
A Geometric View of Data Complexity: Efficient Local
Intrinsic Dimension Estimation with Diffusion Models

Hamidreza Kamkari Brendan Leigh Ross Rasa Hosseinzadeh
Jesse C. Cresswell Gabriel Loaiza-Ganem

{hamid, brendan, rasa, jesse, gabriel}@layer6.ai
Layer 6 AI, Toronto, Canada

Abstract

High-dimensional data commonly lies on low-dimensional submanifolds, and
estimating the local intrinsic dimension (LID) of a datum – i.e. the dimension of the
submanifold it belongs to – is a longstanding problem. LID can be understood as the
number of local factors of variation: the more factors of variation a datum has, the
more complex it tends to be. Estimating this quantity has proven useful in contexts
ranging from generalization in neural networks to detection of out-of-distribution
data, adversarial examples, and AI-generated text. The recent successes of deep
generative models present an opportunity to leverage them for LID estimation, but
current methods based on generative models produce inaccurate estimates, require
more than a single pre-trained model, are computationally intensive, or do not
exploit the best available deep generative models: diffusion models (DMs). In
this work, we show that the Fokker-Planck equation associated with a DM can
provide an LID estimator which addresses the aforementioned deficiencies. Our
estimator, called FLIPD, is easy to implement and compatible with all popular
DMs. Applying FLIPD to synthetic LID estimation benchmarks, we find that DMs
implemented as fully-connected networks are highly effective LID estimators that
outperform existing baselines. We also apply FLIPD to natural images where the
true LID is unknown. Despite being sensitive to the choice of network architecture,
FLIPD estimates remain a useful measure of relative complexity; compared to
competing estimators, FLIPD exhibits a consistently higher correlation with image
PNG compression rate and better aligns with qualitative assessments of complexity.
Notably, FLIPD is orders of magnitude faster than other LID estimators, and the
first to be tractable at the scale of Stable Diffusion.

1 Introduction

The manifold hypothesis [7], which has been empirically verified in contexts ranging from natural
images [49, 10] to calorimeter showers in physics [15], states that high-dimensional data of interest in
RD often lies on low-dimensional submanifolds of RD. For a given datum x ∈ RD, this hypothesis
motivates using its local intrinsic dimension (LID), denoted LID(x), as a natural measure of its
complexity. LID(x) corresponds to the dimension of the data manifold that x belongs to, and can
be intuitively understood as the minimal number of variables needed to describe x. More complex
data needs more variables to be adequately described, as illustrated in Figure 1. Data manifolds are
typically not known explicitly, meaning that LID must be estimated. Here we tackle the following
problem: given a dataset along with a query datum x, how can we tractably estimate LID(x)?

This is a longstanding problem, with LID estimates being highly useful due to their innate inter-
pretation as a measure of complexity. For example, these estimates can be used to detect outliers
[27, 2, 32], AI-generated text [64], and adversarial examples [42]. Connections between the general-
ization achieved by a neural network and the LID estimates of its internal representations have also

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: (Left) A cartoon illustration showing that LID is a natural measure of relative complexity. We depict
two manifolds of MNIST digits, corresponding to 1s and 8s, as 1-dimensional and 2-dimensional submanifolds
of R3, respectively. The relatively simpler manifold of 1s exhibits a single factor of variation (“tilt”), whereas 8s
have an additional factor of variation (“disproportionality”). (Right) The 4 lowest- and highest-LID datapoints
from a subsample of LAION-Aesthetics, as measured by our method, FLIPD, applied to Stable Diffusion v1.5.
FLIPD scales efficiently to large models on high-dimensional data, and aligns closely with subjective complexity.

been shown [4, 8, 44, 9]. These insights can be leveraged to identify which representations contain
maximal semantic content [66], and help explain why LID estimates can be helpful as regularizers
[72] and for pruning large models [70]. LID estimation is thus not only of mathematical and statistical
interest, but can also benefit the empirical performance of deep learning models at numerous tasks.

Traditional estimators of intrinsic dimension [22, 38, 43, 12, 30, 20, 1, 5] typically rely on pairwise
distances and nearest neighbours, so computing them is prohibitively expensive for large datasets.
Recent work has thus sought to move away from these model-free estimators and instead take
advantage of deep generative models which learn the distribution of observed data. When this
distribution is supported on low-dimensional submanifolds of RD, successful generative models must
implicitly learn the dimensions of the data submanifolds, suggesting they can be used to construct
LID estimators. However, existing model-based estimators suffer from various drawbacks, including
being inaccurate and computationally expensive [59], not leveraging the best existing generative
models [62, 71] (i.e. diffusion models [56, 25, 58]), and requiring training several models [62] or
altering the training procedure rather than relying on a pre-trained model [26]. Importantly, none of
these methods scale to high-resolution images such as those generated by Stable Diffusion [51].

We address these issues by showing how LID can be efficiently estimated using only a single pre-
trained diffusion model (DM) by building on LIDL [62], a model-based estimator. LIDL operates by
convolving data with different levels of Gaussian noise, training a normalizing flow [50, 17, 18] for
each level, and fitting a linear regression using the log standard deviation of the noise as a covariate
and the corresponding log density (of the convolution) evaluated at x as the response; the resulting
slope is an estimate of LID(x)−D, thanks to a surprising result linking Gaussian convolutions and
LID. We first show how to adapt LIDL to DMs in such a way that only a single DM is required (rather
than many normalizing flows). Directly applying this insight leads to LIDL estimates that require
one DM but several calls to an ordinary differential equation (ODE) solver; we further show how
to circumvent this with an alternative ODE that computes all the required log densities in a single
solve. We then argue that the slope of the regression in LIDL aims to capture the rate of change of
the marginal log probabilities in the diffusion process, which can be evaluated directly thanks to
the Fokker-Planck equation. The resulting estimator, which we call FLIPD,1 is highly efficient, and
circumvents the need for an ODE solver. Notably, FLIPD is differentiable; this property opens up
exciting avenues for future research as it enables backpropagating through LID estimates.

Our contributions are: (i) showing how DMs can be efficiently combined with LIDL in a way which
requires a single call to an ODE solver; (ii) leveraging the Fokker-Planck equation to propose FLIPD,
thus improving upon the estimator and circumventing the need for an ODE solver altogether; (iii)
motivating FLIPD theoretically; (iv) introducing an expanded suite of LID estimation benchmark

1Pronounced as “flipped”, the acronym is a rearrangement of “FP” from Fokker-Planck and “LID”.

2

tasks that reveals gaps in prior evaluations, and specifically that other estimators do not remain
accurate as the complexity of the manifold increases; (v) demonstrating that when using fully-
connected architectures for diffusion models, FLIPD outperforms existing baselines – especially as
dimension increases – while being much more computationally efficient; (vi) showing that when
applied to natural images, despite varying across network architecture (i.e., fully-connected network
or UNet [52, 68]), FLIPD estimates consistently align with other measures of complexity such as
PNG compression length, and with qualitative assessments of complexity, highlighting that the
LID estimates provided by FLIPD remain valid measures of relative image complexity; and (vii)
demonstrating that when applied to the latent space of Stable Diffusion, FLIPD can estimate LID for
extremely high-resolution images (∼ 106 pixel dimensions) for the first time.

2 Background and Related Work

2.1 Diffusion Models

Forward and backward processes Diffusion models admit various formulations [56, 25]; here we
follow the score-based one [58]. We denote the true data-generating distribution, which DMs aim to
learn, as p(·, 0). DMs define the forward (Itô) stochastic differential equation (SDE),

dXt = f(Xt, t)dt+ g(t)dWt, X0 ∼ p(·, 0), (1)

where f : RD × [0, 1] → RD and g : [0, 1] → R are hyperparameters, and Wt denotes a D-
dimensional Brownian motion. We write the distribution of Xt as p(·, t). The SDE in Equation 1
prescribes how to gradually add noise to data, the idea being that p(·, 1) is essentially pure noise.
Defining the backward process as Yt := X1−t, this process obeys the backward SDE [3, 24],

dYt =
[
g2(1− t)s(Yt, 1− t)− f(Yt, 1− t)

]
dt+ g(1− t)dŴt, Y0 ∼ p(·, 1), (2)

where s(x, t) := ∇ log p(x, t) is the unknown (Stein) score function,2 and Ŵt is another D-
dimensional Brownian motion. DMs leverage this backward SDE for generative modelling by
using a neural network ŝ : RD × (0, 1] → RD to learn the score function with denoising score
matching [67]. Once trained, ŝ(x, t) ≈ s(x, t). To generate samples Ŷ1 from the model, we solve an
approximation of Equation 2:

dŶt =
[
g2(1− t)ŝ(Ŷt, 1− t)− f(Ŷt, 1− t)

]
dt+ g(1− t)dŴt, Ŷ0 ∼ p̂(·, 1), (3)

with ŝ replacing the true score and with p̂(·, 1), a Gaussian distribution chosen to approximate p(·, 1)
(depending on f and g), replacing p(·, 1).

Density Evaluation DMs can be interpreted as continuous normalizing flows [13], and thus admit
density evaluation, meaning that if we denote the distribution of Ŷ1−t as p̂(·, t), then p̂(x, t0) can be
mathematically evaluated for any given x ∈ RD and t0 ∈ (0, 1]. More specifically, this is achieved
thanks to the (forward) ordinary differential equation (ODE) associated with the DM:

dx̂t =
(
f(x̂t, t)−

1

2
g2(t)ŝ(x̂t, t)

)
dt, x̂t0 = x. (4)

Solving this ODE from time t0 to time 1 produces the trajectory (x̂t)t∈[t0,1], which can then be used
for density evaluation through the continuous change-of-variables formula:

log p̂(x, t0) = log p̂(x̂1, 1) +

∫ 1

t0

tr(∇v(x̂t, t))dt, (5)

where p̂(·, 1) can be evaluated since it is a Gaussian, and where v(x, t) := f(x, t)− g2(t)ŝ(x, t)/2.

2Throughout this paper, we use the symbol ∇ to denote the differentiation operator with respect to the
vector-valued input, not the scalar time t, i.e. ∇ = ∂/∂x.

3

Trace estimation Note that the cost of computing ∇v(x̂t, t) for a particular x̂t amounts to Θ(D)
function evaluations of ŝ (sinceD calls to a Jacobian-vector-product routine are needed [6]). Although
this is not prohibitively expensive for a single x̂t, in order to compute the integral in Equation 5 in
practice, (x̂t)t∈[t0,1] must be discretized into a trajectory of length N . If we denote by F the cost of
evaluating v(x̂t, t) – or equivalently, ŝ(x̂t, t) – deterministic density evaluation is Θ(NDF), which is
computationally prohibitive. The Hutchinson trace estimator [29] – which states that for M ∈ RD×D,
tr(M) = Eε[ε

⊤Mε], where ε ∈ RD has mean 0 and covariance ID – is thus commonly used for
stochastic density estimation; approximating the expectation with k samples from ε results in a cost
of Θ(NkF), which is much faster than deterministic density evaluation when k ≪ D.

2.2 Local Intrinsic Dimension and How to Estimate It

LID Various definitions of intrinsic dimension exist [28, 21, 37, 11]. Here we follow the standard
one from geometry: a d-dimensional manifold is a set which is locally homeomorphic to Rd. For
a given disjoint union of manifolds and a point x in this union, the local intrinsic dimension of x
is the dimension of the submanifold it belongs to. Note that LID is not an intrinsic property of the
point x, but rather a property of x with respect to the manifold that contains it. Intuitively, LID(x)
corresponds to the number of factors of variation present in the manifold containing x, and it is thus a
natural measure of the relative complexity of x, as illustrated in Figure 1.

Estimating LID The natural interpretation of LID as a measure of complexity makes estimating it
from observed data a relevant problem. Here, the formal setup is that p(·, 0) is supported on a disjoint
union of manifolds [10], and we assume access to a dataset sampled from it. Then, for a given x in the
support of p(·, 0), we want to use the dataset to provide an estimate of LID(x). Traditional estimators
[22, 38, 43, 12, 30, 20, 1, 5] rely on the nearest neighbours of x in the dataset, or related quantities,
and typically have poor scaling in dataset size. Generative models are an intuitive alternative to these
methods; because they are trained to learn p(·, 0), when they succeed they must encode information
about the support of p(·, 0), including the corresponding manifold dimensions. However, extracting
this information from a trained generative model is not trivial. For example, Zheng et al. [71] showed
that the number of active dimensions in the approximate posterior of variational autoencoders [33, 50]
estimates LID, but their approach does not generalize to better generative models.

LIDL Tempczyk et al. [62] proposed LIDL, a method for LID estimation relying on normalizing
flows as tractable density estimators [50, 17, 18]. LIDL works thanks to a surprising result linking
Gaussian convolutions and LID [39, 62, 71]. We will denote the convolution of p(·, 0) and Gaussian
noise with log standard deviation δ as ϱ(·, δ), i.e.

