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Abstract
Relationships among time series can be exploited
as inductive biases in learning effective forecast-
ing models. In hierarchical time series, relation-
ships among subsets of sequences induce hard
constraints (hierarchical inductive biases) on the
predicted values. In this paper, we propose a
graph-based methodology to unify relational and
hierarchical inductive biases in the context of deep
learning for time series forecasting. In particular,
we model both types of relationships as depen-
dencies in a pyramidal graph structure, with each
pyramidal layer corresponding to a level of the
hierarchy. By exploiting modern – trainable –
graph pooling operators we show that the hierar-
chical structure, if not available as a prior, can be
learned directly from data, thus obtaining cluster
assignments aligned with the forecasting objec-
tive. A differentiable reconciliation stage is incor-
porated into the processing architecture, allowing
hierarchical constraints to act both as an architec-
tural bias as well as a regularization element for
predictions. Simulation results on representative
datasets show that the proposed method compares
favorably against the state of the art.

1. Introduction
In most applications, collections of related time series can
be organized and aggregated within a hierarchical struc-
ture (Hyndman et al., 2011). One practical example is fore-
casting energy consumption profiles which can be aggre-
gated at the level of individual households as well as at city,
regional, and national scales (Taieb et al., 2021). Similar
arguments can be made for forecasting photovoltaic produc-
tion (Yang et al., 2017), financial time series (Athanasopou-
los et al., 2020), and the influx of tourists (Athanasopoulos
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et al., 2009), to name a few relevant application domains.
By exploiting aggregation constraints, forecasts at different
levels can be combined to obtain predictions at different
resolutions. Similarly, coherency constraints can be used
to regularize forecasts obtained for the different levels by
considering forecast reconciliation (FR) methods (Hynd-
man et al., 2011; Wickramasuriya et al., 2019; Panagiotelis
et al., 2023). Said differently, constraining forecasts at dif-
ferent levels to “add up” can positively impact forecasting
accuracy. Based on similar ideas, cluster-based aggregate
forecasting methods learn to predict aggregates of clustered
time series as an intermediate step for obtaining forecasts
for the total aggregate (Alzate and Sinn, 2013; Fahiman
et al., 2017; Cini et al., 2020). The idea underlying both
approaches is that combining multiple forecasts reduces
variance, an observation dating back to Bates and Granger
(1969). In particular, FR is a special case of forecast combi-
nations (Hollyman et al., 2021).

Besides hierarchical constraints, correlated time series fore-
casting models can leverage relational inductive biases to
predict any subset of the time series while sharing learn-
able parameters (Cini et al., 2023c). Indeed, the com-
bination of graph deep learning methods (Bacciu et al.,
2020; Stanković et al., 2020; Bronstein et al., 2021) and
deep learning for time series (Benidis et al., 2022) has
led to state-of-the-art forecasting accuracy in several do-
mains (Jin et al., 2023; Cini et al., 2023b). Current state-
of-the-art methods, however, are limited to processing the
input data at a single spatial resolution which might cause
propagation bottlenecks (Alon and Yahav, 2020) and over-
smoothing (Rusch et al., 2023). Graph pooling opera-
tors (Grattarola et al., 2022) enable graph neural network
(GNN) architectures to learn how to cluster nodes and ob-
tain hierarchical, higher-order, graph representations tai-
lored to the task at hand (Bianchi and Lachi, 2023). Yet
the application of learnable graph pooling operators and the
combination of hierarchical and relational constraints are
underexplored in graph-based forecasting.

To fill this void, this paper proposes a novel and compre-
hensive graph-based framework for hierarchical time series
clustering and forecasting. Our approach unifies hierarchical
time series processing, graph pooling operators, and graph-
based neural forecasting methods. This results in a learning
architecture for multi-step ahead forecasting operating at
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different levels of spatial resolution. Hierarchical and rela-
tional structures are embedded as inductive biases into the
processing by exploiting neural message passing (Gilmer
et al., 2017) and graph pooling (Grattarola et al., 2022)
operators. The proposed methodology, named Hierarchi-
cal Graph Predictor (HiGP) can propagate representations
along the hierarchical structure and ensure the coherency
of predictions w.r.t. aggregation constraints. In particular,
we focus on settings where the hierarchical structure is
not given but learned directly from data. In this scenario,
the forecast recombination mechanism is trained in a self-
supervised manner, by exploiting the forecasting accuracy
at different levels as a learning signal and the graph topol-
ogy as a regularization mechanism. In other words, time
series clusters are learned while maximizing the forecasting
accuracy w.r.t. the corresponding aggregated time series.
This provides an additional learning signal to the clustering
procedure.

Our main novel contributions are:

• the introduction of a methodology to embed hierar-
chical constraints as inductive biases in graph-based
forecasting architectures (Sec. 3.1);

• a methodological framework, based on graph pooling,
to learn a proper hierarchical structure directly from
data by clustering the input time series (Sec. 3.2);

• an end-to-end learning architecture incorporating
the above components in a time series forecasting
model (Sec. 3.1, 3.2, 3.3).

HiGP is extensively validated on relevant bench-
marks (Sec. 5). Besides achieving state-of-the-art forecast-
ing accuracy, we show that our approach can be used as
a self-supervised architecture to learn meaningful cluster
assignments.

