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Abstract

Geometric graph neural networks (GNNs) have emerged as powerful tools for
modeling molecular geometry. However, they encounter limitations in effec-
tively capturing long-range interactions in large molecular systems due to the
localization assumption of GNN. To address this challenge, we introduce Neu-
ral P3M, a versatile enhancer of geometric GNNs to expand the scope of their
capabilities by incorporating mesh points alongside atoms and reimaging tradi-
tional mathematical operations in a trainable manner. Neural P3M exhibits flex-
ibility across a wide range of molecular systems and demonstrates remarkable
accuracy in predicting energies and forces, outperforming on benchmarks such
as the MD22 dataset. It also achieves an average improvement of 22% on the
OE62 dataset while integrating with various architectures. Codes are available at
https://github.com/OnlyLoveKFC/Neural_P3M.

1 Introduction

Prevailing geometric graph neural networks (GNNs) have demonstrated remarkable capabilities in
capturing the geometric information inherent within molecular graphs. Not only do they accelerate
the computational efficiency compared to traditional Density Functional Theory (DFT) methods for
molecules, but also hold the promise of achieving high-level accuracy in predicting crucial molecular
properties such as energy and forces [2, 18, 23]. Despite their success in modeling small molecules,
limitations still persist in extending these methods to larger molecular structures and systems governed
by periodic boundary conditions (PBC). Current methods [16, 1] excel in approximating the short-
range interactions, which encapsulate interactions among local atom groups within a defined distance
cutoff, characterized by a rapid decay in real space. The primary obstacle lies in effectively capturing
long-range interactions within these complex systems.

Several attempts have been undertaken to incorporate long-range physical interactions into geometric
GNNs. Early studies [19, 21] combined physical equations, such as Coulomb’s law, with models
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tailored for short-range interactions. Conversely, recent advancements are steering towards the
development of sophisticated models capable of learning long-range interactions directly from
data. One such strategy is the spatial-based method, exemplified by LSRM [13]. It utilizes specific
fragmentation algorithms like BRICS [5] to fragment molecules into discrete groups in real space. The
long-range interactions are thereby captured in a hierarchical manner by facilitating message passing
between the fragments and atoms. Another strategy is the spectral-based method [12, 24], which
treats the long-range parts in the reciprocal space following the concepts of Ewald summation [4].
The long-range parts exhibit a rapid decay instead in the reciprocal space, which enables efficient
evaluation with a frequency cutoff.

Following traditional computational chemistry, an intuitive direction would be to mesh up the Ewald
summation, harnessing fast Fourier transformation (FFT) for acceleration. While this poses a non-
trivial problem, a rich of established works represented by Particle–Particle Particle-Mesh (P3M) [11]
provide a solid foundation for such undertakings. In this work, inspired by the underlying unified
concepts [6] behind these FFT-accelerated methods, we propose a novel perspective by integrating
atom and mesh into neural networks. To be concrete, we reimage the traditional mathematical
operations in mesh-based methods in a trainable manner, laying the foundation of our new framework,
termed Neural P3M (Fig. 1). Neural P3M is designed to be a versatile enhancer, compatible with a
wide range of existing models. In contrast to LSRM, Neural P3M framework remains unconstrained
to any fragmentation algorithm, and hence enhances its flexibility across diverse molecular systems.
Different from Ewald MP, Neural P3M explicitly incorporates mesh representations, thereby offering
discrete resolutions necessary for formulating long-range terms. Additionally, it incorporates the
exchange of information between short-range and long-range terms at the atom and mesh scales.
Moreover, our proposed framework exhibits theoretical efficiency surpassing that of Ewald MP due
to the reduced computational complexity afforded by FFT.

Short-range

Charge Assign Long-range

Neural P3M

(Atom-Mesh) (Mesh-Mesh)

(Atom-Atom)

Figure 1: Illustration of Particle–Particle Particle-Mesh (P3M) and its relationship with our Neural
P3M framework. The Atom2Atom block corresponds to the short-range term. The Atom2Mesh and
Mesh2Atom block are similar to the charge assignment and back-interpolation. The Mesh2Mesh
block corresponds to the long-range term.

We evaluate our framework on several benchmarks by integrating a variety of geometric GNNs.
Neural P3M achieves the state-of-the-art performance on the MD22 dataset [3] and Ag dataset [16]
when combined with ViSNet [23]. It consistently demonstrates improvements in energy mean absolute
errors (MAEs), achieving an average reduction of 22% on the OE62 dataset [20]. In summary, our
contributions can be summarized as follows:
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• Framework. We propose a novel framework Neural P3M to capture short-range and
long-range interactions at both atom and mesh scale.

• Enhancement and Versatility. Neural P3M exhibits compatibility and significant improve-
ments with short-range-centric methods on the Ag, MD22 and OE62 benchmarks.

• Flexibility. Neural P3M is well-suited for diverse molecular systems without any constraints.

2 Preliminary

Ewald Summation Ewald summation is a widely used technique in calculations of long-range
interactions in periodic systems [7]. Specifically, consider the pair-wise electrostatic potential as
ψ(rij) = 1/∥rij∥2. The total electrostatic potential energy E can be evaluated as the infinite
summation over pairs under the periodic boundary condition (PBC) as

E =
1

2

∑
n

N∑
i=1

N∑′

j=1

∫∫
ρi(r)ρj(r

′)ψ(∥r− r′ + n · c∥2)d3rd3r′ =
1

2

N∑
i=1

∫
ρi(r)ϕ[i](r)d

3r (1)

where ρi(r) is charge density, c is the cell vector, and N is the number of atoms in a cell. The ′
summation is introduced to exclude the term j = i, if and only if n = 0. ϕ[i](r) represents the
potential generated by all particles excluding the particle i. A continuous partition function that
delays rapidly with respect to the distance is used to separate the short-range and long-range terms.
One standard approach is to partition the contributions based on the error function erf:

ψsr(r) =
1− erf(β∥r∥2)

∥r∥2
, ψlr(r) =

erf(β∥r∥2)
∥r∥2

(2)

where β is a fixed constant. We assume the charge density is described by the delta function as point
charges, i.e. ρi(r) = qiδ(r− ri). With the rapid delay of the partition function, it is safe to assume
convergence by only considering the interaction pairs within a specific cutoff distance as

Esr =
1

2

N∑
i=1

∫
ρi(r)ϕ

sr
[i](r)d

3r =
1

2

∑
(i,j)∈E

qiqjψ
sr(rij) (3)

where E is the set of atom pairs within the cutoff distance. By the Parseval’s theorem, the correspond-
ing long-range term can be expressed as the summation in the Fourier domain as

