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ABSTRACT

Maximum entropy deep reinforcement learning has displayed great potential on a
range of challenging continuous tasks. The maximum entropy is able to encourage
policy exploration, however, it has a tradeoff between the efficiency and stability,
especially when employed on large-scale tasks with high state and action dimen-
sionality. Sometimes the temperature hyperparameter of maximum entropy term
is limited to remain stable at the cost of slower and lower convergence. Besides,
the function approximation errors existing in actor-critic learning are known to
induce estimation errors and suboptimal policies. In this paper, we propose an
algorithm based on adaptive pairwise critics, and adaptive asymptotic maximum
entropy combined. Specifically, we add a trainable state-dependent weight factor
to build an adaptive pairwise target Q-value to serve as the surrogate policy ob-
jective. Then we adopt a state-dependent adaptive temperature to smooth the en-
tropy policy exploration, which introduces an asymptotic maximum entropy. The
adaptive pairwise critics can effectively improve the value estimation, preventing
overestimation or underestimation errors. Meanwhile, the adaptive asymptotic en-
tropy can adapt to the tradeoff between efficiency and stability, which provides
more exploration and flexibility. We evaluate our method on a set of Gym tasks,
and the results show that the proposed algorithms have better performance than
several baselines on continuous control.

1 INTRODUCTION

The task of deep reinforcement learning (DRL) is to learn good policies by optimizing a discount-
ed cumulative reward through function approximation. In DRL, the maximization over all noisy
Q-value estimates at every update tends to prefer inaccurate value approximation that outweighes
the true value Thrun & Schwartz (1993), i.e., the overestimation. This error further accumulates and
broadcasts via bootstrapping of temporal difference learning Sutton & Barto (2018), which estimates
the value function using the value estimate of a subsequent state. When function approximation is
unavoidably adopted in the actor-critic setting on continuous control, the estimation errors are exag-
gerated. These errors may cause suboptimal policies, divergence and instability. To some extent, the
inaccurate estimation is unavoidable in DRL because it is the basic trait for value-involved DRL to
use random variables as target values. On the one hand, these stochastic target values will introduce
some estimation biases. On the other hand, even an unbiased estimate with high variance can still
lead to future overestimation in local regions of state space, which in turn can negatively affect the
global policy Fujimoto et al. (2018). Therefore, diminishing the value variance without partiality can
be an effective means to reduce estimation errors, no matter overestimation or underestimation. Tak-
ing the twin delayed deep deterministic policy gradient (TD3) Fujimoto et al. (2018) for example,
always selecting the lower value from a pair of critics will induce an underestimation bias although
it is beneficial for lower variance.

Several of recent works deal with errors like bootstrapping error caused by out-of-distribution
(OOD) actions Kumar et al. (2019; 2020), and extrapolation error induced by the mismatch be-
tween the distribution of buffer-sampled data and true state-action visitation of the current policy
Fujimoto et al. (2019). The authors in Wu et al. (2019) address the distribution errors by extra value
penalty or policy regularization.
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Overestimation is another induced errors, which was originally found in Q-learning algorithm by
Watkins (1989), and was demonstrated in deep Q-network (DQN) Mnih et al. (2015) on discrete
control. In recent years, overestimation is reported in function approximation of actor-critic methods
on continuous control Fujimoto et al. (2018); Duan et al. (2021a). Although several algorithms are
created to address the overestimation errors Fujimoto et al. (2018; 2019); Kumar et al. (2019); Wu
et al. (2019); Duan et al. (2021a), the accuracy of function approximation is not flexibly touched
since underestimation errors usually accompanies the correction to overestimation.

The paper has the following contributions. First, we propose the concept of adaptive pairwise critics,
which connects a pair of critics using a trainable state-dependent weight factor, to combat estimation
errors. Second, we propose the adaptive temperature which is also state-dependent so that the agent
can freely explore with loose restriction on the selection of temperature hyperparameter. Based
on this adaptive temperature, we organize a term of asymptotic maximum entropy to optimize the
policy. The asymptotic maximum entropy is combined with the adaptive pairwise critics to serve the
target Q-value as well as the surrogate policy objective. Third, we present a novel algorithm to tackle
estimation errors and pursue effective and stable exploration. Finally, experimental evaluations are
conducted to compare the proposed algorithm with several baselines in terms of sample complexity
and stability.