2. Preliminaries
This section introduces preliminary concepts and provides
the problem settings.

Graph-based spatiotemporal forecasting Consider a set
of N univariate time series; xi

t ∈ R indicates the value
observed at time step t w.r.t. the i-th time series. The obser-
vation vector encompassing all the time series is analogously
denoted by Xt ∈ RN×1. Sequences of observations are
indicated, e.g., as Xt:t+T where the index t : t+ T refers
to the time interval [t, t + T ). Available covariates can
be encoded into a matrix Ut ∈ RN×du . We assume the
considered time series to be spatially correlated; i.e., time
series are not independent, but are instead characterized by
functional dependencies affecting the temporal evolution of
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Figure 1: Example of hierarchical time series from (Hynd-
man and Athanasopoulos, 2018).

the system. Pairwise relationships among time series are
encoded within a weighted adjacency matrix A ∈ RN×N

which is constant over time; the resulting attributed graph
at time t is denoted by the triple Gt = ⟨Xt,Ut,A⟩. Ho-
mogeneous sensors and static topology are assumed to ease
the formalization of the problem; extensions beyond these
settings are relatively straightforward, but outside of the
paper’s scope. The multi-step time series forecasting prob-
lem can then be modeled as the problem of predicting the
H-step-ahead observationsXt:t+H given a window of past
data Gt−W :t by minimizing some estimate of the forecasting
error. We focus on point forecasts, i.e., we do not model the
uncertainty of the predictions.

Spatiotemporal graph neural networks (STGNNs)
STGNNs are effective global time series forecasting models
for the problem above. As a reference, we consider time-
then-space (TTS) architectures (Gao and Ribeiro, 2022; Cini
et al., 2023b) with local learnable node embeddings (Cini
et al., 2023c) where the input time series are processed by a
temporal encoder followed by a stack of message-passing
layers (Gilmer et al., 2017) accounting for “spatial” depen-
dencies such that

hi,0
t = SEQENC

(
xi
t−W :t,u

i
t−W :t,v

i
)
, (1)

hi,l+1
t = UPl

(
hi,l
t , AGGR

j∈N (i)

{
MSGl

(
hi,l
t ,hj,l

t , aji
)})

, (2)

where vi ⊂ V ∈ RN× de are the learnable node embed-
dings associated with the i-th node, UPl( · ) and MSG( · )l
indicate update and message functions at the l-th layer, re-
spectively, which can be implemented by, e.g., multi-layer
perceptrons (MLPs). SEQENC( · ) denotes a network en-
coding each input sequence along the temporal dimension,
e.g., a recurrent neural network (RNN), AGGR{ · } is a per-
mutation invariant aggregation function and N (i) refers to
the set of neighbors of the i-th node, each associated to
an edge with weight aji. In the following, the shorthand
H l+1

t = GNNl(H
l
t ,A) indicates a message-passing step

w.r.t. the full node set and adjacency matrixA. Predictions
can then be obtained by using any decoder, e.g., an MLP
followed by a linear readout for each prediction step.

Hierarchical time series In the hierarchical setting, the
set of raw time series is augmented by considering additional
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sequences obtained by progressively aggregating those at
the level below, thus building a pyramidal structure. In par-
ticular, bottom observations (raw time series) are denoted
as Y (0)

t = Xt, while Y (k)
t ∈ RNk×1, with k > 0, in-

dicates values of Nk series obtained by aggregating (e.g.,
summing up) a partition of Y (k−1)

t . The full collection of
both raw and aggregated observations is denoted by matrix
Yt ∈ RM×1, with M =

∑K
k=0 Nk, obtained by stacking

the Y (k)
t matrices vertically in decreasing order w.r.t. index

k. In general, the level of the hierarchy is denoted as a super-
script between parentheses. The aggregation constraints can
be encoded in an aggregation matrix C ∈ {0, 1}(M−N)×N

such that the i-th aggregate time series can be obtained as
yi
t =

∑N
j=1 cijx

j
t , i.e., by summing the bottom-level obser-

vations given the hierarchical constraints1. Given the above,
the following relationships hold:

Yt =

[
C
I

]
Xt, QYt =

[
I | −C

]
Yt = 0, (3)

where I indicates an identity matrix of appropriate dimen-
sions and | the concatenation operator. Fig. 1 provides an
example of a time series hierarchy with the associated ag-
gregation matrix. A forecast Ŷt is said to be coherent if the
equality constraints in Eq. 3 holds, i.e., if QŶt = 0. As
discussed in the following, learning to forecast time series
at different resolutions can act as an effective regulariza-
tion mechanism, even when the hierarchical structure is not
predefined.

3. Graph-based Hierarchical Clustering and
Forecasting

This section presents our approach to graph-based hierarchi-
cal time series forecasting. We start by discussing how to
incorporate the hierarchical structure of the problem into a
graph-based neural architecture (Sec. 3.1); then, we focus
on our target setting and show how the hierarchical structure
can be directly learned from data by exploiting trainable
graph pooling operators (Sec. 3.2). Finally, we introduce an
appropriate forecasting reconciliation mechanism to obtain
forecasts coherent w.r.t. the learned hierarchy (Sec. 3.3).

3.1. Graph-based Hierarchical Forecasting

Embedding the hierarchical structure into the processing
requires defining proper operators. In particular, we aim at
designing a pyramidal processing architecture where each
layer corresponds to a level of the time series hierarchy and
has its own topology, related to those at the adjacent layers
by the hierarchical structure. To obtain such processing,
operators have to be specified to control how information

1Note the index i does not refer to the level of the hierarchy
but to the i-th element of the entire flattened collection Yt.

is propagated among and within the levels of the hierarchy;
we exploit the connection to graph pooling for defining such
operators within the select, reduce, connect (SRC) frame-
work (Grattarola et al., 2022). In particular, we use SRC
building blocks as a high-level formalization of the opera-
tors required to perform clustering, aggregation, and graph
rewiring at each level of the hierarchy. The three operators
are defined as follows, by indicating asH(k)

t ∈ RNk×dh a
feature matrix corresponding to representations at the k-th
level of the hierarchy.

