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ABSTRACT

Self-supervised learning (SSL) aims to learn robust and transferable represen-
tations purely from unlabeled data, which is especially useful when annotated
data is scarce. Over the past decade, SSL has advanced significantly through
paradigms such as Masked Image Modeling (MIM) and self-distillation. More
recently, several methods have been designed for specific downstream tasks. In
particular, SiamMAE introduced siamese masked auto-encoding for label prop-
agation, where dense semantic labels from initial video frames are propagated
to subsequent ones through inter-frame correspondence. CropMAE later showed
that still images can achieve similar results by extracting two related crops (with
random flipping to simulate a change of viewpoints between the two images) and
reconstructing one from the other. While both methods are effective, they rely on
reconstructing raw pixel values of masked patches, which cannot capture high-
level semantics and is less robust than latent or semantic reconstruction. Building
on insights from iBOT and DINOvV2, we propose Crop-CoRe, an SSL. method that
extends CropMAE by reconstructing cluster assignments instead. In our experi-
ments, Crop-CoRe consistently outperforms SiamMAE and CropMAE on label
propagation benchmarks and achieves competitive results compared to state-of-
the-art methods while requiring fewer training iterations. Moreover, it avoids re-
liance on video datasets or frame extraction, making it more resource-efficient.
The code will be publicly released after publication.

1 INTRODUCTION

Self-supervised learning (SSL) has emerged as a promising paradigm for learning meaningful and
robust representations from data without the need for human annotation. In particular, the absence
of annotation reduces the bias towards a specific task, making the representations learned by SSL
methods transferable to many downstream tasks. SSL has been successfully applied in many do-
mains, ranging from natural language, images, videos, and audio. Practically, SSL is implemented
by designing and solving a pretext task, which is a learning signal derived from the data itself. The
most prominent methods in the image SSL literature are Contrastive Learning (CL) and Masked
Image Modeling (MIM).

MIM is an SSL method that uses the pretext task of masking a portion of an image and learn-
ing to reconstruct the masked parts based on the visible ones. This idea draws inspiration from
Masked Language Modeling (MLM), which was first introduced by BERT (Devlin et al.,|2019) in
the language domain. While performing masked modeling is straightforward in the language do-
main, since language can be easily parsed into discrete and semantic units, the continuous nature
of images makes it more challenging to apply this paradigm. Some works, such as Masked Au-
toencoders (MAEs) (He et al.| 2022), directly learn to reconstruct the pixel values of masked image
patches. Although successful, reconstructing pixel values is a low-level task that does not produce
high-level semantic features (Zhou et al.,|2022)). Bao et al.|(2022) proposed a two-stage approach. A
discrete variational autoencoder is first trained to tokenize images into discrete semantic units, and
then MIM is performed in a second training stage by learning to predict the tokens of the masked
image patches. [Zhou et al.[(2022) proposed to bootstrap these semantic units by learning an online
tokenizer through self-distillation. Similar to DINO (Caron et al.| [2021), they use a teacher-student
architecture. Each network is composed of a ViT (Dosovitskiy et al., 2021) encoder and a clustering
MLP head. The image patch sequence is masked in the student branch by replacing the masked
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patches with a learnable mask token, and then the sequence is encoded and projected to token-wise
softmax distributions. The same process is performed in the teacher branch on the unmasked patch
sequence, and the task is to make the student match the teacher’s distributions corresponding to
the masked patches. This approach has been successful and is at the core of state-of-the-art SSL
methods such as DINOv2 (Oquab et al., 2024)).

