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ABSTRACT

In Federated Learning, a global model is learned by aggregating model updates
computed from a set of client nodes, each having their own data. A key chal-
lenge in federated learning is the heterogeneity of data across clients whose data
distributions differ from one another. Standard federated learning algorithms per-
form multiple gradient steps before synchronizing the model, which can lead to
clients overly minimizing their local objective and diverging from other client
solutions, particularly in the supervised learning setting. We demonstrate that
in such a setting, individual client models experience the “catastrophic forget-
ting” phenomenon with respect to other client data. We propose a simple yet
efficient approach that modifies the cross-entropy objective on a per-client basis
such that classes outside a client’s label set are shielded from abrupt representa-
tion change. Through extensive empirical evaluations, we demonstrate that our
approach can greatly alleviate this problem, especially in the most challenging
federated learning settings with high heterogeneity, low participation, and large
numbers of clients.

1 INTRODUCTION

Federated Learning (FL) is a distributed machine learning paradigm in which a shared global model
is learned from a decentralized set of data located at a number of independent client nodes McMa-
han et al. (2017), Konečnỳ et al. (2016). Due to communication constraints, federated learning
algorithms typically perform many local gradient update steps before synchronizing. In realistic
settings client data often have non-iid distributions, creating additional challenges in FL training.
Client drift, a phenomenon in which client solutions severely “drift” from an optimal global solution
following multiple local update steps Karimireddy et al. (2020), is one such problem. Approaches
to address this inherent challenge often take the form of modifications to existing optimization algo-
rithms to more effectively achieve the objective (Kairouz et al., 2021).

Continual Learning (CL) McCloskey & Cohen (1989) is another emerging research area that studies
a learner being presented with a sequence of tasks. In a manner similar to how FL clients have their
own non-iid data (often with different class distributions), different tasks in supervised continual
learning typically contain data drawn from different distributions. In CL the problem of catastrophic
forgetting is typically a focus of study since after learning a new task we want the model to retain its
knowledge of previous tasks. A number of methods have been proposed in the literature to combat
this problem.

In the case of supervised learning, we can draw a connection between the catastrophic forgetting
problem and client drift. Consider one “round” of federated learning, in which C random clients
are selected and sent a copy of the current global model. Each client then performs a number of
local update steps to optimize the objective on their local data. A round ends with an update to the
global model achieved by the aggregating the updates from each client. In a typical round, clients
receive a model that has been previously derived from training on other clients data. However,
as local training proceeds, the model becomes increasingly biased towards a given client, and will
experience a catastrophic forgetting with respect to other data from other clients, which is drawn
from distinctly different distributions. Naturally, aggregating models that have deviated from a joint
solution (compatible with all clients) is more likely to lead to degraded results with respect to the
global objective.
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Figure 1: Illustration of the catastrophic forgetting problem within a round of Federated Learning on
heterogeneous data. A global model with knowledge of all classes is sent to clients which increase
loss on their local data distribution but tend to simultaneously decrease performance on other clients
data. This leads to poor aggregation and overall performance. Mitigating catastrophic forgetting at
the client level can lead to improved performance in such settings.

We denote the above problem as local client forgetting. Reducing client forgetting would moderate
the increase in loss with respect to other clients for individual client models and thereby improve an
individual client models loss over the combined data. Therefore, tackling local client forgetting can
reduce client drift. We can consider invoking the vast literature of methods for controlling catas-
trophic forgetting which can then allow us to reduce client drift. Although a great deal of methods
have been proposed Kirkpatrick et al. (2017); Li & Hoiem (2017); Chaudhry et al. (2019); Schwarz
et al. (2018); Davari et al. (2022) they have are largely impractical in the FL setting. Experience
Replay methods Chaudhry et al. (2019) would require access to other clients data, violating the
primordial data communication constraints of FL. Similarly, many regularization methods such as
EWC require communicating additional information and moreover typically require many steps to
converge Aljundi et al. (2019) due to the additional conflicting objectives. This computational con-
straint can hurt convergence of the FL algorithm, a key desiderata. For the supervised continual
learning setting Caccia et al. (2022); Ahn et al. (2021) proposed a modification of the standard cross
entropy objective function that truncates the softmax denominator, removing terms corresponding to
classes from old tasks. This simple approach allows to mitigate catastrophic forgetting by reducing
the bias on the model to avoid predicting old classes.