ϱ(x, δ) :=

∫
p(x0, 0)N (x− x0; 0, e

2δID)dx0. (6)

The aforementioned result states that, under mild regularity conditions on p(·, 0), and for a given x in
its support, the following holds as δ → −∞:

log ϱ(x, δ) = δ(LID(x)−D) +O(1). (7)

This result then suggests that, for negative enough values of δ (i.e. small enough standard deviations):

log ϱ(x, δ) ≈ δ(LID(x)−D) + c, (8)

for some constant c. If we could evaluate log ϱ(x, δ) for various values of δ, this would pro-
vide an avenue for estimating LID(x): set some values δ1, . . . , δm, fit a linear regression using
{(δi, log ϱ(x, δi))}mi=1 with δ as the covariate and log ϱ(x, δ) as the response, and let β̂x be the
corresponding slope. It follows that β̂x estimates LID(x)−D, so that LID(x) ≈ D+ β̂x is a sensible
estimator of local intrinsic dimension.

Since ϱ(x, δ) is unknown and cannot be evaluated, LIDL requires training m normalizing flows.
More specifically, for each δi, a normalizing flow is trained on data to which N (0, e2δiID) noise is
added. In LIDL, the log densities of the trained models are then used instead of the unknown true log
densities log ϱ(x, δi) when fitting the regression as described above.

Despite using generative models, LIDL has obvious drawbacks. LIDL requires training several
models. It also relies on normalizing flows, which are not only empirically outperformed by DMs by

4

a wide margin, but are also known to struggle to learn low-dimensional manifolds [14, 39, 40]. On
the other hand, DMs do not struggle to learn p(·, 0) even when it is supported on low-dimensional
manifolds [48, 16, 40], further suggesting that LIDL can be improved by leveraging DMs.

Estimating LID with DMs The only works we are aware of that leverage DMs for LID estimation
are those of Stanczuk et al. [59], and Horvat and Pfister [26]. The latter modifies the training
procedure of DMs, so we focus on the former since we see compatibility with existing pre-trained
models as an important requirement for DM-based LID estimators. Stanczuk et al. [59] consider
variance-exploding DMs, where f = 0. They show that, as t↘ 0, the score function s(x, t) points
orthogonally towards the manifold containing x, or more formally, it lies in the normal space of
this manifold at x. They thus propose the following LID estimator, which we refer to as the normal
bundle (NB) estimator: first run Equation 1 until time t0 starting from x, and evaluate ŝ(·, t0) at the
resulting value; then repeat this process K times and stack the K resulting D-dimensional vectors
into a matrix S(x) ∈ RD×K . The idea here is that if t0 is small enough and K is large enough, the
columns of S(x) span the normal space of the manifold at x, suggesting that the rank of this matrix
estimates the dimension of this normal space, namely D − LID(x). Finally, they estimate LID(x) as:

LID(x) ≈ D − rankS(x). (9)

Numerically, the rank is computed by performing a singular value decomposition (SVD) of S(x),
setting a threshold, and counting the number of singular values exceeding the threshold. Computing
S(x) requiresK function evaluations, and intuitivelyK should be large enough to ensure the columns
of S(x) span the normal space at x; the authors thus propose using K = 4D, and recommend always
at least ensuring that K > D. Computing the NB estimator costs Θ(KF +D2K), where F again
denotes the cost for evaluating ŝ. Thus, although the NB estimator addresses some of the limitations
of LIDL, it remains computationally expensive in high dimensions.

3 Method

Although Tempczyk et al. [62] only used normalizing flows in LIDL, they did point out that these
models could be swapped for any other generative model admitting density evaluation. Indeed, one
could trivially train m DMs and replace the flows with them. Throughout this section we provide a
sequence of progressive improvements to this naïve application of LIDL with DMs, culminating with
FLIPD. We assume access to a pre-trained DM such that f(x, t) = b(t)x for a function b : [0, 1] → R.
This choice implies that the transition kernel pt|0 associated with Equation 1 is Gaussian [53]:

pt|0(xt | x0) = N (xt;ψ(t)x0, σ
2(t)ID), (10)

where ψ, σ : [0, 1] → R. We also assume that b and g are such that ψ and σ are differentiable
and such that λ(t) := σ(t)/ψ(t) is injective. This setting encompasses all DMs commonly used in
practice, including variance-exploding, variance-preserving (of which the widely used DDPMs [25]
are a discretized instance), and sub-variance-preserving [58]. In Appendix A we include explicit
formulas for ψ(t), σ2(t), and λ(t) for these particular DMs.

3.1 LIDL with a Single Diffusion Model

As opposed to the several normalizing flows used in LIDL which are individually trained on datasets
with different levels of noise added, a single DM already works by convolving data with various
noise levels and allows density evaluation of the resulting noisy distributions (Equation 5). Hence,
we make the observation that LIDL can be used with a single DM. All we need is to relate ϱ(·, δ) to
the density of the DM, p(·, t). In the case of variance-exploding DMs, ψ(t) = 1, so we can easily use
the defining property of the transition kernel in Equation 10 to get

p(x, t) =

∫
p(x0, 0)pt|0(xt | x0)dx0 =

∫
p(x0, 0)N (xt;x0, σ

2(t)ID)dx0, (11)

which equals ϱ(x, δ) from Equation 6 when we choose t = σ−1(eδ).3 In turn, we can use LIDL with
a single variance-exploding DM by evaluating each p̂

(
x, σ−1(eδi)

)
through Equation 5. This idea

3Note that we treat positive and negative superindices differently: e.g. σ−1 denotes the inverse function of σ,
not 1/σ; on the other hand σ2 denotes the square of σ, not σ ◦ σ.

5

extends beyond variance-exploding DMs; in Appendix B.1 we show that for any arbitrary DM with
transition kernel as in Equation 10, it holds that

log ϱ(x, δ) = D logψ
(
t(δ)

)
+ log p

(
ψ
(
t(δ)

)
x, t(δ)

)
, (12)

where t(δ) := λ−1(eδ). This equation is relevant because LIDL requires log ϱ(·, δ), yet DMs provide
log p(·, t): linking these two quantites as above shows that LIDL can be used with a single DM.

3.2 A Better Implementation of LIDL with a Single Diffusion Model

Using Equation 12 with LIDL still involves computing log p̂
(
ψ(t(δi))x, t(δi)

)
through Equation 5

for each i = 1, . . . ,m before running the regression. Since each of the corresponding ODEs in
Equation 4 starts at a different time t0 = t(δi) and is evaluated at a different point ψ(t(δi))x, this
means that a different ODE solver call would have to be used for each i, resulting in a prohibitively
expensive procedure. To address this, we aim to find an explicit formula for ∂/∂δ log ϱ(x, δ). We do
so by leveraging the Fokker-Planck equation associated with Equation 1, which provides an explicit
formula for ∂/∂t p(x, t). Using this equation along with the chain rule and Equation 12, we show in
Appendix B.2 that, for DMs with transition kernel as in Equation 10,

∂

∂δ
log ϱ(x, δ) = σ2

(
t(δ)

)(
tr
(
∇s
(
ψ
(
t(δ)

)
x, t(δ)

))
+
∥∥∥s(ψ(t(δ))x, t(δ))∥∥∥2

2

)
=: ν

(
t(δ); s, x

)
. (13)

Then, assuming without loss of generality that δ1 < · · · < δm, we can use the above equation to
define log ϱ̂(x, δ) through the ODE

d log ϱ̂(x, δ) = ν
(
t(δ); ŝ, x

)
dδ, log ϱ̂(x, δ1) = 0. (14)

Solving this ODE from δ1 to δm produces the trajectory (log ϱ̂(x, δ))δ∈[δ1,δm]. Since ν(t(δ); ŝ, x)
does not depend on ϱ̂(x, δ), when ŝ = s the solution to the ODE above will be off by a constant, i.e.,
log ϱ̂(x, δ) = log ϱ(x, δ) + cinit for some cinit that depends on the initial condition of the ODE (0 in
this case) but not on δ. Furthermore, while setting the initial condition to 0 might at first appear odd,
recall that LIDL fits a regression using {(δi, log ϱ̂(x, δi))}mi=1, and thus cinit will be absorbed in the
intercept without affecting the slope. In other words, the initial condition is irrelevant, and we can
use LIDL with DMs by using a single call to an ODE solver on Equation 14.

3.3 FLIPD: An Efficient Fokker-Planck-Based LID Estimator

The LIDL estimator with DMs presented in Section 3.2 provides a massive speedup over the naïve
approach of training m DMs, and over the method from Section 3.1 requiring m ODE solves. Yet,
solving Equation 14 involves computing the trace of the Jacobian of ŝ multiple times within an
ODE solver, which, as mentioned in Section 2.1, remains expensive. In this section we present
our LID estimator, FLIPD, which circumvents the need for an ODE solver altogether. Recall that
LIDL is based on Equation 8, which justifies the regression. Differentiating this equation yields
that ∂/∂δ log ϱ(x, δ0) ≈ LID(x) − D for negative enough δ0, meaning that Equation 13 directly
provides the rate of change that the regression in LIDL aims to estimate, from which we get

LID(x) ≈ D+
∂

∂δ
log ϱ(x, δ0) = D+ ν

(
t(δ0); s, x

)
≈ D+ ν

(
t(δ0); ŝ, x

)
=: FLIPD(x, t0), (15)

where t0 := t(δ0). Computing FLIPD is very cheap since the trace of the Jacobian of ŝ has
to be evaluated only once when calculating ν(t(δ0); ŝ, x). As mentioned in Section 2.1, exact
evaluation of this trace has a cost of Θ(DF), but can be reduced to Θ(kF) when using the stochastic
Hutchinson trace estimator with k ≪ D samples. Notably, FLIPD provides a massive speedup
over the NB estimator – Θ(kF) vs. Θ(KF +D2K) – especially in high dimensions where K >
D ≫ k. In addition to not requiring an ODE solver, computing FLIPD requires setting only a single
hyperparameter, δ0. Furthermore, since ν(t(δ); ŝ, x) depends on δ only through t(δ), we can directly
set t0 as the hyperparameter rather than δ0, which avoids the potentially cumbersome computation of
t(δ0) = λ−1(eδ0): instead of setting a suitably negative δ0, we set t0 > 0 sufficiently close to 0. In
Appendix A we include explicit formulas for FLIPD(x, t0) for common DMs.

Finally, we present a theoretical result further justifying FLIPD. Note that the O(1) term in Equation 7
need not be constant in δ as in Equation 8, even if it is bounded. The more this term deviates from a
constant, the more bias we should expect in both LIDL and FLIPD. The following result shows that
in an idealized linear setting, FLIPD is unaffected by this problem:

6

Theorem 3.1 (FLIPD Soundness: Linear Case). Let L be an embedded submanifold of RD given
by a d-dimensional affine subspace. If p(·, 0) is supported on L, continuous, and with finite second
moments, then for any x ∈ L with p(x, 0) > 0, we have:

lim
δ→−∞

∂

∂δ
log ϱ(x, δ) = d−D. (16)

Proof. See Appendix B.3.

We conjecture that our theorem can be extended to non-linear submanifolds since it is a local result
and every manifold can be locally linearly approximated by its tangent plane. More specifically,
ϱ(x, δ) becomes “increasingly local as δ → −∞” in the sense that its dependence on the values
p(x0, 0) becomes negligible as δ → −∞ when x0 is not in a close enough neighbourhood of x;
this is because N (0, e2δID) concentrates most of its mass around 0 as δ → −∞ (see Equation 6).
However, we leave generalizing our result to future work.

4 Experiments

Throughout this section, we use variance-preserving DMs, the most popular variant of DMs. We
provide a “dictionary” to translate between the score-based formulation of FLIPD and DDPMs
in Appendix C. We hope this will enable practitioners who are less focused on the theoretical
aspects to effortlessly apply FLIPD to their pre-trained DMs. Our code is available at https:
//github.com/layer6ai-labs/flipd; see Appendix D for more experimental details.

4.1 Experiments on Synthetic Data

(a) Mixture of Gaussians. (b) String within a doughnut.

Figure 2: FLIPD curves with knees at the true LID.

The effect of t0 FLIPD requires setting
t0 close to 0 since all the theory holds in the
δ → −∞ regime. It is important to note
that DMs fitted to low-dimensional mani-
folds are known to exhibit numerically un-
stable scores s(·, t0) as t0 ↘ 0 [65, 41, 40].
This fact does not invalidate FLIPD, but it
suggests that it might be sensitive to the
choice of t0. Our first set of experiments
examines the effect of t0 on FLIPD(x, t0)
by varying t0 within the range (0, 1).