2 RELATED WORK

In reinforcement learning, the agent needs to interact with the environment to collect enough knowl-
edge for training. Without sufficient exploration, the collected data may be invalid for an optimal
value. Therefore, reinforcement learning has to deal with the tradeoff between exploration and ex-
ploitation. There are several ways to enhance exploration in deep reinforcement learning (DRL),
one of which is the off-policy approach which takes full advantage of past experience from replay
buffer instead of on-policy data Mnih et al. (2015). Another method adopts policy exploration to
stimulate the agent’s motivation for a better balance between exploration and exploitation Mnih
et al. (2016); Haarnoja et al. (2018a). Among them, soft actor-critic (SAC) Haarnoja et al. (2018a)
achieves good performance on a set of continuous control tasks by adopting stochastic policies and
maximum entropy. Stochastic policies generalize the policy improvement and introduce uncertainty
into action decisions over deterministic counterparts Heess et al. (2015), and augmenting the reward
return with an entropy maximization term encourages exploration, thus improving robustness and
stability Ziebart et al. (2008); Ziebart (2010).

In recent years, many works have been proposed on top of SAC. The improvement of SAC can be
realized by changing the rule of experience replay, for example, Wang & Ross (2019) samples more
aggressively from recent experience while ordering the updates to ensure that updates from old data
do not overwrite updates from new data, and Martin et al. (2021) relabels successful episodes as
expert demonstrations for the agent to match. The distributional soft actor-critic (DSAC) Duan et al.
(2021b); Ren et al. (2020); Ma et al. (2020); Duan et al. (2021c) combines the distributional return
function within the maximum entropy to improve the estimation accuracy of the Q-value. It claims
to prevent gradient explosion by truncating the difference between target and current return distri-
butions, however, its assumptions of Gaussian distributions for random returns will induce more
complexity and may not fit with the real distributions. Akimov (2019); Hou et al. (2020) reparame-
terize the reward representation and the policy, respectively, using a neural network transformation
composed of multivariate factorization, and Ward et al. (2019) constructs normalizing flow policies
before applying the squashing function to improving exploration within the SAC framework.

It is empirically shown that SAC is sensitive to the temperature hyperparameter. To provide flexi-
bility for the choice of optimal temperature, SAC-v2 Haarnoja et al. (2018b) makes the first step to
automatically tune the temperature hyperparameter by formulating a constrained optimization prob-
lem for the average entropy of policy. The dual to the constrained optimization will add an additional
update procedure for the dual variable in determining the temperature. However, the assumption of
convexity for theoretical convergence does not hold for neural networks, and the extra hyperparame-
ter introduced by the transformation remains undetermined and needs more trials for generalization.
Meta-SAC Wang & Ni (2020) uses metagradient along with a novel meta objective to automatically
tune the entropy temperature in SAC. It distinguishes metaparameters from the learnable parame-
ters and hyperparameters, and uses some initial states to train the meta temperature. However, due
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to the limited data pool for the meta loss, the given experimental results show it does not perform
better than SAC. Therefore, the auto adjustment of the temperature hyperparameter is still openly
untouched for SAC.

The way to compute the target Q-value is an crucial design in DRL. The strategies include delayed
update Van Hasselt et al. (2016), soft updates Lillicrap et al. (2015); Haarnoja et al. (2018b) and
sophisticated ensembles Fujimoto et al. (2019); Kumar et al. (2019) of target Q-value. The sophis-
ticated ensemble is some weighted mixture of the minimum and maximum among multiple learned
Q-value functions, for example, TD3 adopts the minimum of pairwise critics, and bootstrapping
error reduction (BEAR) Kumar et al. (2019) increases the number of Q-functions to 4. Behavior
regularized actor critic (BRAC) Wu et al. (2019) investigated these design choices and concluded
that the number of Q-functions over 2 only gives marginal improvement but significantly requires
more computation cost. It is reported in Wu et al. (2019) that the minimum of two Q-functions
adopted in TD3 outweighes a weighed mixture of Q-values in terms of simplicity and efficiency,
however, there is a wide open unexplored area between them. How to design a mixture of Q-values
is still largely left untouched.

3 BACKGROUND

We consider the infinite-horizon Markov Decision Process (MDP) in continuous action spaces, de-
noted by the tuple (S,A, p, r) where S is the state space, A is the action space, p(·|s, a) is the
transition probability of the next state s′ ∈ S conditioned on the current state s ∈ S and action
a ∈ A, and r ∈ S ×A is the reward which is the feedback from the environment of the current state
s and action a. The task of reinforcement learning (RL) is to learn an optimal policy that maximizes
the reward return denoted by the expectation of discounted cumulative reward. DRL combines the
neural networks with RL so that the reward return can be approximated by a parameterized function,
where the agent follows a behavior policy π to determine future rewards and next states. Let p(·|s, a)
denotes the transition probability, then the surrogate function of the reward return can be selected as
the action-value (Q-value) function with respect to the state-action pair in the form of

Qπ(s, a) = Epπ(st|s0,a0)

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (1)

where r(s, a) is the immediate reward produced by the state-action pair, and γ ∈ (0, 1) is the
discount horizon factor for future rewards. With the effect of behavior policy π, pπ(st|s0, a0) =
p(s1|s0, a0)

∏
t

[
Eat−1∼πp(st|st−1, at−1)

]
is the joint probability of all state-action pairs during an

episode given the initial state-action pair (s0, a0), and π(at+1|st+1) indicates the probability for the
agent to choose the action at+1 given the state st+1.

