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Abstract

Numerous biological and physical processes can be modeled as systems of interact-1

ing samples evolving continuously over time, e.g. the dynamics of communicating2

cells or physical particles. Flow-based models allow for learning these dynamics at3

the population level — they model the evolution of the entire distribution of sam-4

ples. However, current flow-based models are limited to a single initial population5

and a set of predefined conditions which describe different dynamics. We argue that6

multiple processes in natural sciences have to be represented as vector fields on the7

Wasserstein manifold of probability densities. That is, the change of the population8

at any moment in time depends on the population itself due to the interactions9

between samples. In particular, this is crucial for personalized medicine where the10

development of diseases and their treatments depend on the microenvironment of11

cells specific to each patient. We propose Meta Flow Matching (MFM), a practical12

approach to integrating along these vector fields on the Wasserstein manifold by13

amortizing the flow model over the initial populations. Namely, we embed the14

population of samples using a Graph Neural Network (GNN) and use these embed-15

dings to train a Flow Matching model. This gives Meta Flow Matching the ability16

to generalize over the initial distributions unlike previously proposed methods.17

Finally, we demonstrate the ability of MFM to improve prediction of individual18

treatment responses on a large scale multi-patient single-cell drug screen dataset.19

1 Introduction20

Understanding the dynamics of many-body problems is a central challenge across the natural sciences.21

In the field of cell biology, a central focus is the understanding of the dynamic processes that cells22

undergo in response to their environment, and in particular their response and interaction with other23

cells. Cells communicate with one other in close proximity using cell signaling, exerting influence24

over each other’s trajectories (Armingol et al., 2020; Goodenough and Paul, 2009). This signaling25

presents an obstacle for modeling, but is essential for understanding and eventually controlling26

cell dynamics during development (Gulati et al., 2020; Rizvi et al., 2017), in diseased states (Molè27

et al., 2021; Binnewies et al., 2018; Zeng and Dai, 2019; Chung et al., 2017), and in response to28

perturbations (Ji et al., 2021; Peidli et al., 2024).29

The super-exponential decrease of sequencing costs and advances in microfluidics has enabled the30

rapid advancement of single-cell sequencing and related technologies over the past decade. While31

single-cell sequencing has been used to great effect to understand the heterogeneity in cell systems,32

they are also destructive, making longitudinal measurements extremely difficult. Instead, most33

approaches model cell dynamics at the population level (Hashimoto et al., 2016; Weinreb et al., 2018;34

Schiebinger et al., 2019; Tong et al., 2020; Neklyudov et al., 2022; Bunne et al., 2023a). These35

approaches involve the formalisms of optimal transport (Villani, 2009; Peyré and Cuturi, 2019) and36
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generative modeling (De Bortoli et al., 2021; Lipman et al., 2023) methods, which allow for learning37

a map between empirical measures. While these methods are able to model the dynamics of the38

population, they are fundamentally limited in that they model the evolution of cells as independent39

particles evolving according to a shared dynamical system. Furthermore, these models can be trained40

to match any given set of measures, but they are restricted to modeling of a single population and can41

at best condition on a number of different dynamics that is available in the training data.42

To address this we propose Meta Flow Matching (MFM) — the amortization of the Flow Matching43

generative modeling framework (Lipman et al., 2023) over the input measures. In practice, our44

method can be used to predict the time-evolution of distributions from a given dataset of the time-45

evolved examples. Namely, we assume that the collected data undergoes a universal developmental46

process, which depends only on the population itself as in the setting of the interacting particles or47

communicating cells. Under this assumption, we learn the vector field model that takes samples from48

the initial distribution as input and defines the push-forward map on the sample-space that maps the49

initial distribution to the final distribution.50

We showcase the utility of our approach on two applications. We first explore Meta Flow Matching on51

a synthetic task of denoising letters. We show that MFM is able to generalize the denoising process52

to letters in unseen orientations where a standard flow matching approach cannot. Next, we explore53

how MFM can be applied to model single-cell perturbation data (Ji et al., 2021; Peidli et al., 2024).54

We evaluate MFM on predicting the response of patient-derived cells to chemotherapy treatments55

in a recently published large scale single-cell drug screening dataset where there are known to be56

patient-specific responses (Ramos Zapatero et al., 2023). This dataset includes more than 25M cells57

collected over ten patients under 2500 conditions. This is a challenging task due to the variance over58

multiple patients, treatments applied and the local cell compositions, but it can be used to study the59

tumor micro-environment (TME), thought to be essential in circumventing chemoresistance. We60

demonstrate that Meta Flow Matching can successfully predict the development of cell populations61

on replicated experiments, and, most importantly, it generalizes to previously unseen patients, thus,62

capturing the patient-specific response to the treatment.63

2 Background64

2.1 Generative Modeling via Flow Matching65

Flow Matching is an approach to generative modeling recently proposed independently in different66

works: Rectified Flows (Liu et al., 2022), Flow Matching (Lipman et al., 2023), Stochastic Interpolants67

(Albergo and Vanden-Eijnden, 2022). It assumes a continuous interpolation between densities p0(x0)68

and p1(x1) in the sample space. That is, the sample from the intermediate density pt(xt) is produced69

as follows70

xt = ft(x0, x1), (x0, x1) ∼ π(x0, x1) , (1)

where
∫

dx1 π(x0, x1) = p0(x0) ,

∫
dx0 π(x0, x1) = p1(x1) , (2)

where ft is the time-continuous interpolating function such that ft=0(x0, x1) = x0 and71

ft=1(x0, x1) = x1 (e.g. linearly between x0 and x1 with ft(x0, x1) = (1 − t) · x0 + t · x1);72

π(x0, x1) is the density of the joint distribution, which is usually taken as a distribution of inde-73

pendent random variables π(x0, x1) = p0(x0)p1(x1), but can also be generalized to formulate the74

optimal transport problems (Pooladian et al., 2023; Tong et al., 2024). The corresponding density can75

be defined then as the following expectation76

pt(x) =

∫
dx0dx1 π(x0, x1)δ(x− ft(x0, x1)) . (3)

The essential part of Flow Matching is the continuity equation that describes the change of this77

density through the vector field on the state space, which admits vector field v∗t (x) as a solution78

∂pt(x)

∂t
= −⟨∇x, pt(x)v

∗
t (x)⟩ , v∗t (ξ) =

1

pt(ξ)
Eπ(x0,x1)

[
δ(ft(x0, x1)− ξ)

∂ft(x0, x1)

∂t

]
. (4)
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Flow Matching Conditional Flow Matching Vector Field on P2(X )

Figure 1: Illustration of flow matching methods on the 2-Wasserstein manifold, P2(X ), depicted as a two-
dimensional sphere. Flow Matching learns the tangent vectors to a single curve on the manifold. Conditional
generation corresponds to learning a finite set of curves on the manifold, e.g. classes c1 and c2 on the plot. Meta
Flow Matching learns to integrate a vector field on P2(X ), i.e. for every starting density p0 Meta Flow Matching
defines a push-forward measure that integrates along the underlying vector field.