Elr =
1

2

N∑
i=1

∫
ρi(r)ϕ

lr(r)d3r =
1

2V

∑
m ̸=0

g̃(m)γ̃(m)∥ρ̃(m)∥22 (4)

where V is the volume of the unit cell and g̃(m) = 4π/∥m∥22 are the Fourier transformed Green
function of the Coulomb potential 1/∥r∥2, and γ̃(m) = exp(−∥m∥22/4β2). The Fourier-transformed
charge density ρ̃(m) is defined as

ρ̃(m) =

∫
V

ρ(r) e−im·rd3r =

N∑
j=1

qje
−im·rj (5)

The frequency vector m can be truncated as the long-range term quickly converges in the Fourier
domain. As the long-range term introduces the self-interaction energy, a correction term is also
applied to the final potential energy as

Eself = −1

2

N∑
i=1

∫
ρi(r)ϕ

lr
i (r)d

3r = − β√
π

N∑
i=1

q2i (6)

Meshing up the Ewald Summation The traditional Ewald summation method has a computational
complexity of O(N2), which becomes impractical for large-scale systems. A common approach
to accelerate the process is to employ FFT. Currently, a variety of mesh-based implementations are
available. While they differ in their implementations, they share a similar conceptual foundation [6].
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Initially, point charges (particles) with their continuous coordinates, must be scattered onto grid-based
charge densities (meshes). The charge densities on meshes are interpolated using charge assignment
function W to ensure a finite support for summation:

ρM (rp) =
1

Vgrid

∫
V

W (rp − r) ρ(r)d3r =
1

Vgrid

N∑
i=1

qiW (rp − ri) (7)

where Vgrid is the volume of the discrete grid to ensure that ρM is a density. Once we have discrete
grid-based charge densities, we need to modify Eq.4 to accommodate discrete mesh points. According
to the proof in Appendix B, Eq.4 can be rewritten as the convolution in the real space:

Elr =
1

2

N∑
i=1

qiϕ
lr(ri) =

1

2

N∑
i=1

qi[g ⋆ γ ⋆ ρ](ri) =
1

2

N∑
i=1

qi[G ⋆ ρ](ri) (8)

where G is referred to influence function following Hockney and Eastwood [11] and ⋆ is the convolu-
tion operation. The discrete approximation for Elr can be expressed in a corresponding manner as
follows:

Elr ≈ 1

2

∑
rp∈V

VgridρM (rp)[G ⋆ ρM ](rp) (9)

where, V is the set of mesh points. By altering the standard influence function G to accommodate
different charge assignment functions, one can develop distinct algorithms. Subsequently, FFT is
employed to accelerate the convolution process. Following the calculation of the energy, forces on
particles can be determined by differentiation, either in the real space or Fourier space. Alternatively,
forces can also be derived by differentiating on meshes and then applying a back-interpolation
technique to assign forces to particles.

The adaptation of FFT to the Ewald summation has been quite enlightening. We will delve into a
detailed examination of the correlation between our Neural P3M and these mesh-based techniques in
the subsequent section.

3 Method

We are interested in learning the energies and forces of 3D molecules, potentially under the assumption
of the periodic boundary condition. Specifically, consider a 3D molecule represented as a point cloud
G = {xa

i , zi}i∈U with atom coordinates xa and atom types z, we want to learn the molecule-level
energy Ê(G) and atom-level forces F̂ (G). Different from previous work [12] which utilizes the
vanilla Ewald summation in the Fourier domain, our framework is mesh-based which provides
discrete structural information and allows for information flow between long-range and short-range
representations. Our fundamental concept is akin to these mesh-based methods mentioned in Section 2.
We use short-range blocks on atoms to capture bonded terms and non-bonded short-range terms
while applying long-range blocks on meshes to handle long-range terms. We enable the transfer of
information between atoms and meshes via the representation assignment. A pseudocode for the
Neural P3M block is provided in Appendix D.1 to enhance understanding. We further elaborate on
the Neural P3M architecture as follows.

3.1 Mesh Construction

Firstly, we construct meshes on which long-range interactions can be captured. In periodic systems
such as crystals, the cell is naturally delineated. For non-periodic systems, we adopt the approach
used by prevalent quantum chemistry software, which involves padding the bounding box with a
specified margin to define the cell. Detailed information about the construction of the cell can be
found in Appendix C. The coordinates of mesh points xm

i,j,k can be described as:

xm
i,j,k =

ni + 1/2

Nx
cx +

nj + 1/2

Ny
cy +

nk + 1/2

Nz
cz (10)

where c = [cx, cy, cz]
⊤ is the cell vector and Nx, Ny, Nz is the number of discretizations along each

dimension. For convenience, we can regard meshes as a point cloud with a single subscript for the
index as {xm

i }i∈V .
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Figure 2: Overall framework architecture and details of each block. Geometric GNN models
short-range interactions, Fourier neural operator (FNO) captures global long-range interactions, and
continuous filter convolution (CFConv) exchanges information between two parts.

3.2 Embedding Block

Once coordinates of mesh points are established, we can proceed to construct a short-range atomic
radius graph and a bipartite radius graph between atoms and meshes as follows:

E short = {eij : ∥xa
i − xa

j ∥2 ≤ rshort,∀i, j ∈ U}. (11)

Eassign = {eij : ∥xa
i − xm

j ∥2 ≤ rassign,∀i ∈ U , j ∈ V}. (12)

where U is the atom set and V is the mesh set. Specifically, for periodic systems, the edges are
also obtained by considering possible cross-boundary connections. The atom representation h0i is
initialized as:

h0i = Embed(zi) (13)

The initial mesh representation, denoted as m0
i , is obtained by averaging the representations of all

neighboring atoms on the atom-mesh bipartite graph:

m0
i =

1

|M(i)|
∑

j∈M(i)

h0j (14)

whereM(i) represents the set of neighboring nodes connected to mesh node i within Eassign. The
edge features in both E short and Eassign can be expanded via a set of radial basis functions (RBF):

f short
ij = eRBF(∥xa

i − xa
j ∥2), f

assign
ij = eRBF(∥xm

i − xa
j ∥2) (15)

3.3 Neural P3M Block

Short-range Block The short-range block (Fig.2(c)) updates the atomic representations using a
graph neural network that is either SE(3)-equivariant or invariant. This process can be generally
expressed as follows:

h̃l = GNN(hl, E short, f short) (16)

We noted that the usage of radius graphs inherits the localization assumptions in geometric GNNs
and any node is only able to aggregation information from its direct geometric neighbors in one
short-range block. Therefore, we naturally interpret it as capturing the short-range contribution to
the energy and forces. As this part involves only atoms, we call such a module Atom2Atom which
corresponds to the particle-particle part (short-range term) in the P3M.
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Long-range Block The long-range block (Fig.2(d)) updates mesh representations globally. Re-
calling Eq.9, the key aspect is to devise the influence function G and utilize FFT along with the
convolution theorem for efficient computation of the convolution. Within our framework, we pa-
rameterize G̃ directly in the Fourier domain, and the updated mesh representations can be described
as:

m̃l ← σ
(
W longml +

(
F−1(G̃ · F)

)
(ml)

)
(17)

where F ,F−1 are the Fourier transform and inverse Fourier transform on the discretized mesh,
respectively. σ is the activation function. W long and G̃ are the learnable weights that parameterize
the operator in the real space and Fourier space. If we consider m as a continuous function v(m),
our formulation coincides with the Fourier neural operators (FNOs) on the discretized continuous
function. Similarly, as the long-range block only involves interactions within meshes, we call it
Mesh2Mesh.

