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ABSTRACT

In this article, we consider the application of one of the new methods of semi-
supervised graph-based machine learning method (GSSL) for label propagation
using the Poisson equation to solve the problem of classifying solutions of dy-
namic systems by two-dimensional Poincaré section data. The used Poisson learn-
ing has advantages over classical Laplace learning since it allows using signifi-
cantly less labeled data and to spent less time to achieveing the desired accuracy
of classification.
We proposed a modification of Poisson learning uses the Nesterov algorithm to
find the minimum loss function, to improve the convergence results compared
to the classical gradient descent and achieves an accuracy of 92% even with 10
labels per class taking into account accumulation errors and time constraints. This
result is acceptable for solving our general task - building an automated system
for classifying solutions of dynamic systems in real-time.
The article shows the result of applying this approach to dynamic systems using
the example of a classical problem in mechanics – the integrability of a rigid body,
for which regular and quasi-regular orbits are localized and classified.

1 INTRODUCTION

The use of equations in graph-based semi-supervised learning (GSSL) enables a precise mathemati-
cal formulation of classification problems, offering rigorous justifications for algorithmic solutions.
Moreover, the physical interpretations inherent in GSSL methods, drawing parallels with gas diffu-
sion, Bernoulli processes, harmonic fields and waves, heat conduction, and other physical phenom-
ena, provide intuitive and meaningful insights into the processes underlying label propagation. The
most widely recognized GSSL methods employ energy functions in combination with the graph
Laplacian. Prominent among these methods are Label Propagation, Label Spreading, p-Laplace
Propagation, Deformable Laplacian, and Poisson Learning. A key advantage of these methods is
their ability to efficiently propagate labels throughout the graph using a minimal amount of labeled
data. Through iterative computational procedures, these methods maintain high accuracy.

Currently, there exist numerous methodologies for implementing semi-supervised learning tech-
niques using the Laplacian operator. Comprehensive reviews and analyses of these methodologies
have been presented in several influential works, including Zhu (2005), Calder et al. (2020), Song
et al. (2022), Avrachenkov & Dreveton (2023), Aromal & Rasool (2021), Garcia-Cardona et al.
(2013), Chapelle et al. (2009) and others. Among the most extensively studied and established
Laplacian-based semi-supervised methods are Label Propagation, Label Spreading, and Poisson
Learning. Each of these methods possesses distinct strengths and limitations. Specifically, Label
Propagation and Label Spreading exhibit slow convergence rates on large datasets and tend to grad-
ually lose memory of the initial labeled points through iterative updates. Recent advances have
introduced a novel approach known as Poisson Label Propagation (also termed Poisson Learning).
This method addresses several critical limitations of traditional Laplacian-based methods, notably
their inefficiency in scenarios involving small quantities of labeled data. However, in other aspects,
Poisson Learning shares similarities with the standard Label Propagation approach.
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In our investigation, Poisson Learning was utilized to thoroughly assess its effectiveness for propa-
gating labels. Previous studies have applied graph-analytical methodologies, particularly employing
Poincaré sections along with their numerical implementations, to project trajectory structures from
the phase spaces of dynamical systems onto two-dimensional manifolds. These projections yield
two-dimensional data structures comprising distinct classes of periodic solutions (represented as
closed curves). The trajectories are computed sequentially in real-time, consisting of discrete points
derived from numerical solutions to systems of differential equations, typically solved using the
Runge-Kutta method.

However, the practical implementation of this method faces significant limitations due to cumulative
numerical errors, posing a major challenge for fully automated solution classification. Consequently,
within a finite observation window, trajectory data obtained on two-dimensional Poincaré sections
exhibit varying characteristics, necessitating accurate classification into distinct solution classes.
Graph-based semi-supervised learning methods have emerged as advanced and effective tools for
tackling a wide range of classification problems, accommodating scenarios involving two or more
distinct classes. These machine learning approaches are particularly advantageous when fully su-
pervised methods are impractical, provided the underlying structure of the data can be appropriately
represented by a graph—a condition ideally suited to the context of our study.