In Figure 2, we train DMs on two distributions: (i) a mixture of three isotropic Gaussians with
dimensions 2, 4, and 8, embedded in R10 (each embedding is carried out by multiplication against
a random matrix with orthonormal columns plus a random translation); and (ii) a “string within a
doughnut”, which is a mixture of uniform distributions on a 2d torus (with a major radius of 10 and
a minor radius of 1) and a 1d circle (aligning with the major circle of the torus) embedded in R3

(this union of manifolds is shown in the upper half of Figure 3). While FLIPD(x, t0) is inaccurate
at t0 = 0 due to the aforementioned instabilities, it quickly stabilizes around the true LID for all
datapoints. We refer to this pattern as a knee in the FLIPD curve. In Appendix D.2, we show similar
curves for more complex data manifolds.

FLIPD is a multiscale estimator Interestingly, in Figure 2b we see that the blue FLIPD curve
(corresponding to “doughnut” points with LID of 2) exhibits a second knee at 1, located at the t0
shown with a vertical line. This confirms the multiscale nature of convolution-based estimators, first
postulated by Tempczyk et al. [62] in the context of normalizing flows; they claim that when selecting
a log standard deviation δ, all directions along which a datum can vary having log standard deviation
less than δ are ignored. The second knee in Figure 2b can be explained by a similar argument: the
torus looks like a 1d circle when viewed from far away, and larger values of t0 correspond to viewing
the manifolds from farther away. This is visualized in Figure 3 with two views of the “string within
a doughnut” and corresponding LID estimates: one zoomed-in view where t0 is small, providing
fine-grained LID estimates, and a zoomed-out view where t0 is large, making both the string and

7

https://github.com/layer6ai-labs/flipd
https://github.com/layer6ai-labs/flipd

Table 1: MAE (lower is better) | concordance indices (higher is better with 1.0 being the gold standard). Rows
show synthetic manifolds and columns represent LID estimation methods. Columns are grouped based on
whether they use a generative model, with the best results for each metric within each group being bolded.

Model-based Model-free

Synthetic Manifold FLIPD NB LIDL ESS LPCA

String within doughnut ⊆ R3 0.06 1.00 1.48 0.48 1.10 0.99 0.02 1.00 0.00 1.00
L5 ⊆ R10 0.17 - 1.00 - 0.10 - 0.07 - 0.00 -
N90 ⊆ R100 0.49 - 0.18 - 0.33 - 1.67 - 21.9 -
U10 + U30 + U90 ⊆ R100 1.30 1.00 61.6 0.34 8.46 0.74 21.9 0.74 20.1 0.86
N10 + N25 + N50 ⊆ R100 1.81 1.00 74.2 0.34 8.87 0.74 7.71 0.88 5.72 0.91
F10 + F25 + F50 ⊆ R100 3.93 1.00 74.2 0.34 18.6 0.70 9.20 0.90 6.77 1.00
U10 + U80 + U200 ⊆ R800 14.3 1.00 715 0.34 120 0.70 1.39 1.00 0.01 1.00
U900 ⊆ R1000 12.8 - 100 - 24.9 - 14.5 - 219 -

doughnut appear as a 1d circle from this distance. In Appendix D.3 we have an experiment that
makes the multiscale argument explicit.

Figure 3: “String within a doughnut” man-
ifolds, and corresponding FLIPD estimates
for different values of t0 (t0 = 0.05 on top
and t0 = 0.65 on bottom). These results
highlight the multiscale nature of FLIPD.

Finding knees As mentioned, we persistently see knees
in FLIPD curves. This in line with the observations of
Tempczyk et al. [62] (see Figure 5 of [62]), and it gives
us a fully automated approach to setting t0. We leverage
kneedle [54], a knee detection algorithm which aims to
find points of maximum curvature. When computationally
sensible, rather than fixing t0, we evaluate Equation 15
for 50 values of t0 and pass the results to kneedle to
automatically detect the t0 where a knee occurs.

Experimental setup We create a benchmark for LID
evaluation on complex unions of manifolds where the true
LID is known. We sample from simple distributions on
low-dimensional spaces, and then embed the samples into
RD. We denote uniform, Gaussian, and Laplace distri-
butions as U ,N , and L, respectively, with sub-indices
indicating LID, and a plus sign denoting mixtures. To em-
bed samples into higher dimensions, we apply a random
matrix with orthonormal columns and then apply a random
translation. For example, N10 + L20 ⊆ R100 indicates a
10-dimensional Gaussian and a 20-dimensional Laplace,
each of which undergoes a random affine transformation
mapping to R100 (one transformation per component). We also generate non-linear manifolds, de-
noted with F , by applying a randomly initialized D-dimensional neural spline flow [18] after the
affine transformation (when using flows, the input noise is always uniform); since the flow is a
diffeomorphism, it preserves LID. To our knowledge, this synthetic LID benchmark is the most
extensive to date, revealing surprising deficiencies in some well-known traditional estimators. For an
in-depth analysis, see Appendix D.4.

Results Here, we summarize our synthetic experiments in Table 1 using two metrics of performance:
the mean absolute error (MAE) between the predicted and true LID for individual datapoints; and
the concordance index, which measures similarity in the rankings between the true LIDs and the
estimated ones (note that this metric only makes sense when the dataset has variability in its ground
truth LIDs, so we only report it for the appropriate entries in Table 1). We compare against the NB and
LIDL estimators described in Section 2.2, as well as two of the most performant model-free baselines:
LPCA [22, 12] and ESS [30]. For the NB baseline, we use the exact same DM backbone as for FLIPD
(since NB was designed for variance-exploding DMs, we use the adaptation to variance-preserving
DMs used in [32], which produces extremely similar results), and for LIDL we use 8 neural spline
flows. In terms of MAE, we find that FLIPD tends to be the best model-based estimator, particularly
as dimension increases. Although model-free baselines perform well in simplistic scenarios, they
produce unreliable results as LID increases or more non-linearity is introduced in the data manifold.
In terms of concordance index, FLIPD achieves perfect scores in all scenarios, meaning that even

8

(a) FLIPD of MNIST and FMNIST. (b) Ordering small images.
(c) Ordering high-resolution images in LAION using
FLIPD (top) and PNG compression size (bottom).

Figure 4: Overview of image LID: (a) shows the FLIPD curves that are used to estimate average LID for MNIST
and FMNIST when using MLP backbones; (b) compares images with small and large FLIPD estimates from
FMNIST, MNIST, SVHN, and CIFAR10 when using UNet backbones; and (c) compares LAION images with
small and large FLIPD estimates using Stable Diffusion (top, t0 = 0.3) and PNG compression sizes (bottom).

when its estimates are off, it always provides correct LID rankings. We include additional results in
the appendices: in Appendix D.5 we ablate FLIPD, finding that using kneedle indeed helps, and that
FLIPD also outperforms the efficient implementation of LIDL with DMs described in Section 3.2
that uses an ODE solver. We notice that NB with the setting proposed in [59] consistently produces
estimates that are almost equal to the ambient dimension; thus, in Appendix D.6 we also show
how NB can be significantly improved upon by using kneedle, although it is still outperformed by
FLIPD in many scenarios. In addition, in Table 7 and Table 8 we compare against other model-free
baselines such as MLE [38, 43] and FIS [1]. We also consider datasets with a single (uni-dimensional)
manifold where the average LID estimate can be used to approximate the global intrinsic dimension.
Our results in Table 9 demonstrate that although model-free baselines indeed accurately estimate
global intrinsic dimension, they perform poorly when focusing on (pointwise) LID estimates.

4.2 Experiments with Fully-Connected Architectures on Image Data

We first focus on the simple image datasets MNIST [36] and FMNIST [69]. We flatten the images
and use the same MLP architecture as in our synthetic experiments. Despite using an MLP, our DMs
can generate reasonable samples (Appendix E.1) and the FLIPD curve for both MNIST and FMNIST
is shown in Figure 4a. The knee points are identified at t0 = 0.1, resulting in average LID estimates
of approximately 130 and 170, respectively. Evaluating LID estimates for image data is challenging
due to the lack of ground truth. Although our LID estimates are higher than those in [49] and [10],
our experiments (Table 9 of Appendix D.4) and the findings in [62] and [59] show that model-free
baselines underestimate LID of high-dimensional data, especially images.

4.3 Experiments with UNet Architectures on Image Data

When moving to more complex image datasets, the MLP backbone fails to generate high-quality
samples. Therefore, we replace it with state-of-the-art UNets [52, 68] (see Appendix E.2). Surpris-
ingly, we find that using kneedle with UNets fails to produce sensible LID estimates with FLIPD
(see curves in Figure 10 of Appendix E.1). We discuss why this might be the case in Appendix E.1,
and from here on we simply set t0 as a hyperparameter instead of using kneedle. Although avoid-
ing kneedle when using UNets results in increased sensitivity with respect to t0, we argue that
FLIPD remains a valuable measure of complexity as it produces sensible image rankings and it
is highly correlated with with PNG compression length. We took random subsets of 4096 images
from each of FMNIST, MNIST, SVHN [46], and CIFAR10 [35], and sorted them according to their
FLIPD estimates (obtained using UNet backbones). We show the top and bottom 5 images for each
dataset in Figure 4b, and include more samples in Appendix E.3. Our visualization shows that higher
FLIPD estimates indeed correspond to images with more detail and texture, while lower estimates
correspond to less complex ones. Additionally, we show in Appendix E.4 that using only k = 50
Hutchinson samples to approximate the trace term in FLIPD is sufficient for small values of t0.

Further, we quantitatively assess our estimates by computing Spearman’s rank correlation coefficient
between different LID estimators and PNG compression size, used as a proxy for complexity in the
absence of ground truth. We highlight that although we expect this coefficient to be high, a perfect
LID estimator need not achieve a correlation of 1. As shown in Table 2, FLIPD has a high correlation

9

Table 2: Spearman’s correlation between LID estimates and
PNG compression size. FLIPD and NB were computed
using the same UNet backbone.

Method MNIST FMNIST CIFAR10 SVHN

FLIPD 0.837 0.883 0.819 0.876
NB 0.864 0.480 0.894 0.573
ESS 0.444 0.063 0.326 0.019
LPCA 0.413 0.01 0.302 −0.008

with PNG, whereas model-free estimators do
not. We find that the NB estimator corre-
lates slightly more with PNG on MNIST and
CIFAR10, but significantly less in FMNIST
and SVHN. Moreover, in Appendix E.5, we
analyze how increasing t0 affects FLIPD by
re-computing the correlation with the PNG
size at different values of t0 ∈ (0, 1). We see
that as t0 increases, the correlation with PNG
decreases. Despite this decrease, we observe
an interesting phenomenon: while the image
orderings change, qualitatively, the smallest FLIPD(·, t0) estimates still represent less complex data
compared to the highest FLIPD(·, t0), even for relatively large t0. We hypothesize that for larger
t0, similar to the “string within a doughnut” experiment in Figure 3, the orderings correspond to
coarse-grained and semantic notions of complexity rather than fine-grained ones such as textures,
concepts that a metric such as PNG compression size cannot capture.

We also consider high-resolution images from LAION-Aesthetics [55] and, for the first time, estimate
LID for extremely high-dimensional images with D = 3 × 512 × 512 = 786,432. We use Stable
Diffusion [51], a latent DM pretrained on LAION-5B [55]. This includes an encoder and a decoder
trained to preserve relevant characteristics of the data manifold in latent representations. Since
the encoder and decoder are continuous and effectively invert each other, we argue that the Stable
Diffusion encoder can, for practical purposes, be considered a topological embedding of the LAION-
5B dataset into its latent space of dimension 4× 64× 64 = 16,384. Therefore, the dimension of the
LAION-5B submanifold in latent space should be unchanged. We leave an empirical verification
of this hypothesis to future work and thus estimate image LIDs by carrying out FLIPD in the latent
space of Stable Diffusion. Here, we set the Hutchinson sample count to k = 1, meaning we only
require a single Jacobian-vector-product. When we order a random subset of 1600 samples according
to their FLIPD at t0 = 0.3, the more complex images are clustered at the end, while the least complex
are clustered at the beginning: see Figure 1 and Figure 4c for the lowest- and highest-LID images
from this ordering, and Figure 25 in Appendix E.6 to view the entire subset and other values of t0. In
comparison to orderings according to PNG compression size (Figure 4c), FLIPD prioritizes semantic
complexity over low-level details like colouration.

Table 3: Time, in seconds, to estimate LID for a single image.

Method MNIST/FMNIST SVHN/CIFAR10 LAION

FLIPD 0.10 0.13 0.20
NB 1.6 10.8 > 9× 103

Finally, we compare the runtimes for
computing FLIPD and NB for all
models using UNet backbones. We
show results in Table 3. For 28 ×
28 greyscale (MNIST/FMNIST) and
3 × 32 × 32 low-resolution RGB
(SVHN/CIFAR10) images, we use
k = 50 Hutchinson samples: at these dimensions, FLIPD achieves ∼ 10× and ∼ 100× respective
speedups over NB. For 4× 64× 64 LAION-Aesthetics images on the latent space of Stable Diffu-
sion, we use k = 1 for FLIPD, which ensures it remains highly tractable. At this resolution NB is
completely intractable: constructing S(x) for a single image x takes 2.5 hours, and computing NB
would then still require performing a SVD on this 16, 384× 65, 536 matrix.