Since the reward return has the property of Bellman equation, the temporal difference (TD) Tesauro
(1995) is commonly used in the critic evaluation to minimize Bellman errors over sampled transition-
s (s, a, r, s′), which is given by E(s,a,r,s′)

[
(r + γQt(s′, π(s′))−Q(s, a))2

]
Lillicrap et al. (2015),

where Qt stands for the target Q-value. In off-policy algorithms using experience replay, (s, a, r, s′)
is the tuple stored in the replay buffer at every environment step, a is sampled from the experience
pool, which is different from the on-policy next action π(s′). In the context, we use the term of
’iteration’ to represent the index of updates. In the actor-critic paradigm, one iteration contains the
evaluation step and the policy improvement step, which are used to update Q-value function and
then optimize the policy. After the minimization of Bellman errors, the policy improvement is per-
formed by maximizing the expected return J(θ) = Es [Qπ(s, π(s)]. In some algorithms, the policy
regularization may be attached to the expected return to smooth training Kumar et al. (2019); Jaques
et al. (2019). These methods focus on constraining the policy gradient ∇θJ(θ) to avoid gradient
vanishing or exploding problems, which in turn reduces the estimation variance.

4 ADAPTIVE PAIRWISE CRITICS WITH ADAPTIVE ASYMPTOTIC ENTROPY

Value penalty or policy regularization is a common theme in DRL to improve stability, however, it
tends to bring more hyperparameters for tuning, which will increase the difficulty for the designed
algorithm to generalize to more tasks. Therefore, it is important for reasonable auto-adjustment for
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these hyperparameters. The approaches to these adaptations are varied. For example, PPO adapts
the penalty coefficient by setting some threshold values for the KL divergence, SAC-v2 Haarnoja
et al. (2018b) automatically tune the temperature hyperparameter by adding a constraint solved by a
related dual form, and Meta-SAC transforms the temperature hyperparameters into metaparameters.

Our work can be started by addressing a policy iteration method accompanying the adaptive pairwise
critics and entropy estimation. We will first justify the adaptive pairwise critics and the adaptive
asymptotic entropy, and verify the convergence of corresponding iterations, then organize the related
algorithm with its usage of neural networks.

4.1 ADAPTIVE PAIRWISE CRITICS

The iteration of adaptive pairwise critic and adaptive asymptotic actor (APAA) is started by com-
puting the revised target Q-value of a rollout following policy π, which is combined with a value
penalty from the entropy exploration. Given the continuous MDP denoted by (S,A, p, r), functions
Q1, Q2 : S ×A → R can be the Q-values of two critics, then a modified Bellman backup operator
T π is given by

T πQ(st, at) = r(st, at) + γEst+1,at+1

[
Q(st+1, at+1)

]
, (2)

where st+1 ∼ p(·|st, at) and at+1 ∼ π(·|st+1), and

Q(st, at) = Q(st, at)− α(Λ(st) + kt) log(π(at|st)) (3)

is the APAA Q-value function, which can be obtained by repeatedly employing T π for any policy π.
Λ(st) is the adaptive random variable (ARV) dependent on the state st, 0 ≤ kt ≤ 1 is the asymptotic
variable gradually increasing from 0 to 1 as the time step proceeds, and α is the fixed temperature
hyperparameter. The sum of ARV and the asymptotic variable compose the adaptive asymptotic
temperature for the entropy. The joint Q-value function Q is formularized as

Q(st, at) = (1− Γ(st))Q1(st, at) + Γ(st)Q2(st, at), (4)

where 0 ≤ Γ(·) ≤ 1 is the state-dependent adaptive random weight (ARW) to adjust the influence
of two critics.
Lemma 1. Consider the sequence Qk+1 = T πQk, then given the condition that the Q-values are
bounded, i.e., |Q1(s, a)| <∞, |Q2(s, a)| <∞, ∀(s, a) ∈ S ×A, the sequence Qk will converge to
a unique optimal value as k →∞.