Although SSL is usually intended to learn generalist features that transfer well to many downstream
tasks, the way SSL methods are designed can bias them towards specific types of downstream tasks.
For instance, image-level methods (Caron et al., 2021} [Bardes et al., [2022} (Caron et al., 2020; |[He
et al., [2020; |Chen et al., [2020) usually transfer better to image-level tasks such as image classifi-
cation, while patch-level or dense methods (He et al., 2022} Bardes et al., 2022} Zhou et al.| 2022
Oquab et al.||2024) usually transfer better to dense downstream tasks such as semantic segmentation.
In this work, we are particularly interested in designing an SSL method that transfers well to dense
semantic label propagation tasks. SiamMAE (Gupta et al.,|2023) is a recently introduced method for
these tasks that learns to reconstruct the pixels of masked patches of an image by using unmasked
patches of another image as a reference. Hence, this reconstruction task is performed by leveraging
the dense correspondence between patches of the two images. SiamMAE uses frames of a video as
its reference and target images. CropMAE (Eymaél et al., [2024)) introduced a more efficient way
to implement this paradigm. Different crops of the same image with additional random horizontal
flipping are used in place of video frames, alleviating the need for a video dataset and showing that
this paradigm does not learn temporal features, such as motion, but inter-image correspondence. Al-
though successful, both methods rely on directly reconstructing the pixel values of masked patches.
Subsequently, T-CoRe (Liu et al.| [2025) introduced a method similar to SiamMAE, but with two
major differences. First, they reconstruct the cluster assignments of the masked patches, like in
iBOT (Zhou et al., [2022) and DINOv2 (Oquab et al.l [2024). Second, they reconstruct patches of a
frame in a “sandwich sampling” fashion by using both a past and a future frame as references, with
the intuition to reduce the uncertainty of reconstructing a present frame from a past frame. We argue
that, despite this strategy, the uncertainty remains. Moreover, learning dense correspondence does
not require a video dataset, as demonstrated by (Eymaél et al., 2024).

Based on these observations, we introduce Crop-CoRe, a Crop CorRespondence learning method
that extends CropMAE by reconstructing cluster assignments of masked patches, with the student
trained to match the teacher’s prototype assignments rather than raw pixels. Following CropMAE,
we adopt a cropping strategy that removes uncertainty and makes the task deterministic, and elim-
inates the need for a video dataset. Crop-CoRe outperforms both SiamMAE and CropMAE on
3 label propagation benchmarks and achieves competitive results compared to T-CoRe and other
state-of-the-art methods while requiring significantly fewer training iterations. We summarize our
contributions as follows:

* We propose Crop-CoRe, a new SSL method for downstream dense semantic label propaga-
tion tasks. Our method achieves competitive results compared to state-of-the-art methods.

* We show that Crop-CoRe is effective and efficient, requiring no video dataset and con-
verging faster thanks to the deterministic design of its pretext task.

* We provide further evidence for the effectiveness of latent-space reconstruction by show-
ing that predicting cluster assignments yields better semantic features than CropMAE’s
pixel-space reconstruction, making it more consistent with the goal of propagating dense
semantic labels.

2 RELATED WORKS

2.1 SELF-SUPERVISED IMAGE REPRESENTATION LEARNING

Self-supervised learning methods can be broadly categorized into two main types: contrastive and
non-contrastive methods.

Contrastive methods Hadsell et al.| (2006); Oord et al.| (2018)); |Hjelm et al.[ (2019); Bachman et al.
(2019); [Wu et al.| (2018)); He et al.| (2020); |Chen et al.| (2020) train a network to give similar em-
beddings to samples sharing the same semantics (positives), or dissimilar embeddings otherwise
(negatives). Negative samples are primarily needed to avoid representation collapse. Initial methods
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Hadsell et al.| (2006)); |Oord et al.| (2018)); Hjelm et al.| (2019); Bachman et al.| (2019) use in-batch
samples as negatives, making it challenging to have many negatives when computational resources
limit large batch sizes. [Wu et al.|(2018)) proposed memory banks to untie the number of negatives
from the batch size, allowing support for larger numbers of negatives. However, this approach [Wu
et al.| (2018) requires storing a representation of all images in the dataset inside the memory bank,
which is not scalable for large datasets. |He et al.| (2020) introduced the momentum encoder to cir-
cumvent this limitation. The momentum encoder has an identical architecture to the main encoder.
The latter is updated with backpropagation, while the former is an exponential moving average of
the latter. (Chen et al.|(2020) proposed a simplified framework compared to prior methods and intro-
duced several good practices that have since been widely adopted in the SSL literature.