In federated learning, as local client optimization proceeds for many gradient steps, optimizing the
terms in the cross entropy corresponding to classes not present in that client’s data distribution will
quickly enforce not present classes to be forgotten by the local model. Furthermore, as discussed
in Lesort (2022), it can cause spurious features to emerge. Inspired by these observations and the
correspondence to the continual learning case, we can consider adapting the solution of Caccia et al.
(2022); Ahn et al. (2021) to FL.

In this work we thus propose a simple approach for heterogeneous federated learning which corrects
each clients loss function based on its class distribution. We show that this approach can drastically
reduce client level forgetting in the heterogeneous setting and lead to substantially improved overall
global model convergence and final performance that is also more robust to optimization hyper-
parameters and normalization layers.

2 RELATED WORK

Federated Learning The most commonly used baseline in federated learning is the FedAvg al-
gorithm proposed by McMahan et al. (2017). Communication costs between two nodes is orders
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of magnitude larger than communication costs between processor and memory on the same node,
making communication efficiency in federated learning of upmost importance Konečnỳ et al. (2016).
FedAvg reduces communication costs by allowing clients to train multiple iterations successively.
Convergence of FedAvg has been widely studied for both i.i.d Stich (2018), Wang & Joshi (2018)
and non i.i.d settings Li et al. (2020). Under non i.i.d settings, convergence deteriorates as a function
of increasing heterogeneity Hsu et al. (2019). Reddi et al. (2020) studied approaches for introducing
adaptive algorithms into the server updates to accelerate FL algorithms.

Non-Heterogeneous Data Partitions and Client Drift One significant challenge encountered
when training on decentralized data is heterogeneity of samples across clients. Realistically, parti-
tions contain data generated under different conditions which can reasonably be expected to create
different local distributions at each client. For example, smartphones containing images of sailboats
will be more concentrated in coastal regions than in desert regions. Data at each client are sampled
from these local distributions creating different local objectives. When clients progress too far to-
wards minimizing their own objectives, local models drift apart, degrading the performance of the
shared global model and slowing down convergence(Yao et al., 2021; Li et al., 2019; Karimireddy
et al., 2020). Several attempts have been made to alleviate client drift through various methods. One
approach centers around knowledge distillation to regulate local training, Zhu et al. (2021) and Lin
et al. (2020) ensemble information about the global data distribution and disseminate it to clients
via models trained at the server. These methods possess the added risk of privacy attacks and while
Zhu et al. (2021) take steps to mitigate this risk, their method requires the existence of an unlabeled
dataset which may not be practical in all settings. Other approaches attempt to regularize updates
at the client level. Karimireddy et al. (2020) propose SCAFFOLD, an algorithm to control client
drift by use of control norms which modify the client gradients. Li et al. (2020) add a proximal
term to the local objective to limit the impact of variation in local updates. Tenison et al. (2022)
propose a gradient masking technique that modifies the aggregation of updates on the server side.
These approaches are aimed at modifying the federated optimization to improve communication ef-
ficiency, convergence, and robustness to heterogeneity. On the other hand our proposal in this work
is a modification of the loss function on a per-client basis, and takes advantage of the structure of the
commonly used cross-entropy loss. Since it modifies the objective functions locally, this approach
is compatible with any federated optimization method in the literature.

Continual Learning Continual learning (CL) is a process by which tasks are learned sequentially
over a period of time. The learner retains knowledge of previous tasks and leverages that prior
knowledge to learn new tasks Chen & Liu (2018). CL is made difficult by the fact that neural net-
works suffer from catastrophic forgetting, in which learning a new task overrides weights learned
from past training, thus degrading model performance on previously learned tasks McCloskey &
Cohen (1989). Several families of methods have been developed to mitigate the catastrophic forget-
ting. In the first class of methods, architecture based approaches Schwarz et al. (2018) that attempt
to grow or modify an architecture over time to expand its knowledge. In the second class of methods
approaches which store some subset of old data for ”rehearsal” are applied Lopez-Paz & Ranzato
(2017); Chaudhry et al. (2019); Rebuffi et al. (2017). Finally, a third class of methods considers
regularization Kirkpatrick et al. (2017).