Relying on this formula, one can derive the tractable objective for learning v∗t (x), i.e.79

LFM(ω) =

∫ 1

0

dt Ept(x)∥v
∗
t (x)− vt(x;ω)∥2 (5)

= Eπ(x0,x1)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1);ω)

∥∥∥∥2 + constant . (6)

Finally, the vector field vt(ξ, ω) ≈ v∗t (ξ) defines the push-forward density that approximately matches80

pt=1, i.e. T#p0 ≈ pt=1, where T is the flow corresponding to vector field vt(·, ω) with parameters ω.81

2.2 Conditional Generative Modeling via Flow Matching82

Conditional image generation is one of the most common applications of generative models nowadays;83

it includes conditioning on the text prompts (Saharia et al., 2022b; Rombach et al., 2022) as well84

as conditioning on other images (Saharia et al., 2022a). To learn the conditional generative process85

with diffusion models, one merely has to pass the conditional variable (sampled jointly with the data86

point) as an additional input to the parametric model of the vector field. The same applies for the87

Flow Matching framework.88

Conditional Generative Modeling via Flow Matching is independently introduced in several works89

(Zheng et al., 2023; Dao et al., 2023; Isobe et al., 2024) and it operates as follows. Consider a family90

of time-continuous densities pt(xt | c), which corresponds to the distribution of the following random91

variable92

xt = ft(x0, x1), (x0, x1) ∼ π(x0, x1 | c) . (7)

For every c, the density pt(xt | c) follows the continuity equation with the following vector field93

v∗t (ξ | c) =
1

pt(ξ | c)
Eπ(x0,x1)δ(ft(x0, x1)− ξ)

∂ft(x0, x1)

∂t
, (8)

which depends on c. Thus, the training objective of the conditional model becomes94

LCGFM (ω) = Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) | c;ω)

∥∥∥∥2 , (9)

where, compared to the original Flow Matching formulation, we first have to sample c, then produce95

the samples from pt(xt | c) and pass c as input to the parametric model of the vector field.96

3 Meta Flow Matching97

In this paper, we propose the amortization of the Flow Matching framework over the marginal98

distributions. Our model is based on the outstanding ability of the Flow Matching framework to99
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learn the push-forward map for any joint distribution π(x0, x1) given empirically. For the given joint100

π(x0, x1), we denote the solution of the Flow Matching optimization problem as follows101

v∗t (·, π) = argmin
vt

LGFM (vt(·), π(x0, x1)) . (10)

Analogously to the amortized optimization (Chen et al., 2022; Amos et al., 2023), we aim to learn the102

model that outputs the solution of Eq. (10) based on the input data sampled from π, i.e.103

vt(·, φ(π)) = v∗t (·, π) , (11)
where φ(π) is the embedding model of π and the joint density π(· | c) is generated using some104

unknown measure of the conditional variables c ∼ p(c).105

3.1 Modeling Process in Natural Sciences as Vector Fields on the Wasserstein Manifold106

We argue that numerous biological and physical processes cannot be modeled via the vector field107

propagating the population samples independently. Thus, we propose to model these processes as108

families of conditional vector fields where we amortize the conditional variable by embedding the109

population via a Graph Neural Network (GNN).110

To provide the reader with the necessary intuition, we are going to use the geometric formalism111

developed by Otto (2001). That is, time-dependent densities pt(xt) define absolutely-continuous112

curves on the 2-Wasserstein space of distributions P2(X ) (Ambrosio et al., 2008). The tangent space113

of this manifold is defined by the gradient flows St = {∇st | st : X → R} on the state space X . In114

the Flow Matching context, we are going to refer to the tangent vectors as vector fields since one115

can always project the vector field onto the tangent space by parameterizing it as a gradient flow116

(Neklyudov et al., 2022).117

Under the geometric formalism of the 2-Wasserstein manifold, Flow Matching can be considered118

as learning the tangent vectors vt(·) along the density curve pt(xt) defined by the sampling process119

in Eq. (2) (see the left panel in Fig. 1). Furthermore, the conditional generation processes pt(xt | c)120

would be represented as a finite set of curves if c is discrete (e.g. class-conditional generation of121

images) or as a family of curves if c is continuous (see the middle panel in Fig. 1).122

Finally, one can define a vector field on the 2-Wasserstein manifold via the continuity equation with123

the vector field vt(x, pt(x)) on the state space X that depends on the current density pt(x) or its124

derivatives. Below we give two examples of processes defined as vector fields on the 2-Wasserstein125

manifold.126

Example 1 (Mean-field limit of interacting particles). In the limit of the infinite number of interacting127

particles one can describe their state with the density function pt(x). Consider the interaction128

according to the first order dynamics with the velocity k(x, y) : Rd × Rd → Rd of the particles at129

point x that interact with the particles at point y. Then the change of the density is described by the130

following continuity equation131

dx

dt
= Ept(y)k(x, y),

∂pt(x)

∂t
= −

〈
∇x, pt(x)Ept(y)k(x, y)

〉
. (12)

Example 2 (Diffusion). Even when the physical particles evolve independently in nature, the132

deterministic vector field model might be dependent on the current density of the population. For133

instance, for the diffusion process, the change of the density is described by the Fokker-Planck134

equation, which results in the density-dependent vector field when written as a continuity equation,135

i.e.136

∂pt(x)

∂t
=

1

2
∆xpt(x) = −

〈
∇x, pt(x)

(
−1

2
∇x log pt(x)

)〉
=⇒ dx

dt
= −1

2
∇x log pt(x) . (13)

Motivated by the examples above, we argue that using the information about the current or the initial137

density is crucial for the modeling of time-evolution of densities in natural processes, to capture this138

type of dependency one can model the change of the density as the following Cauchy problem139

∂pt(x)

∂t
= −⟨∇x, pt(x)vt(x, pt)⟩ , pt=0(x) = p0(x) , (14)

where the state-space vector field vt(x, pt) depends on the density pt.140

The dependency might vary across models, e.g. in Example 1 the vector field can be modeled as an141

application of a kernel to the density function, while in Example 2 the vector field depends only on142

the local value of the density and its derivative.143
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3.2 Integrating Vector Fields on the Wasserstein Manifold via Meta Flow Matching144

Consider the dataset of joint populations D = {(π(x0, x1 | i))}i, where, to simplify the notation,145

we associate every i-th population with its density π(· | i) and the conditioning variable here is the146

index of this population in the dataset. We make the following assumptions regarding the ground147

truth sampling process (i) we assume that the starting marginals p0(x0 | i) =
∫
dx1 π(x0, x1 | i) are148

sampled from some unknown distribution that can be parameterized with a large enough number of149

parameters (ii) the endpoint marginals p1(x1 | i) =
∫
dx0 π(x0, x1 | i) are obtained as push-forward150

densities solving the Cauchy problem in Eq. (14), (iii) there exists unique solution to this Cauchy151

problem.152

One can learn a joint model of all the processes from the dataset D using the conditional version of153

the Flow Matching algorithm (see Section 2.2) where the population index i plays the role of the154

conditional variable. However, obviously, such a model will not generalize beyond the considered155

data D and unseen indices i. We illustrate this empirically in Section 5.156

To be able to generalize to previously unseen populations, we propose learning the density-dependent157

vector field motivated by Eq. (14). That is, we propose to use an embedding function φ : P2(X ) →158

Rm to embed the starting marginal density p0, which we then input into the vector field model and159

minimize the following objective over ω160

LMFM(ω;φ) = Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(p0);ω)

∥∥∥∥2 . (15)

Note that the initial density p0 is enough to predict the push-forward density p1 since the Cauchy161

problem for Eq. (14) has a unique solution. The embedding function φ(p0) can take different forms,162

e.g. it can be the density value φ(p0) = p0(·), which is then used inside the vector field model to163

evaluate at the current point (analogous to Example 2); a kernel density estimator (analogous to164

Example 1); or a parametric model taking the samples from this density as an input.165