In this article, we investigate the application of graph-based semi-supervised learning techniques for
classifying dynamical system solutions based on two-dimensional trajectory data. To enhance clas-
sification accuracy and effectiveness, this research proposes employing a semi-supervised learning
approach founded on nonlinear Poisson equations (Poisson Learning). Furthermore, we introduce
a novel modification to Poisson Learning that integrates Nesterov optimization techniques, signifi-
cantly improving the efficiency and accuracy of label propagation tasks.

2 COMPUTER ANALYSIS RELATED RESEARCH

Currently, a fairly not more large number of works are devoted to the study of the application of
different machine learning methods for solving problems of locating periodic orbits of dynamical
system. We will consider some of these works in more detail Das et al. (2012), Neimark et al.
(2005), Petalas et al. (2008), Petalas et al. (2019).

In work Das et al. (2012) the detection of periodic orbits bears significance for the study of nonlinear
mappings, since they can reveal crucial information on their dynamics. Recently, population–based
stochastic optimization algorithms were introduced to address problems where traditional gradi-
ent–based approaches failed. The efficiency of these approaches in a applications, triggered fur-
ther research towards the development of more efficient variants. This work presents the principal
concepts of applying concurrent stochastic population–based approaches for the detection of pe-
riodic orbits, and also reports new results attained by the appli cation of Memetic Algorithms on
well–known chaotic maps for periodic orbits with high period.

In Petalas et al. (2008) authors are proposed a new approach for the identification of the reso nances
appearing in symplectic maps. In the proposed methodology, they make use of Evolutionary Al-
gorithms which are population based search strategies used for global optimization. Authors have
applied the proposed methodology to the 2-dimensional (2D) Henon map and obtained promising
results which can be generalized to symplectic maps of higher (2m) dimensions. As is well-known,
such maps are representative of Hamiltonian systems and occur in many physical applications.

In Petalas et al. (2019) authors presents an algorithm for automatic detection of round shapes on
complex and noisy images. Algorithm based on a hybrid technology consisting of simulated anneal-
ing and differential evolu tion. New fuzzy target function was obtained on the boundary map of the
input Images. Minimizing this function with the hybrid differential evolution firing algorithm results
in automatic detection of circles in the image. Simulation of the results ends with several synthetic
as well as natural images with variable complexity, which confirms the effectiveness of the proposed
technique in terms of its ultimate accuracy, speed and reliability. In Kondratiev & Lyaptsev (2012)
non-autonomous systems are studied by examining their Poincaré maps. Poincaré maps are used to
identify periodic and subharmonic solutions and to study systems whose solutions exhibit chaotic
behavior.
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3 GRAPH-BASED SEMI-SUPERVISED POISSON LEARNING FOR TASKS
CLASSIFICATION

3.1 PROBLEM STATEMENT

We consider the problem of classifying datasets from two classes represented on a on the trajec-
tory flow are obtained on the two-dimensional Poincaré sections, which is discrete two-dimensional
datasets. This datasets can has several classes. We will used a graph-based semi-supervised Poisson
learning method for task classification this datasets. We used this method because we have small
start label data in beginning.

So, we consider GSSL and first step is building a graph on the datasets. For the set of vertices
X = {x1, x2, . . . , xn} of some undirected graph G and the first m vertices (initial ones) of the
set X receive the corresponding labels {y1, y2, . . . , ym}. The number of labeled data is less than
the total, i.e., m < n. The task of graph-based semi-supervised learning using a graph is to
spread the label values from the initial vertices to all others, that is, to find the values labels for
{xm+1, xm+2, . . . , xn}.

General Steps of the GSSL Method The key steps in the Graph-Based Semi-Supervised Learning
(GSSL) method follow the framework outlined in Zhu (2005).