A federated continual learning setting has been considered in the literature Yoon et al. (2021). Here
each client in the federated network continuously collects data. Our work on the other hand consid-
ers the standard FL setting where each client maintains a fixed set of data and draws connections to
a notion of forgetting across clients to motivate a modification of the loss function. Shoham et al.
(2019) have used ideas from continual learning to propose FedCurv based on the EWC algorithm
Kirkpatrick et al. (2017) from continual learning. FedCurv requires sending additional informa-
tion and is not compatible with all FL methods. Along this line Xu et al. (2022) also proposed an
approach inspired from rehearsal methods, generating pseudo data and adding an additional regu-
larization term. This requires an expensive pseudo data generating procedure and can increase local
training time.

Normalization in FL Batch normalization (BN) is a commonly employed machine learning tac-
tic that normalizes features by the mean and variance computed across a mini batch. It has been
shown to help with generalization and stabilize optimization (Ioffe & Szegedy, 2015). A limitation
of BN is that under certain conditions, the mean and standard deviation used at test time may differ
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significantly from those used in training. Scenarios including small batch sizes or non-i.i.d batch dis-
tributions such as those in heterogeneous FL have been noted to suffer from significant performance
degradation when using BN (Reddi et al., 2020). Group normalization (GN) is not dependent on
batch statistics, and is effective at mitigating the effect of model performance degradation induced
by skewed data partitions and small batch sizes (Hsieh et al., 2020; Wu & He, 2018). Recent works
using FedAvg and any of its variants typically avoid using BN (Diao et al., 2020).

3 BACKGROUND AND METHODS

Federated optimization refers to the optimization problem implicit to federated learning Konečnỳ
et al. (2016). In federated optimization, training data is distributed and optimization occurs over
K clients with each client k ∈ 1, ...,K having data Xk drawn from distribution Dk. We define
nk = |Xk| and n =

∑K
k=1 nk for n samples. The data Xk at each node may be drawn from

different distributions and/or may be unbalanced with some clients possessing more training samples
than others. The typical objective function for federated optimization is given by

min
w∈Rd

K∑
k=1

nk

n
L(w,Xk), (1)

with L(w,Xk) measuring client k’s local objective, and w representing the global parameters. In
this work we will restrict ourselves to the common case where L is the cross entropy loss. There
are many possible variations of FL algorithms. In general, they follow the same structure as FedAvg
McMahan et al. (2017), which proceeds as follows :

• client selection: for a set of K clients, K ∗ C are selected at each round {ti}Ti=1 , where
0 < C ≤ 1 is a pre-determined fraction.

• client updates: At the beginning of round, client models are initialized with the current
weights of the server model. Each client selected for the round performs E local iterations
of SGD.

• server update: The weights of the individual client models are aggregated to form an
update to the shared global model.

Truncated Cross-Entropy Consider a neural network f : RD → RC where C is the total number
of classes. The standard cross entropy is given LCE(Xk,Yk,w) = −

∑
x∈X log

exp(fw(x)y(x))∑
c∈C exp(fw(x)c)

.

Here y(x) is the label of x and C is the set of all classes available to the clients. We now consider
the truncated cross entropy

LTCE(Xk,Yk,w) = −
∑
x∈X

log
exp(fw(x)y(x))∑
c∈C(Yk) exp(fw(x)c)

, (2)

where the denominator is a function of the labels for the client data Yk. Specifically, in our work
we consider C(Yk) to be the set unique labels for the client. Intuitively, aggressively optimizing
LCE(Xk,Yk) through multiple gradient steps during a client round can lead to a drastic increase
in Ex,y∼Dj ̸=k

[lCE(x,y)] where Dj are the distribution of clients other than client k. The truncated
cross-entropy approach, on the other hand, modifies the original local objective function to avoid
excessive pressure that drives up the loss of other client data. Indeed, classes not present at the
current client are ignored by the local optimization. This in turn forces each client to learn by
adapting the model’s internal representation of the classes present in its training data, rather than
abruptly shifting representations of classes outside its training set Caccia et al. (2022). We will
demonstrate empirically in the sequel that this leads to a reduction in one notion of forgetting defined
below.