Representation Assignment The representation assignment block (Fig.2(e)) allows for information
flow between atom representations and mesh representations, effectively mixing short-range and long-
range terms to obtain a more comprehensive descriptor of the molecule. By parameterizing the charge
assignment function W in Eq.7 and substituting the charge density with the atom representation h̃lj ,
we can derive the continuous filter convolution (CFconv) proposed in SchNet [17]. To elaborate
further, we get additional mesh representations as:

(m← a)li = MLP

 ∑
j∈M(i)

h̃lj ·W l
m←af

assign
ij

 (18)

This Atom2Mesh module can be regarded as the information flow from the short-range part to the
long-range part. Similarly, the Mesh2Atom module takes the same input and geometric graph but
outputs additional atom representations (a← m)l, which could be viewed as the back-interpolation
operation. It allows for the information flow in the inverse direction, from the long-range part to the
short-range part. The long-range Mesh2Mesh module together with the Atom2Mesh and Mesh2Atom
modules corresponds to the particle-mesh part (long-range term) in the P3M.

Ultimately, as shown in Fig.2(b), we merge the information updated by each part itself with the
normalized information received from the other part, and we also incorporate a residual connection
to obtain the final output as:

hl+1 = hl + h̃l + LN((a← m)l) (19)

ml+1 = ml + m̃l + LN((m← a)l) (20)

3.4 Decoder Block

As we are interested in the prediction of molecule-level energies and atom-level forces, an additional
decoder is applied to the final atom representations hL and mesh representations mL to get the
atom-wise energies hout and mesh-wise energies mout. We follow previous work to assume the
additive property of energy to sum all atom-wise energies as the short part of the molecule energy
Êshort.

Êshort =
∑
j∈U

hout
j =

∑
j∈U

MLP(LN(hLj )) (21)

We also sum all mesh-wise energies as the long part of the molecule energy Êlong.

Êlong =
∑
j∈V

mout
j =

∑
j∈V

MLP(LN(mL
j )) (22)

The final potential energy is calculated as: Ê = Êlong + Êshort. Furthermore, although direct
prediction of forces is possible, we instead use the negative gradient of the energy as the prediction of
forces: F̂ = −∇xÊ. The final training objective is a weighted loss between energy and force:

L = λE |E − Ê|2 +
λF
3N

N∑
i=1

∥∥∥Fi +∇xi
Ê
∥∥∥2 (23)
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4 Experiment

4.1 Experimental Setup

In this section, we conduct comprehensive validations of our Neural P3M framework using diverse
datasets and configurations. First, we intuitively demonstrate the necessity of incorporating long-
range interactions through a toy dataset Ag used in Allegro [16]. Subsequently, we integrate various
geometric GNNs [17, 9, 18, 8, 23] with our Neural P3M framework on two prevalent datasets
OE62 [20] and MD22 [3] to demonstrate versatility and effectiveness. All results are evaluated
using mean absolute error (MAE) on test sets, and the baseline results are sourced directly from the
corresponding papers. Unless stated otherwise, almost all hyperparameters align with the baseline
GNNs. For a more comprehensive overview of hyperparameter settings and implementation details,
please refer to the Appendix D and F.

4.2 Toy Dataset: Ag

a

b

Figure 3: Mean absolute errors (MAEs) for energy and
force predictions on Ag dataset are compared among Allegro,
ViSNet, and our proposed framework.

The Ag dataset comprises 1,159 struc-
tures sampled from a 1,111K AIMD
simulation [16]. These structures
were generated from a bulk face-
centered-cubic lattice with a vacancy,
encompassing 71 atoms subject to pe-
riodic boundary conditions. For con-
sistency with Allegro, we randomly
split them into 950 structures for train-
ing, 50 structures for validation and
the remaining structures for testing.
As shown in Fig. 3, compared to
the strictly local Allegro model, ViS-
Net, which has only one layer, offers
slightly improved force prediction, yet
the energy prediction significantly de-
teriorates. This may be caused by the
fact that the model can only perform
message passing once, with a lack of
long-range interactions. Long-range
interactions can be complemented in
theory by raising the cutoff from 4.0
Å to 12.0 Å, but this does not work in
practice, because it could potentially
lead to information over squashing problems, as mentioned in LSRM [13]. When ViSNet with a
single layer is integrated into our framework, long-range interactions can be effectively captured,
significantly improving the accuracy of energy and force predictions compared to the vanilla ViSNet
and Allegro. This toy experiment intuitively demonstrates the critical need to incorporate long-range
interactions and emphasizes the significance of a well-crafted methodology in incorporating them.

4.3 MD22

The MD22 dataset [3] consists of MD trajectory datasets, which present challenges due to their larger
system sizes, ranging from 42 to 370 atoms. The number of structures in each molecule dataset
ranges from 5,032 to 85,109. We calculate the diameter of each molecule, defined as the average of
the maximum distance between any two atoms within a molecule. The smallest diameter observed
is approximately 10.75 Å, while the largest molecule measures about 32.39 Å. We train a separate
model for each molecule and randomly split the dataset according to sGDML [3].

Table 1 demonstrates the results of the ViSNet model incorporating with our Neural P3M framework
(ViSNet-NP3M for short) on MD22. ViSNet-NP3M achieves the state-of-the-art (SoTA) performance
on both energy and force predictions across the four largest molecules and also achieves the lowest
mean absolute error (MAE) for energy or force predictions in the remaining three smaller molecules.
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Table 1: Mean absolute errors (MAE) of energy (kcal/mol) and forces (kcal/mol/Å) for seven
large molecules on MD22 compared with state-of-the-art models. The best one in each category is
highlighted in bold.