Non-contrastive methods learn a representation without using negative samples. Regularized meth-
ods Zbontar et al.| (2021); Bardes et al.| (2022)) use explicit regularization terms to avoid collapse.
Clustering-based methods [Caron et al.| (2018}; 20205 [2021) train a network by bootstrapping an ab-
stract clustering of samples during training. DeepCluster (Caron et al., 2018) alternates k-means
clustering and supervised training with the obtained pseudo-labels. This approach, however, re-
quires computing features of all samples in the training set every time before the k-means cluster-
ing, which limits its scalability to larger datasets. SWAV (Caron et al., 2020) introduced an online
clustering method that learns cluster prototypes thanks to a swapped cluster prediction mechanism
between two augmented versions of the same image. Specifically, each predicts the cluster assign-
ment of the other. Subsequently, (Caron et al.| (2021) introduced DINO, a clustering method that
bootstraps cluster prototypes thanks to a teacher-student architecture. Similar to MoCo (He et al.|
2020), the teacher and student have identical architectures, the student being updated with back-
propagation, while the teacher is an exponential moving average of the student. The representation
collapse is avoided through a centering and sharpening strategy of the teacher’s output distribution.
Crop-CoRe is a clustering-based method. More precisely, Crop-CoRe performs clustering at both
the image level and the patch level.

2.2 MASKED IMAGE MODELING (MIM)

Since the introduction of BERT (Devlin et al.l 2019), masked modeling has gained significant trac-
tion in the field of SSL. Masked modeling is a pretext task that consists of masking some parts of
the input data and learning to reconstruct the masked parts based on the visible ones. Inspired by
the pioneering work of BERT in the language domain, many efforts have been made to apply this
paradigm in the vision domain. One critical challenge is that the continuous nature of images makes
it difficult to apply masked modeling, in contrast to language, which is discrete. BEiT (Bao et al.,
2022) was the first work to adopt this paradigm for images and addressed this continuity challenge
by learning a discrete representation of images first. Their method consists of two stages. The first
consists of training a discrete variational autoencoder (dVAE) Ramesh et al.| (2021) to tokenize an
image into discrete tokens, and the second involves training an encoder to reconstruct masked image
patches in a BERT-like fashion. Subsequently, He et al.|(2022) introduced the MAE architecture, an
asymmetric encoder-decoder design in which the encoder only sees visible patches and the decoder
is lightweight compared to the encoder, reconstructing the pixels inside the masked patches. This
design choice significantly reduces the computation costs and demonstrates that we can success-
fully perform MIM by directly reconstructing pixels. Hence, it removes the need to train an image
tokenizer beforehand. |Zhou et al| (2022) highlights that such a paradigm, however, struggles in
semantic abstraction. For instance, since images are not semantically dense, a masked patch can be
easily reconstructed by looking at nearby visible ones without leveraging any semantic knowledge.

On the other hand, the success of masked language modeling has been primarily attributed to the
ability to tokenize text into semantically meaningful pieces. Although training a tokenizer before
MIM (Bao et al.| 2022)) is a successful approach, this requires training a dVAE offline. This may
not generalize well to different architectures and data from different domains. Hence, Bao et al.
(2022) introduced iBOT, a method that learns this tokenization online through a DINO-like self-
distillation. DINOv2|Oquab et al.|(2024) built on iBOT, providing techniques to scale the size of the
model and the amount of data while maintaining stability. Crop-CoRe follows this line of work by
reconstructing tokens of an online tokenizer.
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2.3 CORRESPONDENCE LEARNING

Correspondence learning aims to learn how to associate pixels of two images that feature different
views of the same scene, such as frames of a video. One important application is video propagation
tasks, such as semi-supervised video object segmentation, which aims to propagate the segmentation
of initial video frames to subsequent ones. SiamMAE (Gupta et al., demonstrated a state-of-
the-art performance on video propagation tasks [Pont-Tuset et al.| (2017); Jhuang et al.| (2013));/Zhou
(2018). Building on MAE, SiamMAE is a siamese masked modeling paradigm in which two
frames of a video are asymmetrically masked (0% and 95%), and a cross-attention decoder is used to
reconstruct pixels of the masked frame by “looking” at the unmasked frame. Perfectly implementing
the idea of propagating information from one frame to another. Subsequently, CropMAE
builds on SiamMAE and use different crops of the same image in place of video frames.
Their approach achieves very competitive performance compared to SiamMAE and is significantly
more efficient in terms of memory consumption and training convergence. However, both of these
methods directly reconstruct pixels. This has been known to capture low-level semantic features
2022). Building on DINOv2, T-CoRe propose a similar approach to
SiamMAE but learns to reconstruct the cluster assignments of the masked patches. In this work, we
propose a method inspired by CropMAE and T-CoRe. Specifically, (i) we leverage an image dataset
and extract different crops from still images, and (i¢) we learn to reconstruct the cluster assignments
of masked patches.