5 Conclusions, Limitations, and Future Work

In this work we have shown that the Fokker-Planck equation can be utilized for efficient LID
estimation with any pre-trained DM. We have provided strong theoretical foundations and extensive
benchmarks showing that FLIPD estimates accurately reflect data complexity. Although FLIPD
produces excellent LID estimates on synthetic benchmarks, its instability with respect to the choice
of network architecture on images is surprising, and results in LID estimates which strongly depend
on this choice. We see this behaviour as a limitation, even if FLIPD nonetheless still provides
a meaningful measure of complexity regardless of architecture. Given that FLIPD is tractable,
differentiable, and compatible with any DM, we hope that it will find uses in applications where LID
estimates have already proven helpful, including OOD detection, AI-generated data analysis, and
adversarial example detection.

10

References
[1] Luca Albergante, Jonathan Bac, and Andrei Zinovyev. Estimating the effective dimension of large

biological datasets using fisher separability analysis. In 2019 International Joint Conference on Neural
Networks, pages 1–8. IEEE, 2019.

[2] Alastair Anderberg, James Bailey, Ricardo JGB Campello, Michael E Houle, Henrique O Marques, Miloš
Radovanović, and Arthur Zimek. Dimensionality-aware outlier detection. In Proceedings of the 2024
SIAM International Conference on Data Mining, pages 652–660, 2024.

[3] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,
12(3):313–326, 1982.

[4] Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of data
representations in deep neural networks. In Advances in Neural Information Processing Systems, 2019.

[5] Jonathan Bac, Evgeny M. Mirkes, Alexander N. Gorban, Ivan Tyukin, and Andrei Zinovyev. Scikit-
Dimension: A Python Package for Intrinsic Dimension Estimation. Entropy, 23(10):1368, 2021.

[6] Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic Differentiation in Machine Learning: A Survey. Journal of Machine Learning Research, 18:
1–43, 2018.

[7] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

[8] Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension, persistent homology
and generalization in neural networks. In Advances in Neural Information Processing Systems, 2021.

[9] Bradley CA Brown, Jordan Juravsky, Anthony L Caterini, and Gabriel Loaiza-Ganem. Relating regulariza-
tion and generalization through the intrinsic dimension of activations. arXiv:2211.13239, 2022.

[10] Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel Loaiza-
Ganem. Verifying the union of manifolds hypothesis for image data. In International Conference on
Learning Representations, 2023.

[11] D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry. American Mathematical Society,
2022.

[12] Richard Cangelosi and Alain Goriely. Component retention in principal component analysis with applica-
tion to cdna microarray data. Biology Direct, 2:1–21, 2007.

[13] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, 2018.

[14] Rob Cornish, Anthony L. Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity
constraints with continuously indexed normalising flows. In International Conference on Machine Learning,
pages 2133–2143, 2020.

[15] Jesse C Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto Reyes-Gonzalez, Marco Letizia,
and Anthony L Caterini. CaloMan: Fast generation of calorimeter showers with density estimation on
learned manifolds. arXiv:2211.15380, 2022.

[16] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis. Transac-
tions on Machine Learning Research, 2022.

[17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In Interna-
tional Conference on Learning Representations, 2017.

[18] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In Advances
in Neural Information Processing Systems, 2019.

[19] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. nflows: normalizing flows in
PyTorch, November 2020. URL https://doi.org/10.5281/zenodo.4296287.

[20] Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension of
datasets by a minimal neighborhood information. Scientific Reports, 7(1):12140, 2017.

[21] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons,
2007.

11

https://doi.org/10.5281/zenodo.4296287

[22] Keinosuke Fukunaga and David R Olsen. An algorithm for finding intrinsic dimensionality of data. IEEE
Transactions on Computers, 100(2):176–183, 1971.

[23] Frank E Harrell Jr, Kerry L Lee, and Daniel B Mark. Multivariable prognostic models: issues in developing
models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine,
15(4):361–387, 1996.

[24] UG Haussmann and E Pardoux. Time reversal of diffusions. The Annals of Probability, 14(4):1188–1205,
1986.

[25] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

[26] Christian Horvat and Jean-Pascal Pfister. On gauge freedom, conservativity and intrinsic dimensionality
estimation in diffusion models. In International Conference on Learning Representations, 2024.

[27] Michael E Houle, Erich Schubert, and Arthur Zimek. On the correlation between local intrinsic dimension-
ality and outlierness. In Similarity Search and Applications: 11th International Conference, SISAP 2018,
pages 177–191. Springer, 2018.

[28] Witold Hurewicz and Henry Wallman. Dimension Theory (PMS-4). Princeton University Press, 1948.

[29] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

[30] Kerstin Johnsson, Charlotte Soneson, and Magnus Fontes. Low bias local intrinsic dimension estimation
from expected simplex skewness. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(1):
196–202, 2014.

[31] Hamidreza Kamkari, Vahid Balazadeh, Vahid Zehtab, and Rahul G. Krishnan. Order-based structure
learning with normalizing flows. arXiv:2308.07480, 2024.

[32] Hamidreza Kamkari, Brendan Leigh Ross, Jesse C Cresswell, Anthony L Caterini, Rahul G Krish-
nan, and Gabriel Loaiza-Ganem. A geometric explanation of the likelihood OOD detection paradox.
arXiv:2403.18910, 2024.

[33] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

[34] Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect out-of-
distribution data. In Advances in Neural Information Processing Systems, 2020.

[35] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
Report, 2009.

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[37] John M Lee. Introduction to Smooth Manifolds. Springer, 2nd edition, 2012.

[38] Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in
Neural Information Processing Systems, 2004.

[39] Gabriel Loaiza-Ganem, Brendan Leigh Ross, Jesse C Cresswell, and Anthony L. Caterini. Diagnosing and
fixing manifold overfitting in deep generative models. Transactions on Machine Learning Research, 2022.

[40] Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L Caterini, and Jesse C
Cresswell. Deep generative models through the lens of the manifold hypothesis: A survey and new
connections. arXiv:2404.02954, 2024.

[41] Yubin Lu, Zhongjian Wang, and Guillaume Bal. Mathematical analysis of singularities in the diffusion
model under the submanifold assumption. arXiv:2301.07882, 2023.

[42] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Dawn
Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using local intrinsic
dimensionality. In International Conference on Learning Representations, 2018.

[43] David JC MacKay and Zoubin Ghahramani. Comments on “Maximum likelihood estimation of intrinsic
dimension’ by E. Levina and P. Bickel (2004). The Inference Group Website, Cavendish Laboratory,
Cambridge University, 2005.

12

[44] German Magai and Anton Ayzenberg. Topology and geometry of data manifold in deep learning.
arXiv:2204.08624, 2022.

[45] Philipp Mayr and Vivien Petras. Cross-concordances: terminology mapping and its effectiveness for
information retrieval. arXiv:0806.3765, 2008.

[46] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, 2019.

[48] Jakiw Pidstrigach. Score-based generative models detect manifolds. In Advances in Neural Information
Processing Systems, 2022.

[49] Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension
of images and its impact on learning. In International Conference on Learning Representations, 2021.

[50] Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In Proceedings of
the 32nd International Conference on Machine Learning, volume 37, pages 1530–1538, 2015.

[51] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10684–10695, 2022.

[52] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241.
Springer, 2015.

[53] Simo Särkkä and Arno Solin. Applied stochastic differential equations. Cambridge University Press, 2019.

[54] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a "kneedle" in a Haystack:
Detecting Knee Points in System Behavior. In 31st International Conference on Distributed Computing
Systems Workshops, pages 166–171. IEEE, 2011.

[55] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. Advances in Neural Information Processing
Systems, 35:25278–25294, 2022.

[56] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages
2256–2265, 2015.

[57] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models. In Advances in Neural Information Processing Systems, 2021.

[58] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

[59] Jan Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Your diffusion model
secretly knows the dimension of the data manifold. arXiv:2212.12611, 2022.

[60] Harald Steck, Balaji Krishnapuram, Cary Dehing-Oberije, Philippe Lambin, and Vikas C Raykar. On
ranking in survival analysis: Bounds on the concordance index. In Advances in Neural Information
Processing Systems, volume 20, 2007.

[61] Júlia Teles. Concordance coefficients to measure the agreement among several sets of ranks. Journal of
Applied Statistics, 39(8):1749–1764, 2012.

[62] Piotr Tempczyk, Rafał Michaluk, Lukasz Garncarek, Przemysław Spurek, Jacek Tabor, and Adam Golinski.
LIDL: Local intrinsic dimension estimation using approximate likelihood. In International Conference on
Machine Learning, pages 21205–21231, 2022.

13

[63] Piotr Tempczyk, Łukasz Garncarek, Dominik Filipiak, and Adam Kurpisz. A Wiener process perspective
on local intrinsic dimension estimation methods. arXiv:2406.17125, 2024.

[64] Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey Nikolenko, Evgeny
Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic dimension estimation for robust detection
of ai-generated texts. In Advances in Neural Information Processing Systems, 2023.

[65] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In Advances
in Neural Information Processing Systems, 2021.

[66] Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Alberto
Cazzaniga. The geometry of hidden representations of large transformer models. In Advances in Neural
Information Processing Systems, 2023.

[67] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computation,
23(7):1661–1674, 2011.

[68] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

[69] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747, 2017.

[70] Fanghui Xue, Biao Yang, Yingyong Qi, and Jack Xin. Searching intrinsic dimensions of vision transformers.
arXiv:2204.07722, 2022.

[71] Yijia Zheng, Tong He, Yixuan Qiu, and David P Wipf. Learning manifold dimensions with conditional
variational autoencoders. In Advances in Neural Information Processing Systems, 2022.

[72] Wei Zhu, Qiang Qiu, Jiaji Huang, Robert Calderbank, Guillermo Sapiro, and Ingrid Daubechies. Ldmnet:
Low dimensional manifold regularized neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2743–2751, 2018.

14

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

A Explicit Formulas

A.1 Variance-Exploding Diffusion Models

Variance-exploding DMs are such that f(x, t) = 0 with g being non-zero. In this case [58]:

ψ(t) = 1, and σ2(t) =

∫ t

0

g2(u)du. (17)

Since g is non-zero, g2 is positive, so that σ2 is increasing, and thus injective. It follows that σ is also
injective, so that λ = σ/ψ = σ is injective. Equation 15 then implies that

FLIPD(x, t0) = D + σ2(t0)
[
tr
(
∇s(x, t0)

)
+ ∥s(x, t0)∥22

]
. (18)

A.2 Variance-Preserving Diffusion Models (DDPMs)

Variance-preserving DMs are such that

f(x, t) = −1

2
β(t)x, and g(t) =

√
β(t), (19)

where β is a positive scalar function. In this case [58]:

ψ(t) = e−
1
2B(t), and σ2(t) = 1− e−B(t), where B(t) :=

∫ t

0

β(u)du. (20)

We then have that

λ(t) =

√
σ2(t)

ψ2(t)
=
√
eB(t) − 1. (21)

Since β is positive, B is increasing and thus injective, from which it follows that λ is injective as
well. Plugging everything into Equation 15, we obtain:

FLIPD(x, t0) = D +
(
1− e−B(t0)

)(
tr
(
∇s
(
e−

1
2B(t0)x, t0

))
+
∥∥s(e− 1

2B(t0)x, t0
)∥∥2

2

)
. (22)

A.3 Sub-Variance-Preserving Diffusion Models

Sub-variance-preserving DMs are such that

f(x, t) = −1

2
β(t)x, and g(t) =

√
β(t)

(
1− e−2B(t)

)
, where B(t) :=

∫ t

0

β(u)du, (23)

and where β is a positive scalar function. In this case [58]:

ψ(t) = e−
1
2B(t), and σ2(t) =

(
1− e−B(t)

)2
. (24)

We then have that

λ(t) =
σ(t)

ψ(t)
= e

1
2B(t) − e−

1
2B(t) = 2 sinh

(
1

2
B(t)

)
. (25)

Since β is positive, B is increasing and thus injective, from which it follows that λ is injective as well
due to the injectivity of sinh. Plugging everything into Equation 15, we obtain:

FLIPD(x, t0) = D +
(
1− e−B(t0)

)2(
tr
(
∇s
(
e−

1
2B(t0)x, t0

))
+
∥∥s(e− 1

2B(t0)x, t0
)∥∥2

2

)
. (26)

15

B Proofs and Derivations

B.1 Derivation of Equation 12

We have that:

p
(
ψ
(
t(δ)

)
x, t(δ)

)
=

∫
pt(δ)|0

(
ψ
(
t(δ)

)
x | x0

)
p(x0, 0)dx0 (27)

=

∫
N
(
ψ
(
t(δ)

)
x;ψ

(
t(δ)

)
x0, σ

2
(
t(δ)

)
ID

)
p(x0, 0)dx0 (28)

=
1

ψ
(
t(δ)

)D ∫ N

(
x;x0,

σ2
(
t(δ)

)
ψ2
(
t(δ)

)ID) p(x0, 0)dx0 (29)

=
1

ψ
(
t(δ)

)D ∫ N
(
x;x0, λ

2
(
t(δ)

)
ID

)
p(x0, 0)dx0 (30)

=
1

ψ
(
t(δ)

)D ∫ N
(
x;x0, e

2δID
)
p(x0, 0)dx0 =

1

ψ
(
t(δ)

)D ϱ(x, δ), (31)

where we used that N (ax; ax0, σ
2ID) = 1

aDN (x;x0, (σ
2/a2)ID), along with the definition λ(t) :=

σ(t)/ψ(t). It is thus easy to see that taking logarithms yields Equation 12.