Select The selection operator SEL( · ) outputs a map-
ping from input nodes into supernodes (i.e., clusters)
given by the aggregation constraints at each level.
The mapping can be encoded in a selection matrix
SEL(H

(k)
t , . . . ) = Sk ∈ {0, 1}Nk−1×Nk where sij is

equal to 1 if and only if the i-th time series at level k−1
is mapped to the j-th aggregate at the k-th level. If the
hierarchy is predefined, then the selection mechanism
is given; conversely, learning a selection matrix is the
key challenge for designing an end-to-end architecture
and will be discussed in Sec. 3.2.

Reduce (and Lift) The reduction function RED( · ) aggre-
gates node features and propagates information from
the k-th level to the adjacent upper level in the hi-
erarchy. Reduction can be obtained by summation,
i.e., RED(H

(k−1)
t ,S(k))

.
= S(k)TH

(k−1)
t , but other

choices are possible. In practice, reduction is used
in HiGP to propagate information along the pyrami-
dal structure by aggregating node representations and
implementing an inter-level message-passing mecha-
nism (see Eq. 6). Similarly, we define the lift operator
as LIFT(H

(k+1)
t ,S(k))

.
= S(k)H

(k+1)
t , i.e., as an up-

sampling the pooled graph to the original size obtained
by mapping each supernode back to the aggregated
nodes.

Connect The connect operator CON( · ) defines how the
topology of the input graph is rewired after each ag-
gregation step. There are several possible choices; we
consider the rewiring where each pair of supernodes is
connected by an edge with a weight obtained by sum-
ming weights of the edges from one subset to the other,
i.e., CON(S(k),A(k−1))

.
= S(k)TA(k−1)S(k), where

A(k) indicates the adjacency matrix w.r.t. k-th level.

These operators can be used to design neural processing
architectures to match the inductive biases coming from
the hierarchical structure. Fig. 2 provides a graphical illus-
tration of how these operators can be used to implement
a hierarchical processing architecture. In particular, the
figure shows subsequent applications of the selection, re-
duction and connection operators allow for operating on a
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time

Figure 2: Time series with a hierarchical relational structure. (Left) Graphical representation of hierarchical time series
with graph-side information; SRC operators allow for modeling relationships among the time series in the hierarchy.
(Right) Pyramidal graph encompassing both hierarchical and relational dependencies; each pair of levels constitutes a
bipartite graph.

progressively coarser graph structure accounting for higher-
order dependencies. By exploiting the introduced operators,
we can move from the reference architecture in Eq. 2 to a
hierarchical TTS model operating as

h
(k),i,0
t = SEQENC(k)

(
y
(k),i
t−W :t,u

(k),i
t−W :t,v

(k),i
)
, (4)

Z
(k),l
t = GNN(k)

l

(
H

(k),l
t ,A(k)

)
, (5)

H (k),l+1

t = UP(k)

l

(
Z(k),l

t ,S(k)TZ(k−1),l

t︸ ︷︷ ︸
RED(k)

,S(k)Z(k+1),l

t︸ ︷︷ ︸
LIFT(k)

)
.

(6)

Eq. 4, shows the temporal encoding step, Eq. 5 refers to the
intra-level propagation of messages, while Eq. 6 to the inter-
level propagation; this needs further consideration to be
fully appreciated. Matrix H(k),l

t indicates representations
w.r.t. the t-th time step obtained at the l-th message-passing
layer for time series at the k-th level of the hierarchy (note
the distinction between layers of message-passing and lev-
els of the hierarchy). Compared to the model in Eq. 2, the
hierarchical constraints add further structure to the process-
ing. As shown in Eq.4, each time series is at first encoded
along the temporal dimension by an encoder which can be
either shared or different for each aggregation level. Then,
representations are processed by a stack of layers propa-
gating information within and among levels. As shown in
Eq. 6, the representations are updated at each step by an
update function UP

(k)
l ( · ) (e.g., an MLP) taking as an in-

put (1) the output Z(k),l
t of a message-passing layer w.r.t.

the graph topology at the k-th level (Eq. 5), (2) aggregated
features from the level k−1 and (3) the features correspond-
ing to each node’s supernode obtained by liftingH(k+1),l

t .
Learnable parameters may optionally be shared among the

different levels of the hierarchy. Final predictions can be
obtained by using an arbitrary readout, i.e., a standard MLP,
and by training the model to minimize the forecasting error
w.r.t. all the time series as

ŷ
(k),i
t:t+H = MLP(k)

(
h
(k),i,L
t

)
, (7)

L
(
Ŷt:t+H ,Yt:t+H

)
.
=
∥∥∥Ŷt:t+H − Yt:t+H

∥∥∥p
p
, (8)

where L( ·) indicates the loss function and p is equal to, e.g.,
1 or 2. Note that the model is trained to make predictions for
each level of the hierarchy. Representation at the different
levels can capture patterns at different spatial scales, less
apparent at fine-grained resolutions. Indeed, the aggregation
and pooling operators increase the receptive field of each
filter at each level of the hierarchy. Discussion on how to
further regularize predictions given the hierarchical structure
is postponed to Sec. 3.3.

3.2. End-to-end Clustering and Forecasting

Learning a hierarchy and, consequently, a cluster-based fore-
casting architecture translates into learning a (differentiable)
parametrization of the selection operator. For this task, we
provide a general probabilistic framework, based on mod-
eling cluster assignments as realizations of a parametrized
categorical distribution. Then, we briefly discuss the applica-
bility of standard graph pooling methods from the literature
at the end of the section.