The initial step involves constructing a weighted graph by computing similarity measures between
data points. Common techniques include geometric distances, Gaussian kernels, and K-Nearest
Neighbor (KNN)-based distances. The selection of an appropriate weighting method depends sig-
nificantly on the data’s intrinsic distribution. Specifically, KNN-based weighting approaches gener-
ally yield superior performance when dealing with datasets characterized by overlapping or closely
positioned classes Zhu (2005). A properly weighted graph ensures that the label propagation process
maintains consistency with the underlying data structure, improving classification accuracy. Label
initialization requires selecting a subset of representative data points from each class to serve as
labeled references. To achieve balanced and unbiased initial labeling, it is advisable to allocate an
equal number of labeled samples across all classes. In practice, different strategies can be used for
label selection, such as random sampling, density-based sampling, or uncertainty-based selection.
Proper initialization plays a critical role in ensuring that label propagation yields accurate and sta-
ble results. A penalty function is formulated based on the Dirichlet energy function defined over
the graph. This function encourages smoothness in label propagation while preserving the infor-
mation from the initially labeled nodes. Additional terms are incorporated to impose regularization
constraints or boundary conditions, enhancing the stability and robustness of the solution. Common
regularization methods such as L2 are applied to prevent overfitting, improve generalization capabil-
ity, and ensure better performance on unseen data. Regularization plays a crucial role in mitigating
the effects of noise and irregularities in the dataset. Minimizing the penalty function over the entire
graph corresponds mathematically to solving the Poisson equation. In scenarios involving simplified
energy considerations, this reduces to solving the Laplace equation. The numerical solution of these
equations serves as the foundation for label propagation. In this research, the Nesterov optimization
method is specifically employed for minimizing the penalty function. This advanced optimization
technique accelerates convergence by incorporating momentum-based updates, enhancing compu-
tational efficiency, and significantly improving the accuracy and reliability of the label propagation
process. The integration of Nesterov optimization ensures that the iterative updates of label values
are more stable and converge faster compared to standard gradient-based methods. By following
these structured steps, the GSSL framework enables effective label propagation and classification,
even in scenarios where labeled data is sparse. This approach is particularly well-suited for applica-
tions involving complex data distributions, where graph-based methods provide a more flexible and
scalable alternative to traditional supervised learning techniques.

3.2 GRAPH CONSTRUUCTION AND POISSON LEARNING

Let there be given an undirected weighted graph G = G (X,V,W ), where n number of vertices.
X = {x1, x2, ..., xn} - the set of vertices of the graph, V - the set of edges, W = (wij )

n
i , j=1 - is

the weight matrix of the graph G.

The weight of the graph edges can be calculated using the following formulas (1):
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wij = ψ

(
|xi − xj |
εk (xi)

)
- KNN weight, wij = exp

(
− |xi − xj |2

2σ2

)
- Gaussian weight. (1)

Where ψ - some function, ε - neighborhood, σ is a parameter that controls the variance of
neighbors. The degree of the node xi is determined by the formula di =

∑n
j=1 wij .

According to Poisson learning Calder et al. (2020), label propagation occurs by solving the Poisson
equation, which has the form (2):

L (ui) =

n∑
j=1

wi,j [u (xi)− u (xj)] =

m∑
j=1

(yj − ȳ) δij , 1≤i≤m

L (ui) = 0, m+ 1≤i≤n
(2)

where L - is the non-normalized Laplace operator, xi - are the vertices of the undirected weighted
graph, yi = y (xi) - are the initial labels of the graph vertices, ui = u (xi) - is the function of graph
vertex labels G , wij - edge weight (xi, xj), n - is the total number of graph vertices, the first m of
which are considered labeled. ȳ = 1

m

∑m
j=1 yj . δi,j - is the Kronecker symbol.

∑n
i=1 diu (xi) = 0.

In an iterative process for solving this system based on the solution of the diffusion equation was
proposed - Poisson Learning (Poisson Label Propagation) method. We note some advantages of
Poisson Label Propagation over the classical Label Propagation (Laplace Label Propagation).

Key Advantages and Challenges of Poisson Label Propagation: 1) Increased Computational Effi-
ciency: One of the main advantages of Poisson Label Propagation is its significantly higher com-
putational efficiency. Unlike stochastic methods that rely on probabilistic updates, Poisson-based
techniques utilize exact differential methods. This results in faster convergence rates and shorter
execution times, making the approach well-suited for large-scale datasets.

2) Robustness Against Degeneracy in Low-Label Regimes: A persistent challenge in semi-
supervised learning is the issue of degeneracy when the number of labeled vertices is very small
relative to the total number of vertices. This occurs when the ratio of labeled to unlabeled vertices
approaches zero, leading to unreliable label propagation. Poisson Learning overcomes this prob-
lem by leveraging the structure of the Poisson equation, ensuring that label information propagates
effectively even in scenarios with extremely limited labeled data.