B.2 Derivation of Equation 13

First, we recall the Fokker-Planck equation associated with the SDE in Equation 1, which states that:

∂

∂t
p(x, t) = −p(x, t) [∇ · f(x, t)]− ⟨f(x, t),∇p(x, t)⟩+ 1

2
g2(t) tr

(
∇2p(x, t)

)
. (32)

We begin by using this equation to derive ∂/∂t log p(x, t). Noting that ∇p(x, t) = p(x, t)s(x, t),
we have that:

tr
(
∇2p(x, t)

)
= tr (∇ [p(x, t)s(x, t)]) = p(x, t) tr (∇s(x, t)) + tr

(
s(x, t)∇p(x, t)⊤

)
(33)

= p(x, t)
[
tr (∇s(x, t)) + ∥s(x, t)∥22

]
. (34)

Because
∂

∂t
p(x, t) = p(x, t)

∂

∂t
log p(x, t), (35)

it then follows that
∂

∂t
log p(x, t) = − [∇ · f(x, t)]− ⟨f(x, t), s(x, t)⟩+ 1

2
g2(t)

[
tr (∇s(x, t)) + ∥s(x, t)∥22

]
. (36)

Then, from Equation 12 and the chain rule, we get:
∂

∂δ
log ϱ(x, δ) =

d
dδ

[
D logψ

(
t(δ)

)
+ log p

(
ψ
(
t(δ)

)
x, t(δ)

)]
(37)

= D

[
d
dδ

logψ
(
t(δ)

)]

+

∇ log p
(
ψ
(
t(δ)

)
x, t(δ)

)
∂

∂t
log p

(
ψ
(
t(δ)

)
x, t(δ)

)
⊤(

∂

∂t
ψ
(
t(δ)

)
x

1

)
∂

∂δ
t(δ) (38)

=

[
∂

∂δ
t(δ)

] [
D

∂

∂t
ψ
(
t(δ)

)
ψ
(
t(δ)

) +

 s
(
ψ
(
t(δ)

)
x, t(δ)

)
∂

∂t
log p

(
ψ
(
t(δ)

)
x, t(δ)

)
⊤(

∂

∂t
ψ
(
t(δ)

)
x

1

)]
(39)

=

[
∂

∂δ
t(δ)

] [(
∂

∂t
ψ
(
t(δ)

))(D

ψ
(
t(δ)

) + 〈x, s(ψ(t(δ))x, t(δ))〉)

+
∂

∂t
log p

(
ψ
(
t(δ)

)
x, t(δ)

)]
. (40)

16

Substituting Equation 36 into Equation 40 yields:

∂

∂δ
log ϱ(x, δ) =

[
∂

∂δ
t(δ)

] [(
∂

∂t
ψ
(
t(δ)

))(D

ψ
(
t(δ)

) + 〈x, s(ψ(t(δ))x, t(δ))〉)
−
[
∇ · f

(
ψ
(
t(δ)

)
x, t(δ)

)]
−
〈
f
(
ψ
(
t(δ)

)
x, t(δ)

)
, s
(
ψ
(
t(δ)

)
x, t(δ)

)〉
+
1

2
g2
(
t(δ)

)(
tr

(
∇s
(
ψ
(
t(δ)

)
x, t(δ)

))
+
∥∥∥s(ψ(t(δ))x, t(δ))∥∥∥2

2

)]
. (41)

From now on, to simplify notation, when dealing with a scalar function h, we will denote its derivative
as h′. Since t(δ) = λ−1(eδ), the chain rule gives:

∂

∂δ
t(δ) =

eδ

λ′
(
λ−1(eδ)

) =
λ
(
t(δ)

)
λ′
(
t(δ)

) . (42)

So far, we have not used that f(x, t) = b(t)x, which implies that ∇ · f(x, t) = Db(t) and that
⟨f(x, t), s(x, t)⟩ = b(t)⟨x, s(x, t)⟩. Using these observations and Equation 42, Equation 41 becomes:

∂

∂δ
log ϱ(x, δ) =

λ
(
t(δ)

)
λ′
(
t(δ)

)[(ψ′(t(δ))
ψ
(
t(δ)

) − b
(
t(δ)

))
D

+
〈(
ψ′(t(δ))− b

(
t(δ)

)
ψ
(
t(δ)

))
x, s
(
ψ
(
t(δ)

)
x, t(δ)

)〉
+
1

2
g2
(
t(δ)

)(
tr

(
∇s
(
ψ
(
t(δ)

)
x, t(δ)

))
+
∥∥∥s(ψ(t(δ))x, t(δ))∥∥∥2

2

)]
. (43)

If we showed that

ψ′(t)− b(t)ψ(t) = 0, and that
λ(t)

2λ′(t)
g2(t) = σ2(t), (44)

for every t, then Equation 43 would simplify to Equation 13. From equation 5.50 in [53], we have
that

ψ′(t) = b(t)ψ(t), (45)

which shows that indeed ψ′(t)− b(t)ψ(t) = 0. Then, from equation 5.51 in [53], we also have that(
σ2
)′
(t) = 2b(t)σ2(t) + g2(t), (46)

and from the chain rule this gives that

σ′(t) =
2b(t)σ2(t) + g2(t)

2σ(t)
. (47)

We now finish verifying Equation 44. Since λ(t) = σ(t)/ψ(t), the chain rule implies that

λ(t)

2λ′(t)
g2(t) =

σ(t)

ψ(t)

σ′(t)ψ(t)− σ(t)ψ′(t)

ψ2(t)

g2(t)

2
=

σ(t)ψ(t)

σ′(t)ψ(t)− σ(t)b(t)ψ(t)

g2(t)

2
(48)

=
σ(t)

σ′(t)− b(t)σ(t)

g2(t)

2
=

σ(t)

2b(t)σ2(t) + g2(t)

2σ(t)
− b(t)σ(t)

g2(t)

2
(49)

=
2σ2(t)

2b(t)σ2(t) + g2(t)− 2b(t)σ2(t)

g2(t)

2
= σ2(t), (50)

which, as previously mentioned, shows that Equation 43 simplifies to Equation 13.

17

B.3 Proof of Theorem 3.1

We begin by stating and proving a lemma which we will later use.

Lemma B.1. For any ϵ > 0 and ξ > 0, there exists ∆ < 0 such that for all δ < ∆ and y ∈ Rd with
∥y∥2 > ξ, it holds that:

N (y; 0, e2δId) < ϵe2δ. (51)

Proof. The inequality holds if and only if

−d
2
log(2π)− dδ −

e−2δ ∥y∥22
2

< log ϵ+ 2δ, (52)

which in turn is equivalent to

∥y∥22 > 2

(
−2δ − log ϵ−

(
δ +

log(2π)

2

)
d

)
e2δ. (53)

The limit of the right hand side as δ → −∞ is 0 (and it approaches from the positive side), while
∥y∥22 is lower bounded by ξ2, thus finishing the proof.

We now restate Theorem 3.1 for convenience:

Theorem 3.1 (FLIPD Soundness: Linear Case). Let L be an embedded submanifold of RD given
by a d-dimensional affine subspace. If p(·, 0) is supported on L, continuous, and with finite second
moments, then for any x ∈ L with p(x, 0) > 0, we have:

lim
δ→−∞

∂

∂δ
log ϱ(x, δ) = d−D. (16)

Proof. As the result is invariant to rotations and translations, we assume without loss of generality
that L = {(x′, 0) ∈ RD | x′ ∈ Rd, 0 ∈ RD−d}. Since x ∈ L, it has the form x = (x′, 0)
for some x′ ∈ Rd. Note that formally p(·, 0) is not a density with respect to the D-dimensional
Lebesgue measure, however, with a slight abuse of notation, we identify it with p(x′), where p(·)
is now the d-dimensional Lebesgue density of X ′, where (X ′, 0) = X ∼ p(·, 0). We will denote
p(·)⊛N (·; 0, e2δId) as pδ(·). In this simplified notation, our assumptions are that p(·) is continuous
at x′ with finite second moments, and that x′ is such that p(x′) > 0.

For ease of notation we use N δ
d to represent the normal distribution with variance e2δ on a d-

dimensional space, i.e. N δ
d (·) = N (·; 0, e2δId). For any subspace S we use Sc to denote its

complement where the ambient space is clear from context. Bξ(0) denotes a ball of radius ξ around
the origin.

We start by noticing that the derivative of the logarithm of a Gaussian with respect to its log variance
can be computed as:

∂

∂δ
logN δ

d (x
′) =

∂

∂δ

(
−d
2
log(2π)− dδ − e−2δ

2
∥x′∥22

)
= −d+ e−2δ ∥x′∥22 . (54)

We then have that:

ϱ(x, δ) = pδ(x
′)×N δ

D−d(0) (55)

=⇒ log ϱ(x, δ) = log pδ(x
′)− δ(D − d) + c0 (56)

=⇒ ∂

∂δ
log ϱ(x, δ) =

∂

∂δ
log pδ(x

′)− (D − d), (57)

18

where c0 is a constant that does not depend on δ. Thus, it suffices to show that
limδ→−∞

∂
∂δ log pδ(x

′) = 0:

lim
δ→−∞

∂

∂δ
log pδ(x

′) = lim
δ→−∞

∂
∂δpδ(x

′)

pδ(x′)
(58)

= lim
δ→−∞

∂
∂δ

∫
Rd p(x

′ − y)N δ
d (y)dy∫

Rd p(x′ − y)N δ
d (y)dy

(59)

= lim
δ→−∞

∫
Rd p(x

′ − y) ∂
∂δN

δ
d (y)dy∫

Rd p(x− y)N δ
d (y)dy

(60)

= lim
δ→−∞

∫
Rd p(x

′ − y)(−d+ e−2δ ∥y∥22)N δ
d (y)dy∫

Rd p(x′ − y)N δ
d (y)dy

(61)

= −d+ lim
δ→−∞

e−2δ
∫
Rd p(x

′ − y) ∥y∥22 N δ
d (y)dy∫

Rd p(x′ − y)N δ
d (y)dy

, (62)

where we exchanged the order of derivation and integration in Equation 60 using Leibniz integral rule
(because the normal distribution, its derivative, and p are continuous; note that p does not depend on
δ so regularity on its derivative is not necessary), and where Equation 61 follows from Equation 54.
Thus, proving that

lim
δ→−∞

e−2δ
∫
Rd p(x

′ − y) ∥y∥22 N δ
d (y)dy∫

Rd p(x′ − y)N δ
d (y)dy

= d (63)

would finish our proof.

Now let ϵ > 0. By continuity of p at x′, there exists ξ > 0 such that if ∥y∥2 < ξ, then
|p(x′ − y)− p(x′)| < ϵ. Let ∆ be the corresponding ∆ from Lemma B.1. Assume δ < ∆ and define
c1 and c2 as follows:

c1 =

∫
Bc

ξ(0)

p(x′ − y)N δ
d (y)dy, and c2 =

∫
Bc

ξ(0)

p(x′ − y) ∥y∥22 (ϵe
2δ)−1N δ

d (y)dy. (64)

From Lemma B.1 and p having finite second moments it follows that c1 ∈ [0, 1] and that
c2 ∈

[
0,
∫
Rd ∥y∥22 p(x′ − y)dy

]
. We have:

e−2δ
∫
Rd p(x

′ − y) ∥y∥22 N δ
d (y)dy∫

Rd p(x′ − y)N δ
d (y)dy

=
e−2δ

∫
Bξ(0)

p(x′ − y) ∥y∥22 N δ
d (y)dy + c2ϵ∫

Bξ(0)
p(x′ − y)N δ

d (y)dy + c1ϵ
(65)

=
e−2δp(x′)

∫
Bξ(0)

∥y∥22 N δ
d (y)dy + e−2δ

∫
Bξ(0)

(p(x′ − y)− p(x′)) ∥y∥22 N δ
d (y)dy + c2ϵ

p(x′)
∫
Bξ(0)

N δ
d (y)dy +

∫
Bξ(0)

(p(x′ − y)− p(x′))N δ
d (y)dy + c1ϵ

.