Local client forgetting We formalize the notion of local client forgetting discussed in Sec 1 for
classification problem. Denoting the accuracy on a client k’s local test data Acck(w), with w the
model parameters. We can consider the local client forgetting Fki = Acck(w

i
t) − Acck(wt−1).

Here wi
t refers to the model of client i at round t (before the aggregation step) and wt−1 the global

model at the end of round t − 1. Furthermore, we can define an average forgetting for a client k’s
model Fk = 1

K−1

∑
i ̸=k Fki. In the sequel we will study these quantities for a standard FL setting.
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Figure 2: We show the local client forgetting for a given round with and without TCE. Prior to a
local training round, each client model is an identical copy of the server model. After local training,
local models have diverged according to their own local objectives. Each clients model is evaluated
on its own dataset and the datasets of each other client selected for the round both before and after
local training. On the left set of maps, the x and y axes contain the indices of each client selected
for the round and the value Fik in the heat map indicates the forgetting of the model of the kth

client evaluated on the ith client’s dataset. The final column gives Fk, the average forgetting over
all clients. On the right we also show the accuracy of each client’s model on the other client’s data.
We note that in some cases the accuracy can completely collapse on other client’s data (particularly
when they don’t overlap in any classes). We see that TCE (top) significantly reduces forgetting
across clients.

4 EXPERIMENTS

In this section, we present the empirical results for the TCE framework. We start by analyzing
the notion of forgetting in the context of standard FedAVG, and then show how the application of
the Truncated Cross-Entropy objective can substantially resolve this. Subsequently, we study how
TCE can enhance standard FL algorithms like FedAVG, improving their overall performance as
well as making them more robust to key hyperparameters, namely the learning rate and the choice
of normalization technique.

Datasets and Data Partitions We utilize CIFAR-10, CIFAR-100 Krizhevsky & Hinton (2009)
and FEMNIST Caldas et al. (2018) datasets for our experiments, each of these datasets come pre-
separated into training and testing sets. Our primary evaluations consider 100 clients and each
client requires their own training and validation sets according to their own unique distribution.

5



Under review as a conference paper at ICLR 2023

0 500 1000 1500 2000 2500 3000 3500 4000
Rounds

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy vs Rounds CIFAR-10

FedAvg
FedAvg + TCE (gn)
FedAvg + TCE (bn)

0 500 1000 1500 2000 2500 3000 3500 4000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Accuracy vs Rounds CIFAR-100

FedAvg
FedAvg + TCE (bn)
FedAvg + TCE (gn)

Figure 3: We show the performance over rounds in a highly heterogenous setting with FedAVG,
FedAVG+TCE. We observe that TCE consistently gives the best performance. For FedAVG we use
group norm in our models as batchnorm performs poorly in the FL setting. On the other hand TCE
allows group norm and batchnorm variants to perform equally well.

To facilitate this, the entire training set is separated into equally sized non-i.i.d partitions using the
Dirichlet distribution parameterized α = 0.1, similar to the method of Hsu et al. (2019). These client
partitions are then further separated into training (90%) and validation (10%) sets for each client.
For example, 100 clients being trained using CIFAR-10 which contains 50 000 training samples
would each have 500 of these training samples. Of those 500 samples, 450 would be used for local
model updates and 50 would be used exclusively for validation.

Settings Clients are sampled without replacement for each round but can be selected again in sub-
sequent rounds. The fraction of clients sampled is 10% for CIFAR-10 and FEMNIST datasets and
1% for CIFAR-100. In each case our primary evaluations train a ResNet-18 for over 4000 commu-
nication rounds for 3 local epochs, and a mini-batch of size 64. We use SGD as our optimizer, with
weight decay of 1× 10−4 following Yao et al. (2021), Hsu et al. (2019). Experiments done without
truncated cross entropy (FedAvg) replace batch normalization with group normalization Hsieh et al.
(2020), experiments using truncated cross entropy are run twice, once with batch normalization and
once with group normalization.