Molecule Diameter (Å) sGDML SO3KRATES Allegro Equiformer MACE ViSNet

Baseline Ewald LSRM Neural P3M

Ac-Ala3-NHMe 10.75 energy 0.3902 0.337 0.1019 0.0828 0.0620 0.0796 0.0775 0.0654 0.0719
forces 0.7968 0.244 0.1068 0.0804 0.0876 0.0972 0.0814 0.0902 0.0788

DHA 14.58 energy 1.3117 0.379 0.1153 0.1788 0.1317 0.1526 0.0932 0.0873 0.0712
forces 0.7474 0.242 0.0732 0.0506 0.0646 0.0668 0.0664 0.0598 0.0679

Stachyose 13.87 energy 4.0497 0.442 0.2485 0.1404 0.1244 0.1283 0.1089 0.1055 0.0856
forces 0.6744 0.435 0.0971 0.0635 0.0876 0.0869 0.0976 0.0767 0.0940

AT-AT 17.63 energy 0.7235 0.178 0.1428 0.1309 0.1093 0.1688 0.1487 0.0772 0.0714
forces 0.6911 0.216 0.0952 0.0960 0.0992 0.1070 0.0885 0.0781 0.0740

AT-AT-CG-CG 21.29 energy 1.3885 0.345 0.3933 0.1510 0.1578 0.1995 0.1571 0.1135 0.1124
forces 0.7028 0.332 0.1280 0.1252 0.1153 0.1563 0.1115 0.1063 0.0993

Buckyball catcher 15.89 energy 1.1962 0.381 0.5258 0.3978 0.4812 0.4421 0.3575 0.4220 0.3543
forces 0.6820 0.237 0.0887 0.1114 0.0853 0.1335 0.0989 0.1026 0.0846

Double-walled nanotube 32.39 energy 4.0122 0.993 2.2097 1.1945 1.6553 1.0339 0.7909 1.8230 0.7751
forces 0.5231 0.727 0.3428 0.2747 0.2767 0.3959 0.2875 0.3391 0.2561

When compared to the vanilla ViSNet, ViSNet-NP3M showed an average improvement of 34.6% and
21.2% in energy and force prediction, respectively. Notably, our framework exhibits a more substantial
improvement when compared to ViSNet-LSRM and ViSNet-Ewald, both of which utilize ViSNet as
the short-range model. As shown in Appendix Table 5, another state-of-the-art model, Equiformer,
when integrated with our Neural P3M framework, also demonstrates significant enhancements to the
short-range model itself. These impressive results highlight our framework’s ability to effectively
improve the learning of potential long-range interactions in large molecules.

It’s worth noting that for the two supramolecules that cannot be fragmented by LSRM, our Neural
P3M achieves a significant performance improvement in energy prediction, with a 57.48% increase
for the double-walled nanotube and a 16.07% increase for the buckyball catcher. This suggests
that our Neural P3M is a general solution for various molecules, which is not limited by traditional
fragmentation methods like BRICS.

4.4 OE62

We further take our analysis by incorporating four prevailing geometric GNNs including SchNet [17],
PaiNN [18], DimeNet++ [9], and GemNet-T [8] on the OE62 dataset [20] to confirm the framework’s
versatility. The OE62 dataset consists of about 62,000 large organic molecules, each with the energy
calculated by Density Functional Theory (DFT) . The structures within the OE62 dataset are non-
periodic yet can span large spatial dimensions, exceeding 20 Å. The dataset is strictly split into train,
validation, and test set according to Ewald MP [12]. The same dataset preprocessing process as
Ewald MP is also applied.

The numerical results presented in Table 2 and Appendix Table 6 indicates that the Neural P3M
framework, which combines four models, delivers more performance gains than Ewald MP and LSRM
when using the same hyperparameters. Additionally, our framework exhibits a faster computation
time than Ewald MP, likely due to the efficiency of FFT implementation by Pytorch. An unexpected
observation is the speed performance of DimeNet++. Given that DimeNet++ does not inherently
facilitate message passing between atom embeddings, Ewald MP compensates by integrating long-
range interactions in each output block. In contrast, our approach exchanges short-range and long-
range representations in each layer, which might account for our marginally slower speeds compared
to Ewald MP. We also provide detailed profiling results for the number of model parameters, GPU
memory usage, and other relevant metrics in Appendix G. For more details on the implementation on
the four models, please refer to the Appendix D.

4.5 Ablation Study

4.5.1 Architecture

We first investigate the impact of the Atom2Mesh and Mesh2Atom modules. We remove the
Atom2Mesh module from the original model to avoid the information flow from short-range blocks
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Table 2: Energy MAEs and computation times per input structure for the OE62 dataset compared
with Ewald MP and other baseline methods. The data was sourced directly from [12].

Model Variant
OE62-val OE62-test Forward Pass Forward & Backward Pass

MAE
meV ↓

Rel.
% ↑

MAE
meV ↓

Rel.
% ↑

Runtime
ms/struct. ↓

Rel.
% ↓

Runtime
ms/struct. ↓

Rel.
% ↓

SchNet Baseline 133.5 - 131.3 - 0.13 - 0.28 -
Embeddings 144.7 -8.4 136.7 -4.1 0.14 15.2 0.33 17.8

Cutoff 257.4 -92.8 254.8 -94.1 0.14 13.6 0.31 11.6
SchNet-LR 86.6 35.1 89.2 32.1 0.32 156.0 0.75 171.7

Ewald 79.2 40.7 81.1 38.2 0.70 461.6 1.03 271.4
Neural P3M 70.2 47.4 69.1 47.4 0.37 184.6 0.57 103.6

PaiNN Baseline 61.4 - 63.3 - 1.52 - 3.16 -
Embeddings 63.5 -3.4 63.1 -0.2 1.54 1.4 3.28 3.8

Cutoff 65.1 -6.0 64.4 -2.2 1.84 20.9 3.91 23.6
SchNet-LR 58.3 5.1 58.2 7.7 1.84 20.7 4.21 33.1

Ewald 57.9 5.7 59.7 5.7 2.29 50.5 4.57 44.4
Neural P3M 54.1 11.9 52.9 16.4 2.17 42.8 4.19 32.6

DimeNet++ Baseline 51.2 - 53.8 - 1.99 - 4.26 -
Embeddings 50.4 1.6 53.4 0.7 2.25 12.9 4.93 15.8

Cutoff 48.3 5.7 48.1 10.6 2.68 34.7 6.10 43.4
SchNet-LR 51.4 -0.5 54.4 -1.1 2.37 19.0 4.73 11.2

Ewald 46.5 9.2 48.1 10.6 2.70 35.5 5.93 39.5
Neural P3M 40.9 20.1 41.5 22.9 3.11 56.3 5.62 31.9

GemNet-T Baseline 51.5 - 53.1 - 3.07 - 6.96 -
Embeddings 52.7 -2.3 53.9 -1.5 3.11 1.5 6.98 0.4

Cutoff 47.8 7.2 47.7 10.2 4.02 31.2 8.88 27.7
SchNet-LR 51.2 0.6 52.8 0.5 3.32 8.3 7.73 11.1

Ewald 47.4 8.0 47.5 10.5 4.05 32.0 8.86 27.4
Neural P3M 47.2 8.3 47.4 10.7 3.93 28.0 7.71 10.8

to long-range blocks and vice versa. Table 3 demonstrates that both modules contribute synergistically
to the model’s overall performance. The results illustrate the necessity of enabling information
exchange between the long-range and short-range blocks.