3) Addressing the ”Forgetting” Problem in Large Datasets: Traditional Laplace-based label propa-
gation methods suffer from a phenomenon known as ”forgetting,” where the initially assigned labels
become diluted over iterative updates, especially in the presence of large unlabeled datasets. This
issue arises when a small set of labeled vertices is surrounded by a vast number of unlabeled points,
making it possible for their original labels to be reclassified erroneously. Poisson Learning mitigates
this effect by incorporating a penalty function that retains initial label constraints while ensuring
effective propagation.

4) Enhanced Convergence Speed for Large-Scale Data: A crucial limitation of many graph-based
learning methods is their slow convergence when applied to large-scale datasets. To address this,
various optimization techniques have been proposed to accelerate convergence. Among these, the
Nesterov optimization method has been identified as one of the most effective approaches. By in-
corporating momentum-based updates, Nesterov optimization significantly improves convergence
speed, allowing Poisson Learning to achieve stable and accurate classification results more effi-
ciently.

3.3 POISSON LEARNING VIA NESTEROV OPTIMIZATION

Let’s consider the problem of semi-supervised learning using Poisson equations more thoroughly.
Poisson learning also has a variational interpretation, which reduces semi-supervised learning to
minimizing the Dirichlet energy. Dirichlet energy is often used as a penalty function. The Dirichlet
energy formula can be represented as (3)
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E (u) =

n∑
i,j=1

wij |u (xi)− u (xj)|2 −
m∑
j=1

(yj − ȳ)u (xj) (3)

In this work, to find the minimum, the Nesterov algorithm is employed, which demonstrates better
results compared to gradient descent.

For the Nesterov approach, the optimization step looks like this

g{k} (xi) =
1

di

 m∑
j=1

(yj − y) δij −
n∑

j=1

wij

(
u{k} (xi)− u{k} (xj)

)
v{k} = γv{k−1} − αg{k}, u{k+1} (xi) = u{k+1} (xi) + v{k}.

(4)

Where g{k} - is the gradient at any time step k, α - hyperparametr.

The label selection rule can be written as (5):

ul (xi) = argmax j∈1,2sjuj (x) (5)

where sj =
(

bj
y

)
, bj - is the share of data belonging to the class j∈1, 2.

Let’s consider a graph-based semi-supervised learning method based on Poisson learning and Nes-
terov optimizer. This algorithm will consist of the following steps.

Algorithm 1 Algorithm PoissonNesterov
1: procedure PNFRAMEWORK(W, y, T )
2: Initialization F = [y1, y2, . . . , ym]
3: Compute Degree Matrix: D = diag(W1)
4: Compute Laplacian: L = D −W
5: Compute Average Label Vector: c = 1

mF1
6: Construct Matrix: B = [F − c,Z(2, n−m)]
7: Initialize: U = Z(n, 2)
8: for i = 1 to T do
9: Update Uk

j using the update formula (4) - (5)
10: end for
11: Label Assignment: lk = argmax1≤j≤2 U

k
j

12: return ul = [l1, l2, . . . , ln]
13: end procedure

3.4 COMPARISON AND ANALYSES

We will compare with existing methods and their modifications: Label Propagation, Label Spread-
ing, Poisson GradientDescent, Poisson Nesterov on classical model ”Two Moons” with 10000
datasets and {1,2,3,4,5,6,7,8,9,10} numbered label per class.

The picture illustrates how the accuracy of four semi-supervised learning methods (Label Propa-
gation, Label Spreading, Poisson GradientDescent and Poisson Nesterov) changes depending on
the number of labeled instances per class (shown on the X-axis). The Y-axis represents the final
accuracy in percentage.

Overall trend: as the number of labels per class increases, all methods improve in accuracy. Highest
accuracy is achieved by Poisson Nesterov (brown curve): starting at about 80% with just one label
per class, it reaches around 92% at ten labels. Second place goes to Poisson GradientDescent (red
curve), which rises to about 90% at ten labels.