Proposition 1. Meta Flow Matching recovers the Conditional Generation via Flow Matching166

when the conditional dependence of the marginals p0(x0 | c) =
∫
dx1π(x0, x1 | c) and p1(x1 | c) =167 ∫

dx0π(x0, x1 | c) and the distribution p(c) are known, i.e. there exist φ : P2(X ) → Rm such that168

LMFM (ω) = LCGFM (ω).169

Proof. Indeed, sampling from the dataset i ∼ D becomes sampling of the conditional variable170

c ∼ p(c) and the embedding function becomes φ(p0(· | c)) = c.171

Furthermore, for the parametric family of the embedding models φ(pt, θ), we show that the parameters172

θ can be estimated by minimizing the objective in Eq. (15) in the joint optimization with the vector173

field parameters ω. We formalize this statement in the following theorem.174

Theorem 1. Consider a dataset of populations D = {(π(x0, x1 | i))}i generated from some unknown175

conditional model π(x0, x1 | c)p(c). Then the following objective176

L(ω, θ) = Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)− vt(xt |φ(p0, θ), ω)∥2 (16)

is equivalent to the Meta Flow Matching objective177

LMFM(ω, θ) = Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(p0, θ);ω)

∥∥∥∥2 (17)

up to an additive constant.178

Proof. We postpone the proof to Appendix A.179

3.3 Learning Population Embeddings via Graph Neural Networks (GNNs)180

In many applications, the populations D = {(π(x0, x1 | i))}Ni=1 are given as empirical distributions,181

i.e. they are represented as samples from some unknown density π182

{(xj
0, x

j
1)}

Ni
j=1 , (xj

0, x
j
1) ∼ π(x0, x1 | i) , (18)
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where Ni is the size of the i-th population. For instance, for the diffusion process considered in183

Example 2, the samples from π(x0, x1 | i) can be generated by generating some marginal p1(x1 | i)184

and then adding the Gaussian random variable to the samples xj
1. We use this model in our synthetic185

experiments in Section 5.1.186

Since the only available information about the populations is samples, we propose learning the187

embedding of populations via a parametric model φ(p0, θ), i.e.188

φ(p0, θ) = φ
(
{xj

0}
Ni
j=1, θ

)
, (xj

0, x
j
1) ∼ π(x0, x1 | i) . (19)

For this purpose, we employ GNNs, which recently have been successfully applied for simulation of189

complicated many-body problems in physics (Sanchez-Gonzalez et al., 2020). To embed a population190

{xj
0}

Ni
j=1, we create a k-nearest neighbour graph Gi based on the metric in the state-space X , input it191

into a GNN, which consists of several message-passing iterations (Gilmer et al., 2017) and the final192

average-pooling across nodes to produce the embedding vector. Finally, we update the parameters of193

the GNN jointly with the parameters of the vector field to minimize the loss function in Eq. (17).194

4 Related Work195

The meta-learning of probability measures was previously studied by Amos et al. (2022) where they196

demonstrate that the prediction of the optimal transport paths can be efficiently amortized over the197

input marginal measures. The main difference with our approach is that we are trying to learn the198

push-forward map without embedding the second marginal.199

Generative modeling for single cells. Single cell data has expanded to encompass multiple modalities200

of data profiling cell state and activities (Frangieh et al., 2021; Bunne et al., 2023b). Single-cell201

data presents multiple challenges in terms of noise, non-time resolved, and high dimension, and202

generative models have been used to counter those problems. Autoencoder has been used to embed203

and extrapolate data Out Of Distribution (OOD) with its latent state dimension (Lotfollahi et al., 2019;204

Lopez et al., 2018; Hetzel et al., 2022). Orthogonal non-negative matrix factorization (oNMF) has205

also been used for dimensionality reduction combined with mixture models for cell state prediction206

(Chen et al., 2020). Other approaches have tried to use Flow Matching (FM) (Tong et al., 2023, 2024;207

Neklyudov et al., 2023) or similar approaches such as the Monge gap (Uscidda and Cuturi, 2023) to208

predict cell trajectories. Currently, the state of the art method uses the principle of Optimal Transport209

(OT) to predict cell trajectories with Input Convex Neural Network (ICNN) (Makkuva et al., 2020;210

Bunne et al., 2023b). What determines the significance of the method is its capability in generalizing211

out of distribution to a new population of cells, which may be from different culture or individuals.212

As of this time, our method is the only method that takes inter-cellular interactions into account.213

Generative modeling for physical processes. The closest approach to ours is the prediction of the214

many-body interactions in physics (Sanchez-Gonzalez et al., 2020) via GNNs. However, the problem215

there is very different since these models use the information about the individual trajectories of216

samples, which are not available for the single-cell prediction. Neklyudov et al. (2022) consider217

learning the vector field for any continuous time-evolution of a probability measure, however, their218

method is restricted to single curves and do not consider generalization to unseen data. Finally, the219

weather/climate forecast models generating the next state conditioned on the previous one (Price220

et al., 2023; Verma et al., 2024) are similar approaches to ours but operating on a much finer time221

resolution.222

5 Experiments223

To show the effectiveness of MFM to generalize under previously unseen populations for the task224

population prediction, we consider two experimental settings. (i) A synthetic experiment with well225

defined coupled populations, and (ii) experiments on a publicly available single-cell dataset consisting226

of populations from patient dependent treatment response trials. To quantify model performance,227

we consider three distributional distances metrics: the 1-Wasserstein distance (W1), 2-Wasserstein228

(W2) distance, and the radial basis kernel maximum-mean-discrepancy (MMD) distance (Gretton229

et al., 2012). We parameterize all vector field models vt(· |φ(p0);ω) using a Multi-Layer Perceptron230

(MLP). For MFM, we additionally parameterize φ(pt; θ, k) using a Graph Convolutional Network231
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Figure 2: Examples of model-generated samples for synthetic letters from the source distribution (t = 0) to
predicted target distribution (t = 1). See Fig. 4 in Appendix F for a larger set of examples.

Table 1: Results of the synthetic letters experiment for population prediction on seen train populations and
unseen test populations. We report the the 1-Wasserstein (W1), 2-Wasserstein (W2), and the maximum-mean-
discrepancy (MMD) distributional distances. We consider 4 settings for MFM with varying k.

Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 0.216± 0.000 0.280± 0.000 2.38± 0.00 0.237± 0.000 0.315± 0.000 3.28 ± 0.00
CGFM 0.093 ± 0.000 0.112 ± 0.000 0.34± 0.00 0.317± 0.000 0.397± 0.000 6.67± 0.00

MFM (k = 0) 0.099± 0.000 0.128± 0.000 0.25± 0.00 0.221± 0.000 0.267± 0.000 3.77± 0.00
MFM (k = 1) 0.096 ± 0.003 0.124± 0.004 0.22 ± 0.04 0.217± 0.003 0.261± 0.003 3.80± 0.28
MFM (k = 10) 0.096 ± 0.003 0.124± 0.003 0.23 ± 0.04 0.213 ± 0.008 0.256 ± 0.008 3.68 ± 0.45
MFM (k = 50) 0.099± 0.003 0.127± 0.003 0.25± 0.05 0.226± 0.005 0.270± 0.007 4.38± 0.30