End-to-end clustering Similarly to popular dense train-
able graph pooling operators (Bianchi et al., 2020a; Ying
et al., 2018), we parametrize the selection operator with a
score matrix Φ ∈ RNk−1×Nk , assigning a score ϕij to each
node-cluster pair. However, differently from previous works,
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we interpret such scores as (unnormalized) log-probabilities,
such that

Φ(k) = Fψ
(
Y

(k−1)
t−W :t,A

(k−1),V (k−1)
)
,

S(k) ∼ P (S
(k)
ij = 1) =

eϕ
(k)
ij /τ∑

j e
ϕ
(k)
ij /τ

, (9)

where τ is a temperature hyperparameter, while Fψ( · )
indicates a generic trainable function with trainable param-
eters ψ. The conditioning on the input window Y

(k−1)
t−W :t

can be dropped to obtain static cluster assignments; fur-
thermore, depending on the dimensionality of the problem,
the score matrix might also be parametrized directly as
Φ = ψ. Node embeddings and aggregates for the k-th
level are then obtained through the reduction operator as
V (k) = S(k)TV (k−1) and Y (k)

t = S(k)TY
(k−1)
t , respec-

tively. To differentiate through the sampling of S(k) we
use the Gumbel softmax reparametrization trick (Jang et al.,
2017; Maddison et al., 2017) followed by a discretization
step to obtain hard cluster assignments via the straight-
through gradient estimator (Bengio et al., 2013). In practice,
τ is set to 1 at the beginning of training and is exponen-
tially decayed towards 0 at each training step. The above
discretization step avoids soft cluster assignments that could
lead to degenerate solutions given the loss in Eq. 8. Uniform
soft assignments are indeed likely to minimize the variance
of the aggregate time series and thus the prediction error at
levels k > 0.

Graph-based regularization To take the graph structure
into account when learning the assignments, we exploit the
min-cut regularization introduced by Bianchi et al. (2020a),
i.e., we add to the loss the term

Lc
(
S(k)
µ ,A(k−1)

)
.
= (10)

−
Tr
(
S

(k)
µ

T

Ã(k−1)S
(k)
µ

)
Tr
(
S

(k)
µ

T

D̃(k−1)S
(k)
µ

) +

∥∥∥∥∥∥ S
(k)
µ

T

S
(k)
µ∥∥S(k)

µ

T

S
(k)
µ

∥∥
2

− I√
Nk

∥∥∥∥∥∥
2

where S(k)
µ = softmax

(
Φ(k)

)
, D̃(k−1) is the degree matrix

of Ã(k−1) .
=D− 1

2A(k−1)D− 1
2 , i.e., of the symmetrically

normalized adjacency matrix. The first term in the equation
is a continuous relaxation of the min-cut problem (Dhillon
et al., 2004) incentivizing the formation of clusters that pool
together connected components of the graph; the second
term helps in preventing degenerate solutions by favoring
orthogonal cluster assignments (Bianchi et al., 2020a).

Training procedure The training objective identified in
Eq. 8 entails that the cluster assignments are learned to min-
imize the forecasting error w.r.t. both the bottom time series
and aggregates. As a result, time series are clustered s.t.

aggregates at all levels are easier to predict, thus providing
a meaningful self-supervised learning signal. Intuitively, a
signal will be easier to predict if characterized low intra-
cluster variance. At the same time, different levels in the
hierarchy will benefit from reading information from diverse
supernodes, thus favoring a high inter-cluster variance.

Alternative pooling operators Besides the clustering
method described here, HiGP is compatible with any graph
pooling approach from the literature (see Grattarola et al.
2022). In particular, one might be interested in exploiting
non-trainable graph pooling operators that obtain cluster
assignments based on the graph topology only. The lat-
ter option becomes particularly attractive when obtaining
predictions w.r.t. particular sub-graphs, or localized within
specific connected components of the graph topology, is
relevant for the downstream application. We discuss a selec-
tion of appealing methods from the literature in Sec. 4 and
refer to Grattarola et al. (2022) for an in-depth discussion.

3.3. Forecast Reconciliation

As mentioned in Sec. 1, FR allows for obtaining coherent
forecast w.r.t. the hierarchical constraints (Eq. 3). Further-
more, FR can often have a positive impact on forecasting
accuracy as reconciled forecasts are obtained as a combi-
nation of the predictions made at the different levels (Hol-
lyman et al., 2021). We follow Rangapuram et al. (2021)
and embed a (differentiable) reconciliation step within the
architecture as a projection onto the subspace of coherent
forecasts.

Forecast reconciliation Given (trainable) selection ma-
trices S(1), . . . ,S(K) for each level of the hierarchy, theQ
matrix (see Eq. 3) can be obtained as

Q =
[
I
∣∣∣ −C ] = (11)

=

[
I
∣∣∣ − [ ∏K

k=1 S
(k)

∏K−1
k=1 S

(k−i) ··· S(1)
]T ]

.

Then, raw predictions Ŷt can be mapped into reconciled (co-
herent) forecasts Y t through a projection onto the space of
coherent forecasts (i.e., the null space ofQ). The projection
matrix can be computed as

P
.
= I −QT

(
QQT

)−1
Q, Y t = P Ŷt, (12)

where P is obtained by solving the constrained opti-
mization problem minZ∥Z − Ŷt∥2 s.t. QZ = 0. Model
parameters are then learned by minimizing the loss
Lf

.
= L(Ŷ ,Y ) + L(Y ,Y ) + λL(Y , Ŷ ) where we omit-

ted the time indices. Note that minimizing the regulariza-
tion term L(Y , Ŷ ) is equivalent to minimizing the distance
between Ŷt:t+H and the space of coherent forecasts. Un-
fortunately, computing the inverse ofQQT incurs the cost
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O(M3) in space and O(M2) in time, which can be pro-
hibitive for large time series collections. However, the solu-
tion is still practical for up to a few thousand nodes (most
practical applications), and the regularization term, com-
puted as Lreg(Ŷ , λ)

.
= λ∥QŶ ∥2, can be used in the other

cases as the only regularization. The above FR method
can be seamlessly integrated into our end-to-end forecast-
ing framework, however, many possible alternatives could
be considered here. The design of ad-hoc reconciliation
methods for graph-based predictors is a promising research
direction for future works (see Sec. 6).

