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Abstract

Estimation of permeability fields in the subsur-
face plays a crucial role in forecasting and risk
evaluation of geologic carbon storage operations.
In real-world scenarios, direct measurements of
permeability and CO, plume extent are typically
sparse due to the high cost and limited direct mea-
surement methods. Although inverse modeling
approaches allow us to estimate the subsurface
properties including permeability using observa-
tions of other indirect data such as pressure, satu-
ration, and measurements from geophysics, it suf-
fers from expensive computation for large-scale
problems with relatively high uncertainty. In this
work, we test a deep generative prior to sample 3D
permeability realizations from a low-dimensional
latent space. Then we incorporate the constructed
deep generative model to the inverse modeling
framework and use observations of CO5 satura-
tion to reconstruct the permeability field.

1. Introduction

The increase of greenhouse gas carbon dioxide (COs) is rec-
ognized as a crucial contributor to climate warming. Carbon
dioxide capture and geological storage (CCS) has emerged
as a significant strategy to reduce the concentration of car-
bon dioxide in the atmosphere. However, large-scale injec-
tion of COs into the subsurface system may cause leakage
from CCS, which then potentially degrades the role of the
subsurface as a carbon mitigation option. To reduce leakage
risk and make the operation more feasible, a comprehensive
analysis of the subsurface system and modeling of CO,
storage is necessary.

The analysis of the subsurface system involves certain par-
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tial differential equations (PDEs) that describe multi-phase
fluid flow as well as geomechanical deformation and geo-
chemical reactions (Nordbotten & Celia, 2011). Analytical
and numerical approaches for solving these equations usu-
ally rely on being aware of the subsurface properties, e.g.,
spatial permeability field that represent complex subsurface
structures, appeared as the PDE coefficients. Therefore,
characterization of subsurface properties including perme-
ability and porosity plays a crucial role in modeling of CO2
plume migration and potential leakage.

In practice, however, there is often sparse direct measure-
ments of such properties due to the expensive cost of
drilling in the deep subsurface. Inverse modeling/data as-
similation approaches offer an option to inversely estimate
the unknown subsurface properties from the observation
data of primary variables through the governing equations
(Forghani et al., 2022). But when it comes to large-scale
fields, the computation of inverse modeling is expensive due
to the computation of Jacobian and large matrix inversion.

Our focus in this work is to predict the large-scale per-
meability field using sparse saturation observation data
with a reduced-order model (ROM). Specifically, we use
a Bayesian method to update the probability density func-
tion (pdf) of unknown properties from the prior pdf. For
the prior modeling, instead of widely used Gaussian mod-
els, deep generative models are used to better account for
the subsurface structures with potential faults and fractures;
for our purpose, a Variational Autoencoder (VAE) with 3D
Convolutional Neural Network architecture is used to ex-
plain potential subsurface structures with a low-dimensional
latent representation of the permeability field. Then mul-
tiphase flow simulation for pressure and COs saturation is
also approximated with deep-learning based ROM (Yoon
et al., 2022) for the faster equation of the aquifer states.
Bayesian data assimilation approaches are then performed
to estimate the latent representation of the permeability field
using saturation observation data. We apply the proposed
method to characterize the 3D permeability field in the I1li-
nois Basin Decatur Project (IBDP), the first CCS site in
the United States that injected commercial volumes of COq
captured from a biofuel plant (Finley, 2014).
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2. Methods

2.1. Forward Simulation

In this study, we focus on the modeling of CO5 storage with
highly heterogeneous permeability field. The COg-brine
flow system involves multiple fluid phases that follow the
mass conservation principle. The governing equation for
immiscible flow of multiple fluids in porous media is
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where « denotes phase, ¢ is the porosity, S,, is saturation,
u,, is the phase velocity, p,, is the density, ¢, denotes the
source/sink terms in each phase. The relationship between
u,, and primary variables can be described by multi-phase
version of Darcy’ law.
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where k is absolute permeability, &, ., is relative permeabil-
ity, pq is the fluid viscosity, p, is the pressure, and g is
the gravity. Note that the pressure and saturation are the
primary variables in the governing equation above.