The proof of Lemma 3 can be found in Appendix A (in Supplementary Files), however, the sufficient
condition is not always satisfied when the function approximation is applied. Since the state-action
spaces are continuous and the transition probability is unknown in model-free DRL, the Q-value
function cannot be formulated or tabulated by the state-action pairs, which means the function ap-
proximation gives no absolute guarantee for the bounded Q-values. Therefore, instead of repeatedly
applying (2) directly by equality, the practical evaluation step is estimated by minimizing the ex-
pected mean square error (MSE) between T πQk(s, a) and Q1,k+1(s, a) or Q2,k+1(s, a). Once the
expected MSE converges to zero, the two Q-value functions updated based on (2) will end up with
little fluctuation around the same fixed point when the hyperparameters are chosen properly.

5 ADAPTIVE ASYMPTOTIC ENTROPY

When it comes to the policy improvement step, the purpose of APAA iteration contains two points,
which aim to improve the Q-value for each update as while as projecting the policy onto a normalized
distribution. The policy update step is given by

πnew

= arg max
π∈

∏ Est,at [Q(st, at)− α(Λ(st) + kt) log(π(at|st))]

= arg min
π∈

∏ Est
[
DKL

(
π(·|st)‖ exp

(
Q(st, ·)

αΛ(st) + αkt

))]
, (5)
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where st ∼ S, at ∼ π(·|st), and the choice of policy π is limited to a set of parameterized Gaussian
distributions

∏
for flexibility. With modest computation, the second equality holds, which can be

found in Appendix B. The KL divergence DKL shows that the improved policy is updated towards
the distribution constituted by the exponential of the normalized Q-value function. The adaptive
asymptotic temperature Λ(st) + kt is not dependent on the action, and thus does not contribute to
the policy gradient. However, it is still important to be chosen for a better insurance of the expected
policy improvement.

In continuous control problems of model-free DRL, where the transition probability is unknown and
the state and action spaces are both continuous, it is not possible to provides policy improvement
at every state-action point over S ×A, which we call as the absolute policy improvement in this
paper. Therefore, we propose a practical standard for the policy improvement, which is named as
the expected policy improvement. It shows that the projected policy in (17) can produce higher
updated Q-value with expression given by (1), and the result is organized in Lemma 4.
Lemma 2. Denote πnew and πold as the policies before and after the update defined in (17), respec-
tively. Then the expected policy improvement, i.e., E(st,at)∼S×A[Qπnew(st, at)−Qπold(st, at)] ≥ 0,
can be guaranteed.

The proof of Lemma 4 can be found in Appendix C. Besides projecting the policy into a selected set
of distributions, (17) also maximizes the expectation of APAA Q-value function defined in (3) by
choosing the specific adaptive asymptotic temperature Λ(st) + kt, which is the key to the guarantee
of the wanted expected policy improvement, shown in the second step of proving Lemma 4. Fur-
thermore, in discrete control problems, where the state-action spaces are both discrete and bounded,
the absolute policy improvement can be realized by removing the expectation over s ∼ S in (17).

The APAA iteration alternates between the policy evaluation and the expected policy improvement
steps, and will converge to the optimal policy which provides higher expected Q-value than the other
policies in

∏
. The theorem describing the APAA iteration is organized in

Theorem 1. Let lt be the learning rate at time step t, then given the condition that

0 ≤ lt(x) ≤ 1,
∑
t

lt(x) =∞,
∑
t

l2t (x) <∞ w.p.1., (6)

repeated application of policy evaluation and expected policy improvement will converge to an op-
timal policy π? ∈

∏
such that E(st,at)∼S×A[Qπ?(st, at)−Qπ(st, at)] ≥ 0, ∀π ∈

∏
.

Proof See Appendix D. �

5.1 ALGORITHM OF ADAPTIVE PAIRWISE CRITICS WITH ADAPTIVE ASYMPTOTIC ENTROPY

We have discussed above the practical scenario of Theorem 2 in large continuous domains, which
requires parameterized function approximations for both the Q-value function and the policy. To
stabilize the training process, separated current and target networks are provided for both the Q-
value function and the policy. Based on these parameterized networks and (2), the loss function for
the update of critic parameters in the policy evaluation step can be estimated by

L(ωi) = E(s,a,r,s′)

[
1

2
(r + γQt(s′, a′)−Q(s, a))2

]
, (7)

where a′ = πθ′(s
′) is the action following the target policy parameterized by θ′, and (s, a, r, s′) is a

tuple of history data sampled from the experience pool. And

Qt(s′, a′) = (1− Γµ′(s
′))Qω′1(s′, a′) + Γµ′(s

′)Qω′2(s′, a′)

− α(Λλ′(s
′) + k) log(πθ′(a

′|s′)), (8)

Q(s, a) = (1− Γµ(s))Qω1(s, a) + Γµ(s)Qω2(s, a), (9)

where ω1, ω2, ω′1 and ω′2 parameterize two critic networks and their target estimates, respectively.
Besides, Λλ′ is target ARV parameterized by λ′, k is the asymptotic variable increasing from 0 to 1
as the time step proceeds, the state-dependent ARW Γ parameterized by µ and µ′ is clipped in [0, 1]
to determine the influence of two Q-value functions, and πθ′(·|s′) is the target policy distribution
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conditioned on the next state s′. By minimizing (7), the critic parameters can be updated for each
policy evaluation step. Then (7) can be optimized with stochastic gradient