4. Related Work
Hierarchical forecasting Hierarchical forecasting is a
widely studied problem in time series analysis (Hyndman
and Athanasopoulos, 2018; Hyndman et al., 2011). The
standard approach consists of obtaining (possibly indepen-
dent) forecasts for a subset of time series in the hierarchy in
the first stage and then, in a separate step, reconciling and
combining them to obtain (possibly coherent) predictions
for the full hierarchy (Hyndman et al., 2011; Ben Taieb
and Koo, 2019; Wickramasuriya et al., 2019). In particular,
MinT (Wickramasuriya et al., 2019) allows for obtaining
optimal reconciled forecasts given a set of unbiased H-step-
ahead predictions and the covariance matrix of the associ-
ated residuals. Analogous reconciliation methods have also
been developed for probabilistic forecasts (Wickramasuriya,
2023; Taieb et al., 2017; Corani et al., 2021). End-to-end
methods have been instead proposed in the context of deep
learning for time series forecasting (Benidis et al., 2022) by
exploiting the hierarchical structure either as a hard (Ran-
gapuram et al., 2021; Zhou et al., 2023; Das et al., 2023) or
soft constraint (Paria et al., 2021; Han et al., 2021). Notably,
Rangapuram et al. (2021) incorporate the reconciliation step
within the neural architecture as a differentiable convex
optimization layer (Agrawal et al., 2019) and obtain proba-
bilistic forecasts by Monte Carlo sampling. None of these
methods consider relational dependencies among and within
the levels of the hierarchical structure.

Graph-based forecasting and graph pooling Graph
learning deep models have become popular in time series
processing (Li et al., 2018; Cini et al., 2022; Jin et al., 2023).
Graph pooling operators have been widely studied in GNN
models for i.i.d. data (Grattarola et al., 2022; Bianchi and
Lachi, 2023), but their application to time series data is un-
derexplored. Dense trainable pooling methods (Ying et al.,
2018; Bianchi et al., 2020a; Hansen and Bianchi, 2022) learn
soft cluster assignment regularized by taking into account
the graph structure. Sparse approaches, instead, produce
hard cluster assignments usually learned by exploiting both
the graph structure and a learned ranking on the nodes (Bac-
ciu et al., 2023; Gao and Ji, 2019). Finally, non-trainable

methods exploit a clustering of the nodes performed inde-
pendently from the trained model (Bianchi et al., 2020b;
Dhillon et al., 2007). Pyramidal graph-based architectures
have been exploited in reservoir computing (Bianchi et al.,
2022). Graph neural networks has also been used to pro-
cess temporal hierarchies by Rangapuram et al. (2023).
With regards to STGNNs, hierarchical representations have
been exploited in specific domains such as traffic analyt-
ics (Yu et al., 2019; Guo et al., 2021; Hermes et al., 2022),
air quality monitoring (Chen et al., 2021), financial time
series (Arya et al., 2023), and pandemic forecasting (Ma
et al., 2022). In particular, Yu et al. (2019) propose a spa-
tiotemporal graph U-network (Gao and Ji, 2019) where
representations are pooled and then un-pooled to obtain a
hierarchical processing of the time series. However, most of
the above methods rely on fixed cluster assignments; further-
more, none of them directly address the hierarchical time
series forecasting problem by optimizing predictions at each
level of the hierarchy to learn cluster assigments and taking
into account coherency constraints.

5. Experiments
HiGP is validated over several settings considering forecast-
ing benchmarks with no predefined hierarchical structure.
In particular, we focus on validating of the proposed end-to-
end clustering and forecasting architecture against relevant
baselines and state-of-the-art architectures. We then provide
a qualitative analysis of the learned time series clusters on
datasets coming from sensor networks. Full details on the
experimental setup are provided in Appendices B and C,
while Appendix D contains additional empirical results and
sensitivity analyses.

5.1. End-to-end Hierarchical Clustering and
Forecasting

The empirical evaluation was set up by considering the
following benchmarks and baselines.

Benchmarks We consider the multistep-ahead forecast-
ing task and benchmark data coming from medium-sized
sensor networks (hundreds of nodes). In particular, the
benchmark consists of four datasets in total and includes
two datasets from the traffic forecasting literature (Metr-LA
and PeMS-Bay, Li et al. 2018), one dataset of air quality
measurements (AQI, Zheng et al. 2015) and a collection of
energy consumption profiles (CER-E, Commission for En-
ergy Regulation 2016). Each dataset consists of correlated
time series with graph-side information; no explicit prior
hierarchical structure is given. We follow the setup of (Cini
et al., 2023c), by adopting the same splits for training, vali-
dation, and testing and the same procedure followed of pre-
vious works to extract a graph topology for each dataset (Wu
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Table 1: Forecasting performance on benchmark datasets (5 runs). Best result in bold, second best underlined.

MODELS
Metr-LA PeMS-Bay CER AQI

MAE MRE (%) MAE MRE (%) MAE MRE (%) MAE MRE (%)
RNN 3.543 ± .005 6.134 ± .008 1.773 ± .001 2.839 ± .001 4.57 ± .00 21.65 ± .01 14.00 ± .03 21.84 ± .05

FC-RNN 3.566 ± .018 6.174 ± .031 2.305 ± .006 3.690 ± .009 7.13 ± .02 33.77 ± .11 18.33 ± .11 28.59 ± .18

GConv-TTS 3.071 ± .008 5.317 ± .015 1.584 ± .006 2.536 ± .009 4.12 ± .02 19.50 ± .08 12.30 ± .02 19.20 ± .03

Diff-TTS 3.012 ± .005 5.214 ± .008 1.569 ± .004 2.512 ± .006 4.11 ± .02 19.47 ± .11 12.24 ± .04 19.10 ± .05