4.5.2 Hyperparameters

Compared to the vanilla model, our framework introduces only two new hyperparameters: the
assignment cutoff distance between mesh points and atoms, denoted as rassign, and the number of
mesh points in each dimension, represented as Nx, Ny, Nz .

Table 3: Energy MAE of SchNet-NP3M
variants on the OE62 test dataset. The
best one is highlighted in bold.

Architecture Variants Energy MAE

Original 69.10
Without Mesh2Atom 76.14
Without Atom2Mesh 74.48

Without Both 72.07

We find that the selection of the number of mesh points is
crucial for the model’s final performance. As illustrated
in Appendix Fig. 4(b), the mean absolute error (MAE) in
energy increases with the number of mesh points, while
the forward computation time also extends. This decline
in performance may be attributed to instances where each
atom is assigned to multiple mesh points simultaneously.
As such occurrences become more frequent, the model
may struggle to effectively learn the appropriate assign-
ment rules. In practice, we typically set the cutoff distance
to either 4.0 or 5.0 Å, ensuring that the product of the num-
ber of mesh points and the cutoff distance is approximately
equivalent to the cell size in each dimension.

Additionally, we provide further ablation studies on the impact of the assignment cutoff distance
(without the k-NN graph) to examine the effects of multiple assignments. As shown in Appendix
Fig. 4(c), all experiments exhibit a slight decrease in performance due to multiple assignments.
However, an appropriately chosen cutoff (4 or 5 Å) still yields relatively optimal results. Notably,
the results do not worsen further as the assignment cutoff increases. We hypothesize that this may
be because a larger assignment cutoff creates a broader neighborhood environment, facilitating the
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learning of the assignment function with a fixed number of meshes, thereby alleviating the challenges
associated with multiple assignments.

5 Related Work

Geometric Graph Neural Networks Geometric graph neural networks preserve equivariance
toward the rigid transformation in space, which can be categorized according to their emphasis on
specific types of structural features and their respective methods of integration. SchNet [17] stands
out as the pioneering approach to applying continuous filter convolution on molecular distances.
Subsequently, DimeNet++ [9] and GemNet [8] explicitly incorporate angles and dihedrals using
Fourier-Bessel functions. To address the computational complexity associated with angles extractions,
PaiNN [18] and ViSNet [23] adopt the density trick and reduce the complexity to linear time.
Additionally, many works are based on high-order geometric tensors [2, 1, 16, 22], which ensure
rigorous theoretical guarantees of equivariance through the use of Clebsch-Gordan product. Despite
these advancements, all these existing methods are constrained to the local atomic environment,
and are unable to approximate the long-range interactions. Hence, there is an urgent need for a
comprehensive framework to address this challenge.

Long-range Interaction Modeling Incorporating long-range interactions into a short-range model
is challenging. Early studies attempted to compensate these long-range effects by integrating
physical equations with either hand-crafted terms [19] or predicted charges [21]. While, recent
works have shifted towards creating carefully designed models that can directly learn long-range
interactions from data. The LSRM framework [13], for instance, captures long-range interactions in
real space by using specific algorithms to fragment molecules into discrete groups and models their
interactions hierarchically. Other methods [12, 24, 15] handle long-range components in reciprocal
space, employing concepts like Ewald summation [4]. Our approach differs from these works by
introducing the discretized meshes and facilitating the exchange of information between long-range
and short-range components.

6 Conclusion

In this paper, we introduce a novel framework, termed Neural P3M, designed to enhance the long-
range interaction modeling for various geometric GNNs. In addition, Neural P3M stands out by not
being confined to any specific fragmentation approach, making it adaptable to various molecular
systems. Neural P3M achieves significant performance improvement on prevalent benchmarks by
capturing short-range and long-range interactions at both atom and mesh scales, and enabling the
exchange of information between them.

Limitation and Societal Impacts: The limitation of our study is that it does not thoroughly investigate
the impact of the number of meshes, nor does it explore potentially more effective methods for
modeling long-range interactions beyond FFT. Nonetheless, our paper offers the community a fresh
perspective on molecular geometry modeling. Our proposed Neural P3M framework is an extensive of
existing geometric GNNs for energy and force prediction of molecules. The prediction of molecular
energies and forces has diverse applications in downstream tasks including molecular dynamics
simulation and molecular property prediction. As our framework better captures the long-range
interaction within the molecule, it can potentially accelerate the pharmaceutical discovery and
understanding of diverse molecules that have positive impacts on treating diseases. On the other hand,
we are also aware of the potential negative impact if the model is misused, as our understanding of
different molecules is still very limited. We will work closely with both the machine learning and the
science community to ensure the proper usage of our model for the good of society.
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Supplemental Material

A Notations

Table 4: Glossary of notations

Notation Description
i; j The index of atoms or meshes
l The index of blocks
r,xa The coordinates of particles (atoms)
rp,x

m The coordinates of the meshes
rij The displacement vector between the particle i and j
c The cell vectors
m The frequency vectors
erf The error function
ρ(·) The charge density of the particle
δ(·) The delta function
q The point charges
ρM (·) The charge density of the mesh point
ψ(·) The pair-wise electrostatic potential
ϕ(·) The potential generated by all particles
ϕ[i](·) The potential generated by all particles excluding the particle i
ϕi(·) The potential generated by the particle i.
g̃, γ̃, ρ̃ The Fourier transformed function g, γ, ρ
⋆ The convolution operation
N The number of particles in a unit cell
W The charge assignment function
G The influence function
Vgrid, V The volume of the discrete grid and cell.
E, Ê The ground truth and prediction of potential energy
F, F̂ The ground truth and prediction of atomic forces
z The atom types
U ,V The set of atoms and meshes
Nx, Ny, Nz The number of discretizations along each dimension x, y, z
rshort, rassign The cutoff distance of radius graphs
E short, Eassign The edge set of radius graphs
N (i),M(i) The neighboring nodes of the target atom (mesh) node.
h The atom representations
m The mesh representations
f The edge representations
F ,F−1 The Fourier transformer and inverse Fourier transform on the discretized mesh