ÔωiL(ωi) = E(s,a,r,s′)[ÔωiQ(s, a)(Q(s, a)− r − γQt(s′, a′))] for i ∈ {1, 2}. (10)

It is noticeable that two extra networks has been added for ARV and ARW, however, to avoid in-
troducing extra more saddle point problems, we see their trainable parameters as part of the actor
parameter, i.e., the actor parameter is composed of the policy parameter, the ARV parameter and
the ARW parameter. Then the surrogate objective function to update the current actor parameter
(θ, λ, µ) in the expected policy improvement step (see Lemma 4) can be given by

J(θ, λ, µ) = Es [Q(s, a)− α(Λλ(s) + k) log(πθ(a|s))] , (11)

where s comes from the tuple of history data, a = πθ(s) is the reparameterized action based on s
and the policy network parameterized by θ. Λλ is current ARV parameterized by λ, Γµ is current
ARW parameterized by µ, and πθ(·|s) is the current policy distribution conditioned on the current
state s. By maximizing (11), the actor parameter can be updated for policy improvement each step.
The gradient of (11) is computed as

ÔθJ(θ, λ, µ) = Es
[
ÔaQ(s, a)Ôθπθ(s)−

αÔθπθ(a|s)(Λλ(s) + k)

πθ(a|s)

]
, (12)

ÔλJ(θ, λ, µ) = Es
[
−αÔλΛλ(s) log(πθ(a|s))

]
, (13)

ÔµJ(θ, λ, µ) = Es
[
ÔµQ(s, a)

]
. (14)

Then the target parameters (ω′1, ω′2, θ′, λ′, µ′) are updated following the ”soft” target updates Lill-
icrap et al. (2015) by (ω1, ω2, θ, λ, µ), in the way of

ω′it+1 ← τωit+1 + (1− τ)ω′it for i ∈ {1, 2}
θ′t+1 ← τθt+1 + (1− τ1)θ′t,

λ′t+1 ← τλt+1 + (1− τ1)λ′t,

µ′t+1 ← τµt+1 + (1− τ1)µ′t, (15)

where 0 ≤ τ < 1 is the factor to control the speed of policy updates for the sake of small value
error at each iteration, and 0 ≤ τ1 < 1 is set as 1 in our application. We organize the above pro-
cedures as the adaptive pairwise critics with adaptive asymptotic entropy (APAA) algorithm, whose
pseudocode is described by Algorithm 1. The algorithm alternates between running the environment
steps to collect experience and updating the network parameters using the stochastic gradients com-
puted by the sampled batches from the experience pool. In (10), (12), (13) and (14), the gradients
are in their expectation forms, however, practically they are averaged over the results of sampled tu-
ples, which usually follow policies parameterized by different parameters in off-policy methods. In
some algorithms, one gradient step follows one or several environment steps to stabilize the training
process.

6 EXPERIMENTS

6.1 BENCHMARKS

The performance of our proposed method is compared with several prior model-free reinforcement
learning algorithms in terms of the sample complexity and stability on a set of gym continuous
control tasks from the MuJoCo suite Todorov et al. (2012); Brockman et al. (2016). Fig. 1 shows the
illustrations of benchmarks adopted in this paper.

6.2 BASELINES

The adopted baselines include deep deterministic policy gradient (DDPG) Lillicrap et al. (2015),
TD3, SAC and BRAC. Before the existence of SAC, DDPG is regarded as one of the most efficient
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Algorithm 1 APAA Algorithm

1: Input: The update maximum time step T
2: Initialize parameters ω1 ← ω1

0 , ω2 ← ω2
0 , θ ← θ0, λ← λ0, µ← µ0

3: Initialize target parameters ω′1 ← ω′10 , ω′2 ← ω′20 , θ′ ← θ′0, λ′ ← λ′0, µ′ ← µ′0
4: Initialize the learning rates lc, la for the critic and the actor, the time step t← 0, the soft update

hyperparameter τ , the maximum time step T , the batch size B and the replay buffer D ← ∅.
5: while t < T do
6: Select action at ∼ πθt(at|st)
7: Observe the reward and next state st+1, rt ∼ p(st+1|st, at)
8: Store transition D ← D ∪ {(st, at, rt, st+1)}
9: Sample a batch of transitions B = (s, a, r, s′)