(66)

Analoguously to c1 and c2, there exists c3 ∈ [−1, 1] and c4 ∈ [−d, d] so that the Equation 66 is equal
to:

e−2δ
∫
Bξ(0)

∥y∥22 N δ
d (y)dy +

(c2+c4)ϵ
p(x′)∫

Bξ(0)
N δ

d (y)dy +
(c1+c3)ϵ
p(x′)

=
d− e−2δ

∫
Bc

ξ(0)
∥y∥22 N δ

d (y)dy +
(c2+c4)ϵ
p(x′)

1−
∫
Bc

ξ(0)
N δ

d (y)dy +
(c1+c3)ϵ
p(x′)

=: I. (67)

We still need to prove that limδ→−∞ I = d. Taking lim sup and lim inf as δ → −∞ yields:

d+
(c′2+c′4)ϵ
p(x′)

1 +
(c′′1 +c′′3)ϵ

p(x′)

≤ lim inf
δ→−∞

I ≤ lim sup
δ→−∞

I ≤
d+

(c′′2 +c′′4)ϵ
p(x′)

1 +
(c′1+c′3)ϵ
p(x′)

, (68)

where c′′i = lim supδ→−∞ ci and c′i = lim infδ→−∞ ci. Note that although the values of c′i and c′′i
depend on ϵ and ξ, the bounds on them do not. We can thus take the limit of this inequality as ξ and ϵ
approach zero:

d ≤ lim
ϵ,ξ→0

lim inf
δ→−∞

I ≤ lim
ϵ,ξ→0

lim sup
δ→−∞

I ≤ d. (69)

19

However, note that every step up to here has been an equality, therefore

I =
e−2δ

∫
Rd p(x

′ − y) ∥y∥22 N δ
d (y)dy∫

Rd p(x′ − y)N δ
d (y)dy

, (70)

so that I does not depend on ϵ nor on ξ. In turn, this implies that

d ≤ lim inf
δ→−∞

I ≤ lim sup
δ→−∞

I ≤ d =⇒ lim
δ→−∞

I = d, (71)

which finishes the proof.

20

Table 4: Comparing the discretized DDPM notation with score-based DM side-by-side.

Term DDPM [25] Score-based DM [58]

Timestep t ∈ {0, 1, . . . , T} t/T = t ∈ [0, 1]
(Noised out) datapoint xt xt/T = xt
Diffusion process hyperparameter βt β(t/T) = β(t)
Mean of transition kernel

√
ᾱt ψ(t/T) = ψ(t)

Std of transition kernel
√
1− ᾱt σ(t/T) = σ(t)

Network parameterization −ϵ(x, t)/
√
1− ᾱt ŝ(x, t/T) = ŝ(x, t)

C Adapting FLIPD for DDPMs

Here, we adapt FLIPD for state-of-the-art DDPM architectures and follow the discretized notation
from Ho et al. [25] where instead of using a continuous time index t from 0 to 1, a timestep t belongs
instead to the sequence {0, . . . , T} with T being the largest timescale. We use the colour gold to
indicate the notation used by Ho et al. [25]. We highlight that the content of this section is a summary
of the equivalence between DDPMs and the score-based formulation established by Song et al. [58].

As a reminder, DDPMs can be viewed as discretizations of the forward SDE process of a DM, where
the process turns into a Markov noising process:

p(xt | xt−1) := N (xt;
√

1− βt · xt−1, βtID). (72)

We also use sub-indices t instead of functions evaluated at t to keep consistent with Ho et al. [25]’s
notation. This in turn implies the following transition kernel:

p(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)ID) (73)

where αt := 1− βt and ᾱt :=
∏t

s=1 αt.

DDPMs model the backward diffusion process (or denoising process) by modelling a network
ϵ : RD ×{1, . . . , T} → RD that takes in a noised-out point and outputs a residual that can be used to
denoise. Song et al. [58] show that one can draw an equivalence between the network ϵ(·, t) and the
score network (see their Appendix B). Here, we rephrase the connections in a more explicit manner
where we note that:

−ϵ(x, t)/
√
1− ᾱt = s(x, t/T). (74)

Consequently, plugging into Equation 22, we get the following formula adapted for DDPMs:

FLIPD(x, t0) = D −
√
1− ᾱt0 tr

(
∇ϵ(

√
ᾱt0x, t0)

)
+ ∥ϵ(

√
ᾱt0x, t0)∥22, (75)

where t0 = t0 × T (best viewed in colour). We include Table 4, which summarizes all of the
equivalent notation when moving from DDPMs to score-based DMs and vice-versa.

21

Table 5: Essential hyperparameter settings for the Diffusion models with MLP backbone.

Property Model Configuration

Learning rate 10−4

Optimizer AdamW
Scheduler Cosine scheduling with 500 warmup steps [68]
Epochs 200, 400, 800, or 1000 based on the ambient dimension

Score-matching loss Likelihood weighting [57]
SDE drift f(x, t) := − 1

2β(t)x
SDE diffusion g(t) :=

√
β(t)

β(t) Linear interpolation: β(t) := 0.1 + 20t

Score network MLP
MLP hidden sizes ⟨4096, 2048, 2× 1024, 3× 512, 2× 1024, 2048, 4096⟩
Time embedding size 128

D Experimental Details

Throughout all our experiments, we used an NVIDIA A100 GPU with 40GB of memory.

D.1 DM Hyperparameter Setup

To mimic a UNet, we use an MLP architecture with a bottleneck as our score network for our
synthetic experiments. This network contains 2 × L + 1 fully connected layers with dimensions
⟨h1, h2, . . . , hL, . . . h2L+1⟩ forming a bottleneck, i.e., hL has the smallest size. Notably, for 1 ≤
i ≤ L, the ith transform connects layer i − 1 (or the input) to layer i with a linear transform of
dimensions “hi−1 × hi”, and the (L + i)th layer (or the output) not only contains input from the
(L+ i− 1)th layer but also, contains skip connections from layer (L− i) (or the input), thus forming
a linear transform of dimension “(hL+i−1 + hL−i)× hL+i”. For image experiments, we scale and
shift the pixel intensities to be zero-centered with a standard deviation of 1. In addition, we embed
times t ∈ (0, 1) using the scheme in [68] and concatenate with the input before passing to the score
network. All hyperparameters are summarized in Table 5.

D.2 FLIPD Estimates and Curves for Synthetic Distributions

Figure 5: The FLIPD estimates on a Lol-
lipop dataset from [62].

Figure 5 shows pointwise LID estimates for a “lollipop”
distribution taken from [62]. It is a uniform distribu-
tion over three submanifolds: (i) a 2d “candy”, (ii) a
1d “stick”, and (iii) an isolated point of zero dimensions.
Note that the FLIPD estimates at t0 = 0.05 for all three
submanifolds are coherent.

Figure 6 shows the FLIPD curve as training progresses on
the lollipop example and the Gaussian mixture that was
already discussed in Section 4. We see that gradually, knee
patterns emerge at the correct LID, indicating that the DM
is learning the data manifold. Notably, data with higher
LID values get assigned higher estimates even after a few
epochs, demonstrating that FLIPD effectively ranks data
based on LID, even when the DM is underfitted.

Finally, Figure 7 presents a summary of complex man-
ifolds obtained from neural spline flows and high-
dimensional mixtures, showing knees around the true LID.

22

(a) After 10 epochs. (b) After 20 epochs. (c) After 100 epochs.

(d) After 10 epochs. (e) After 20 epochs. (f) After 100 epochs.

Figure 6: The evolution of the FLIPD curve while training the DM to fit a Lollipop (top) and a manifold mixture
N2 +N4 +N8 ⊆ R10 (bottom).

(a) F400 ⊆ R800. (b) U900 ⊆ R1000. (c) N10 + N25 + N50 ⊆ R100.

Figure 7: The FLIPD curve for complex and high-dimensional manifolds.

D.3 A Simple Multiscale Experiment

Tempczyk et al. [62] argue that when setting δ, all the directions of data variation that have a log
standard deviation below δ are ignored. Here, we make this connection more explicit.

Figure 8: FLIPD curve for a multi-
variate Gaussian with controlled co-
variance eigenspectrum.

We define a multivariate Gaussian distribution with a prespecified
eigenspectrum for its covariance matrix: having three eigenvalues
of 10−4, three eigenvalues of 1, and four eigenvalues of 103.
This ensures that the distribution is numerically 7d and that the
directions and amount of data variation are controlled using the
eigenvectors and eigenvalues of the covariance matrix.

For this multivariate Gaussian, the score function in Equation 13
can be written in closed form; thus, we evaluate FLIPD both with
and without training a DM. We see in Figure 8 the estimates
obtained in both scenarios match closely, with some deviations
due to imperfect model fit, which we found matches perfectly
when training for longer.

Apart from the initial knee at 7, which is expected, we find another at t0 = 0.6 (corresponding to
eδ ≈ 6.178 with our hyperparameter setup in Table 5) where the value of FLIPD is 4. This indeed
confirms that the estimator focuses solely on the 4d space characterized by the eigenvectors having
eigenvalues of 103, and by ignoring the eigenvalues 10−4 and 1 which are both smaller than 6.178.

D.4 In-depth Analysis of the Synthetic Benchmark

Generating Manifold Mixtures To create synthetic data, we generate each component of our
manifold mixture separately and then join them to form a distribution. All mixture components are
sampled with equal probability in the final distribution. For a component with the intrinsic dimension

23

of d, we first sample from a base distribution in d dimensions. This base distribution is isotropic
Gaussian and Laplace for Nd and Ld and uniform for the case of Ud and Fd. We then zero-pad
these samples to match the ambient dimension D and perform a random D × D rotation on RD

(each component has one such transformation). For Fd, we have an additional step to make the
submanifold complex. We first initialize a neural spline flow (using the nflows library [19]) with
5 coupling transforms, 32 hidden layers, 32 hidden blocks, and tail bounds of 10. The data is then
passed through the flow, resulting in a complex manifold embedded in RD with an LID of d. Finally,
we standardize each mixture component individually and set their modes such that the pairwise
Euclidean distance between them is at least 20. We then translate each component so its barycenter
matches the corresponding mode, ensuring that data from different components rarely mixes, thus
maintaining distinct LIDs.

LIDL Baseline Following the hyperparameter setup in [62], we train 8 models
with different noised-out versions of the dataset with standard deviations eδi ∈
{0.01, 0.014, 0.019, 0.027, 0.037, 0.052, 0.072, 0.1}. The normalizing flow backbone is taken from
[19], using 10 piecewise rational quadratic transforms with 32 hidden dimensions, 32 blocks, and a
tail bound of 10. While [62] uses an autoregressive flow architecture, we use coupling transforms for
increased training efficiency and to match the training time of a single DM.

Setup We use model-free estimators from the skdim library [5] and across our experiments, we
sample 106 points from the synthetic distributions for either fitting generative models or fitting the
model-free estimators. We then evaluate LID estimates on a uniformly subsampled set of 212 points
from the original set of 106 points. Some methods are relatively slow, and this allows us to have a
fair, yet feasible comparison. We do not see a significant difference even when we double the size
of the subsampled set. We focus on four different model-free baselines for our evaluation: ESS
[30], LPCA [22, 12], MLE [38, 43], and FIS [1]. We use default settings throughout, except for
high-dimensional cases (D > 100), where we set the number of nearest neighbours k to 1000 instead
of the default 100. This adjustment is necessary because we observed a significant performance drop,
particularly in LPCA, when k was too small in these scenarios. We note that this adjustment has not
been previously implemented in similar benchmarks conducted by Tempczyk et al. [62], despite their
claim that their method outperforms model-free alternatives. We also note that FIS does not scale
beyond 100 dimensions, and thus leave it blank in our reports. Computing pairwise distances on high
dimensions (D ≥ 800) on all 106 samples takes over 24 hours even with 40 CPU cores. Therefore,
for D ≥ 800, we use the same 212 subsamples we use for evaluation.

Evaluation We have three tables to summarize our analysis: (i) Table 7 shows the MAE of the
LID estimates, comparing each datapoint’s estimate to the ground truth at a fine-grained level; (ii)
Table 9 shows the average LID estimate for synthetic manifolds with only one component, this
average is typically used to estimate global intrinsic dimensionality in baselines; finally, (iii) Table 8
looks at the concordance index [23] of estimates for cases with multiple submanifolds of different
dimensionalities. Concordance indices for a sequence of estimates {L̂ID}Nn=1 are defined as follows:

C
(
{LIDn}Nn=1, {L̂IDn}Nn=1

)
=

∑
1≤n1 ̸=n2≤N
LIDn1

≤LIDn2

I(L̂IDn1
≤ L̂IDn2

)/

(
N

2

)
, (76)

where I is the indicator function; a perfect estimator will have a C of 1. Instead of emphasizing the
actual values of the LID estimates, this metric assesses how well the ranks of an estimator align with
those of ground truth [60, 45, 61, 31], thus evaluating LID as a “relative” measure of complexity.