3 METHOD
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Figure 1: Overview of Crop-CoRe. A first global crop is extracted from the input image. A sec-
ond local crop is subsequently extracted from the global crop. The student network is tasked to
reconstruct the masked local crop by referring to the global crop. Its targets are built by passing the
unmasked local crop in the teacher branch. The objective is to reconstruct the soft cluster assign-
ments of the masked patches.

3.1 PROPAGATION WITH SIAMESE MASKED AUTO-ENCODING

Figure [I] gives an overview of our method. The lower block represents the student branch (3.1.1)),
while the upper block represents the teacher branch (3.1.2). Next, we will describe each branch in
detail.

3.1.1 STUDENT BRANCH

The student branch is where the correspondence learning is performed. Following Crop-
MAE (Eymaél et al., 2024), we sample two random views V;, Vo € RE*WX3 from an image I

~
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by random cropping, resizing, and horizontal flipping, where H and W are the height and width
of the views. Each view is then divided into a sequence v; = {'v N of N =

tammg p? pixels each. The sequence v, is masked to form another sequence vy = {UQ}N 1 Where

vQ = (1-m;)- v} + m; - [MASK], where m € {0,1}* is a vector indicating whether a patch
is masked and [MASK] is a learnable token used to reconstruct masked patches, following |Oquab
et al.| (2024). Each sequence is further prepended with a [CLS] token, another learnable token that
will be used for image-level representation learning.

A ViT (Dosovitskiy et al.l 2021) encoder f is used to encode v; and v, into latent representa-
tions z1 and zo € RY*Y where D is the latent dimensionality after the encoder. Subsequently,
the contextualized masked tokens of Z; are processed by a cross-attention decoder g to compute
the propagated latent representation 25 = g(Z2[m], z1), where Z3[m] is the set of contextualized
masked tokens, that is, the tokens corresponding to the masked patches. Hence, similarly to Crop-
MAE, we use an asymmetric masking strategy with an encoder-decoder to propagate information
from one crop to another. One key difference is that our encoder sees the visible and masked tokens,
while the decoder only sees the masked tokens. This scheme is reversed in CropMAE. Additionally,
rather than reconstructing the pixels themselves, we reconstruct their cluster assignments thanks to
self-distillation (Caron et al.,[2021)), as described in the next sections.

3.1.2 TEACHER BRANCH

The teacher encoder f; has an identical architecture to the student encoder f5. In the teacher branch
(upper block in fig.[T]), we build the targets for the masked tokens in the student branch. To achieve
that, the representations of the unmasked second view v» are computed by the teacher encoder as
zb = fi(v3), and the outputs corresponding to the masked patches z%[m)] are used to form the
targets in the student branch. Note that the teacher needs to be fed with the view that is being
reconstructed, vy here precisely, in order to establish a position-wise correspondence between the
predictions of the student and the targets created by the teacher.

3.2 RECONSTRUCTION WITH SELF-DISTILLATION

While prior works Gupta et al.[(2023));[Eymaél et al.|(2024) directly reconstruct the pixels, we follow
the approach of recent works Zhou et al.[(2022); Oquab et al.| (2024)); Liu et al.[(2025)) to predict the
cluster assignments of the masked patches. Intuitively, this is closer to the initial idea of semantic
label propagation between frames since cluster assignments can be thought of as latent semantic
labels.

Formally, the student clustering head h, and the teacher clustering head h;, respectively use z5
and z4[m] to compute the distribution of the i-th masked patch, and corresponding visible patch as
follows:

=p\ ()
Py (o)) = —PUs(22)." /) (1)
Ty
)
Pt('UQ[m])Z('j) exp( t(z [m]) /T) : )
S exp(hy(zh[m)) ) /m)

where 75 and 7; respectively their temperature parameters. To avoid representation collapse, a sharp-
ening and centering is applied to the teacher’s output distribution (Caron et al., 2021)).