B
i=1 from D

10: for each time step do
11: ωit+1 ← ωit − lcÔωitL(ωit) for i ∈ {1, 2} following Eq. (10)
12: θt+1 ← θt + laÔθtJ(θt, λt, µt) following Eq. (12)
13: λt+1 ← λt + laÔλtJ(θt, λt, µt) following Eq. (13)
14: µt+1 ← µt + laÔµtJ(θt, λt, µt) following Eq. (14)
15: ω′it+1 ← τωit+1 + (1− τ)ω′it for i ∈ {1, 2} following Eq. (15)
16: end for
17: st+1 ← st
18: t← t+ 1
19: end while

(a) (b) (c) (d)

Figure 1: (a) Ant-v3; (b) Halfcheetah-v3; (c) Hopper-v3; (d) Walker2d-v3

off-policy DRL methods Duan et al. (2016), followed by TD3 as an extension. SAC has achieved
model-free state-of-the-art sample efficiency in multiple challenging continuous control domains
Christodoulou (2019), and BRAC is can be seen as a variant of SAC by adopting an extra policy
regularization based on the KL divergence between policies before and after updating.

Our proposed algorithm shares the same set of hyperparameters with other baselines to keep fairness.
The gaussian exploration noise with a fixed variance of 0.2 is added to the action at every time
step, then the noisy action is clipped within the set boundary. With the discount horizon factor
chosen as 0.99, algorithms including the proposed one, SAC and BRAC adopt the entropy term,
which is computed by normal random policies, whose mean and variance are parameterized by
fully connected networks with two hidden layers, each of which has 256 units. Except that, both
DDPG and TD3 use deterministic policies, also parameterized by fully connected networks with
two hidden layers. We organize the network architectures and hyperparameters in Appendix E and
F, respectively. The Adam optimizer Kingma & Ba (2014) is used to update the network parameters.

6.3 RESULTS

We train 10 seeds for each algorithm to keep a fair comparison. After every 500 iterations (time
steps), we launch a evaluation procedure, which averages 10 rollouts for a test. The average reward
of a test will be recorded at every evaluation procedure, and all tests throughout the time step scale
give the result of each algorithm.

The average rewards of algorithms tested in chosen benchmarks are shown Fig. 2 with 95% con-
fidence interval (CI). From Figs. 5(a), 5(b) and 5(c), we can observe overwhelmed advantage of
APAA over other baselines. In Hopper environment, since the converged value is far lower than
other benchmarks, the tolerance for the fluctuation around convergence is much lower, which causes
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(a) (b)

(c) (d)

(e)

Figure 2: Average reward versus time step in (a) Ant-v3; (b) Halfcheetah-v3; (c) Hopper-v3; (d)
Walker2d-v3; (e) Humanoid-v3

the instability problems of tested baselines. However, APAA shows strong robustness and has a con-
verged value up to 3500 compared with other baselines, as shown in 5(c). In Fig. 5(d), APAA still
shows better performance than that of other baselines, and converges around 5000. For Humanoid
with high-dimensional action space, Fig. 5(e) shows that APAA is much better than other baselines
and can steadily converge to 6000. Over all figures in Fig. 2, SAC and BRAC both have their up
and downs, and DDPG gives the worst performance, considering the fact that the double critics are
not employed in DDPG to reduce potential overestimation. Due to the stochastic property of random

8



Under review as a conference paper at ICLR 2023

(a) (b)

(c) (d)

Figure 3: Comparison between APAA and automating entropy adjustment of SAC in (a) Ant-v3; (b)
Hopper-v3; (c) Walker2d-v3; (d) Humanoid-v3

variables, the best performance cannot be ensured for every seed, which means the potential reduced
stability and convergence (partly told by Fig. 2) are reasonable.

Since SAC has an variant working on automatic adjustment of the temperature hyperparameter
Haarnoja et al. (2018b), we use SAC-t to represent it and compare its performance with APAA
in Fig. 3 with 95% CI. SAC-t adds an extra hyperparameter H as the target entropy in exchange
of the temperature, which may not lead to better performance because the target entropy cannot be
generalized and also needs automatic tuning, as reported by Wu et al. (2019). According to Fig. 3,
SAC-t fails to produce better performance than APAA given the choice of the target entropy as 0.5,
which implies the right way of adjusting the temperature in APAA.

Due to the page limit, we make the comparison of value estimates in Appendix G.

7 CONCLUSION

In this paper, we proposed a state-dependent adaptive temperature to encourage policy exploration,
which can strike a better balance between the efficiency and stability by introducing an asymptotic
maximum entropy. Then the asymptotic maximum entropy is combined with the adaptive pairwise
critics to benefit the policy evaluation and improvement steps. Based on the above two components,
we present APAA to gain better tradeoff between efficiency and stability. We evaluate our method
on a set of Gym tasks, and the results show that the proposed algorithms have better performance
than several baselines on continuous control.
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A PROOF OF LEMMA 3

Lemma 3. Consider the sequence Qk+1 = T πQk, then given the condition that the Q-values are
bounded, i.e., |Q1(s, a)| <∞, |Q2(s, a)| <∞, ∀(s, a) ∈ S ×A, the sequence Qk will converge to
a unique optimal value as k →∞.

