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In this work, a complete solution is provided for detecting and identifying cylindrical shapes, which are
commonly found in household and industrial environments, using consumer-grade RGB-D cameras.
Most standard approaches to detect and identify cylinders are not robust to outliers (e.g. points
on other objects in the scene), which limits their applicability in realistic scenes. In addition, these
methods fail to benefit from environmental constraints, e.g. the fact that cylinders often lie or stand
on flat surfaces. To tackle the aforementioned limitations, we introduce three main novelties: (i) a
point cloud soft voting scheme with curvature information that reduces the influence of outliers and
noise, (ii) a selective sampling of the orientation space that favors orientations known a priori, and (iii)
a deep-learning based classifier to filter out objects with non-cylindrical appearance in the 2D images,
thus further improving robustness to outliers.

A set of experiments with synthetically generated data are used to assess the robustness of our
fitting method to different levels of outliers and noise. The results demonstrate that incorporating
the principal curvature direction within the orientation voting process allows for large improvements
on cylinders parameters estimation. Furthermore, we demonstrate that combining the 2D deep-
learning cylinder classifier with the 3D orientation voting scheme allows for large speed-up and
accuracy improvements on cylinder identification. The qualitative and quantitative results with real
data acquired from a consumer RGB-D camera, confirm the advantages of the proposed framework.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Due to recent technological advances in

Therefore, it is of the utmost importance to build efficient per-
ceptual systems that are not only robust to sensory noise, but

the field of 3D sensing, also to occlusion and outliers.

range sensors have become financially affordable to the aver-
age consumer, boosting the proliferation of robotics applications
requiring accurate 3D object recognition and pose estimation
capabilities. More specifically, in the tasks that involve interaction
with the surrounding environment, e.g. manipulation, an artificial
agent would require to accurately recognize objects and esti-
mate their pose. These tasks include successful manipulation and
grasping, obstacle avoidance and self localization with respect to
known landmarks, to name a few.

Efficiency is another important requirement in robots with
power limitations [1], where fast and accurate perception is
required, e.g. for the manipulation of kitchenware objects [2].
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A key aspect behind the success of a grasping solution resides
in the choice of the object representation, which can deal with
incomplete and noisy perceptual data and is flexible enough to
cope with inter and intra-class variability, allowing the gener-
alization to never-seen objects. Furthermore, in order to cope
with transmission bandwidth and computational processing ca-
pacity limitations, efficient and fast perception is an essential
requirement for real-time performance.

In this work, we propose a novel computationally efficient
attentional framework for the task of simultaneously detecting,
recognizing and identifying particular object shapes. We focus
on cylindrical shaped objects which are commonly found in do-
mestic (e.g. cups, bottles) and industrial environments (e.g. pipes,
pillars, scaffolds), and identifying them plays an important role in
many robotic grasping applications [2,3].

The proposed framework relies on the tabletop assumption,
i.e., objects are placed on flat surfaces, which is another widely
adopted scenario in robotics [4,5] (Fig. 1). In order to deal with
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Fig. 1. A snapshot of a RGB-D point cloud and overlaid cylindrical (green) and
non-cylindrical (red) shapes detected with our methodology. Figure best seen
in color . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

cluttered environments which are often populated with mul-
tiple non-cylindrical shapes i.e. distractors, we take advantage
of the recent advances in deep learning architectures to intro-
duce an efficient recognition module that learns to filter out
irrelevant object candidates. More specifically, we incorporate a
pre-attentive shape-based selection mechanism, that avoids the
need of time-consuming, top-down cylinder parameter identifi-
cation at an early stage, on irrelevant salient candidate objects.
Furthermore, the most successful cylinder fitting approaches in
the 3D shape fitting literature are based on a computationally
efficient 2-step Generalized Hough Transform (GHT) [6]. We ex-
tend this method with a set of improvements that allow coping
with large levels of outliers, mainly residing on bases of cylinders,
which often introduce problematic biases during the orientation
estimation. The cylinder fitting approach described in this paper
was originally proposed in [7], but the reviewed literature and
experimental evaluation here is significantly expanded.

Our main contribution is threefold: first, and unlike previous
approaches that are only based on 3D depth information, we
combine a state-of-the-art [6,7] cylinder fitting approach which
is based on a robust and computationally efficient 2-step GHT
with a 2D image-based top-down Deep Convolutional Neural Net-
work proposal rejection mechanism to increase the quality and
speed of estimations. Since gathering a large dataset, required
for deep learning based recognition techniques is laborious and
time consuming, we provide a semi-automatic data gathering
procedure, using 3D information, which greatly facilitates acquir-
ing and labeling relatively large amounts of data. Second, we
propose a novel randomized sampling scheme for the creation
of orientation Hough accumulators. Our sampling method allows
the incorporation of prior structure knowledge which improves
accuracy with the same computational resources. And finally, as
our third contribution, we introduce a novel soft-voting scheme,
which considers surface curvature information, in order to cope
with points that exist on flat surfaces which vote for erroneous
and arbitrary tangential orientations.