Gated-TTS 3.027 ± .008 5.240 ± .013 1.582 ± .006 2.533 ± .009 4.13 ± .01 19.54 ± .06 12.07 ± .02 18.83 ± .03

GUNet-TTS 3.057 ± .016 5.292 ± .028 1.575 ± .006 2.522 ± .010 4.08 ± .02 19.32 ± .10 12.25 ± .03 19.11 ± .05

HiGP-TTS (C) 3.034 ± .008 5.253 ± .013 1.567 ± 0.005 2.508 ± 0.008 4.11 ± .07 19.45 ± .34 12.13 ± .02 18.92 ± .04

HiGP-TTS (D) 3.009 ± .005 5.209 ± .008 1.566 ± .005 2.506 ± .008 4.12 ± .06 19.49 ± .30 12.10 ± .01 18.88 ± .02

HiGP-TTS (G) 3.007 ± .009 5.205 ± .016 1.568 ± .008 2.510 ± .013 4.05 ± .01 19.20 ± .03 12.02 ± .04 18.75 ± .06

Table 2: Results on traffic datasets (5 runs). Best results in
bold, second best underlined.

MODELS
MAE

15 min. 30 min. 60 min.

M
et

r-
L

A

DCRNN 2.82 ± .00 3.23 ± .01 3.74 ± .01

GWNet 2.72 ± .01 3.10 ± .02 3.54 ± .03

Gated-GN 2.72 ± .01 3.05 ± .01 3.44 ± .01

SGP 2.69 ± .00 3.05 ± .00 3.45 ± .00

HiGP (T) 2.68 ± .01 3.02 ± .01 3.40 ± .01

No rel. prop. 2.80 ± .01 3.14 ± .01 3.47 ± .02

No hier. prop. 2.68 ± .01 3.03 ± .02 3.43 ± .02

Pe
M

S-
B

ay

DCRNN 1.36 ± .00 1.71 ± .00 2.08 ± .01

GWNet 1.31 ± .00 1.64 ± .01 1.94 ± .01

Gated-GN 1.32 ± .00 1.63 ± .01 1.89 ± .01

SGP 1.30 ± .00 1.60 ± .00 1.88 ± .00

HiGP (T) 1.31 ± .00 1.61 ± .00 1.87 ± .00

No rel. prop. 1.32 ± .00 1.63 ± .00 1.88 ± .01

No hier. prop. 1.31 ± .00 1.63 ± .00 1.89 ± .00

et al., 2019; Cini et al., 2022). Similarly, the length of the
input window and forecasting horizon for each dataset are
set according to related works (Li et al., 2018; Cini et al.,
2023c) as detailed in the Appendix B. We use the mean
absolute error (MAE) and the mean relative error (MRE)
as performance metrics.

Baselines To carry out meaningful comparisons we select
a reference TTS architecture (Cini et al., 2023c; Gao and
Ribeiro, 2022) (see Eq. 2) obtained by stacking an node-
wise temporal encoder implemented by an RNN, two GNN
layers, and an MLP readout as

RNN[dh]− MP[dh]− MP[dh]− FC[dh]− LIN[H]

where MP indicates a generic message-passing block, FC
indicates a dense fully connected layer, and LIN(H) is a
linear layer with an output size corresponding to the fore-
casting horizon. The number of neurons in each layer is

indicated as dh. Learnable node embeddings (Cini et al.,
2023c) are concatenated to the input before both the recur-
rent encoder and after the message-passing layers. We com-
pare the performance of different message-passing schemes
commonly used in state-of-the-art graph-based forecasting
architectures. In particular, the considered alternatives in-
clude the standard graph convolution (GConv-TTS, Kipf
and Welling 2017), the bidirectional diffusion convolution
operator (Diff-TTS, Li et al. 2018), a more advanced gated
message-passing scheme (Gated-TTS, Cini et al. 2023c),
and a hierarchical Graph U-Net (GUNet-TTS, Gao and Ji
2019). We use a standard GRU (Cho et al., 2014) as se-
quence encoder for all the baselines. Finally, we denote by
FC-RNN the baseline which considers the input sequences
as a single multivariate time series and by RNN the global
univariate model. The number of neurons dh is selected
for each dataset on the validation set (more details in the
appendix), while the other hyperparameters are kept fixed
among baselines (see Appendix C). The HiGP-TTS model
is implemented following the above template and Eq. 4–6.
Notably, the only architectural difference w.r.t. the baselines
is the addition of a hierarchical propagation step after each
message-passing layer and readouts for each level of the
hierarchy. HiGP is trained end-to-end as to minimize the
forecasting error w.r.t. the aggregates corresponding to the
learned clusters. For this experiment, we use a static learn-
able hierarchical structure with 3 levels consisting of raw
time series at the bottom, 20 supernodes in the middle level,
and the total aggregate as the single time series at the top
level. Selection matrices are learned directly by parametriz-
ing the associated log-probabilities with tables of trainable
parameters.

Results Tab. 1 show the results of the extensive empirical
evaluation. We report HiGP forecasting accuracy w.r.t. 3
different message-passing schemes; in particular, (C), (D),
and (G) indicate respectively the standard graph convolution,
the diffusion convolution operator and the gated message-
passing operator cited above. HiGP variants are among
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Figure 3: Hierarchical cluster assignments learned by HiGP on 2 benchmark datasets. The models have been trained with a
5-level hierarchy and plots show, from left to right, the median for the clusters corresponding to levels from 1 to 3. The
shaded areas correspond to 0.6 and 0.4 quantiles.

the best-performing methods in all the considered settings.
Notably, hierarchical forecasting does not only act as self-
supervision to learn cluster assignments but also provides
a positive inductive bias that results – on average – in im-
proved forecasting accuracy w.r.t. the flat architectures. Con-
versely, the GUNet baseline provides a comparison with a
standard hierarchical message-passing architecture which,
in this case, underperforms.

