-Po Chuang, and Hung-Yi Lee. Towards audio to scene image synthesis
 620 using generative adversarial network. In *IEEE International Conference on Acoustics, Speech,
 621 and Signal Processing (ICASSP)*, pp. 496–500. IEEE, 2019.

622 Yan Wang, Yuting Su, Wenhui Li, Zhengya Sun, Zhiqiang Wei, Jie Nie, Xuanya Li, and An-An Liu.
 623 Rare-aware attention network for image–text matching. 60(3):103280, 2023.

624

625 Prem Seetharaman Kundan Kumar Wu, Ho-Hsiang and Juan Pablo Bello. Wav2clip: Learning
 626 robust audio representations from clip. In *IEEE International Conference on Acoustics, Speech,
 627 and Signal Processing (ICASSP)*, pp. 4563–4567, 2022.

628

629 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score: Better
 630 aligning text-to-image models with human preference. In *Conference on Computer Vision and
 631 Pattern Recognition*, pp. 2096–2105, 2023a.

632

633 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 634 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 635 augmentation. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
 636 Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023b.

637

638 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 639 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 640 *Advances in Neural Information Processing Systems (NIPS)*, 36:15903–15935, 2023.

641

642 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu Li.
 643 Using human feedback to fine-tune diffusion models without any reward model. In *Conference
 644 on Computer Vision and Pattern Recognition*, pp. 8941–8951, 2024.

645

646 Guy Yariv, Itai Gat, Lior Wolf, Yossi Adi, and Idan Schwartz. Audiotoken: Adaptation of text-
 647 conditioned diffusion models for audio-to-image generation. *arXiv preprint arXiv:2305.13050*,
 648 2023.

649

650 Ran Yi, Haoyuan Tian, Zhihao Gu, Yu-Kun Lai, and Paul L Rosin. Towards artistic image aesthetics
 651 assessment: a large-scale dataset and a new method. In *Conference on Computer Vision and
 652 Pattern Recognition*, pp. 22388–22397, 2023.

648 Pengcheng Zhao, Yanxiang Chen, Lulu Zhao, Guang Wu, and Xi Zhou. Generating images from
649 audio under semantic consistency. *Neurocomputing*, 490:93–103, 2022.
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701