Finally, the propagation loss writes:

|| Im| K
|ZH Py(vafml);. Py(va[m]);) = WZZH vam]);” log(Py(w2ml);”)
1=1j5=1

where H is the cross-entropy function, |m/| is the number of non-zero elements of m.
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3.3 IMAGE-LEVEL REPRESENTATION LEARNING

In addition, following DINOv2 (Oquab et al.; 2024) and T-CoRe (Liu et al.,[2025)), we use the [CLS]
token representations to perform image-level representation learning. Precisely, the second view vy
and 8 other small crops extracted from I are used to compute Lpno loss and the KoLeo regularizer
is used to promote a uniform span of the features within a batch with a Ly, term. Refer to the
related works for more information on these terms.

3.4 TRAINING CROP-CORE

To summarize, Crop-CoRe is trained with the following loss:
L= ACDINO + )\lﬁprop + /\QLkoleo s 4

where A is the strength of the KoLeo regularizer term. During training, the student is updated with
backpropagation, and the teacher is updated as an exponential moving average of the student:

9t<—m-9t+(1—m)-GS, (5)

where 6 and 6, are the parameters of the student and the teacher, and m is the momentum coeffi-
cient.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Pre-training. In all our experiments, we use ViT-S/16 (Dosovitskiy et al.l 2020) as the encoder.
Following Liu et al.| (2025), our decoder is a one-layer cross-attention decoder. An individual layer
is composed of a self-attention, a cross-attention mechanism, and an MLP. For pre-training, we
mainly use the ImageNet-1k dataset (Russakovsky et al., [2015). The terms global crop and local
crop usually refer, in the SSL literature, to 224 x 224 and 94 x 94 resolution crops, respectively. To
avoid confusion, we will refer to these as high-resolution and low-resolution crops. Hence, the term
global crop will refer to an anchor high-resolution crop, and any high-resolution crop extracted from
this anchor will be referred to as a local crop with respect to this anchor. In each training iteration,
2 high-resolution crops are extracted from the original image, and then from each, a local crop is
extracted to form a reference-target pair. Subsequently, 8 low-resolution crops are also extracted
from the original image. Following (Oquab et al., [2024), 50% of the local crops are masked in the
student branch with a uniformly sampled masking ratio in [0.1,0.5]. The global crops and their
corresponding local crops are used in the propagation part of our method, and the 2 local crops and
8 low-resolution crops are used for the image-level representation learning part of our method with
Lpino- Additional details on pre-training and evaluation settings are provided in the Appendix.

Optimization. During training, the ViT-S/16 is trained for 50 epochs with an effective batch size
of 1024 distributed between 4 GPUs. The student is optimized with the AdamW (Loshchilov &
Hutter, 2019) optimizer. Following |Liu et al.|(2025), the learning rate for the student branch Ir is
setto 1 x 1073 and decays to 1 x 10~% with a cosine schedule. For the decoder, the learning rate
is set to 0.1 x [r. The weights of the loss function are set to A\; = 0.8 and A2 = 0.1 following |Liu
et al.| (2025)).

Data augmentations. Besides the multiple crops (Caron et al., 2020), we apply random Gaussian
blur, grayscale, color jittering, and horizontal flips to the crops following previous works in the
literature(Chen et al., 2020; |Oquab et al., [2024).

4.2 MAIN RESULTS AND DISCUSSIONS

We compare our method with the state-of-the-art methods in three downstream tasks: semi-
supervised video object segmentation on DAVIS (Pont-Tuset et al.,|2017), semantic part propagation
on VIP (Zhou et al., |2018) and pose keypoint propagation on JHMDB (Jhuang et al., 2013). The
results are reported in table[T} The following observations can be made: 1) Crop-CoRe outperforms
Crop-MAE on all benchmarks, showing the benefit of performing the reconstruction task in a latent
space. This is further illustrated in fig.[2] in which we can notice that CropMAE is very sensitive to
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DAVIS-2017 VIP JHMDB
Type Method Backbone Dataset Epoch | 7& 7, Ju Fum | mloU ‘ PCK@0.] PCK@0.2