(GCN) with a k-nearest neighbour graph edge pooling layer. We include details regarding model232

hyperparameters, training/optimization, and implementation in Appendix B and Appendix B.2. The233

results for all the models are averaged over three random seeds.234

5.1 Synthetic Experiment235

We curate a synthetic dataset of the joint distributions {(p0(x0, | i), p1(x1 | i))}Ni=1 by simulating a236

diffusion process applied to a set of pre-defined target distributions p1(x1 | i) for i = 1, . . . , N . To get237

a paired population p0(x0 | i) we simulate the forward diffusion process without drift x0 ∼ N (x1, σ).238

After this setup, for reasonable values of σ, we assume that one can reverse the diffusion process and239

learn the push-forward map from p0(x0 | i) to p1(x1 | i) for every index i. For this task, given the i-th240

population index we denote p0(x0 | i) as the source population p1(x1 | i) as the i-th target population.241

To construct p1(x1 | i), we discretize samples from a defined silhouette; e.g. an image of a character,242

where i indexes the respective character. We use upper case letters as the silhouette and generate243

the corresponding samples x1 ∼ p1(x1 | i) from the uniform distribution over the silhouette and run244

the diffusion process for samples x1 to acquire x0. We construct the training data using 10 random245

orientations of 24 letters, while only using the upright orientation for the remaining letters “X” and246

“Y”. We construct the test data by using 10 random orientations of “X” and “Y” (validation and test,247

respectively) that differ from the upright orientations of the same letters in the training data. We248

do this to simplify the generalization task – the model will see the shapes of “X” and “Y” during249

training, but the same letters under different orientations remain unseen.250

We train FM, CGFM and 4 variants of MFM of varying k for the GCN population embedding model251

φ(pt; θ, k). When k = 0, φ(pt; θ, k) becomes identical to the DeepSets model (Zaheer et al., 2017).252

We compare MFM to Flow-Matching (FM) and Conditional Generation via Flow-Matching (CGFM).253

FM does not have access to conditional information; hence will only learn an aggregated lens of the254

distribution dynamics and will not be able to fit the training data, and consequently won’t generalize255

to the test conditions. For the training data, CGFM vector field model takes in the distribution index256

i as a one-hot input condition. On the test set, since none of these indices is present, we input the257

normalized constant vector, which averages the learned embeddings of the indices. Because of this,258

CGFM will fit the training data, however, will not be able to generalize to the unseen condition in259

the test dataset. Note that the CGFM can be viewed as an idealized model for the train data since260
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Figure 3: Organoid drug-screen dataset overview. Left: a given replica consists of a control distribution p0 and
corresponding treatment response distribution p1 for treatment condition ci. Right: train and test data splits for
replica (top) and patients (bottom) splits, restively. For each experiment there are 11 treatments, 10 patients and
3 culture conditions.

it gets perfect information regarding the population conditions. We use CGFM to assess if other261

models are fitting the data. For MFM, we expect to both fit the training data and generalize to unseen262

distributional conditions.263

In Fig. 2, we observe that indeed FM fails to adequately learn to sample from p1(x1 | i) in the training264

set, and likewise fails to generalize, while CGFM is able to effectively sample from p1(x1 | i) in265

the training set, but fails to generalize. We report results for the synthetic experiment in Table 1.266

As expected, CGFM fits the training data, however, fails to generalize beyond its set of training267

conditions. In contrast, we see that MFM is able to both fit the training data (approaching the268

performance of CGFM) while also generalizing to the unseen test distributions. FM fails to fit the269

train data and fails to generalize under the test conditions. Interestingly, although MFM performs270

better for certain values of k versus others, overall performance does not vary significantly for the271

range considered.272

5.2 Experiments on Organoid Drug-screen Data273

Data. For experiments on biological data, we use the organoid drug-screen dataset from Ramos Zap-274

atero et al. (2023). This dataset is a single-cell mass-cytometry dataset collected over 10 patients.275

Somewhat unique to this dataset, unlike many prior perturbation-screen datasets which have a single276

control population, this dataset has matched controls to each experimental condition. Populations from277

each patient are treated with 11 different drug treatments of varying dose concentrations.1 We use the278

term replicate to define control-treatment population pairs, p0(x0 | ci) and p1(x1 | ci), respectively279

(see Fig. 3-left). In each patient, cell population are categorized into 3 cell cultures: (i) cancer associ-280

ated Fibroblasts, (ii) patient-derived organoid cancer cells (PDO), and (iii) patient-derived organoid281

cancer cells co-cultured fibroblasts (PDOF). We report results averaged over Fibroblast/PDO/PDOF282

cultures and results for the individual cultures (this is reported in Appendix F).283

Pre-processing and data splits. We filter each cell population to contain at least 1000 cells and284

consider 43 bio-markers. We consider two data splits for the organoid drug-screen dataset (see285

Fig. 3-right). (1) Replicate split; here we leave-out replicates evenly across all patients for testing. (2)286

Patients split; here we leave-out replicates fully in one patients – in this setting, we are testing the287

ability of of model to generalize population prediction of treatment response for unseen patients. In288

both settings, we normalize the data and embed it into a lower dimensional principle components289

(PC) representation. We do this to reduce the dimensionality of the data and to extract the relevant290

information from the 43 bio-markers (features) of the ambient space. We train and evaluate all models291

in the PC space. For all organoid drug-screen dataset experiments we use PC=10. Further details292

regarding data pre-processing and data splits are provided in Appendix B.2.293

For the organoid drug-screen experiments, we consider an ICNN architecture in addition to the294

Flow-matching models. The ICNN model is based on CellOT (Bunne et al., 2023a); a method for295

learning cell specific response to treatments. The ICNN (and likewise CellOT) counterparts our FM296

1We consider only the highest dosage and leave exploration of dose-dependent response to future work.
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Table 2: Experimental results on the organoid drug-screen dataset for population prediction of treatment response
across replicate populations averaged over co-culture conditions. Results are reported for models trained on data
embedded into 10 principle components. We report the the 1-Wasserstein (W1), 2-Wasserstein (W2), and the
maximum-mean-discrepancy (MMD) distributional distances. We consider two settings for MFM with varying
nearest-neighbours parameter. For extended results in Table 4.

Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.946± 0.083 2.178± 0.092 6.32± 0.36 2.087± 0.035 2.301± 0.043 9.29± 0.77
ICNN 2.112± 0.012 2.317± 0.011 190.17± 4.87 2.200± 0.011 2.395± 0.010 249.33± 4.67
CGFM 1.823 ± 0.126 2.009 ± 0.143 4.16 ± 1.00 2.213± 0.137 2.416± 0.154 13.91± 2.41
MFM (k = 0) 1.829± 0.050 2.012± 0.058 4.64± 0.66 1.959± 0.050 2.144± 0.059 7.35± 1.20
MFM (k = 10) 1.842± 0.049 2.020± 0.057 4.76± 0.66 1.954 ± 0.047 2.136 ± 0.052 7.34 ± 0.93

Table 3: Experimental results on the organoid drug-screen dataset for population prediction of treatment response
across patient populations. Results shown in this table are broken out in Table 5.

Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.995± 0.138 2.246± 0.193 6.87± 2.65 2.607± 0.028 2.947± 0.050 21.58± 1.02
ICNN 2.163± 0.067 2.367± 0.070 192.67± 4.22 2.702± 0.027 2.996± 0.033 452.67± 19.14
CGFM 1.773 ± 0.072 1.954 ± 0.092 3.03 ± 0.69 2.675± 0.019 2.938± 0.020 23.75± 0.61
MFM (k = 0) 1.863± 0.056 2.048± 0.063 5.01± 0.53 2.393± 0.160 2.685± 0.122 16.66± 1.99
MFM (k = 10) 1.881± 0.071 2.074± 0.091 5.25± 0.78 2.326 ± 0.072 2.610 ± 0.073 14.30 ± 2.27

model in that it does not take the population index i as a condition. Therefore, it will neither be able297

to fit the training data, nor generalize.298

Predicting treatment response across replicates. We show results for generalization across repli-299

cates in Table 2. As expected, we observe that CGFM fits the training data, but does not generalize to300

the test replicates. With this, we can observe that the FM and ICNN models fail to fit the train data,301

relative to CGFM, and also fail to generalize. MFM (k = 10) performs best on generalization to302

unseen replicates. We include results reported for the separate cell cultures in Table 4 in Appendix F.303

Predicting treatment response across patients. We show results for generalization across patients304

in Table 3. Similar to the replicates data setting, we observe that CGFM fits the training data, but305

does not generalize to the test replicates. Likewise, the FM and ICNN models fail to fit the train data,306

relative to CGFM, and also fail to generalize. MFM (k = 10) performs best on generalization to307

unseen replicates. We include results reported for the separate cell cultures in Table 5 in Appendix F.308

Through the biological and synthetic experiments, we have shown that MFM is able to generalize309

to unseen distributions/populations. The implication of our results suggest that MFM can learn310

population dynamics in unseen environments. In biological contexts, like the one we have shown311

in this work, this result indicates that we can learn population dynamics, of treatment response or312

any arbitrary perturbation, in new/unseen patients. This works towards a model where it is possible313

to predict and design an individualized treatment regimen for each patient based on their individual314

characteristics and tumor microenvironment.315

6 Conclusion and Future Work316

Our paper highlights the significance of modeling dynamics based on the entire distribution. While317

flow-based models offer a promising avenue for learning dynamics at the population level, they were318

previously restricted to a single initial population and predefined conditions.319

In this paper, we introduce Meta Flow Matching (MFM) as a practical solution to address these320

limitations. By integrating along vector fields of the Wasserstein manifold, MFM allows for a more321

comprehensive model of dynamical systems with interacting particles. Crucially, MFM leverages322

graph neural networks to embed the initial population, enabling the model to generalize over various323

initial distributions. MFM opens up new possibilities for understanding complex phenomena that324

emerge from interacting systems in biological and physical systems.325

In practice, we demonstrate that MFM learns meaningful embeddings of single-cell populations along326

with the developmental model of these populations. Moreover, our empirical study demonstrates the327

possibility of modeling patient-specific response to treatments via the meta-learning.328
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A Proof of Theorem 1483

Theorem 1. Consider a dataset of populations D = {(π(x0, x1 | i))}i generated from some unknown484

conditional model π(x0, x1 | c)p(c). Then the following objective485

L(ω, θ) = Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)− vt(xt |φ(p0, θ), ω)∥2 (16)

is equivalent to the Meta Flow Matching objective486

LMFM(ω, θ) = Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(p0, θ);ω)

∥∥∥∥2 (17)

up to an additive constant.487

Proof. The loss function488

L(ω, θ) = Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)− vt(xt |φ(pt, θ);ω)∥2 (20)

= − 2Ep(c)

∫
dtdx ⟨pt(x | c)v∗t (x | c), vt(x |φ(pt, θ);ω)⟩+ (21)

+ Ep(c)

∫ 1

0

dt Ept(xt | c)∥vt(xt |φ(pt, θ), ω)∥2+ (22)

+ Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)∥2 . (23)

The last term does not depend on θ, the second term we can estimate, for the first term, we use the489

formula for the (from Eq. (8))490

pt(ξ | c)v∗t (ξ | c) = Eπ(x0,x1)δ(ft(x0, x1)− ξ)
∂ft(x0, x1)

∂t
. (24)

Thus, the loss is equivalent (up to a constant) to491

L(ω, θ) = − 2Ep(c)Eπ(x0,x1 | c)

∫
dt

〈
∂ft(x0, x1)

∂t
, vt(ft(x0, x1) |φ(pt, θ);ω)

〉
+ (25)

+ Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt ∥vt(ft(x0, x1) |φ(pt, θ), ω)∥2± (26)

± Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥∂ft(x0, x1)

∂t

∥∥∥∥2 (27)

= Ec∼p(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 . (28)

Note that in the final expression we do not need access to the probabilistic model of p(c) if the joints492

π(x0, x1 | c) are already sampled in the data D. Thus, we have493

L(ω, θ) = Ec∼p(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 (29)

= Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 (30)

= LMFM(ω, θ) . (31)
494

B Experimental Details495

B.1 Synthetic letters data496

The synthetic letters dataset contains 242 train populations a 10 test populations. Each population497

contains roughly between 750 and 2700 samples. In this dataset.498
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B.2 Organoid drug-screen data499

The organoid drug-screen dataset contains a total of 927 replicates (or coupled populations). In the500

replicates split, we use 713 populations for training and 103 left-out populations for testing. In the501

patients split, we use 861 populations for training and 33 left-out populations for testing.502

B.3 Model architectures and hyperparameters503

ICNN. The ICNN baseline was constructed with two networks ICNN network f(x) and g(x), with504

non-negative leaky ReLU activation layers. f(x) is used to minimize the transport distance and g(x)505

is used to transport from source to target. It has four hidden units with width of 64, and a latent506

dimension of 50. Both networks uses Adam optimizer (lr=1e− 4, β1=0.5, β2=0.9). g(x) is trained507

with an inner iteration of 10 for every iteration f(x) is trained.508

Vector Field Models. All vector field models vt are parameterized 4 linear layers with 512 hidden509

units and SELU activation functions. The FM vector field model additionally takes a conditional510

input for the one-hot treatment encoding. CGFM takes the conditional input for the one-hot treatment511

conditions as well as a one-hot encoding for the population index condition i. The MFM vector field512

model takes population embedding conditions, that is output from the GCN, as input, as well as the513

treatment one-hot encoding. All vector field models use temporal embeddings for time and positional514

embeddings for the input samples. We did not sweep the size of this embeddings space and found515

that a temporal embedding and positional embeddings sizes of 128 worked sufficiently well.516

Graph Neural Network. We considered a GCN model that consists of a k-nearest neighbour graph517

edge pooling layer and 3 graph convolution layers with 512 hidden units. The final GCN model518

layer outputs an embedding representation e ∈ Rd. For the Synthetic experiment, we found that519

d = 256 performed well, and d = 128 performed well for the biological experiments. We normalize520

and project embeddings onto a hyper-sphere, and find that this normalization helps improve training.521

Additionally, the GCN takes a one-hot cell-type encoding (encoding for Fibroblast cells or PDO522

cells) for the control populations p0. This may be beneficial for PDOF populations where both523

Fibroblast cells and PDO cells are present. However, it is important to note that labeling which cells524

are Fibroblasts versus PDOs withing the PDOF cultures is difficult and noisy in itself, hence such a525

cell-type condition may yield no additive information/performance gain.526

Optimization. We use the Adam optimizer with a learning rate of 0.0001 for all Flow-matching527

models (FM, CGFM, MFM). We also used the Adam optimizer with a learning rate of 0.0001 for528

the GCN model. To train the MFM (FM+GCN) models, we alternate between updating the vector529

field model parameters ω and the GCN model parameters θ. We alternate between updating the530

respective model parameters every epoch. FM and CGFM model were trained for 2000 epochs, while531