We perform a systematic and thorough quantitative assess-
ment of the influence of noise and outliers on detection and
pose estimation error of cylinder fitting methods, comparing our
proposed method with that of [6]. Our ROS [8] and Caffe [9]
C++ implementation can identify multiple cylinders under a sec-
ond, allowing an easy and straightforward integration in general
robotics systems, e.g. in grasping and manipulation pipelines. The

code! and datasets? of our experiments are publicly available
online.

The remainder of this paper is structured as follows. In Sec-
tion 2 we overview previous related work available in the litera-
ture. In Section 3 we describe in detail the various steps involved
in the proposed cylinder detection and identification methodol-
ogy, as well as the datasets used for training and evaluating the
pipeline. In Section 4 we quantitatively evaluate the benefits of
the proposed contributions. Finally, in Section 5 we draw our
conclusions and propose promising future work ideas.

2. Related work

As described in the previous section, successful identification
of objects in an environment requires not only the development
of robust and efficient object detection architectures, but also
the definition of flexible shape representations that should fa-
cilitate generalization to never-seen-objects, via the integration
of different visual sensing modalities. Therefore, we organize
the present section in two distinct parts. First, an overview of
the state-of-the-art methods in visual attention, with an empha-
sis on shape-based models of selective attention is presented.
Afterwards, we analyze various object identification paradigms
proposed in the literature, suitable for applications that require
identification and localization of parametric shapes.

2.1. Shape-based selective attention

Visual attention plays a central role in biological and artificial
systems to control perceptual resources [10,11]. The classic ar-
tificial visual attention systems use salient features of the image,
benefiting from the information provided via hand-crafted filters.
Recently, deep neural networks have been developed for recog-
nizing thousands of objects and autonomously generate visual
characteristics that are optimized by training with large datasets.
Besides their application in object recognition, these features
have been very successful in other visual problems such as object
segmentation [12], tracking [13] and visual attention [14].

Evidence from neurophysiology studies [ 15] suggests that peo-
ple consider shape as an important feature dimension among
other low-level visual features (e.g. texture and color). In [16]
the authors found that subjects looking for a particular shape
(e.g. flowers or pillows) are more accurate in reporting other
features of that object (e.g. color) meaning that people have at-
tention mechanisms for shape features. Furthermore, infants rely
more on shape than on color when learning new objects, which in
turn allows them to generalize to other objects with similar visual
features while interacting with them [17]. This fact motivates
the need of developing more sophisticated, shape-biased and
bottom-up attentional architectures [18].

2.2. Object identification in robotics

Object recognition and pose estimation with 3D depth data is
an important subject in computer vision with many applications
in robotics. There are two main approaches to this problem that
depend on the availability of 3D object models: 3D model based
and learning based. If one has a description of the 3D shape of the
object, either given by a parametric surface representation or by a
CAD mesh representation, the 3D model-based methods are often
used for simultaneous object recognition and 3D pose estima-
tion [19]. If such representations are not available, the dominant
approaches rely on machine learning techniques that “learn a

1 [code] https://github.com/ruipimentelfigueiredo/shape_detection_fitting.
2 [dataset] http://soma.isr.tecnico.ulisboa.pt/vislab_data/facyl/facyl.zip.
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model” given a set of image samples of the object, acquired
by the robot sensors [20]. Despite being flexible and capable of
generalizing to novel objects in detection and classification tasks,
these methods are often unsuitable for estimating some shape
properties, such as 3D pose or size of the object. In this work we
leverage the accuracy and generalization capabilities of state-of-
the-art deep learning techniques in recognition tasks, with robust
3D model-based fitting approaches to develop a multi-modal,
fast, and robust cylinder identification pipeline.

One of the most successful approaches for model-based 3D
object recognition using point clouds are based on [21,22] where
a global descriptor for a given object shape model is created, using
point pair features. The CAD model of the object is used to create
a large database of features. At run-time, the matching process
is done locally using an efficient and robust voting scheme sim-
ilar to the Generalized Hough Transform [23]. Each point pair
detected in the environment casts a vote for a certain object
and 3D pose. However in unstructured environments, existing
CAD based methods tend to suffer from outliers and occlusion. In
semi-structured environments (e.g. industrial pipelines), strate-
gies based on the detection and estimation of parametric shapes
are generally more robust and flexible [24-26]. For the extraction
of simple geometric shape primitives like planes, cylinders, cones
and spheres, the two most common paradigms are the Hough
transform [23] and Random Sample Consensus (RANSAC) [27],
which are robust to outliers and noisy data.