SimCLR jepi0 VIT-$/16 (22M)  Kinetics-400 400 539 517 56.2 | 31.9 37.9 66.1
Image-level SSL | Moco y3i 1ccv2l ViT-S/16 (22M)  Kinetics-400 400 57.7 54.6 60.8 | 32.4 38.4 67.6
DINO' 1cevoal ViT-$/16 (22M)  ImageNet-1k 800 61.8  60.2 634 | 36.2 45.6 75.0
DINO 1cevar ViT-$/16 (22M)  Kinetics-400 400 59.5  56.5 62.5 | 33.4 41.1 70.3

ODIN?T geeyan ResNet50 (26M)  ImageNet-1k 1000 541  54.3 53.9 / / /

CroCt cypris ViT-$/16 (22M)  ImageNet-1k 300 447 435 459 | 26.1 / /
) MAE' cvpra ViT-B/16 (87M)  ImageNet-1k 1600 | 53.5 521 55.0 | 28.1 44.6 73.4
é’l;’;f‘e RC-MAE' c1r23 VIiT-S/16 (22M)  ImageNet-1k 1600 | 49.2  48.9 50.5 | 29.7 43.2 72.3
Masked SiamMAE! Neurps'23 ViT-$/16 (22M)  Kinetics-400 400 57.6  56.0 60.0 | 33.2 46.1 74.0

Modeling SiamMAE! Neurips23 ViT-$/16 (22M)  Kinetics-400 2000 | 62.0  60.3 63.7 | 37.3
CropMAE! geeyias VIiT-$/16 (22M)  ImageNet-1k 400 60.4 57.6 63.3 | 33.3 43.6 72.0
RSP 1emua4 ViT-$/16 (22M)  Kinetics-400 400 60.1 574 628 | 33.8 44.6 73.4
CDG-MAE-alf sniv2s  VIT-S/16 22M)  ImageNet-1k 100 61.2 574 643 | 37.6 46.5 75.5
CDG-MAE-a3f pnivos  VIT-S/16 22M)  ImageNet-1k 100 62.6  59.7 655 | 38.1

iBOT! jcrrnn ViT-$/16 (22M)  ImageNet-1k 800 62.6  60.2 65.1 44.3 74.4
'gg’ffe‘ DINO v2' ryirias VIiT-S/16 (22M)  ImageNet-22k 100 632 614 651 | 37.3 46.3 75.4
T-CoRe! cyprs ViT-$/16 (22M)  ImageNet-1k 100 64.1 621 46.2 75.5
T-CoRe! cypris VIiT-S/16 (22M)  Kinetics-400 400 66.0 | 37.9 75.2
Crop-CoRe (Ours) ViT-$/16 (22M)  ImageNet-1k 50 37.5 44.9 74.3

Table 1: Main results. Comparison with prior methods on three dense-level video downstream

tasks. Results on baselines directly reported from previous studies. Missing values represent the

absence of reported results or implementations. The best and second-best results are highlighted in
and , respectively.

pixel intensity variations. This is expected since the pretext task of CropMAE aims to reconstruct the
exact pixel values. Reconstructing the cluster assignments of patches is more closely aligned with
the downstream task of semantic label propagation, making our method more robust to illumination
variations. 2) Crop-CoRe achieves the best average score on DAVIS, even surpassing the version
of T-CoRe pre-trained on Kinetics-400 (Kay et al., 2017), showing the effectiveness of our method
on semi-supervised video object segmentation. 3) Crop-CoRe slightly underperforms on pose key-
point and semantic part propagation compared to state-of-the-art methods. The gap is particularly
more pronounced for methods pre-trained on Kinetics-400. This observation is consistent with the
experiments of (Belagali et al.||2025)). The main reason is the limited change of viewpoints between
the global and local crops that is inherently present between frames of a video. To adapt T-CoRe to
image datasets, |Liu et al.|(2025) simulates the relative changes between video frames by using k-NN
images as references for each target image. [Belagali et al.| (2025) uses a diffusion model (Belagali
et al., 2024) to create, for each image, a bag of views with varied changes in motion, perspective,
and pose. This results in improvements on VIP and JHMDB for both methods. However, their
approaches require offline preprocessing, which is an additional overhead. In contrast, our method
does not require any preprocessing. 4) Crop-CoRe achieves competitive results on all benchmarks
while requiring significantly fewer training iterations. We hypothesize that this is primarily due to
the deterministic nature of our Global-to-Local reconstruction paradigm, which enables our method
to learn faster.