(FFT and IFFT)
∥ · ∥2 The 2-norm of a vector
σ(·) The activation function (SiLU)
GNN(·) The short-range graph neural network (learnable)
W long The weights in long-range block in real space (learnable)
G̃ The weights in long-range block in Fourier space (learnable)
Wm←a,Wa←m The weights representation assignment (learnable)
MLP(·) The multi layer perception (learnable)
LN(·) The layer normalization
λE , λF The weights in the loss between energy and forces

13



B Detailed Derivation of Eq.8

Let’s start our derivation by replacing the the square of the ρ̃(m)’s modulus as the product of itself
with its conjugate:

Elr =
1

2V

∑
m ̸=0

g̃(m)γ̃(m)∥ρ̃(m)∥22 (24)

=
1

2V

∑
m ̸=0

g̃(m)γ̃(m)ρ̃(m)ρ̃∗(m) (25)

=
1

2V

∑
m ̸=0

g̃(m)γ̃(m)ρ̃(m)

N∑
j=1

qje
im·rj (26)

We can then confidently interchange the summation symbols and put the normalization factor 1
V

within the summations as:

Elr =
1

2V

N∑
j=1

qj
∑
m ̸=0

g̃(m)γ̃(m)ρ̃(m)eim·rj (27)

=
1

2

 N∑
j=1

qj

 1

V

∑
m ̸=0

g̃(m)γ̃(m)ρ̃(m)eim·rj

 (28)

Using convolution theory, which states that the convolution of two functions is the pointwise product
of their Fourier transforms, it becomes clear that the expression in parentheses represents the inverse
Fourier transform. Consequently, we can rewrite the expression as follows:

Elr =
1

2

N∑
j=1

qj [g ⋆ γ ⋆ ρ](rj) =
1

2

N∑
i=1

qj [G ⋆ ρ](rj) (29)

We refer g ⋆ γ as the smeared Coulomb Green function G (influence function), and altering it when
assigning charges with different charge assignment function W .
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C Detailed Implementation of Cell Construction

Cell construction is trivial for periodic systems like crystals, as a canonical cell can always be assigned.
We now describe the cell construction for non-periodic systems. Given a set of atom coordinates
{xi}ni=1, we first derive a canonical coordinate frame U as the eigenvectors of the covariance matrix:

UΛU⊤ = (X − µ)⊤(X − µ) (30)

where Λ is the diagonal matrix of the eigenvalues of the covariance matrix, X ∈ Rn×3 is the
coordinate matrix, and µ =

∑n
i=1 xi/n. For any rotation matrix R and X ′ = XR, it is easy to see

that U ′ = RU is a new eigenvector matrix for the new covariance matrix. Therefore, we use the
canonical coordinates as X̃ = (X − µ)U⊤ which is invariant under global translation and rotation.
After the transformation, the principle components of the coordinates now align with the coordinate
frame. We can define the cell vectors to follow the directions of the coordinate with the cell length
defined by the maximum coordinate span with additional padding d on both sides:

cx =

(
max
1≤i≤n

x̃i − min
1≤i≤n

x̃i + 2d

)
ex

cy =

(
max
1≤i≤n

ỹi − min
1≤i≤n

ỹi + 2d

)
ey

cz =

(
max
1≤i≤n

z̃i − min
1≤i≤n

z̃i + 2d

)
ez

(31)

where x̃, ỹ, z̃ are coordinate components of the transformed molecules. In practice, we used a
d = 0.5Å. The mesh coordinates are obtained via Eq.10 and the final atom coordinates are obtained
by moving the molecule inside the cell as:

Y = X̃ −
(

min
1≤i≤n

x̃i − d, min
1≤i≤n

ỹi − d, min
1≤i≤n

z̃i − d
)
U (32)

There are rare cases when the molecule exhibits high symmetry. However, as we only consider
different atom types and treat the same type of atoms as indistinguishable, the final molecule and
mesh are also indistinguishable and unique in this sense.
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D Detailed Implementation for Integrating Various GNNs into Neural P3M

In this section, we first provide the pseudocode for the Neural P3M block to facilitate understanding
of our framework, followed by a detailed explanation of the implementation. We emphasize the
distinct integration strategies required by the varying inputs and outputs of short-range geometric
GNNs. For detailed insights into the specific implementations within geometric GNNs, we direct
readers to the original paper.

D.1 Pseudocode for Neural P3M Block

The pseudocode for the Neural P3M block is presented in Algorithm 1 as a general framework for
iteratively and interdependently updating the atom features h and mesh features m. The GNN in the
algorithm can incorporate most geometric GNN frameworks that use node features, the atom graph
E short, and edge features f short as input to update the node features. The FNO serves as the long-range
block, updating mesh features according to Eq.17. The representation assignment then calculates the
relevant features based on the assignment graph Eassign and edge features f assign. Finally, the overall
representation is updated using information from both the short-range and long-range blocks.

Algorithm 1 Neural P3M block
1: Input: Atom feature hl, mesh feature ml, atom graph E short, assignment graph Eassign and edge

features f short, f assign.
2: h̃l ← GNN(hl, E short, f short) ▷ Atom2Atom (Short-range)
3: m̃l ← FNO(ml) ▷ Mesh2Mesh (Long-range)
4: (a← m)li ← MLP

(∑
j∈A(i) m̃

l
j ·W l

a←mf
assign
ij

)
▷ Mesh2Atom (Repr. Assignment)

5: (m← a)li ← MLP
(∑

j∈M(i) h̃
l
j ·W l

m←af
assign
ij

)
▷ Atom2Mesh (Repr. Assignment)

6: hl+1 ← hl + h̃l + LN((a← m)l) ▷ Mesh2Atom (Update)
7: ml+1 ← ml + m̃l + LN((m← a)l) ▷ Atom2Mesh (Update)
8: return hl+1,ml+1

D.2 SchNet

SchNet [17] utilized continuous graph convolutional kernels generated from edge features of radial
basis functions (RBFs) to capture the geometric information of interatomic distances. In each Neural
P3M Block, the atom representations hl and mesh representations ml are initially subjected to layer
normalization before being processed by a SchNet Block and an FNO Block, respectively.

h̃l = SchNet Block(LN(hl), ...) (33)

m̃l = FNO(LN(ml)) (34)
Following this, the representation assignment block updates these representations separately.