MFM models were trained for 4000 epochs. Due to the alternating optimization, the MFM vector532

field model receives half as many updates compared to its counterparts (FM and CGFM). Therefore,533

training for the double the epochs is necessary for fair comparison.534

The hyperparameters stated in this section were selected from brief and small grid search sweeps. We535

did not conduct any thorough hyperparameter optimization.536

C Implementation Details537

We implement all our experiments using PyTorch and PyTorch Geometric. We submitted our code as538

supplementary material with our submission.539

All experiments were conducted on a HPC cluster primarily on NVIDIA Tesla T4 16GB GPUs. Each540

individual seed experiment run required only 1 GPU. Each experiment ran between 3-11 hours and541

all experiments took approximately 500 GPU hours.542

D Limitations543

In this work we explored empirically the effect of conditioning the learned flow on the initial544

distribution. We argue this is a more natural model for many biological systems. However, there545

are many other aspects of modeling biological systems that we did not consider. In particular we546
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did not consider extensions to the manifold setting (Huguet et al., 2022, 2023), unbalanced optimal547

transport (Benamou, 2003; Yang and Uhler, 2019; Chizat et al., 2018), aligned (Somnath et al., 2023;548

Liu et al., 2023), or stochastic settings (Bunne et al., 2023a; Koshizuka and Sato, 2023) in this work.549

E Broader Impacts550

This paper is primarily a theoretical and methodological contribution with little societal impact. MFM551

can be used to better model dynamical systems of interacting particles and in particular cellular552

systems. Better modeling of cellular systems can potentially be used for the development of malicious553

biological agents. However, we do not see this as a significant risk at this time.554

F Extended Results555

Table 4: Experimental results on the organoid drug-screen dataset for population prediction of treatment response
across replicate populations. Results are reported for models trained on data embedded into 10 principle
components. We report the the 1-Wasserstein (W1), 2-Wasserstein (W2), and the maximum-mean-discrepancy
(MMD) distributional distances. We consider 2 settings for MFM with varying nearest-neighbours parameter.

Fibroblasts
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.584± 0.022 1.730± 0.015 3.12± 0.59 1.612± 0.014 1.736± 0.024 3.62± 0.15
ICNN 1.613± 0.010 1.703± 0.010 52.4± 1.64 1.655± 0.008 1.746± 0.008 53.0± 5.00
CGFM 1.472 ± 0.046 1.548 ± 0.048 1.28 ± 0.74 1.633± 0.022 1.724± 0.023 4.95± 0.72

MFM (k = 0) 1.519± 0.034 1.599± 0.036 2.56± 0.56 1.574 ± 0.002 1.657 ± 0.003 3.31 ± 0.12
MFM (k = 10) 1.547± 0.027 1.617± 0.027 2.84± 0.56 1.576± 0.017 1.658± 0.019 3.44± 0.19

PDO
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 2.002± 0.027 2.201± 0.025 6.40± 0.10 2.033± 0.015 2.210± 0.016 6.92± 0.65
ICNN 2.29± 0.005 2.458± 0.003 245.8± 9.18 2.247± 0.005 2.415± 0.004 153± 1.00
CGFM 1.818± 0.198 1.931± 0.229 3.78± 0.27 2.255± 0.216 2.434± 0.240 12.16± 3.87

MFM (k = 0) 1.817± 0.043 1.935± 0.040 3.61 ± 0.50 1.909± 0.076 2.057± 0.098 5.14 ± 0.92
MFM (k = 10) 1.805 ± 0.074 1.921 ± 0.078 3.68± 0.78 1.903 ± 0.068 2.051 ± 0.084 5.14 ± 0.90

PDOF
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 2.252± 0.20 2.603± 0.236 9.43± 0.38 2.616± 0.076 2.958± 0.089 19.34± 1.51
ICNN 2.432± 0.021 2.791± 0.020 272.3± 3.80 2.699± 0.021 3.023± 0.019 542± 8.00
CGFM 2.179± 0.133 2.548± 0.153 7.42 ± 2.00 2.750± 0.173 3.089± 0.200 22.63± 2.64

MFM (k = 0) 2.150 ± 0.073 2.502 ± 0.099 7.75± 0.93 2.395± 0.071 2.717± 0.076 13.61± 2.56
MFM (k = 10) 2.174± 0.046 2.523± 0.067 7.75 ± 0.65 2.382 ± 0.055 2.699 ± 0.054 13.45 ± 1.69
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Table 5: Experimental results on the organoid drug-screen dataset for population prediction of treatment
response across patient populations. Results are reported for models trained on data embedded into 10 principle
components. We report the the 1-Wasserstein (W1), 2-Wasserstein (W2), and the maximum-mean-discrepancy
(MMD) distributional distances. We consider 2 settings for MFM with varying nearest-neighbours parameter.

Fibroblasts
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.599± 0.071 1.761± 0.137 2.82± 0.34 1.667± 0.003 1.846± 0.064 7.85± 0.15
ICNN 1.695± 0.08 1.796± 0.09 48.2± 3.412 1.6± 0.009 1.68± 0.013 62.2± 1.32
CGFM 1.496 ± 0.019 1.572 ± 0.016 1.45 ± 0.14 1.566± 0.028 1.652± 0.026 6.46± 0.82

MFM (k = 0) 1.551± 0.037 1.632± 0.042 2.31± 0.71 1.453± 0.200 1.527± 0.022 3.66± 0.67
MFM (k = 10) 1.555± 0.034 1.635± 0.039 2.54± 0.42 1.441 ± 0.003 1.514 ± 0.001 3.37 ± 0.72

PDO
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.996± 0.196 2.171± 0.243 6.79± 3.40 2.128± 0.064 2.312± 0.075 7.88± 1.26
ICNN 2.315± 0.060 2.478± 0.057 236.8± 0.006 2.538± 0.018 2.731± 0.027 232.8± 20.6
CGFM 1.662 ± 0.026 1.760 ± 0.023 1.74 ± 0.16 2.460± 0.018 2.533± 0.023 13.6± 0.25

MFM (k = 0) 1.837± 0.058 1.964± 0.059 3.74± 0.29 2.010± 0.142 2.168± 0.182 6.01± 1.77
MFM (k = 10) 1.838± 0.035 1.957± 0.038 3.75± 0.41 1.971 ± 0.082 2.114 ± 0.101 5.42 ± 1.11

PDOF
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 2.390± 0.148 2.806± 0.198 11.0± 2.21 4.026± 0.018 4.683± 0.011 49.0± 1.66
ICNN 2.479± 0.06 2.826± 0.063 291± 9.24 3.968± 0.0554 4.579± 0.060 1263± 37.5
CGFM 2.160 ± 0.170 2.530 ± 0.237 7.90 ± 1.79 4.000± 0.010 4.629± 0.012 49.2± 0.76

MFM (k = 0) 2.202± 0.072 2.548± 0.089 8.98± 0.59 3.717± 0.138 4.360± 0.162 40.3± 3.52
MFM (k = 10) 2.251± 0.143 2.631± 0.197 9.45± 1.52 3.565 ± 0.132 4.201 ± 0.119 36.1 ± 4.97
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Figure 4: Model-generated samples for synthetic letters from the source (t = 0) to target (t = 1) distributions.
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NeurIPS Paper Checklist556

1. Claims557

Question: Do the main claims made in the abstract and introduction accurately reflect the558

paper’s contributions and scope?559

Answer: [Yes]560

Justification: Claims and contributions introduced in abstract and introduction are sup-561

ported with theoretical result in Section 3 and empirical results through synthetic and real562

experiments in Section 5.563

Guidelines:564

• The answer NA means that the abstract and introduction do not include the claims565

made in the paper.566

• The abstract and/or introduction should clearly state the claims made, including the567

contributions made in the paper and important assumptions and limitations. A No or568