RANSAC-based approaches are typically preferred over the for-
mer since they are more general and do not require the definition
of complex transformations from 3D input to parametric spaces.
In the RANSAC paradigm, the data is used directly to compute
best-fit models. Despite their proven applicability for the extrac-
tion of geometric primitives in noisy 3D data [28,29], in particular
in tabletop object segmentation, RANSAC-based techniques have
high memory requirements. Being a non-deterministic iterative
algorithm, computational time is greatly dependent on the al-
lowed iterations to produce reasonable results, hence becoming
impractical for scenarios with large levels of outliers [30]. In
other words, the large number of random selections in large-
scale point clouds may compromise the method applicability in
applications with real-time constraints. Furthermore, their lack
of flexibility hinders the incorporation of model-specific heuris-
tic knowledge, that enables the creation of more effective and
efficient specialized methodologies.

The problem of detecting and estimating the pose of cylinder
structures using 3D range data and Hough transform is naturally
formulated on 5-dimensional parametric spaces (2 orientations,
2 locations plus the radius), but this results in prohibitive com-
putational complexity due to the curse of dimensionality (the
size of the Hough accumulator is exponential in the number of
dimensions). The most efficient parametric shape fitting methods
are based on Hough transforms that estimate cylinder parame-
ters, i.e. orientation, position and radius, in two sequential voting
steps [6,7]. More specifically, they rely on a 2D Hough trans-
form to estimate orientation, i.e. the direction of the cylinder
axis, followed by a 3D Hough transform to simultaneously detect
radius and position. Though reducing the exponential complex-
ity factor, this approach still lacks speed in dense point cloud
data. In [31] and [32] the authors proposed a coarse-to-fine
voting procedure that speeds-up the former method by several
orders of magnitude. Another interesting idea is the incorporation
of environment structural constraints (e.g. cylinders are stand-
ing vertically or horizontally on the floor) to reduce the search
space [30] to a small subset of possible orientations.

Despite the improvements on computational complexity of
the previous approaches, their lack of robustness to outliers still
sets the main drawback to their usage in real applications. Palanz

et al. [33] introduces a method that finds the cylinder that fits
better in a point cloud, modeled as a mixture of two Gaussians.
One Gaussian models the data samples belonging to the cylinder
and the other Gaussian models the outliers. The random vari-
able of the model is the fitting error, which is lower for the
inliers and larger for the cylinder outliers. The error considered
in their work is the sum of the perpendicular distance from
the point to the estimated cylinder, and its parameters are es-
timated using the Expectation Maximization algorithm for the
mixture of Gaussians. Although they show a large robustness
to outliers, the method is computationally demanding and not
parallelizable. Tran et al. [24] propose an algorithmic approach
that starts from individual cylinder detection, followed by a mean
shift clustering in the cylinder space parameters. The individual
cylinder detection algorithm finds promising cylinder hypotheses
based on weighted point cloud normal estimation and an inlier
point selection. The normals are utilized to find the cylinder
axis orientation by selecting the eigenvector corresponding to the
smallest eigenvalue of the covariance matrix C of normal vectors
of inliers. The inliers are selected by projecting the cylinder points
to a plane normal to the cylinder axis orientation and fitting the
projected points to a circle. This approach is robust to outliers
and finds multiple cylinders, but is computationally more expen-
sive than [6], which is the baseline of our approach. Nurunnabi
et al. [25] propose an algorithmic approach that relies on Robust
Principal Component analysis (RPCA) to find the cylinder orien-
tation and Robust Least Trimmed Squares (RTLS) regression to
remove outliers from the RPCA cylinder parameter estimation.
The RTLS removes outliers that do not fit the projected circle
from the cylinder points. This approach is limited to find just one
cylinder in the point cloud.

In this paper we propose a novel fitting approach that lever-
ages an efficient implementation of the Hough-based method
of [6] with the increased robustness of using statistical models to
encode domain-specific knowledge. More specifically, the focus
and the main contributions of our work are: a novel randomized
sampling scheme for the creation of orientation Hough accumu-
lators which allows the incorporation of environment structural
priors to improve orientation estimation accuracy with the same
computational resources; a voting scheme that significantly im-
proves the robustness of Hough methods in cylinder detection
and pose estimation.