Validation Throughout the training process the global model is evaluated periodically on the ag-
gregation client validation sets to gauge overall training progress. A model is evaluated on the
training set only once, after the completion of the entire 4000 rounds of training. This value is the
accuracy reported in the validation statistics. At lower values of α, as client distributions become
more skewed, there can be significant changes in accuracy between training runs Hsu et al. (2019).
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Method Hyper-params Dataset
lr norm CIFAR-10 CIFAR-100 FEMNIST

FEDAVG group NC NC NC
FEDAVG+TCE (OURS) 0.7 NC NC NC
FEDAVG+TCE (OURS) batch 0.805± 0.039 0.350± 0.037 0.803

FEDAVG group 0.777± 0.033 0.223± 0.059 0.695
FEDAVG+TCE (OURS) 0.5 0.751± 0.039 0.382± 0.036 0.700
FEDAVG+TCE (OURS) batch 0.832± 0.028 0.354± 0.019 0.831

FEDAVG group 0.77± 0.022 0.324± 0.148 0.801
FEDAVG+TCE (OURS) 0.3 0.836± 0.029 0.438± 0.041 0.787
FEDAVG+TCE (OURS) batch 0.836± 0.010 0.309± 0.060 0.850

FEDAVG group 0.79± 0.017 0.365± 0.131 0.805
FEDAVG+TCE (OURS) 0.1 0.846± 0.010 0.451± 0.046 0.806
FEDAVG+TCE (OURS) batch 0.841± 0.020 0.397± 0.044 0.850

FEDAVG group 0.751± 0.020 0.486± 0.036 0.805
FEDAVG+TCE (OURS) 0.07 0.832± 0.029 0.429± 0.024 0.774
FEDAVG+TCE (OURS) batch 0.859 ± 0.009 0.478± 0.024 0.836

FEDAVG group 0.742± 0.087 0.456± 0.031 0.829
FEDAVG+TCE (OURS) 0.05 0.834± 0.011 0.484± 0.030 0.791
FEDAVG+TCE (OURS) batch 0.852± 0.010 0.506± 0.008 0.830

FEDAVG group 0.787± 0.011 0.486± 0.013 0.735
FEDAVG+TCE (OURS) 0.03 0.859 ± 0.004 0.520± 0.006 0.732
FEDAVG+TCE (OURS) batch 0.850± 0.018 0.513± 0.030 0.813

FEDAVG group 0.742± 0.065 0.429± 0.052 0.780
FEDAVG+TCE (OURS) 0.01 0.825± 0.004 0.524 ± 0.010 0.809
FEDAVG+TCE (OURS) batch 0.845± 0.015 0.479± 0.015 0.791

FEDAVG group 0.739± 0.030 0.440± 0.041 0.780
FEDAVG+TCE (OURS) 0.007 0.751± 0.005 0.501± 0.018 0.814
FEDAVG+TCE (OURS) batch 0.747± 0.013 0.524 ± 0.010 0.782

Table 1: Accuracy results of FedAVG with and without TCE for different settings of client learning
rates as well as normalization layer settings. We observe that for many learning rate settings TCE
consistently improves performance, as well as having the highest overall accuracy by a large margin.
Note that results of FedAVG with batchnorm are not included as the model often fails to train from
any lr settings or yields very poor performance. On the other hand TCE combined with batchnorm
based models is competitive with group norm. NC indicated cases for which the algorithm did not
converge

We focus our analysis on the highly heterogeneous case α = 0.1, which can also lead to higher
variance in the results, particularly for smaller datasets such as CIFAR-10 and CIFAR-100. We thus
run each training 3 times to reduce variance of the results.

4.1 FORGETTING DURING A FEDERATED ROUND

We study the local client forgetting at different optimization rounds of federated learning. In Fig-
ure 2 we show Fki (the heatmap) and Fk (the last column) for the set of participating clients for the
respective round for FedAVG, when using both TCE and CE. We observe that the forgetting is very
high when using standard CE, as no extra steps are taken to control forgetting. On the other hand
TCE is able to greatly control the local client forgetting. This leads to better overall performance
after aggregation. The results are shown for round 2800 of training CIFAR-10. However, the obser-
vation is further confirmed for other rounds as shown in the Appendix Sec A.2. Having observed
that TCE can indeed reduce the local client forgetting we now study its effect on the aggregated
models.
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Figure 4: Ablations for (a) data heterogeniety (b) number of participating clients. We observe that
(a) TCE gives improvements in cases where data is highly heterogenous (b) TCE is most useful with
low number of participating clients.