4.3 PERFORMANCE ANALYSIS

In this section, we investigate the impact of different design choices in our method, including the
number of training epochs, cropping strategy, number of prototypes, and masking strategy.

Impact of training duration. We tested different numbers of training epochs: 25, 50, 100, and
200. The results are reported in table We observe that Crop-CoRe achieves high performance
on DAVIS quickly, reaching its peak after only 25 epochs, and maintains this performance at 50
epochs. However, in our experiments, we observed a decrease in performance after more epochs,
as shown by the performance after 100 epochs. This is most likely due to a collapse of our dense
features. This behavior has also been observed with CropMAE. Using a Gram loss (Siméoni et al.,
2025) could solve it and make our method more scalable to longer training.

Impact of the number of prototypes. We tested different numbers of prototypes to see their influ-
ence on the overall performance. Table [2b|shows that increasing the number of prototypes generally
improves the performance. Intuitively, since the student network would have to match the teacher’s
distribution over a higher set of latent classes, this makes the task more challenging.

Impact of the cropping strategy. Following Eymaél et al.|(2024), we tested Crop-CoRe on different
cropping strategies: Global-to-Local, Local-to-Global and Random. Table [2c| shows that the best
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T-CoRe CropMAE  Source Image

Crop-CoRe

Figure 2: PCA visualization. We analyse with PCA the dense features of CropMAE
[2024), T-CoRe [2025) and Crop-Core from top to bottom. We first notice that CropMAE
is very sensitive to pixel intensity variations in contrast to T-CoRe and Crop-CoRe, which are more
semantic- and instance-oriented. We can also notice that Crop-CoRe has similar results to T-CoRe,
further emphasizing the non-necessity of a video dataset for correspondence learning.

GT Label = Frame 1 = = i — Frame 3 Frame 4 Frame 5
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Figure 3: Frame propagation. We show how our method is able to correctly propagate the labeled
information contained in the first labeled frame in subsequent frames.

performance is achieved with Global-to-Local reconstruction. Local-to-Global reconstruction is
highly uncertain, as the model would have to reconstruct parts of the global crop that are not visible
in the local crop, leaving many possibilities and ultimately requiring much longer training. Random
cropping aims to use independently cropped images as a reference and a target. This can lead to
scenarios where the two crops are completely unrelated. This makes the reconstruction task even
more uncertain. The Global-to-Local reconstruction enables a consistent relationship between the
reference and the target image, as well as a deterministic reconstruction task that is quickly learnable
by the model. Overall, these observations are consistent with Eymaél et al.|(2024).

Impact of the masking scheme. Different masking schemes have been proposed in the MIM lit-
erature, with random masking being the traditional and most widely used scheme. We additionally
tested block masking, inverse block masking, cyclic masking (Darcet et al} [2025)), and color mask-
ing (Hinojosa et all [2024). As shown in table 2d} the random masking scheme yields the best per-
formance. Interestingly, this contrasts with MIM methods, which do not reconstruct one image from
another. While reconstructing a continuous block from nothing is more challenging, it is less chal-




Under review as a conference paper at ICLR 2026

DAVIS-2017 DAVIS-2017
Epochs | 7670 Jn  Fu CropSUateey | 76 F T Fun
25 63.8 61.4 66.2 Local-to-GLobal | 64.6  62.3 66.9
50 64.9 62.6 67.1 Global-to-Local | 64.9 62.6 67.1
100 63.9 61.9 65.9 Random 64.1 619 664
(a) Analysis on the number of epochs. (c) Analysis on the cropping strategy.
DAVIS-2017
K DAVIS-2017 Mask Strategy | 7&F, T Fum
J&Fm I Fm Random 649 626 67.1
Block 624 599 64.9
8192 | 625 602 648 Tnverse 62.2  59.6 64.9
16384 61.9 59.6 64.2 CyclicMask 63.2 60.6 65.8
Red-Masking 62.6 60.1 65.2
32768 | 632 60.8  65.7 Blue-Masking | 62.5 59.8 65.2
65536 64.9 62.6 67.1 Green-Masking | 63.7 61.3 66.2
Purple-Masking | 63.1 60.6 65.6

b) Analysi th ber of protot; .
(b) Analysis on the number of prototypes (d) Analysis on the masking strategy.