Label Propagation (blue curve) and Label Spreading (orange curve) yield lower results compared to
the Poisson-based methods. By ten labels, Label Propagation approaches about 55%, while Label
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Figure 1: Comparison with other methods. Label Propagation, Label Spreading, Poisson Gradien-
Descent and Poisson Nesterov.

Spreading reaches around 55–60%. In summary, as the number of labeled samples increases, all
algorithms become more accurate. However, the Poisson Learning–based methods significantly
outperform Label Propagation and Label Spreading, especially with a sufficient number of labels.

With this approach and modification, the task of classifying the periodic solutions of the dynamical
system is solved with sufficient accuracy even in real-time mode, taking into account accumulation
errors and time constraints.

4 APPLICATION OF POISSON LEARNING FOR THE CLASSIFICATION OF
SOLUTIONS OF DYNAMICAL SYSTEMS

4.1 GENERAL CONCEPTION OF CLASSIFICATION OF REGULARITY SOLUTIONS

The existing methods of KAM theory for studying dynamical systems provide a clear characteri-
zation of a system and predict its behavior under given initial conditions, whether regular, quasi-
regular, or chaotic. However, performing a comprehensive analytical study of dynamical systems is
challenging in practice due to their high dimensional and numerous parameters. Consequently, the
solutions obtained are often highly localized and approximate. When numerical and computational
methods are employed, errors and cumulative numerical inaccuracies arise, making the investiga-
tion of global regular cases particularly difficult Neimark et al. (2005), Petalas et al. (2008), Ruchkin
(2014),Kondratiev & Lyaptsev (2012).

A useful approach for numerical studies of phase space, which consists of a set of non-intersecting
phase trajectories, is through Poincaré sections. These sections, constructed in phase space, reduce
the dimensional of the system by one. Dynamical systems of third and fourth order are of particular
interest, as their Poincaré sections produce graphical representations either on a plane or in three-
dimensional space. When phase flow points form a curve, the system exhibits regular behavior,
either periodic or multi-periodic, as observed in Hamiltonian systems.

A major research focus is the reconstruction and analysis of global Poincaré sections, which pro-
vide insights into all possible motions of the system. Although Poincaré sections are approximated
using numerical integration over a fixed time interval, they still offer valuable insights into the over-
all behavior of Hamiltonian systems. The resulting phase portraits of two- and three-dimensional
Poincaré sections can be analyzed using statistical or deterministic pattern recognition techniques .

In modern studies, the significance of new results in dynamical systems often relies on computational
analysis and advanced numerical techniques. New and particular interest approach are machine
learning methods - Label Propagation for ask classification solve of dynamical system. It represents
a new technique for studying dynamical systems and holds great promise for the automatic detection
of regular and chaotic behaviors in such systems with spatial program Avdyushina et al. (2023).
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4.2 PROBLEM STATEMENT FOR HAMILTONIAN SYSTEM

Let a dynamical system of Hamiltonian type of even order be given, for example two. Assume that
the system possesses an energy integral, i.e., the Hamiltonian is defined as H(q, p), (q, p) ∈ Ω ⊂
R2n, and the system is described by Hamilton’s equations:

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
.

Assume that the system admits a global or local Poincaré section S. Choose a smooth section S in
the phase space defined by g(q, p) = 0,∇g(q, p) ̸= 0.

For each initial condition (q(0), p(0)), consider the phase trajectory γ(t) = (q(t), p(t)) and record
its intersections with S. As a result, we obtain a set of points X = {xi}Ni=1 ⊂ S ⊂ R2.

Assume that the trajectories are divided into K classes corresponding to different dynamical
regimes. For a subset of indices L ⊂ {1, 2, . . . , N}, labels are provided: yi ∈ {1, 2, . . . ,K}, i ∈
L. It is assumed that if the points xi and xj (corresponding to close initial conditions) are nearby,
then their trajectories belong to the same class.

The set of points forms a trajectory structure of the phase space, which in the case of numerical
integration is discrete and can be divided into classes using machine learning methods.

The goal article is to construct a classifier f : S → {1, 2, . . . ,K}, which assigns to each unlabeled
point xi, for i ∈ U = {1, . . . , N} \ L, a label ŷi = f(xi). To this end, we employ graph-based
Semi-Supervised Learning method based on a graph model.