(m← a)l = Atom2Mesh(h̃l, ...) (35)

(a← m)l = Mesh2Atom(m̃l, ...) (36)
The exchanged representations are then normalized and combined with their corresponding updated
representations via an addition operation. Finally, we employ residual concatenation to obtain the
final representation:

hl+1 = hl + h̃l + LN((a← m)l) (37)

ml+1 = ml + m̃l + LN((m← a)l) (38)

D.3 PaiNN

PaiNN [18] is an equivariant graph neural network based on scalar-vector interactions. Each hidden
state is described by a tuple of scalar representations hl and vector representations vecl and updated
as follows:

h̃l, ˜vecl = PaiNN Block(LN(hl),vecl...) (39)
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We only use scalar representations to exchange information with mesh representations, vector repre-
sentations can also get long range information when interacting with scalars. The implementations of
other parts are consistent with SchNet.

D.4 DimeNet++

DimeNet++ [9] is an improved version of the original DimeNet [10] architecture. In addition to
distance, it further leverages the geometric information of any angles formed by three nodes and
applies 2D spherical Bessel functions to embed the angles. Thus, the hidden state f l of DimeNet++
is at the edge level. To exchange information between atoms and meshes, we need to aggregate the
edge-level representations to the node-level representations as follows:

f̃ l = DimeNet Block(LN(f l), ...) (40)

h̃li =
∑

j∈N (i)

f̃ lij ·W l
RBFe

RBF(∥xai − xa
j ∥2) (41)

The subsequent implementations are consistent with SchNet, while in order to obtain the final edge-
level representations, we combine the atom representations on both sides of the edge, and finally
update it as follows:

(aedge ← m)lij = σ(Wconcat Concat[(a← m)li, (a← m)lj ]) (42)

f l+1 = f l + f̃ l + LN((aedge ← m)l) (43)

ml+1 = ml + m̃l + LN((m← a)l) (44)

D.5 GemNet

GemNet [8] further extends DimeNet to incorporate geometric information of dihedral angles formed
by four atoms and applies high-order Bessel functions to embed the dihedral angles. However, since
the computational complexity of quadruplets is too high, GemNet-T used in this paper still uses
triplets, which can be viewed as more complex DimeNet. GemNet updates both atom-level and
edge-level representations as follows:

h̃l, f̃ l = GemNet Block(LN(hl),LN(f l), ...) (45)

We use node-level representations to exchange information with mesh representations, and subsequent
implementations are consistent with SchNet. The final representations are updated as follows:

hl+1 = h̃l (46)

f l+1 = f l + f̃ l + LN((aedge ← m)l) (47)

ml+1 = ml + m̃l + LN((m← a)l) (48)
It should be noted that updates are made solely at the edge-level representations to prevent information
redundancy. Our observations indicate that edge-level representations are predominantly parts of
GemNet, hence, we focused our updates there. Additionally, we remove the scaling factor from our
implementation.

D.6 ViSNet

ViSNet [23] is an upgraded version of PaiNN, also utilizing scalar-vector interactions that can describe
angles, dihedral angles, and improper angles in linear time complexity. When training ViSNet on the
MD22 dataset, we find that ViSNet suffers from unstable training when learning rate is relatively
large, so we slightly modified the implementation. Unlike the first 4 models, instead of exchanging
information using the representations after updating, we use the input representations directly after
layer normalization:

h̃l, ˜vecl, f̃ l = ViSNet Block(LN(hl),vecl,LN(f l)) (49)

m̃l = FNO(LN(ml)) (50)

(m← a)l = Atom2Mesh(LN(hl), ...) (51)
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(a← m)l = Mesh2Atom(LN(ml), ...) (52)
The final representations are modified as follows:

hl+1 = hl + h̃l + (a← m)l (53)

ml+1 = ml + m̃l + (m← a)l (54)

f l+1 = f l + f̃ l (55)
This modification is similar to altering from post-normalization to pre-normalization in the standard
Transformer.
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E Additional Results

E.1 Performance of Integrating Equiformer into Neural P3M

We further evaluate the performance of the Equiformer model integrated with our Neural P3M on the
two largest molecules on MD22, as shown in Table 5. The results demonstrate our framework’s con-
sistent improvement over mainstream state-of-the-art models, further highlighting the compatibility
of our approach.

Table 5: Mean absolute errors (MAE) of energy (kcal/mol) and forces (kcal/mol/Å) for the two
largest molecules on MD22 compared with Equiformer baseline [14]. The best one in each category
is highlighted in bold.

Molecule Diameter (Å)
Equiformer

Baseline Neural P3M

Buckyball catcher 15.89 energy 0.3978 0.3038
forces 0.1114 0.1018

Double-walled nanotube 32.39 energy 1.1945 0.6208
forces 0.2747 0.2399

E.2 Comparison of Performance on OE62 between LSRM and Neural P3M

Due to the diversity of OE62, the fragmentation algorithm used by LSRM is not suitable for all
molecules in this dataset. Nevertheless, for the sake of a thorough comparison, we applied filtering to
select a subset of molecules and used this slightly modified dataset to evaluate LSRM’s performance
on OE62. The results in Table 6 indicate that while LSRM outperforms the baseline, its performance
remains below that of our Neural P3M.

Table 6: Energy MAEs on the OE62 dataset compared against the LSRM and baseline models. The
best one in each category is highlighted in bold.

Model Variant
OE62-val OE62-test

MAE
meV ↓

Rel.
% ↑

MAE
meV ↓

Rel.
% ↑

SchNet Baseline 133.5 - 131.3 -
LSRM 72.9 45.4 72.6 44.7

Neural P3M 70.2 47.4 69.1 47.4
PaiNN Baseline 61.4 - 63.3 -

LSRM 56.6 7.8 56.4 10.9
Neural P3M 54.1 11.9 52.9 16.4

DimeNet++ Baseline 51.2 - 53.8 -
LSRM 47.9 6.4 50.4 6.3

Neural P3M 40.9 20.1 41.5 22.9
GemNet-T Baseline 51.5 - 53.1 -

LSRM 50.8 1.4 51.5 3.0
Neural P3M 47.2 8.3 47.4 10.7
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F Hyperparameters of Neural P3M

F.1 Common Hyperparameters

Ag Dataset We use a compact ViSNet which has only a single layer with 128 hidden dimensions
and a maximum spherical harmonic order of lmax = 1 . For training, we employ the AdamW optimizer
with a batch size of 4. The learning rate is dynamically adjusted using the ReduceLROnPlateau
scheduler with a decay factor of 0.8, triggered after a patience interval of 30 epochs without improve-
ment. The initial learning rate is set to 0.0018, is preceded by a warm-up phase of 1000 steps. In
our loss function, energy and force are weighted at a ratio of 0.1 / 0.9, respectively, to balance their
importance during the training process. We employ an early stopping mechanism that terminates
training if the validation metric does not improve after 600 epochs. Experiments are conducted on a
NVIDIA 16G V100 GPU.