NA answer to this question will not be perceived well by the reviewers.569

• The claims made should match theoretical and experimental results, and reflect how570

much the results can be expected to generalize to other settings.571

• It is fine to include aspirational goals as motivation as long as it is clear that these goals572

are not attained by the paper.573

2. Limitations574

Question: Does the paper discuss the limitations of the work performed by the authors?575

Answer: [Yes]576

Justification: We discuss limitations in Appendix D.577

Guidelines:578

• The answer NA means that the paper has no limitation while the answer No means that579

the paper has limitations, but those are not discussed in the paper.580

• The authors are encouraged to create a separate "Limitations" section in their paper.581

• The paper should point out any strong assumptions and how robust the results are to582

violations of these assumptions (e.g., independence assumptions, noiseless settings,583

model well-specification, asymptotic approximations only holding locally). The authors584

should reflect on how these assumptions might be violated in practice and what the585

implications would be.586

• The authors should reflect on the scope of the claims made, e.g., if the approach was587

only tested on a few datasets or with a few runs. In general, empirical results often588

depend on implicit assumptions, which should be articulated.589

• The authors should reflect on the factors that influence the performance of the approach.590

For example, a facial recognition algorithm may perform poorly when image resolution591

is low or images are taken in low lighting. Or a speech-to-text system might not be592

used reliably to provide closed captions for online lectures because it fails to handle593

technical jargon.594

• The authors should discuss the computational efficiency of the proposed algorithms595

and how they scale with dataset size.596

• If applicable, the authors should discuss possible limitations of their approach to597

address problems of privacy and fairness.598

• While the authors might fear that complete honesty about limitations might be used by599

reviewers as grounds for rejection, a worse outcome might be that reviewers discover600

limitations that aren’t acknowledged in the paper. The authors should use their best601

judgment and recognize that individual actions in favor of transparency play an impor-602

tant role in developing norms that preserve the integrity of the community. Reviewers603

will be specifically instructed to not penalize honesty concerning limitations.604

3. Theory Assumptions and Proofs605

Question: For each theoretical result, does the paper provide the full set of assumptions and606

a complete (and correct) proof?607
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Answer: [Yes]608

Justification: Theory is provided in Section 2 and Section 3. Proofs are provide in Ap-609

pendix A610

Guidelines:611

• The answer NA means that the paper does not include theoretical results.612

• All the theorems, formulas, and proofs in the paper should be numbered and cross-613

referenced.614

• All assumptions should be clearly stated or referenced in the statement of any theorems.615

• The proofs can either appear in the main paper or the supplemental material, but if616

they appear in the supplemental material, the authors are encouraged to provide a short617

proof sketch to provide intuition.618

• Inversely, any informal proof provided in the core of the paper should be complemented619

by formal proofs provided in appendix or supplemental material.620

• Theorems and Lemmas that the proof relies upon should be properly referenced.621

4. Experimental Result Reproducibility622

Question: Does the paper fully disclose all the information needed to reproduce the main ex-623

perimental results of the paper to the extent that it affects the main claims and/or conclusions624

of the paper (regardless of whether the code and data are provided or not)?625

Answer: [Yes]626

Justification: All details for reproducing results and experiments can be found through627

the main text body and appendix. The details include: dataset resource Ramos Zapatero628

et al. (2023), data processing, model architecture and optimization details, and performance629

metrics.630

Guidelines:631

• The answer NA means that the paper does not include experiments.632

• If the paper includes experiments, a No answer to this question will not be perceived633

well by the reviewers: Making the paper reproducible is important, regardless of634

whether the code and data are provided or not.635

• If the contribution is a dataset and/or model, the authors should describe the steps taken636

to make their results reproducible or verifiable.637

• Depending on the contribution, reproducibility can be accomplished in various ways.638

For example, if the contribution is a novel architecture, describing the architecture fully639

might suffice, or if the contribution is a specific model and empirical evaluation, it may640

be necessary to either make it possible for others to replicate the model with the same641

dataset, or provide access to the model. In general. releasing code and data is often642

one good way to accomplish this, but reproducibility can also be provided via detailed643

instructions for how to replicate the results, access to a hosted model (e.g., in the case644

of a large language model), releasing of a model checkpoint, or other means that are645

appropriate to the research performed.646

• While NeurIPS does not require releasing code, the conference does require all submis-647

sions to provide some reasonable avenue for reproducibility, which may depend on the648

nature of the contribution. For example649

(a) If the contribution is primarily a new algorithm, the paper should make it clear how650

to reproduce that algorithm.651

(b) If the contribution is primarily a new model architecture, the paper should describe652

the architecture clearly and fully.653

(c) If the contribution is a new model (e.g., a large language model), then there should654

either be a way to access this model for reproducing the results or a way to reproduce655

the model (e.g., with an open-source dataset or instructions for how to construct656

the dataset).657

(d) We recognize that reproducibility may be tricky in some cases, in which case658

authors are welcome to describe the particular way they provide for reproducibility.659

In the case of closed-source models, it may be that access to the model is limited in660

some way (e.g., to registered users), but it should be possible for other researchers661

to have some path to reproducing or verifying the results.662
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5. Open access to data and code663

Question: Does the paper provide open access to the data and code, with sufficient instruc-664

tions to faithfully reproduce the main experimental results, as described in supplemental665

material?666

Answer: [Yes]667

Justification: The data used in the empirical study is either synthetic or publicly available.668

The code reproducing all the experiments is attached to the paper.669

Guidelines:670

• The answer NA means that paper does not include experiments requiring code.671

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/672

public/guides/CodeSubmissionPolicy) for more details.673

• While we encourage the release of code and data, we understand that this might not be674

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not675

including code, unless this is central to the contribution (e.g., for a new open-source676

benchmark).677

• The instructions should contain the exact command and environment needed to run to678

reproduce the results. See the NeurIPS code and data submission guidelines (https:679

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.680

• The authors should provide instructions on data access and preparation, including how681

to access the raw data, preprocessed data, intermediate data, and generated data, etc.682

• The authors should provide scripts to reproduce all experimental results for the new683

proposed method and baselines. If only a subset of experiments are reproducible, they684

should state which ones are omitted from the script and why.685

• At submission time, to preserve anonymity, the authors should release anonymized686

versions (if applicable).687

• Providing as much information as possible in supplemental material (appended to the688

paper) is recommended, but including URLs to data and code is permitted.689

6. Experimental Setting/Details690

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-691

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the692

results?693

Answer: [Yes]694

Justification: The paper discusses the experimental setup necessary to understand the results695

in Section 5. Furthermore, the details of the empirical study are provided in Appendix B.696

Guidelines:697

• The answer NA means that the paper does not include experiments.698

• The experimental setting should be presented in the core of the paper to a level of detail699

that is necessary to appreciate the results and make sense of them.700

• The full details can be provided either with the code, in appendix, or as supplemental701

material.702

7. Experiment Statistical Significance703

Question: Does the paper report error bars suitably and correctly defined or other appropriate704

information about the statistical significance of the experiments?705

Answer: [Yes]706

Justification: All the results presented in the paper are averaged over multiple independent707

runs and the standard deviations are provided along the metrics.708

Guidelines:709

• The answer NA means that the paper does not include experiments.710

• The authors should answer "Yes" if the results are accompanied by error bars, confi-711

dence intervals, or statistical significance tests, at least for the experiments that support712

the main claims of the paper.713
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• The factors of variability that the error bars are capturing should be clearly stated (for714

example, train/test split, initialization, random drawing of some parameter, or overall715

run with given experimental conditions).716

• The method for calculating the error bars should be explained (closed form formula,717

call to a library function, bootstrap, etc.)718

• The assumptions made should be given (e.g., Normally distributed errors).719

• It should be clear whether the error bar is the standard deviation or the standard error720

of the mean.721

• It is OK to report 1-sigma error bars, but one should state it. The authors should722