Thus, using the Hamiltonian equations, the construction of a global (or local) Poincaré section, and
a graph-based model, we obtain a rigorous mathematical formulation of the semi-supervised classi-
fication problem for the trajectory structure of the phase space using the Poisson Label Propagation
method.

4.3 REVIEW OF RELEVANT LITERATURE OF POINCARÉ SECTIONS

Let’s consider the works devoted to the construction of the analysis of Poincaré sections for various
physical problems Zhang et al. (2019), Lerma-Hernández et al. (2018), Liu et al. (2024), Kovaleva
et al. (2018), Caracciolo et al. (2024).

Zhang et al. Zhang et al. (2019) explore the stabilization of tearing modes in plasmas using mod-
ulated electron cyclotron current drive. Their study provides insights into the control of plasma
instabilities in fusion devices and demonstrates the impact of current modulation on stability.

Lerma-Hernández et al. Lerma-Hernández et al. (2018) present an analytical description of the
survival probability of coherent states within regular regimes. This work contributes to the under-
standing of dynamical evolution in quantum systems by characterizing long-term behavior under
different regimes.

Liu et al. Liu et al. (2024) propose a method for discriminating tokamak sawtooth crash models
using localized density and temperature measurements. Their findings enhance the capability to
differentiate between competing theoretical models based on experimental diagnostics.

Kovaleva et al. Kovaleva et al. (2018) analyze the forced pendulum within the framework of en-
gineering mechanics. Their study highlights the complex behavior of forced oscillatory systems,
emphasizing deterministic chaos and stability conditions.

Caracciolo et al. Caracciolo et al. (2024) investigate the three-dimensional orbital architecture of ex-
oplanetary systems using KAM stability analysis. Their research contributes to celestial mechanics
by assessing long-term stability criteria for exoplanets.

The conducted analysis of the considered and other works shows that at present there are no known
works devoted to the application of machine learning methods for classifying solutions of dynamic
systems on Poincaré sections in the plane and space. This direction of research, as well as the
obtained results, is new.

7



Published as a conference paper at MathAI 2025

4.4 EXAMPLE OF MECHANICAL SYSTEM

The problem of the motion of a rigid body with a fixed point is considered in the classical framework,
addressing the direct problems of mechanics. Given the static, kinematic, and dynamic (structural)
parameters of a rigid body with a fixed point and the initial conditions of motion, it is necessary to
determine its trajectory in space at any given moment, classify the type of motion, and establish the
nature of the body’s dynamics.

A mathematical model describing the motion of a free rigid body in a mobile reference frame is
given by a system of six ordinary differential Euler equations:

Jω̇ = Jω × ω + r × ν, ν̇ = ν × ω, (6)

where J = Diag(A,B,C) represents the inertia tensor, ω = (p, q, r) is the angular velocity of the
body in the mobile frame, ν = (ν1, ν2, ν3) is the unit vertical vector, and r = (r1, r2, r3) is the
vector from the fixed point to the center of mass of the body.

Equation (6) determines the phase spaceR12 asR6(ω, ν)×R6(J, r), defining the family of possible
(both regular and chaotic) trajectories of the dynamical system. The initial conditions are given by
ω0 = ω(0) and ν0 = ν(0).

In the regular case, the dynamical system exhibits ”well-behaved” trajectories that remain stable un-
der small perturbations of initial conditions, allowing long-term predictability. In contrast, chaotic
motion is characterized by an extreme sensitivity to initial conditions, leading to exponentially un-
stable trajectories. The chaotic case limits predictability to a finite time interval, known as the time
horizon.

The aim of previously article is to develop an interactive computational system to solve system (6),
classify its behavior system. If system (6) can be integrated explicitly, it is possible to distinguish
between regular and chaotic cases.