4.2 EVALUATIONS ON CIFAR-10,CIFAR-100 AND FEMNIST

We now evaluate TCE in combination with FedAVG on CIFAR-10, CIFAR-100, and FEMNIST
datasets, demonstrating it can greatly improve model performance for a number of datasets under
various settings. Figure 3 shows the best performing models among FedAVG and FedAVG+TCE for
CIFAR-10 and CIFAR-100. From these results, we observe FedAvg+TCE is robust to the normaliza-
tion layer unlike vanilla FL methods which typically does poorly when using batch normalization.
In general we conclude that for both CIFAR-10 and CIFAR-100, TCE substantially improves perfor-
mance for any training budget. We see a similar substantial performance increase for FedAvg+TCE
when compared to vanilla FedAvg with the FEMNIST dataset (Table 1) which supports our claims.

Robustness to learning rate and normalization In Table 1 we summarize a detailed analysis of
model performance for the set of learning rates η = {0.007, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7}.
Additionally, we vary the normalization method between batch norm and group norm for TCE. With
regard to the normalization method, we observe comparable performance using either batch norm
or group norm which indicates the truncated cross entropy method helps to mitigate performance
degradation typically observed when using batch norm in heterogeneous FL Reddi et al. (2020). In
general, we observe that across all client learning rates TCE provides performance improvement
using either normalization setting. We particularly notice improvements by TCE even at higher
learning rates, where vanilla FedAVG can collapse or under-perform. We also remark that not only
is overall performance higher for FedAVG+TCE but it’s performance deviates less from the case
of it’s best performing hyperparameters as various settings are changed. This analysis is further
supported by Table 2 in the Appendix.

4.3 ABLATIONS

We now further study the behavior of TCE in combination with FedAVG under different data distri-
butions and client participation settings. In Figure 4 ablations for the CIFAR-10 setting are shown
where we ablate one setting at a time. The learning rate for the ablation studies is set according to the
best performing learning rate determined in Table 1 i.e. 0.1 for FedAvg and 0.03 for FedAvg+TCE
with group norm. We observe particular settings of α and the fraction of clients selected at each
round, for which TCE provides particular improvement.

Parameter α of the Dirichlet Distribution The Dirichlet distribution is parameterized by α. As
α approaches 0 the client distribution will become increasingly likely to contain only one label and
as α increases the client distribution will be increasingly i.i.d.. Similar to Hsu et al. (2019), we
investigate α = {0.01, 0.1, 0.2, 0.5, 1, 10, 100} with α = 100 considered i.i.d.. We observe that
as α increases and the data becomes homogeneous, the gap between TCE and CE shrinks. This
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observation is due to the fact that most clients will have most of the classes and thus the approaches
become nearly equivalent. On the other hand we observe that reducing α to 0.01, an heterogeneous
case, more extreme than that studied in our primary experiments (α = 0.1), then the performance
improvement gap further widens between FedAvg and FedAvg+TCE.

Fraction of Participating Clients For the fraction of participating clients, C we observe the
largest performance gap between FedAvg+TCE and FedAvg when the number of participating
clients is very low. This result is significant since it mimics most closely potential real world set-
tings. We hypothesize this effect is because unless we control forgetting, non-participating clients
will have their data distributions forgotten and unlike participating clients will be unable to con-
tribute their updated to the global model to counteract this forgetting. As the fraction of clients
selected at each round increases, we observe the performance gap between the two methods narrow
since more clients will have the opportunity to be selected at each round and ”remind” the model of
their data distributions.

5 CONCLUSION

In this paper we took a deeper look at the local client forgetting problem. Through extensive experi-
ments, we showed that when a client performs local updates during federated learning, it risks overly
optimizing its local objective, which can lead to forgetting on other subsets of data, in turn degrad-
ing the performance of the global model. We showed that this phenomenon is especially severe in
cases where there is a significant distribution mismatch across clients. First making the connection
with the heavily studied catastrophic forgetting problem in Continual Learning, we then proposed a
local, client level, modification of the objective function which we call truncated cross entropy, that
allows us to mitigate client level forgetting. We demonstrate our method can lead to improved per-
formance when combined with a standard federated learning algorithm, particularly in the regime of
highly heterogeneous client datasets and/or when a small percentage of clients are selected at each
round. We also demonstrate TCE is more robust to a wide range of hyperparameter settings than
vanilla FedAvg. Finally, we showed that addressing this local client forgetting is particularly impor-
tant in cases of severe data heterogeneity. Future investigation can consider the combination of our
modified objective function with a broader range of algorithms designed for federated learning.
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A APPENDIX