Model-free Analysis Among model-free methods, LPCA and ESS show good performance in low
dimensions, with LPCA being exceptionally good in scenarios where the manifold is affine. As we
see in Table 7, while model-free methods produce reliable estimates when D is small, as D increases
the estimates become more unreliable. In addition, we include average LID estimates in Table 9 and
see that all model-free baselines underestimate intrinsic dimensionality to some degree, with LPCA
and MLE being particularly drastic when D > 100. We note that ESS performs relatively well, even
beating model-based methods in some 800-dimensional scenarios. However, we note that both the C
values in Table 8 and MAE values in Tables 7 and 9 suggest that none of these estimators effectively
estimate LID in a pointwise manner and cannot rank data by LID as effectively as FLIPD.

24

Table 6: MAE (lower is better). Rows show synthetic manifolds and columns represent different variations of
our Fokker-Planck-based estimators.

Synthetic Manifold FLIPD FLIPD FPRegress FPRegress
t0= .05 kneedle kneedle δ1=−1

Lollipop in R2 0.142 0.419 0.572 0.162
String within doughnut R3 0.052 0.055 0.398 0.377
Swiss Roll in R3 0.053 0.055 0.087 0.161
L5 ⊆ R10 0.100 0.169 1.168 0.455
N90 ⊆ R100 0.501 0.492 3.142 0.998
U10 + U30 + U90 ⊆ R100 3.140 1.298 5.608 10.617
F10 + F25 + F50 ⊆ R100 14.37 3.925 16.32 21.01
U10 + U80 + U200 ⊆ R800 39.54 14.30 30.06 29.99

Model-based Analysis Focusing on model-based methods, we see in Table 8 that all except
FLIPD perform poorly in ranking data based on LID. Remarkably, FLIPD achieves perfect C values
among all datasets; further justifying it as a relative measure of complexity. We also note that while
LIDL and NB provide better global estimates in Table 9 for high dimensions, they have worse MAE
performance in Table 7. This once again suggests that at a local level, our estimator is superior
compared to others, beating all baselines in 4 out of 5 groups of synthetic manifolds in Table 7.

D.5 Ablations

We begin by evaluating the impact of using kneedle. Our findings, summarized in Table 6, indicate
that while setting a small fixed t0 is effective in low dimensions, the advantage of kneedle becomes
particularly evident as the number of dimensions increases.

We also tried combining it with kneedle by sweeping over the origin δ1 and arguing that the estimates
obtained from this method also exhibit knees. Despite some improvement in high-dimensional
settings, Table 6 shows that even coupling it with kneedle does not help.

D.6 Improving the NB Estimators with kneedle

We recall that the NB estimator requires computing rankS(x), where S(x) is a K × D matrix
formed by stacking the scores ŝ(·, t0). We set t0 = 0.01 as it provides the most reasonable estimates.
To compute rankS(x) numerically, Stanczuk et al. [59] perform a singular value decomposition on
S(x) and use a cutoff threshold τ below which singular values are considered zero. Finding the best
τ is challenging, so Stanczuk et al. [59] propose finding the two consecutive singular values with the
maximum gap. Furthermore, we see that sometimes the top few singular values are disproportionately
higher than the rest, resulting in severe overestimations of the LID. Thus, we introduce an alternative
algorithm to determine the optimal τ . For each τ , we estimate LID by thresholding the singular
values. Sweeping 100 different τ values from 0 to 1000 at a geometric scale (to further emphasize
smaller thresholds) produces estimates ranging from D (keeping all singular values) to 0 (ignoring
all). As τ varies, we see that the estimates plateau over a certain range of τ . We use kneedle to detect
this plateau because the starting point of a plateau is indeed a knee in the curve. This significantly
improves the baseline, especially in high dimensions: see the third column of Tables 7, 9, and 8
compared to the second column.

25

Table 7: MAE (lower is better). Each row represents a synthetic dataset and each column represents an LID
estimation method. Rows are split into groups based on the ambient dimension: the first group of rows shows
toy examples; the second shows low-dimensional data with D = 10; the third shows moderate-dimensional data
with D = 100; and the last two show high-dimensional data with D = 800 and D = 1000, respectively.

Model-based Model-free

Synthetic Manifold FLIPD
kneedle

NB
Vanilla

NB
kneedle

LIDL ESS LPCA MLE FIS

Lollipop ⊆ R2 0.419 0.577 0.855 0.052 0.009 0.000 0.142 0.094

Swiss Roll ⊆ R3 0.055 0.998 0.016 0.532 0.017 0.000 0.165 0.018

String within doughnut ⊆ R3 0.055 1.475 0.414 1.104 0.017 0.000 0.128 0.041

Summary (Toy Manifolds) 0.176 1.017 0.428 0.563 0.014 0.000 0.145 0.051

N5 ⊆ R10 0.084 5.000 0.005 0.071 0.061 0.000 0.441 0.206

L5 ⊆ R10 0.169 1.000 0.146 0.101 0.068 0.000 0.462 0.203

U5 ⊆ R10 0.324 4.994 0.933 0.123 0.153 0.000 0.451 0.186

F5 ⊆ R10 0.666 1.216 0.765 0.487 0.168 0.000 0.497 0.176

N2 +N4 +N8 ⊆ R10 0.287 5.706 1.078 0.308 0.156 0.000 0.406 0.206

L2 + L4 + L8 ⊆ R10 0.253 5.708 0.772 0.515 0.193 0.001 0.437 0.018

U2 + U4 + U8 ⊆ R10 0.586 5.677 3.685 0.363 0.331 0.115 0.540 0.222

F2 + F4 + F8 ⊆ R10 0.622 5.709 2.187 1.013 0.428 0.115 0.642 0.269

Summary (10-dimensional) 0.066 0.381 0.161 0.211 0.005 0.000 0.054 0.019

U10 ⊆ R100 0.910 30.115 0.000 1.370 0.644 0.000 1.263 −
U30 ⊆ R100 0.505 50.521 0.000 0.542 1.465 0.002 7.622 −
U90 ⊆ R100 0.640 1.157 1.327 0.332 2.034 21.90 39.65 −
N30 ⊆ R100 0.887 52.43 0.000 0.892 0.534 0.000 5.703 −
N90 ⊆ R100 0.492 0.184 2.693 0.329 1.673 21.88 39.45 −
F80 ⊆ R100 1.869 20.00 3.441 1.871 3.660 16.78 34.41 −
U10 + U25 + U50 ⊆ R100 0.868 57.96 0.890 5.869 4.988 6.749 16.12 −
U10 + U30 + U90 ⊆ R100 1.298 61.58 1.482 8.460 21.89 20.06 41.05 −
N10 +N25 +N50 ⊆ R100 1.813 74.20 0.555 8.873 7.712 5.716 14.37 −
F10 + F25 + F50 ⊆ R100 3.925 74.20 6.205 18.61 9.200 6.769 16.78 −

Summary (100-dimensional) 1.321 42.24 1.659 4.715 5.380 9.986 21.64 −

U200 ⊆ R800 11.54 600.0 7.205 55.98 3.184 0.000 159.3 −
F400 ⊆ R800 20.46 400.0 10.15 207.2 14.48 2.919 342.6 −
U10 + U80 + U200 ⊆ R800 14.30 715.3 18.82 120.7 1.385 0.004 72.25 −

Summary (800-dimensional) 15.43 571.8 12.06 128.0 6.350 0.974 191.4 -

N900 ⊆ R1000 3.913 100.0 24.38 10.45 14.16 219.8 819.2 −
U100 ⊆ R1000 12.81 900.0 62.68 12.65 1.623 0.000 72.06 −
U900 ⊆ R1000 12.81 100.0 0.104 24.90 14.49 219.1 810.2 −
F500 ⊆ R1000 21.77 500.0 52.19 341.3 18.83 29.99 435.7 −

Summary (1000-dimensional) 12.83 400.0 34.84 97.33 12.28 117.2 534.3 −

26

Table 8: Concordance index (higher is better with 1.000 being the gold standard). Each row represents a mixture
of multi-dimensional manifolds, and each column represents an LID estimation method. This table evaluates
how accurately different estimators rank datapoints based on their LID.

Synthetic Manifold FLIPD
kneedle

NB
Vanilla

NB
kneedle

LIDL ESS LPCA MLE FIS

Lollipop ⊆ R2 1.000 0.426 0.394 0.999 1.000 1.000 1.000 1.000

String withing doughnut ⊆ R3 1.000 0.483 0.486 0.565 1.000 1.000 1.000 1.000

N2 +N4 +N8 ⊆ R10 1.000 0.341 0.725 0.943 1.000 1.000 1.000 1.000

L2 + L4 + L8 ⊆ R10 1.000 0.342 0.752 0.884 1.000 1.000 1.000 1.000

U2 + U4 + U8 ⊆ R10 1.000 0.334 0.462 0.903 1.000 1.000 1.000 1.000

F2 + F4 + F8 ⊆ R10 1.000 0.342 0.578 0.867 1.000 1.000 0.999 1.000

U10 + U25 + U50 ⊆ R100 1.000 0.467 0.879 0.759 0.855 0.897 1.000 −
U10 + U30 + U90 ⊆ R100 1.000 0.342 0.826 0.742 0.742 0.855 1.000 −
N10 +N25 +N50 ⊆ R100 1.000 0.342 0.866 0.736 0.878 0.917 1.000 −
F10 + F25 + F50 ⊆ R100 1.000 0.342 0.731 0.695 0.847 0.897 1.000 −
U10 + U80 + U200 ⊆ R800 1.000 0.342 0.841 0.697 1.000 1.000 1.000 −

Table 9: Analysis on manifolds with a single global intrinsic dimension. Columns, categorized by whether or
not they use a model, display various LID estimators. The first set of rows shows the average LID as a global
intrinsic dimension estimate and is grouped into lower- (D ≤ 100) or higher-dimensional (D > 100) categories.
Methods that most closely match the true intrinsic dimension are bolded. The second set of rows shows the
pointwise precision of the estimators, as indicated by MAE (lower is better): while previous baselines generally
provide reliable global estimates, their pointwise precision is subpar, especially with higher dimensionality.

Model-based Model-free

FLIPD
kneedle

NB
Vanilla

NB
kneedle

LIDL ESS LPCA MLE FIS

Synthetic Manifold Average LID Estimate

Swiss Roll ⊆ R3 2.012 2.998 1.984 2.527 2.008 2.000 2.013 2.003

N5 ⊆ R10 5.017 10.00 4.995 5.067 5.004 5.000 5.108 5.187

L5 ⊆ R10 4.968 6.000 4.854 5.089 4.985 5.000 5.123 5.182

U5 ⊆ R10 4.796 9.994 4.067 5.107 4.880 5.000 4.833 5.152

F5 ⊆ R10 4.722 6.216 4.461 5.482 4.890 5.000 4.829 5.131

U10 ⊆ R100 11.68 40.12 10.00 11.29 9.361 10.00 8.905 −
U30 ⊆ R100 31.01 80.52 30.00 30.08 28.54 29.99 22.38 −
U90 ⊆ R100 89.54 91.16 91.32 90.24 88.27 68.10 50.35 −
N30 ⊆ R100 30.79 82.43 30.00 30.85 29.67 30.00 24.38 −
N90 ⊆ R100 89.88 90.18 92.62 90.21 88.89 68.12 50.55 −
F80 ⊆ R100 77.97 100.0 83.23 81.46 76.35 63.22 45.59 −

U200 ⊆ R800 211.5 800.0 207.2 256.0 199.3 200.0 40.73 −
F400 ⊆ R800 454.7 800.0 410.1 607.2 385.8 397.1 57.37 −
N900 ⊆ R1000 890.3 1000. 924.4 924.4 897.3 680.2 80.78 −
U100 ⊆ R1000 135.76 1000. 162.7 112.6 99.54 100.0 27.94 −
U900 ⊆ R1000 864.9 1000. 900.1 911.9 899.3 680.9 89.80 −
F500 ⊆ R1000 582.7 1000. 552.2 841.3 481.4 470.0 64.29 −

Manifolds Summary Pointwise MAE Averaged Across Tasks

⊆ RD where D ≤ 100 0.633 15.20 0.924 0.561 0.954 5.506 11.83 −
⊆ RD where D > 100 13.88 433.3 26.12 108.7 11.13 78.64 439.8 −

27

E Image Experiments

E.1 FLIPD Curves and DM Samples: A Surprising Result

Figures 9 and 10 show DM-generated samples and the associated LID curves for 4096 samples from
the datasets. In Figure 10, the FLIPD curves with MLPs have clearly discernible knees at which the
estimated LID averages around a positive number, as expected. When changing the architecture of the
DMs from MLPs to UNets, however, the curves either lack knees or obtain them at negative values of
LID. This makes it harder to set t0 automatically with kneedle when using UNets, and thus makes
the estimator non-robust to the choice of architecture. Note that our theory ensures that FLIPD(x, t0)
converges to LID(x) as t0 → 0 when ŝ is an accurate estimator of the true score function; indeed,
it does not make any claims about the behaviour of FLIPD when t0 is large or when the model fit
is poor. Yet, the fact that the FLIPD estimates obtained from UNets are less reliable than the ones
from MLPs is somewhat surprising, especially given that DMs with MLP backbones clearly produce
worse-looking samples (shown in Figure 9), suggesting that while the model fit is better in the former
case, the LID estimates are worse. Throughout the paper, we have argued that, notwithstanding this,
FLIPD estimates derived from both architectures offer useful measurements of relative complexity,
and can still effectively rank data based on its complexity; refer to all the images in Figures 17, 18,
19, 20, 21, 22, 23, and 24. However, this discrepancy between FLIPD estimates – in absolute terms
– when altering the model architecture is counterintuitive and requires further treatment. In what
follows, we propose hypotheses for the significant variation in FLIPD estimates when transitioning
from MLP to UNet architectures, and we encourage further studies to investigate this issue and to
adjust FLIPD to better suit DMs with state-of-the-art backbones.