The governing equation can be solved using numerical meth-
ods, e.g., finite difference (FD) and finite element method
(FEM) (Binning & Celia, 1999; Kukreti & Rajapaksa, 1989).
In this work, we use a deep learning-based surrogate model
(Yoon et al., 2022), which is a convolutional neural network-
long short-term memory (CNN-LSTM) model, to perform
the forward simulation for its fast computation. The deep
learning-based surrogate model uses permeability, poros-
ity, and injection rates as inputs to forecast CO4 saturation
and pressure. Hence, it can be considered as a ML-based
surrogate model of the governing equation.

2.2. Deep Generative Model

Solving the governing equation involves knowing the PDE
coefficients (i.e., permeability and porosity). Given the
physical coefficients, we can obtain primary variables (i.e.,
saturation and pressure) by solving the mass conservation
equations of the CO,-brine flow system. In this work, we
trained a deep generative model that can generate samples
from a low dimensional latent space so that we can accel-
erate the inversion. Our application is the Illinois Basin
Decatur Project (IBDP) site (Finley, 2014). In this prelim-
inary work, among many deep generative models such as
generative adversarial networks, normalizing flow, or score-
based models, we use Variational Autoencoder (VAE) with
3D CNN architecture to generate 3D permeability field re-
alizations as shown in Figure 1. The training data were
generated from different Gaussian models with fault inclu-
sion within the geological formations where the entire 3D

field has 11 geological formation and our preliminary choice
of VAE is mainly due to its simplicity and faster training.

Autoencoder is a neural network designed to reconstruct
high-dimensional variables from low-dimensional latent
space. It consists of encoder and decoder. The encoder
network maps the high-dimensional variables into low-
dimensional latent space in order to achieve dimensionality
reduction, while the decoder network offers the capability to
transform the latent representation back to the original high-
dimensional variables. VAE imposes a prior distribution of
the latent representation by introducing a regularization term
in the loss function (Kingma & Welling, 2013). The objec-
tive of VAE is to minimize the reconstruction error as well as
the prior regularization term, which is the Kullback-Leibler
(KL) divergence between the prior normal distribution p(2)
and the conditional distribution ¢(z|z):

Lyae = —Eq(z|m[log p(22)] + Drw(q(z[2)[[p(2)) ()

(a) s
Bl L . st
B ‘;::»N(#L)—» Decoder *‘% |

iteration j=i+1
Update z
with UQ

Initia\‘ A Simulated
Uncertainty | £ Decoder | > Outputs
b Surrogate Models

Figure 1. (a) Permeability generative model. (b) Flow diagram of
latent space variational data assimilation

(b)

2.3. Inverse Modeling

After the VAE model is trained, we employed a Bayesian
approach as the inverse problem solver to estimate the latent
representations of permeability coefficients from the satu-
ration observations. The forward problem can be defined
as

y=h(G(z)) + ¢ )

where z is the latent representations of the unknown vari-
able (e.g., permeability), G is the generative model (e.g.,
the decoder of VAE model), h is the forward map, and € is
the observation and model uncertainty noise, € ~ A (0, R),
where R is the observation error matrix.Since we impose
a Gaussian prior regularization in VAE, the prior distribu-
tion of z is assumed to follow Gaussian distribution, i.e.,
z ~ N(u, ). The Bayes’ rule allows us to a posterior
distribution of z via
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Then, the maximum a posterior (MAP) estimate is

Zmap = arg max(—(y — h(G(2)) "R (y — h(G(2)) + —=T7"2) (6)

The MAP estimate can be approximated by the Gauss-
Newton approach with iterative linearizations (Forghani
et al., 2022; Lee & Kitanidis, 2014). For iteration count [
and step size «, we have
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where Jj is the Jacobian of the forward map from the la-
tent space to permeability at the [-th iteration. .J; can be
evaluated using the following formula:
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3. Preliminary Results

In this section, we provide the results of our deep generative
prior based inversion framework to estimate the highly het-
erogeneous permeability field. In section 3.1, we provide
the results of applying the VAE model to reconstruct the 3D
permeability data. In section 3.2, we present the inversion
results of using sparse saturation measurement.