Table 2: Performance analysis. We evaluate our method with different settings on DAVIS-2017.
Default settings are highlighted in green . The best results are marked with bold. Table [2a] shows

that Crop-CoRe learns quickly, achieving very good results after only 25 training epochs. Table [2b]
shows that we generally improve results with more prototypes. Table[2c| shows that the Global-to-
Local reconstruction is optimal compared to Local-to-Global and Random. Table 2d|shows random
masking performs the best in a Global-to-Local reconstruction setting.

lenging to reconstruct in a Global-to-Local scenario. The same observation holds for inverse block
masking. Cyclic masking introduces a level of randomness to the inverse block masking scheme,
resulting in an improvement compared to the other two. We also tested recently introduced mask-
ing schemes, called ColorMasking (Hinojosa et al., |2024)), for their improvements in pixel space
reconstruction. However, these masking schemes did not improve our results. Overall, the random
masking scheme ensures the highest complexity and, therefore, the best downstream performance.

5 CONCLUSION

In this work, we introduce Crop-CoRe, a self-supervised learning method targeted at downstream
video label propagation tasks. Our experiments validate the effectiveness of our method. In particu-
lar, the Global-to-Local cropping strategy enables Crop-CoRe to achieve competitive performances
while requiring significantly fewer training iterations compared to many baselines. Moreover, by
outperforming CropMAE, we further support the idea of performing the reconstruction task in a la-
tent space rather than in pixel space. Additionally, Crop-CoRe alleviates the need for video datasets,
that are more costly to use for training, further demonstrating its efficiency. Further analyzing the
behavior of our method, compared to a method pre-trained on a video dataset is a interesting venue
for future work.
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A APPENDIX

A.1 FURTHER TRAINING DETAILS

Table gives further details on our pre-training hyperparameters and network architecture.

Hyperparameter Notation |  Value

Sampling strategy

Reference image (] Global crop
Target image V2 Local crop
Mask probability / 0.5
Mask ratio / [0.1,0.5]
High-resolution crop size / (224 x 224)
Low-resolution crop size / (96 x 96)
Global crop size / (224 x 224)
Local crop size / (224 x 224)
Optimizing settings
Optimizer / AdamW
Learning rate scheduler / Cosine
Weight decay / 0.04 - 04
Momentum / 0.992 — 1
Number of ViT encoder blocks / 12
Patch size P 16
Base learning rate blr 2x 1073
Decoder learning rate / 0.1 xIr
Epochs / 50
Warm-up epochs / 20
Batch size bs 1024
Number of ViT feature dim. d 384
Loss function
Weight of reconstruction loss A1 0.8
Weight of DINO loss / 1
Weight of koleo loss A2 0.1

Table A.1: The hyperparameters settings for our Crop-CoRe framework during pre-training.

A.2 EVALUATION SETTINGS

In this section, we give details on how the methods are evaluated on the dense label propagation task.
During evaluation, the pre-trained network f is frozen. As initially introduced by Jabri et al.|(2020),
given a set of T reference images I,, € RT*H>*W X3 'their dense one-hot labels Y, € RT>*H*xWxC,
and a target image I; € R7>W>3_ their dense representations are first computed with f to form
X, = f(I,) € RTXHXWXD and X, = f(I;) € R"*“*D where D is the latent dimension, and C
is the number of classes. Hence, to propagate their labels to the target, we proceed as follows:

Y, = aurgrnax(Softmax(XtXtT ® M /7, dim = -1)Y,, dim = —1) (A.1)

where M is a mask giving the spatial region attended by each pixel, or patch, and 7 is a temperature
parameter. However, in practice, rather than aggregating from all the reference pixels, only the top
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K most similar are used. T represents the length of the queue, and radius describes the visible
region around each target pixel in the mask M. These hyperparameters are detailed in table
These values follow (Eymaél et al., [2024) for fair comparison.

Config | DAVIS-2017 VIP JHMDB
Top-K 7 10 7
Queue Length 20 20 20
Neighborhood Size 20 20 20
Temperature 0.7 0.7 0.7

Table A.2: The hyperparameters settings for our T-CoRe framework during downstream evaluations.
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