While MLP architectures do not produce visually pleasing samples, comparing the first and second
rows of Figure 9 side-by-side, it also becomes clear that MLP-generated images still match some
characteristics of the true dataset, suggesting that they may still be capturing the image manifold in
useful ways. To explain the unstable FLIPD estimates of UNets, we hypothesize that the convolutional
layers in the UNet provide some inductive biases which, while helpful to produce visually pleasing
images, might also encourage the network to over-fixate on high-frequency features. More specifically,
score functions can be interpreted as providing a denoiser which removes noise added during the
diffusion process; our hypothesis is that UNets are particularly good at removing noise along high-
frequency directions but not necessarily along low-frequency ones. Inductive biases or modelling
errors which make the learned score function ŝ deviate from s might significantly alter the behaviour
of FLIPD estimates, even if they result in visually pleasing images; for a more formal treatment of the
effect of this deviation, please refer to the work of Tempczyk et al. [63], who link modelling errors to
LID estimation errors in LIDL.

The aforementioned inductive biases have been found to produce unintuitive behaviours in other
settings as well. For example, Kirichenko et al. [34] showed how normalizing flows over-fixate
on these high-frequency features, and how this can cause them to assign large likelihoods to out-
of-distribution data, even when the model produces visually convincing samples. We hypothesize
that a similar underlying phenomenon might be at play here, and that DMs with UNets might be
over-emphasizing high-frequency directions of variation in their LID estimates. On the other hand,
MLPs do not inherently distinguish between the high- and low-frequency directions and can therefore
more reliably estimate the manifold dimension, even though their generated samples appear less
appealing to the human eye. However, an exploration of this hypothesis is outside the scope of our
work, and we highlight once again that FLIPD remains a useful measure of relative complexity when
using either UNets or MLPs.

E.2 UNet Architecture

We use UNet architectures from diffusers [68], mirroring the DM setup in Table 5 except for
the score backbone. For greyscale images, we use a convolutional block and two attention-based
downsampling blocks with channel sizes of 128, 256, and 256. For colour images, we use two convo-
lutional downsampling blocks (each with 128 channels) followed by two attention downsampling
blocks (each with 256 channels). Both setups are mirrored with their upsampling counterparts.

28

E.3 Images Sorted by FLIPD

Figures 11, 12, 13, and 14 show 4096 samples of CIFAR10, SVHN, MNIST, and FMNIST sorted
according to their FLIPD estimate, showing a gradient transition from the least complex datapoints
(e.g., the digit 1 in MNIST) to the most complex ones (e.g., the digit 8 in MNIST). We use MLPs for
greyscales and UNets for colour images but see similar trends when switching between backbones.

E.4 How Many Hutchinson Samples are Needed?

Figure 15 compares the Spearman’s rank correlation coefficient between FLIPD while we use
k ∈ {1, 50} Hutchinson samples vs. computing the trace deterministically with D Jacobian-vector-
products: (i) Hutchinson sampling is particularly well-suited for UNet backbones, having higher
correlations compared to their MLP counterparts; (ii) as t0 increases, the correlation becomes smaller,
suggesting that the Hutchinson sample complexity increases at larger timescales; (iii) for small t0,
even one Hutchinson sample is enough to estimate LID; (iv) for the UNet backbone, 50 Hutchinson
samples are enough and have a high correlation (larger than 0.8) even for t0 as large as 0.5.

E.5 More Analysis on Images

While we use 100 nearest neighbours in Table 2 for ESS and LPCA, we tried both with 1000 nearest
neighbours and got similar results. Moreover, Figure 16 shows the correlation of FLIPD with
PNG for t0 ∈ (0, 1), indicating a consistently high correlation at small t0, and a general decrease
while increasing t0. Additionally, UNet backbones correlate better with PNG, likely because their
convolutional layers capture local pixel differences and high-frequency features, aligning with PNG’s
internal workings. However, high correlation is still seen when working with an MLP.

Figures 17, 19, 21, and 23 show images with smallest and largest FLIPD estimates at different values
of t0 for the UNet backbone and Figures 18, 20, 22, and 24 show the same for the MLP backbone: (i)
we see a clear difference in the complexity of top and bottom FLIPD estimates, especially for smaller
t0; this difference becomes less distinct as t0 increases; (ii) interestingly, even for larger t0 values
with smaller PNG correlations, we qualitatively observe a clustering of the most complex datapoints
at the end; however, the characteristic of this clustering changes. For example, see Figures 17 at
t0 = 0.3, or 22 and 24 at t0 = 0.8, suggesting that FLIPD focuses on coarse-grained measures of
complexity at these scales; and finally (iii) while MLP backbones underperform in sample generation,
their orderings are more meaningful, even showing coherent visual clustering up to t = 0.8 in all
Figures 18, 20, 22, and 24; this is a surprising phenomenon that warrants future exploration.

E.6 Stable Diffusion

To test FLIPD with Stable Diffusion v1.5 [51], which is finetuned on a subset of LAION-Aesthetics,
we sampled 1600 images from LAION-Aesthetics-650k and computed FLIPD scores for each.

We ran FLIPD with t0 ∈ {0.01, 0.1, 0.3, 0.8} and a single Hutchinson trace sample. In all cases,
FLIPD ranking clearly corresponded to complexity, though we decided upon t0 = 0.3 as best
capturing the “semantic complexity” of image contents. All 1600 images for t = 0.3 are depicted in
Figure 25. For all timesteps, we show previews of the 8 lowest- and highest-LID images in Figure 26.
Note that LAION is essentially a collection of URLs, and some are outdated. For the comparisons in
Figure 26 and Figure 4c, we remove placeholder icons or blank images, which likely correspond to
images that, at the time of writing this paper, have been removed from their respective URLs and
which are generally given among the lowest LIDs.

29

(a) CIFAR10 with UNet backbone. (b) SVHN with UNet backbone. (c) MNIST with UNet backbone. (d) FMNIST with UNet backbone.

(e) CIFAR10 with MLP backbone. (f) SVHN with MLP backbone. (g) MNIST with MLP backbone. (h) FMNIST with MLP backbone.

Figure 9: Samples generated from DMs with different score network backbones, using the same seed for control.
Despite the variation in backbones, images of the same cell in the grid (comparing top and bottom rows) show
rough similarities, especially on CIFAR10 and SVHN.

(a) CIFAR10 with UNet backbone. (b) SVHN with UNet backbone. (c) MNIST with UNet backbone. (d) FMNIST with UNet backbone.

(e) CIFAR10 with MLP backbone. (f) SVHN with MLP backbone. (g) MNIST with MLP backbone. (h) FMNIST with MLP backbone.

Figure 10: FLIPD curves from all the different DMs with different score network backbones.

30

Figure 11: CIFAR10 sorted (left to right and top to bottom) by FLIPD estimate (UNet) at t0 = 0.01.

31

Figure 12: SVHN sorted (left to right and top to bottom) by FLIPD estimate (UNet) at t0 = 0.01.

32

Figure 13: MNIST sorted (left to right and top to bottom) by FLIPD estimate (MLP) at t0 = 0.1.

33

Figure 14: FMNIST sorted (left to right and top to bottom) by FLIPD estimate (MLP) at t0 = 0.1.

34

(a) Multiscale Spearman’s correlation on CIFAR10. (b) Multiscale Spearman’s correlation on SVHN.

(c) Multiscale Spearman’s correlation on MNIST. (d) Multiscale Spearman’s correlation on FMNIST.

Figure 15: Spearman’s correlation of FLIPD estimates while using different numbers of Hutchinson samples
compared to computing the trace term of FLIPD deterministically with D Jacobian vector product calls. These
estimates are evaluated at different values of t0 ∈ (0, 1) on four datasets using the UNet and MLP backbones.

(a) Multiscale correlation with PNG on CIFAR10. (b) Multiscale correlation with PNG on SVHN.

(c) Multiscale correlation with PNG on MNIST. (d) Multiscale correlation with PNG on FMNIST.

Figure 16: Spearman’s correlation of FLIPD estimates with PNG as we sweep t0 ∈ (0, 1) on different backbones
and different image datasets.

35

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 17: The 204 smallest (top) and 204 largest (bottom) CIFAR10 FLIPD estimates with UNet evaluated at
different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 18: The 204 smallest (top) and 204 largest (bottom) CIFAR10 FLIPD estimates with MLP evaluated at
different t0.

36

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 19: The 204 smallest (top) and 204 largest (bottom) SVHN FLIPD with UNet estimates evaluated at
different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 20: The 204 smallest (top) and 204 largest (bottom) SVHN FLIPD with MLP estimates evaluated at
different t0.

37

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 21: The 204 smallest (top) and 204 largest (bottom) MNIST FLIPD with UNet estimates evaluated at
different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 22: The 204 smallest (top) and 204 largest (bottom) MNIST FLIPD with MLP estimates evaluated at
different t0.

38

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 23: The 204 smallest (top) and 204 largest (bottom) FMNIST FLIPD estimates with UNet evaluated at
different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 24: The 204 smallest (top) and 204 largest (bottom) FMNIST FLIPD estimates with MLP evaluated at
different t0.

39

Figure 25: 1600 images from LAION-Aesthetics-625K, sorted by FLIPD estimates with t0 = 0.3.

40

(a) t0 = 0.01.

(b) t0 = 0.1.

(c) t0 = 0.8.

Figure 26: The 8 lowest- and highest-FLIPD values out of 1600 from LAION-Aesthetics-625k
evaluated at different values of t0. Placeholder icons or blank images have been excluded from this
comparison.

41

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See abstract, Section 1, and Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state the linearity assumption in Theorem 3.1 is an idealization, we are
straightforward about the lack of knees on the FLIPD curves with UNets, and we highlight
this in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

42

Answer: [Yes]
Justification: The derivations with diffusion models clearly state Equation 10 is assumed to
be the transition kernel, Theorem 3.1 is stated clearly, and all the statements are proved in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In additional to clearly describing our method and providing hyperparameter
details in Section D.1, we included a link to our code in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

43

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See Section 4 for a link to our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the FLIPD curves show average and standard deviation across datapoints,
which is clearly stated in Section 4. On synthetic data we do not report error bars across
seeds since (i) we generated large enough datasets (106 datapoints, see Section D.4), and
(ii) computing model-free estimates is expensive. On images, we do not report error bars
across seeds since training multiple diffusion models is computationally prohibitive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

44

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the code of ethics and adhered to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not believe that improved estimates of local intrinsic dimension can be
directly used in any way that would have societal consequences.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

45

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Since we do not believe our work can have negative societal consequences, we
also do not believe putting safeguards around it to be necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite PyTorch [47] as well as the papers whose code we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

46

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A link to our code is included in Section 4.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourced experiments with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourced experiments with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

47

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

48

	Introduction
	Background and Related Work
	Diffusion Models
	Local Intrinsic Dimension and How to Estimate It

	Method
	LIDL with a Single Diffusion Model
	A Better Implementation of LIDL with a Single Diffusion Model
	FLIPD: An Efficient Fokker-Planck-Based LID Estimator

	Experiments
	Experiments on Synthetic Data
	Experiments with Fully-Connected Architectures on Image Data
	Experiments with UNet Architectures on Image Data

	Conclusions, Limitations, and Future Work
	Explicit Formulas
	Variance-Exploding Diffusion Models
	Variance-Preserving Diffusion Models (DDPMs)
	Sub-Variance-Preserving Diffusion Models

	Proofs and Derivations
	Derivation of Equation 12
	Derivation of Equation 13
	Proof of Theorem 3.1

	Adapting FLIPD for DDPMs
	Experimental Details
	DM Hyperparameter Setup
	FLIPD Estimates and Curves for Synthetic Distributions
	A Simple Multiscale Experiment
	In-depth Analysis of the Synthetic Benchmark
	Ablations
	Improving the NB Estimators with kneedle

	Image Experiments
	FLIPD Curves and DM Samples: A Surprising Result
	UNet Architecture
	Images Sorted by FLIPD
	How Many Hutchinson Samples are Needed?
	More Analysis on Images
	Stable Diffusion