Proof

|T πQ(st, at)− T πQ′(st, at)|
=γ
∣∣Est+1∼p,at+1∼π [Q(st+1, at+1)−Q′(st+1, at+1)]

∣∣
≤γEst+1∼p,at+1∼π [|Q(st+1, at+1)−Q′(st+1, at+1)|]
≤γ max

st+1∼p,at+1∼π
|Q(st+1, at+1)−Q′(st+1, at+1)|

=γ‖Q−Q′‖∞, (16)

where ‖ · ‖∞ means the max norm, p and π is short for p(·|st, at) and π(·|st). Since the Q-values
are assumed to be bounded, the adaptive pairwise critics Q is also bounded, then the third inequality
holds. We reach a conclusion that ∀(st, at) ∈ S ×A, (16) holds, which can be rewritten as max-
norm contraction mapping as ‖TπQ − TπQ′‖∞ ≤ γ‖Q − Q′‖∞. According to the property of
contraction operator, the sequence Qk+1 = T πQk will converge to its fixed point. �

B PROOF OF (17)

πnew

= arg max
π∈

∏ Est,at [Q(st, at)− α(Λ(st) + kt) log(π(at|st))]

= arg min
π∈

∏ Est
[
DKL

(
π(·|st)‖ exp

(
Q(st, ·)

αΛ(st) + αkt

))]
, (17)

Proof

πnew = arg max
π∈

∏ Est∼S,at∼π(·|st) [Q(st, at)− α(Λ(st) + kt) log(π(at|st))]

= arg min
π∈

∏ Est∼S,at∼π(·|st)
[
log(π(at|st))−

Q(st, at)

α(Λ(st) + kt)

]
= arg min

π∈
∏ Est∼S,at∼A

[
π(at|st)

[
log(π(at|st))−

Q(st, at)

α(Λ(st) + kt)

]]
= arg min

π∈
∏ Est∼S

[
DKL

(
π(·|st)‖ exp

(
Q(st, ·)

α(Λ(st) + kt)

))]
, (18)

where the second equality holds because Λ(st) and kt are not dependent on at, and DKL(·‖·) is the
KL divergence. �

C PROOF OF LEMMA 4

Lemma 4. Denote πnew and πold as the policies before and after the update defined in (17), respec-
tively. Then the expected policy improvement, i.e., E(st,at)∼S×A[Qπnew(st, at)−Qπold(st, at)] ≥ 0,
can be guaranteed.

Proof

var(T πnewQπold −Qπnew)

= E
[
(T πnewQπold −Qπnew)2

]
− (E[T πnewQπold −Qπnew ])2

≥ 0, (19)
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where var(·) represents the variance. According to (19), we have

(E[T πnewQπold −Qπnew ])2 ≤ E
[
(T πnewQπold −Qπnew)2

]
, (20)

then E[T πnewQπold ] will converge to E[Qπnew ] based on the expected MSE analyzed in the para-
graph after Lemma 3. This constitutes the first step of the proof for the expected policy improvement,
which can be written as

E(st,at)∼S×A[Qπnew(st, at)]

= E(st,at)∼S×A[T πnewQπold(st, at)]

≥ E(st,at)∼S×A[T πoldQπold(st, at)]

= E(st,at)∼S×A[r(st, at)] + γEst+1∼p(·|st,at),at+1∼π(·|st+1)[Qπold(st+1, at+1)]

≥ E(st,at)∼S×A[r(st, at)] + γEst+1∼p(·|st,at),at+1∼π(·|st+1)[Qπold(st+1, at+1)]

= E(st,at)∼S×A[Qπold(st, at)], (21)

where the second inequality holds because of the update rule following the first equality of (17),
the third equality is the expected form of modified Bellman backup operator, the forth inequality
holds because both the entropy and the adaptive asymptotic temperature are nonnegative, and the
last equality is a variant of the bellman equation. Because of the unknown transition probability
and continuous state-action spaces in continuous model-free DRL, the Q-value function is usually
approximated by neural networks, which makes it impossible to directly apply the bellman equation
to every state-action pair over S ×A. Under the circumstance, the bellman equation only holds in
statistical sense. �

D PROOF OF THEOREM 2

Theorem 2. Let lt be the learning rate at time step t, then given the condition that

0 ≤ lt(x) ≤ 1,
∑
t

lt(x) =∞,
∑
t

l2t (x) <∞ w.p.1., (22)

repeated application of policy evaluation and expected policy improvement will converge to an op-
timal policy π? ∈

∏
such that E(st,at)∼S×A[Qπ?(st, at)−Qπ(st, at)] ≥ 0, ∀π ∈

∏
.