3.1. Performance of VAE for Permeability
Reconstruction

In this section, we present the result of applying VAE model
to the 3D domain. The domain dimension is nx = 38, ny =
42, nz = 90, which is the central region of the entire domain
(nx = 126, ny = 125, nz = 110). The permeability in this
case is anisotropic, i.e., different spatial fields k., kyy, and
k... We distinguish the horizontal and vertical permeability,
as indicated by z and z, respectively. We take the logarithm
of permeability and then normalized it to [0, 1]. We have
currently available 100 permeability fields and simulated
saturation fields every month for 3 yrs injection and 1 yr
post-injection period in total offered from the IBDP site. 90
cases of the entire 100 cases are taken as training set and the
remaining 10 is for validation. The major hyper-parameters
of the model are present in table 1.

Figure 2 shows several layers of reconstructed permeability
realizations on the test set and the fitting plot of permeability
data with the root mean square error (RMSE) calculated on

Table 1. Major hyper-parameters

HYPER-PARAMETER VALUE
LATENT DIMENSION 100
WEIGHT OF KL DIVERGENCE 1076
OPTIMIZER ADAM
LEARNING RATE 10~°
BATCHSIZE 16

the single layer. The realization for visualization is chosen
randomly from the test set and its 74-th, 79-th, 84-th, and
89-th model layers are selected for visualization, which
are representative of the subsurface structure. The RMSE
values of permeability on the training set and test set are
0.0464 and 0.0491, respectively, indicating a reasonable
construction of the deep prior model for the IBDP model.

Layer 74: Real X

Frs ] 1
L £
i ; B T
T g A o U
. -t W 4;’ -
30 30 _.--ln - 320 =
2 ds P -

0 1 20 30 4 0 20 3 4 0 1 20 0 4 o 1 20 30 4
Perm (X) Fitting (RMSE: 3.909-02)  Perm (X) Fitting (RMSE: 3.504e-02)  Perm (X) Fitting (RMSE: 5.253¢-02)  Perm (X) Fitting (RMSE: 2.098e-02)

~

Layer 74: Real Z
-

Recon

0 1 20 30 4
Layer 74: Recon Z

o
10
20
30

0 1 20 30 4 0 20 3 4 0 1 20 3 4

Perm (2) Fitting (RMSE: 3.988¢-02)  Perm (2) Fitting (RMSE: 3.533¢-02)  Perm (2) Fitting (RMSE: 5.211e-02)  Perm (2) Fitting (RMSE: 1.998e-02)

Recon

K

Feal Real

/z

Figure 2. Reconstruction of permeability on the test set. Rows
from top to bottom are real, reconstructed permeability and the data
fitting plot in the horizontal and vertical directions, respectively.
Columns from left to right are layers 74, 79, 84, and 89.
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3.2. Performance of Inverse Modeling

In this section, we show the results of our deep generative
prior-based inversion approach using sparse saturation mea-
surement. We use the decoder of VAE as the generative
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model to produce 3D permeability field. The dimension of
latent representation z is set to 100.
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Figure 3. The generated permeability using the updated latent rep-
resentation z. The first two rows are real and reconstructed per-
meability in x coordinate respectively, while the last tow rows are
real and reconstructed permeability in z coordinate respectively.
Columns are layers 74, 79, 84, 89 from left to right.

Once the permeability realizations are generated, we per-
form forward simulation using the pre-trained deep learning
surrogate CNN-LSTM model to obtain saturation values.
We chose 9 observation wells whose location is shown in
Figure 3. Gauss-Newton approach is performed to update
the latent representation z. Figure 3 shows generated per-
meability by the decoder of VAE with the estimated 2. In
Figure 4, we plot the observed saturation against simulated
saturation, which shows a reasonable fitting of the CO
saturation.

4. Concluding Remarks

We implemented a deep generative model-based inversion
approach to perform inversion for the IBDP CCS site
and presented reasonable inversion results. The proposed
method uses deep generative prior and reduced-order satu-
ration prediction model so that one expect a great computa-
tional gain in the CO; injection site characterization. In the
preliminary application, the estimated permeability fields
captured important subsurface structures, i.e., faults and
host rock permeability distribution, due to the informative
prior used in the training.
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Figure 4. Saturation data fitting.

5. Broader Impact

Understanding the distribution of subsurface properties such
as permeability is crucial for reliable carbon storage man-
agement. Our work aims to develop an efficient and fast
inverse modeling framework to estimate key parameters of
subsurface carbon storage sites in order to better forecast
the migration and leakage of the carbon.
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