A.1 ADDITIONAL EVALUATION OF HYPERPARAMETER ROBUSTNESS

In Table A.1 we further confirm the robustness of FedAvg+TCE to learning rate. For each dataset
used in the experiments we indicate accuracies of models trained using a different learning rate
that fall within 2%, 3% and 5% of the best accuracy obtained in training. The best learning rate is
indicated in column 2 for convenience.

best acc (best lr) lr for acc within 2% lr for acc within 3% lr for acc within 5%
CIFAR-10

FedAvg 0.796 (0.1) 0.1, 0.03 0.3, 0.1, 0.03 0.3, 0.1, 0.07, 0.03
FedAvg+TCE (group) 0.860 (0.03) 0.1, 0.03 0.3, 0.1, 0.07, 0.05, 0.03 0.3, 0.1, 0.07, 0.05, 0.03, 0.01
FedAvg+TCE (batch) 0.859 (0.07) 0.1, 0.07, 0.05, 0.01 0.3, 0.1, 0.07, 0.05, 0.01 0.3, 0.1, 0.07, 0.05, 0.01

CIFAR-100
FedAvg 0.486 (0.07) 0.07 0.07, 0.03 0.07, 0.05, 0.03, 0.007

FedAvg+TCE (group) 0.524 (0.01) 0.01 0.05, 0.03, 0.01, 0.007 0.05, 0.03, 0.01, 0.007
FedAvg+TCE (batch) 0.524 (0.007) 0.05, 0.03, 0.007 0.05, 0.03, 0.007 0.07, 0.05, 0.03, 0.01, 0.007

FEMNIST
FedAvg 0.850 0.05 0.05,0.07, 0.1, 0.3 0.007, 0.01, 0.05, 0.07, 0.1, 0.3

FedAvg+TCE (group) 0.814 0.007, 0.01, 0.1 0.007, 0.01,0.05, 0.07, 0.1, 0.3 0.007, 0.01, 0.05, 0.07, 0.1, 0.3
FedAvg+TCE (batch) 0.850 0.05, 0.07, 0.1, 0.3, 0.5 0.05, 0.07, 0.1, 0.3, 0.5 0.05, 0.07, 0.1, 0.3, 0.5, 0.7

Table 2: learning rates where accuracy is within a specified tolerance of the best accuracy. We
observe that not only does TCE provide the best accuracy, this accuracy is less sensitive to hyperpa-
rameters

A.2 ADDITIONAL FORGETTING STUDIES

In Figures 5, 6, 7 we show additional results for other rounds of training for forgetting. Figure 5 is
evaluated after the first rounf of training, Figure 7 is evaluated after the 4000th round of training and
Figure 6 is evaluated right in the middle of training, after the 2000th round. We observe in very early
rounds since performance is still very low for many client datasets, there is not as much accuracy
to destroy, however we still observe several cases where initial accuracy of the model is substantial
enough that forgetting is observably more extreme without TCE. By the middle of training at round
2000, we see clear indications of forgetting, the bottom row of Figure 6 corresponding to FedAvg
without TCE shows substantially better performance on its own dataset (indicated along the diagonal
values). At the completion of training (Figure 7) we see FedAvg+TCE doing much better than
FedAvg at overcoming the local client forgetting problem.
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Figure 5: After round 1: The model of each client is evaluated on its own dataset and the datasets of
each other client selected for the round both prior to training (right) and after training (center). The
difference between the post and prior accuracies is presented on the left.
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Figure 6: After round 2000: The model of each client is evaluated on its own dataset and the datasets
of each other client selected for the round both prior to training (right) and after training (center).
The difference between the post and prior accuracies is presented on the left.
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Figure 7: After round 4000: The model of each client is evaluated on its own dataset and the datasets
of each other client selected for the round both prior to training (right) and after training (center).
The difference between the post and prior accuracies is presented on the left.
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