Comparison against the state of the art Next, we per-
form an additional experiment by taking advantage of the
popularity of Metr-LA and PeMS-Bay as traffic forecasting
benchmarks and compare HiGP against specialized state-of-
the-art architectures. We consider the following baselines
from the literature: 1) DCRNN (Li et al., 2018), i.e., a re-
current architecture; 2) Graph WaveNet (GWNet, Wu et al.
2019), i.e., a popular time-and-space graph convolutional
model; 3) Gated-GN (Satorras et al., 2022), i.e., a gated
message-passing architecture operating on a fully connected
graph; 4) SGP (Cini et al., 2023a), i.e., a scalable architec-

ture exploiting a randomized spatiotemporal encoder. In this
context, we tuned the HiGP architecture by simply adding
residual connections and using a deeper MLP decoder; the
tuned architecture is designeted as HiGP (T). The simu-
lation results for multistep-ahead forecasting in the traffic
datasets, provided in Tab. 2, show that HiGP can achieve
state-of-the-art forecasting accuracy. Additionally, the same
table reports an ablation study of the proposed architecture.
In particular, we consider two variants of the model: the first
is characterized by the removal of all the message-passing
layers, while the second does not perform any propagation
of the learned representations through the learned hierarchy.
Results show that both aspects have a significant impact on
forecasting accuracy.

5.2. Cluster Analysis

We analyze clusters extracted by HiGP on the CER-E and
AQI datasets. Ideally, we would like to cluster customers
w.r.t. their consumption patterns in the first case, and to par-
tition air quality monitoring stations w.r.t. the different dy-
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namics and regions of the dataset. As discussed in Sec. 3.2,
HiGP learns the cluster assignments by minimizing the fore-
casting error at each level of the hierarchy end-to-end. This
form of self-supervision rewards, then, the formation of
clusters that result in aggregates that are easy to predict
and that, at the same time, are formed by taking the graph
structure into account (Eq. 10). We configure HiGP to learn
3 hierarchical cluster assignments and show the result of
the procedure in Fig. 3. In both scenarios, HiGP extracts
meaningful clusters with aggregates exhibiting different pat-
terns. In particular, each level corresponds to progressively
smoother dynamics. Appendix D.2 provides a spatial visu-
alization of the clustered nodes for the AQI dataset.

6. Conclusions
We introduced the Hierarchical Graph Predictor, a method-
ological framework unifying relational and hierarchical in-
ductive biases in deep learning architectures for time series
forecasting. HiGP has been designed to learn hard clus-
ter assignments end-to-end, by taking the graph structure
into account and minimizing the forecasting error w.r.t. the
resulting aggregates and bottom-level time series. Perfor-
mance on relevant benchmarks supports the validity of the
approach which, as we show, can also learn meaningful
hierarchical cluster assignments.

Future works There are many possible extensions to the
framework, which can be seen as a starting point for sev-
eral specific studies and research directions. Future works
might focus on the clustering aspect and investigate addi-
tional auxiliary objectives to provide more supervision to the
procedure. Alternative reconciliation strategies should be as-
sessed as well, together with their impact on the learned clus-
ter assignments and forecasting accuracy. Future research
could also apply HiGP-like methods to settings where the
hierarchical constraints are predefined. The sensitivity of
the approach to the number of input time series and obser-
vations might also be further explored; notably, the number
of time series usually considered in graph-based forecasting
is higher than those considered in standard hierarchical fore-
casting benchmarks. Finally, extensions of the framework
to multivariate, heterogenous, and irregularly sampled time
series would make the approach applicable to additional
relevant and practical application domains.
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Appendix
This appendix provides additional details on the setup and datasets used for the experiments presented in the paper, as well
ass additional empirical results.

A. Hardware and software platforms
Experimental setup and baselines have been developed with Python (Van Rossum and Drake, 2009) by relying on the
following open-source libraries:

• numpy (Harris et al., 2020);

• PyTorch (Paszke et al., 2019);

• PyTorch Lightning (Falcon and The PyTorch Lightning team, 2019);

• PyTorch Geometric (Fey and Lenssen, 2019);

• Torch Spatiotemporal (Cini and Marisca, 2022).

Experiments were run on a server equipped with AMD EPYC 7513 CPUs and NVIDIA RTX A5000 GPUs. The code for
reproducing the computational experiments is available online2.

B. Datasets

Table 3: Statistics of datasets used in the experiments.

DATASETS Time steps Nodes Edges Type
Metr-LA 34,272 207 1515 Directed
PeMS-Bay 52,128 325 2369 Directed
CER-E 25,728 485 4365 Directed
AQI 8,760 437 2699 Undirected

We use the same spatiotemporal forecasting benchmarks of (Cini et al., 2023c), which consist of the following datasets.

Metr-LA The Metr-LA dataset (Li et al., 2018) consists of measurements from loop detectors in the Los Angeles County
Highway.

PeMS-Bay The PeMS-Bay dataset (Li et al., 2018), contains traffic speed measurements analogous to those of Metr-LA
and acquired in the San Francisco Bay Area.

CER-E The CER-E dataset (Commission for Energy Regulation, 2016) consists of a collection of load profiles (i.e., energy
consumption measurements) aggregated into 30-minutes intervals, recorded by 485 smart meters in Irish small and
medium-sized enterprises. The dataset has been introduced as a benchmark for graph-based time series processing
in (Cini et al., 2022).

AQI The AQI dataset (Zheng et al., 2015) collects hourly measurements of the PM2.5 pollutant from 437 air quality
monitoring stations spread over 43 Chinese cities. Similarly to CER-E, AQI has been introduced as a benchmark for
graph-based processing in (Cini et al., 2022).