Proof According to Lemma 1 of (SINGH et al., 2000), the condition (22) can make the expected
MSE of temporal difference (TD) converge to zero, which validates the policy evaluation of adaptive
asymptotic iteration and prove the first step of (21) to be true. With the monotonic increasing of the
updated expected Q-value, the converged optimal policy will render E(st,at)∼S×A[Qπ?(st, at) −
Qπ(st, at)] ≥ 0, ∀π ∈

∏
. �

E NETWORK ARCHITECTURE

We construct the critic network using a fully-connected MLP with two hidden layers. The input is
composed of the state and action, outputting a value representing the Q-value. The ReLU functions
are adopted to activate the two hidden layers. The setting of policy network follows normal random
distribution, whose expectation and variance are fully-connected networks fed only by the state.
Both of them have two hidden layers activated by the ReLU function. After the hidden layers, a
Tanh function and a Softplus function follows to form the expectation and variance, respectively.
With the expectation and variance, a normal distribution can be achieved to represent the random
policy. The network of state-dependent ARV Λ and ARW Γ are constructed similar to either the
expectation and variance of policy network except replacing the last nonlinearity activation by a
Sigmoid function. The architecture of networks are plotted in Fig. 4.

The above mentioned network architecture is adopted for the random policy. For the algorithm using
the deterministic policy, the critic is constructed in the same way, however, the actor network is the
same as that of the expectation of normal random distribution.
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Figure 4: Architecture of networks.

F HYPERPARAMETERS

Table 1 lists the common hyperparameters shared by all experiments and their respective settings. In
this table, LR a means the learning rate of the actor (includes lambda in our proposed algorithm),
and LR cmeans the learning rate of critics. τ a and τ c represent soft update hyperparameter of the
actor and the critic, respectively, and τ a = 1 means we adopt immediate update for the actor. The
symbol var represents the variance of gaussian exploration noise, and α is the fixed temperature
hyperparameter, which is applied in algorithms except DDPG and TD3. αd represents the Wight
factor of KL divergence for policy regularization applied in BRAC, and β is the asymptotic rise
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Table 1: List of hyperparameters

Hyperparameter Value Description Algorithm applied
LR a 0.0003 Learning rate of actor All
LR c 0.0003 Learning rate of critic All
τ a 1 Soft update parameter of actor All
τ c 0.005 Soft update parameter of critic All
γ 0.99 Discount horizon factor All
var 0.2 The variance of exploration noise All
α 0.1 Fixed temperature Except DDPG and TD3
αd 0.1 Wight factor of KL regularization BRAC
β 0.9995 Asymptotic rise rate APAA
H 0.5 Target entropy SAC-t

Batch 256 Size of each mini-batch All
Units 256 Hidden layer units All

Memory 1000000 Size of replay buffer All
Interval 500 Evaluation period All
Test 10 Rollouts per evaluation All

rate for kt = 1 − βt. Besides, we choose the target entropy H as 0.5 for the automating entropy
adjustment of SAC (SAC-t).

Moreover,Batch represents the size of mini-batches sampled for training, andMemory is short for
the size of replay buffer. The rest in Table 1 are the hyperparameters for the evaluation procedure,
specifically, Interval means how many time steps between two successive evaluation procedures,
and Test means the number of rollouts run during each evaluation procedure.

G VALUE ESTIMATE

We plot the value estimate, approximated by the trained Q-value networks, over time steps to com-
pare with the true value, which is represented by the discount return of a rollout starting from 1000
random state-action pairs from the replay buffer. The discount return of a rollout is recorded every
500 time steps, which follows the updated policy at that time step and is different from the average
return. The differences between the value estimates and the true values is illustrated in Fig. 5. From
these figures, we can observe that the algorithm without tuning the target Q-value (DDPG) suffers
great overestimation, however, simply choosing the smaller Q-value from a pair of critics (TD3 and
SAC) will bring nonnegligible underestimation, instead. Since inaccurate value estimates will lead
to poor policy updates, neither underestimation or overestimation is wanted. Dynamic adjustment of
target Q-value used in ARW of APAA provides a preference.
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(a) (b)

(c) (d)

(e)

Figure 5: Comparison between the value estimate and the true value in (a) Ant-v3; (b) Halfcheetah-
v3; (c) Hopper-v3; (d) Walker2d-v3; (e) Humanoid-v3. ’Q True’ means the true value and ’Q est’
means the value estimate.
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