MD22 Dataset We employ a ViSNet that consists of 6 layers with 128 hidden dimensions, and a
maximum spherical harmonic order of lmax = 1 to enable a fair comparison with LSRM model. We
adjust the batch size for each molecule to achieve approximately 1000 steps per epoch (a batch size
of 6 for Ac-Ala3-NHMe, 8 for DHA and so on). The initial learning rate is carefully tuned within the
range of 0.001 to 0.0018 to optimize performance. Additionally, the weights of energy and force in
the loss function is customized for different molecules, with supramolecules using a weight of 0.005
for energy and 0.995 for force, while other molecules using a ratio of 0.05 / 0.95. Other settings
remain the same as the Ag dataset. Experiments are conducted on a NVIDIA 16G V100 GPU.

OE62 Dataset Regarding the four models trained on the OE62 dataset, providing a detailed
hyperparameters on each is challenging due to their uniqueness. However, to ensure a fair comparison,
we set the hyperparameters in line with Ewald MP exactly. The only difference is that after eliminating
the scaling factor from the GemNet implementation, we tuned the initial learning rate within the
range of 0.0001 to 0.0005. Experiments are conducted on a NVIDIA 80G A100 GPU.

F.2 Hyperparameters about Mesh Construction

In this subsection, we detail the hyperparameters employed during the mesh construction process.
The empirical principles guiding their selection are discussed in Section 4.5, here we focus on the
specific hyperparameters in practice.

Table 7: Hyperparameters employed during the mesh construction process on different molecules
.

Dataset Molecule Expand size (2d) Short-range cutoff (rshort) Assignment cutoff (rassign) Nx Ny Nz

Ag - - 4.0 Å 4.0 Å 3 3 2

MD22

Ac-Ala3-NHMe 1.0 Å 5.0 Å 4.0 Å 3 3 2
DHA 1.0 Å 5.0 Å 4.0 Å 4 3 2
Stachyose 1.0 Å 4.0 Å 5.0 Å 3 3 2
AT-AT 1.0 Å 5.0 Å 5.0 Å 4 3 2
AT-AT-CG-CG 1.0 Å 5.0 Å 5.0 Å 5 4 3
Buckyball catcher 1.0 Å 4.0 Å 5.0 Å 4 4 2
Double-walled nanotube 1.0 Å 4.0 Å 5.0 Å 7 3 3

OE62 - 1.0 Å 6.0 Å 4.0 Å 3 3 3
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G Profiling Results of Neural P3M on OE62

We present the number of parameters and memory usage (with standard settings and a batch size of 8
of the largest molecule in OE62) as well as the maximum batch size that can be accommodated on a
single A100 GPU in the Table 8. The bulk of the memory usage is still attributed to the short-range
modules—for instance, 16719 MB versus 19945 MB in GemNet. As anticipated, the integration
of the mesh concept and additional modules means that Neural P3M has a higher parameter count
and slightly greater memory usage than Ewald MP. Nevertheless, this modest increase in resource
demand is offset by the significant performance improvements offered by Neural P3M, along with
the computational acceleration brought by FFT.

Table 8: Profiling results on the OE62 dataset compared with Ewald MP and other baseline methods.
The best one in each category is highlighted in bold.

Model Variant # of Parameters (M) GPU Memory (MB) Max. Batch Size

SchNet Baseline 2.8 1623 400
Embeddeds 14.4 1865 344

Cutoff 2.8 1671 392
SchNet-LR 5.3 4835 128

Ewald 12.2 2675 240
Neural P3M 19.1 2283 280

PaiNN Baseline 12.5 8135 80
Embeddeds 15.7 9073 72

Cutoff 12.5 20480 32
SchNet-LR 15.1 11289 56

Ewald 15.7 9901 64
Neural P3M 28.7 11195 56

DimeNet++ Baseline 2.8 12013 48
Embeddeds 5.4 13865 40

Cutoff 2.8 48128 8
SchNet-LR 3.7 13813 40

Ewald 4.7 13725 40
Neural P3M 6.4 17191 32

GemNet-T Baseline 14.1 16719 32
Embeddeds 16.1 17643 32

Cutoff 14.1 33792 16
SchNet-LR 15.0 19131 32

Ewald 15.8 18819 32
Neural P3M 16.8 19945 32
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H Ablation Study

We describe our ablation experiments in detail here. We chose the simplest SchNet model and
evaluate on the OE62 dataset.

H.1 Empirical Analysis of the Effectiveness of Atom2Mesh & Mesh2Atom Modules

We set the cutoff distance distance between atoms and mesh points rassign, to a constant value of
4.0 Å and fix the number of discretizations to 3. Subsequently, we incrementally removed either
Atom2Mesh, Mesh2Atom, or both from the original architecture to prevent information exchange
between short-range and long-range blocks, thereby assessing the impact of these modules. The
results are presented in Table 3.

a

b

c

Figure 4: Relationships between the number of meshes and forward time (a) and energy MAE (b),
as well as the relationship between assignment cutoff without k-NN graph and energy MAE (c).
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H.2 Empirical Analysis of the Number of Mesh Points

We ensure that the cutoff between the atoms and the mesh points rassign is constant (4.0 Å) and that
the number of discretizations is the same in all three directions, i.e., Nx = Ny = Nz . The results of
the forward time performance and performance with the number of mesh points are shown in Fig.
4(a) and (b).

H.3 Empirical Analysis of the Assignment Cutoff Distance

We conduct ablation studies to examine the impact of the assignment cutoff distance. For the
performance results reported in Table 2 , we use a combination of a radius graph and k-NN graph,
setting the maximum number of neighbors to 5, which generally minimizes multiple assignments. To
assess the effect of multiple assignments, this ablation experiment uses only the radius graph, varying
the assignment cutoff distance from 3 to 10. The performance results based on different assignment
cutoff distances are shown in Fig. 4(c).
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Answer: [Yes]
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in this paper are publicly and freely accessible. We have
included sufficient instructions to the datasets and our experimental settings in Section 4.
We will open-source for reproducibility once our paper gets published.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all details of the model architecture, data processing, and
hyperparameter settings in Appendix D and F for reproducing and understanding our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We followed previous work to report performance on a single seed. We also
fixed the seed for reproducibility instead of averaging across multiple seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have indicated the needed computational resources in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the potential societal impacts of our proposed framework
in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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