4.4.1 INTEGRABILITY AND NUMERICAL SOLUTION

It is known in previously, that the solution of system (6) can be reduced to quadratures if four
integrals are found. However, for arbitrary values of the system parameters, only three first integrals
exist:

H(ω, ν) =
1

2
Jω · ω − r × ν = h, G(ω, ν) = Jω · ν = g, I(ν, ν) = ν · ν = 1. (7)

A fourth integral exists only in three well-known cases: Euler-Poinsot, Lagrange-Poisson, and
Kowalewski, as well as in some special cases. These cases are characterized by specific parame-
ter sets, allowing the reduction of system (6) to a system of algebraic equations. In integrable cases,
the phase space trajectories are deterministic and exhibit stable motion. For non-integrable cases, the
system’s trajectory cannot be expressed analytically, necessitating numerical integration using the
fifth-order Runge-Kutta method. The nature of the motion is determined by analyzing phase-space
trajectories. For a fixed point in R6(J, r), the first integrals (7) define a compact three-dimensional
invariant manifold Q3

h,g in R6(ω, ν), which governs the system’s phase flow. The spatial organi-
zation of Q3

h,g within R3(ω) and R3(ν) provides insight into the evolution of physical quantities
described by equation (6).

4.4.2 QUALITATIVE ANALYSIS AND COMPUTATIONAL APPROACH

The qualitative analysis of phase space structures relies on Poincaré sections and the theory of in-
variant curves. The onset of chaotic behavior is identified when the Poincaré section appears as a
scattered cloud of points, forming a two-dimensional region. In contrast, regular motion corresponds
to phase trajectories confined to smooth curves.

To study the topology of Q3
h,g , integrable cases are analyzed using global sections P 2 ⊂ Q3

h,g . For
non-integrable cases, these sections are represented on the Poisson sphere S2 with ∥ν∥ = 1. The
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global section P 2 forms a compact two-dimensional manifold within Q3
h,g , with phase trajectories

either entirely filling Q3
h,g or intersecting P 2.

A computational program was developed for the intelligent analysis of regular and chaotic dynamics
in mechanical systems, demonstrating the feasibility of this approach Ruchkin (2014). An example
of recognizing regular and chaotic motion using a three-dimensional Poincaré section is illustrated
in Figure. This Poincaré section was computed via the Runge-Kutta 4-5 method for system (6) and
reconstructed on the Poisson sphere using equation (7).

4.4.3 RESULT OF CLASSIFICATION

So, in the integrable cases Poincare section will be of a plane (surface area), which shows a certain
type of closed curves: circles, ellipses, set of circle and more. These cases correspond to the regular
(quasi-periodic) solution of a nonlinear dynamical system. We use Machine Learning for classifi-
cation this cases. With help computer program we labeled start points from this classes (”Yellow
points”). ”White dots” refers to the classified trajectory. ”Red dots” refers to the not classified set
of points. (Fig.2 - Fig.5.) These figures show examples of curve extraction and classification in four
most typical cases: regular orbit, multi-regular case, multi-regular case 2.

Figure 2: Example of classification of regular orbits.

Figure 3: Example of classification of multi - regular orbits in case 1.

5 CONCLUSION

In this paper we have consider the problem of classification periodic and multi-periodic orbits of
dynamical systems using graph-based semi-supervised Poisson Learning method. The detection
of periodic orbits of dynamical systems has carried out by means of an analysis of the Poincare’
sections of phase space on the plane or 2d - datasets.
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Figure 4: Example of classification of multi - regular orbits in case 2.

Figure 5: Example of classification of resonance orbits.

In work a modification of Graph-based semi-supervised learning via Poisson equation is proposed.
Furthermore, to find the minimum loss function, the Nesterov algorithm is employed, which demon-
strates better results compared to gradient descent. With this approach and modification, the task of
classifying the periodic solutions of the dynamical system is solved with sufficient accuracy even in
real-time mode, taking into account accumulation errors and time constraints.

Poisson learning offers advantages over traditional Laplace-based approaches, requiring signifi-
cantly fewer labeled samples to achieve the desired classification accuracy while also reducing com-
putational time.

To enhance convergence, we propose a modification of Poisson learning by incorporating the Nes-
terov algorithm for optimizing the loss function. This approach outperforms classical gradient de-
scent and achieves 92% accuracy with as few as 10 labels per class, even when accounting for
accumulation errors and time constraints.

The proposed approach for investigation dynamic systems expands the possibilities of analytical and
numerical use of KAM theory and is the next step in building a computer system for conducting a
complete automatic investigation of dynamic systems.
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