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis723

of Normality of errors is not verified.724

• For asymmetric distributions, the authors should be careful not to show in tables or725

figures symmetric error bars that would yield results that are out of range (e.g. negative726

error rates).727

• If error bars are reported in tables or plots, The authors should explain in the text how728

they were calculated and reference the corresponding figures or tables in the text.729

8. Experiments Compute Resources730

Question: For each experiment, does the paper provide sufficient information on the com-731

puter resources (type of compute workers, memory, time of execution) needed to reproduce732

the experiments?733

Answer: [Yes]734

Justification: The paper discuss the compute resources and reproducibility in Appendix C.735

Guidelines:736

• The answer NA means that the paper does not include experiments.737

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,738

or cloud provider, including relevant memory and storage.739

• The paper should provide the amount of compute required for each of the individual740

experimental runs as well as estimate the total compute.741

• The paper should disclose whether the full research project required more compute742

than the experiments reported in the paper (e.g., preliminary or failed experiments that743

didn’t make it into the paper).744

9. Code Of Ethics745

Question: Does the research conducted in the paper conform, in every respect, with the746

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?747

Answer: [Yes]748

Justification: The research does conform with the NeurIPS Code of Ethics. The study749

presented involves only public or synthetic data, which is freely available online. The750

considered models do not impose risks of misuse or dual-use.751

Guidelines:752

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.753

• If the authors answer No, they should explain the special circumstances that require a754

deviation from the Code of Ethics.755

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-756

eration due to laws or regulations in their jurisdiction).757

10. Broader Impacts758

Question: Does the paper discuss both potential positive societal impacts and negative759

societal impacts of the work performed?760

Answer: [Yes]761

Justification: The paper discusses the broader impact in Appendix E.762

Guidelines:763

• The answer NA means that there is no societal impact of the work performed.764
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• If the authors answer NA or No, they should explain why their work has no societal765

impact or why the paper does not address societal impact.766

• Examples of negative societal impacts include potential malicious or unintended uses767

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations768

(e.g., deployment of technologies that could make decisions that unfairly impact specific769

groups), privacy considerations, and security considerations.770

• The conference expects that many papers will be foundational research and not tied771

to particular applications, let alone deployments. However, if there is a direct path to772

any negative applications, the authors should point it out. For example, it is legitimate773

to point out that an improvement in the quality of generative models could be used to774

generate deepfakes for disinformation. On the other hand, it is not needed to point out775

that a generic algorithm for optimizing neural networks could enable people to train776

models that generate Deepfakes faster.777

• The authors should consider possible harms that could arise when the technology is778

being used as intended and functioning correctly, harms that could arise when the779

technology is being used as intended but gives incorrect results, and harms following780

from (intentional or unintentional) misuse of the technology.781

• If there are negative societal impacts, the authors could also discuss possible mitigation782

strategies (e.g., gated release of models, providing defenses in addition to attacks,783

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from784

feedback over time, improving the efficiency and accessibility of ML).785

11. Safeguards786

Question: Does the paper describe safeguards that have been put in place for responsible787

release of data or models that have a high risk for misuse (e.g., pretrained language models,788

image generators, or scraped datasets)?789

Answer: [NA] .790

Justification: The models considered in the paper do not carry the risks of misuse or dual-use.791

Guidelines:792

• The answer NA means that the paper poses no such risks.793

• Released models that have a high risk for misuse or dual-use should be released with794

necessary safeguards to allow for controlled use of the model, for example by requiring795

that users adhere to usage guidelines or restrictions to access the model or implementing796

safety filters.797

• Datasets that have been scraped from the Internet could pose safety risks. The authors798

should describe how they avoided releasing unsafe images.799

• We recognize that providing effective safeguards is challenging, and many papers do800

not require this, but we encourage authors to take this into account and make a best801

faith effort.802

12. Licenses for existing assets803

Question: Are the creators or original owners of assets (e.g., code, data, models), used in804

the paper, properly credited and are the license and terms of use explicitly mentioned and805

properly respected?806

Answer: [Yes] .807

Justification: We cite (Ramos Zapatero et al., 2023) that produced the dataset used in the808

study. The dataset is available under the license CC BY 4.0.809

Guidelines:810

• The answer NA means that the paper does not use existing assets.811

• The authors should cite the original paper that produced the code package or dataset.812

• The authors should state which version of the asset is used and, if possible, include a813

URL.814

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.815

• For scraped data from a particular source (e.g., website), the copyright and terms of816

service of that source should be provided.817
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• If assets are released, the license, copyright information, and terms of use in the818

package should be provided. For popular datasets, paperswithcode.com/datasets819

has curated licenses for some datasets. Their licensing guide can help determine the820

license of a dataset.821

• For existing datasets that are re-packaged, both the original license and the license of822

the derived asset (if it has changed) should be provided.823

• If this information is not available online, the authors are encouraged to reach out to824

the asset’s creators.825

13. New Assets826

Question: Are new assets introduced in the paper well documented and is the documentation827

provided alongside the assets?828

Answer: [NA] .829

Justification: The paper does not release new assets.830

Guidelines:831

• The answer NA means that the paper does not release new assets.832

• Researchers should communicate the details of the dataset/code/model as part of their833

submissions via structured templates. This includes details about training, license,834

limitations, etc.835

• The paper should discuss whether and how consent was obtained from people whose836

asset is used.837

• At submission time, remember to anonymize your assets (if applicable). You can either838

create an anonymized URL or include an anonymized zip file.839

14. Crowdsourcing and Research with Human Subjects840

Question: For crowdsourcing experiments and research with human subjects, does the paper841

include the full text of instructions given to participants and screenshots, if applicable, as842

well as details about compensation (if any)?843

Answer: [NA] .844

Justification: The empirical study presented in the paper is conducted on the synthetic or845

publicly available data.846

Guidelines:847

• The answer NA means that the paper does not involve crowdsourcing nor research with848

human subjects.849

• Including this information in the supplemental material is fine, but if the main contribu-850

tion of the paper involves human subjects, then as much detail as possible should be851

included in the main paper.852

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,853

or other labor should be paid at least the minimum wage in the country of the data854

collector.855

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human856

Subjects857

Question: Does the paper describe potential risks incurred by study participants, whether858

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)859

approvals (or an equivalent approval/review based on the requirements of your country or860

institution) were obtained?861

Answer: [NA]862

Justification: The empirical study presented in the paper is conducted on the synthetic or863

publicly available data.864

Guidelines:865

• The answer NA means that the paper does not involve crowdsourcing nor research with866

human subjects.867
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• Depending on the country in which research is conducted, IRB approval (or equivalent)868

may be required for any human subjects research. If you obtained IRB approval, you869

should clearly state this in the paper.870

• We recognize that the procedures for this may vary significantly between institutions871

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the872

guidelines for their institution.873

• For initial submissions, do not include any information that would break anonymity (if874

applicable), such as the institution conducting the review.875
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