All of the above datasets are either openly available (Metr-LA, PeMS-Bay, AQI) or obtainable free of charge for research
purposes (CER-E3). Tab. 3 provides relevant statistics on the considered datasets. For each dataset, we obtain the corre-
sponding adjacency matrix and exogenous variables by following previous works (Cini et al., 2022; Li et al., 2018; Cini

2https://github.com/andreacini/higp
3https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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et al., 2023c). Following Cini et al. (2023c), datasets are split into windows of W time steps and the models are trained to
predict the subsequent H observations. Window size W and forecasting horizon H are respectively set as W = 12 and
H = 12 for Metr-LA and PeMS-Bay, W = 48, H = 6 for CER-E, and W = 24, H = 3 for AQI. Training, validation, and
testing data are respectively obtained with a 70%/10%/20% sequential split. Conversely, for AQI, we use the same data
splits of (Yi et al., 2016).

C. Baselines and hyperparameters
C.1. Reference architectures

As discussed in Sec. 5, the main empirical results of the paper (Tab. 1), were obtained by considering, for all the baselines, a
template TTS architecture which can be schematically described as follows:

hi,0
t = GRU

(
xi
t−W :t,u

i
t−W :t,v

i
)
, (13)

H1
t = GNN1

(
H0

t ,A
)
, (14)

H2
t = GNN2

(
H1

t ,A
)
, (15)

x̂i
t+h =Whξ

(
Wfc

[
hi,2
t |vi

]
+ bfc

)
+ bh, h = 0, 1, . . . ,H − 1, (16)

with ξ( · ) being the ELU activation function (Clevert et al., 2016), Wh ∈ R1×dh , Wh ∈ Rdh×dh , bh ∈ R, bfc ∈ Rdh

denoting learnable weights, GRU and GNN indicating respectively a gated recurrent temporal encoder (Cho et al., 2014)
and a generic message-passing layer (implemented differently for each baseline). For HiGP, the template was modified to
account for the hierarchical structure as discussed in Sec. 3.1. Similarly, for the GUNet baselines the template was modified
to take into account the pooling and lifting operations. For the tuned version of HiGP we simply added skip connections and
used a deeper readout.

C.2. Hyperparameters and training details

We trained each model with early stopping on the validation set and a batch size of 64 samples for a maximum of 200 epochs
each of 300 batches maximum. We used the Adam optimizer with an initial learning rate of 0.003 reduced by a factor
γ = 0.25 every 50 epochs. The number of neurons dh in the layers of each model was set to 64 or 32 based on the validation
error on each dataset. For HiGP, the regularization coefficient λ was tuned and set to 0.25 based on the validation error on
the Metr-LA dataset and simply rescaled for the other datasets to take into account the different magnitude of the input. As
discussed in Sec. 5, we used a 3-level hierarchy with 20 super-nodes in the middle level and a single super-node (the total
aggregate) at the top level. Intra-level spatial propagation was performed only at the base level. For the Diff-TTS baseline,
the order of the diffusion convolution was set to k = 2, while the pooling factor for the GUNet was set to p = 0.1. For what
concerns the experimental results in Tab. 2, for each baseline we used the hyperparameters of the original papers and the
open-source implementation provided by Cini et al. (2023a). Hyperparameters for HiGP (T) were obtained by tuning the
model on the validation set of both datasets separately.

D. Additional results
D.1. Sensitivity analyses

Hierarchy size We ran a sensitivity analysis to assess the impact of the number of clusters and levels in the hierarchy. In
particular, we ran the following experiment on the CER-E dataset using a simplified model (with 32 hidden units in each
layer) to test different configurations. Each configuration addresses a hierarchy with different numbers of levels and clusters.
The results in Tab. 4 show how forecasting accuracy varies across configurations and that these hyperparameters should be
tuned on the task at hand. However, as shown in Tab. 1, we observed that using a simple hierarchy with 3 levels and a small
number of clusters is sufficient to outperform flat predictors consistently.

Reconciliation strategy The reconciliation procedure should be considered as a hyperparameter of the approach. In
this regard, we ran a sensitivity analysis on the CER-E dataset considering the HiGP model equipped with gated graph
convolutions. Results are shown in Fig. 5: Reconciled, Only loss and Fit only base indicate respectively the full model
including the hard reconciliation step, the model simply minimizing accuracy at all levels at the same time, and the model
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Table 4: Sensitivity analysis comparing different clustering hyperparameters in terms on MAE on CER-E (4 runs). The
number of time series in each level are indicated between parentheses for each setting.

Levels
Hierarchy

Sparse Dense.

3 levels
4.24 ± .02 4.26 ± .02

(N, 20, 1) (N, 100, 1)

4 levels
4.22 ± .02 4.23 ± .02

(N, 20, 4, 1) (N, 100, 50, 1)

5 levels
4.24 ± .01 4.23 ± .02

(N, 100, 20, 4, 1) (N, 200, 100, 50, 1)

where the loss is computed only w.r.t. the base time series. Results further confirm that reconciliation and hierarchical biases
can improve forecasting accuracy.

Table 5: Sensitivity analysis comparing reconciliation strategies in terms on MAE on CER-E (4 runs).

Method MAE MRE
Reconciled 4.06 ± .01 19.202 ± .039

Only loss 4.08 ± .01 19.309 ± .034

Fit only base 4.07 ± .01 19.245 ± .052

D.2. Cluster analysis

Level 0 Level 1

Figure 4: Visualizations of clustered nodes in the AQI dataset.

Fig. 4 shows a visualization of the learned clusters for the Air Quality dataset to complement the one provided in the
paper (Fig. 3b). In particular, the figure shows each sensor’s geographical location, the partitioning of the network into
clusters, and a visualization of the pooled graph for the first level of the hierarchy.
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