Still, all the aforementioned fitting approaches are incapable
of filtering, at an early stage, different object shapes that act
as irrelevant visual distractors. The time consuming process of
fitting shapes to distractors, marks another limitation of fitting
approaches, which hinders their applicability in real world sce-
narios. Kostavelis et al. [34] have incorporated Graph-Based
Visual Saliency algorithm (GBVS) as a pre-processing step in
training a biologically inspired Hierarchical Temporal Memory
(HTM) network. According to these results, the introduction of a
bottom-up attention mechanism significantly improves the effi-
ciency and performance of down-stream tasks, however, it is not
clear how much their approach can generalize to the detection
of occluded objects. Similarly, we incorporate a mediating shape-
based pre-attention bottom-up mechanism to reduce the space
of possible cylindrical shapes to a small subset of prominent
objects in the field of view, in a bottom-up manner. The 2D image
patches, coming from 3D segmentation are first classified using
a Deep Convolutional Neural Network (DCNN), which is robust
to occlusion. Object classes of interest (i.e. cylinder), are further
considered for parameter identification, which results in faster
and more accurate estimates.
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Fig. 2. General overview of our shape-based attention framework . (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
3. Methodology

In this section we describe our framework for efficient detec-
tion and identification of cylindrical shapes using multiple visual
sensing modalities: color and depth. The proposed architecture,
depicted in Fig. 2, is an integration of different cognitive blocks
which are responsible for object segmentation and shape recog-
nition, fitting and localization. In the remainder of this section we
describe in detail the multiple components of our pipeline.

3.1. System overview

We start by detecting tabletop objects using 3D point cloud
information, since points above tables are considered to belong
to potentially graspable objects. Therefore, the first component of
our cylinder detection and identification pipeline is a bottom-up
segmentation module that is triggered by salient objects laying on
flat surfaces [35]. First, we use a RANSAC-based fitting approach,
which efficiently operates on organized point cloud data [36], in
order to detect planes on the scene and segment objects above
these planes. We rely on Euclidean clustering [36] to identify
individual objects. Afterwards, these objects are projected on the
2D camera plane to extract bounding boxed 2D focused images
from a stream of monocular images, which are used to recognize
cylindrical shapes via a deep artificial neuronal network classifier.
The proposed Convolutional Neural Network (CNN) is trained
offline via transfer learning, and acts as a shape-based mediating
pre-attentive selective mechanism that filters out non-cylindrical
shapes. Finally, the parameters of the identified cylindrical shapes
are estimated in 3D Cartesian space, using an efficient and robust
top-down depth-based Hough transform.

3.2. Transfer learning for early shape-based attention

In order to reject region proposals and avoid parametric iden-
tification of non-cylindrical objects, we propose to use deep neu-
ral networks. Inspired by recent advances of deep learning in
achieving state of the art performance in recognition tasks, we
use a deep CNN as a binary classifier to decide if a particular
object is a cylinder or not.

However, using a deep neural network for the task at hand
can pose several challenges. Firstly, most deep neural network

architectures are notoriously data-hungry, usually trained on mil-
lions of labeled images. Secondly, designing a neural network
architecture for a new task is time consuming and involves a large
amount of trial and errors. And last, storing and using them on
most embedded systems is impractical due to the substantial size
and the computations they require.

3.2.1. Data acquisition and training

To solve the first problem, we propose a fast and convenient
procedure for semi-automatic gathering of labeled data, which
does away with the need of manual labeling. The procedure relies
on the 3D tabletop segmentation method and the 3D bounding
box projection to 2D approach described in the previous subsec-
tion. For the creation of positive samples, we first place many
different cylindrical shaped objects on tabletops and acquire data,
from multiple views, using an hand-held RGB-D camera. Then for
the creation of the negative examples dataset, we repeat the same
procedure with all the non-cylindrical objects, commonly found
in the testing environment.

3.2.2. Cylindrical-shapes recognition

For the second problem, i.e. architecture design, we propose
to use transfer learning [37]. More specifically, we have used a
network previously trained on imagenet dataset [38] and fine-
tuned it as a cylinder classifier. This way, the architecture of the
network is pre-defined and it is only necessary to change the
last layer such that instead of predicting probability classes of
1000 objects, it only outputs the probability that an input image
is a cylinder or not. Moreover, it is generally assumed that if
a network performs well on a recognition task, it means it has
learned informative features which are useful for different tasks.
As a result, it is possible to train the network on significantly
smaller datasets and only slightly change the previously learned
features.

3.2.3. Performance speed-ups

In order to have a small network which performs reasonably
fast even in the absence of powerful GPUs, we used a neural
network called SqueezeNet [39]. This network achieves AlexNet
accuracy score on imagenet while being 50 times smaller. Taking
advantage of this reduction in parameters of the network, it is
possible to have a fast and reliable classifier which is more suited
towards real-time applications.
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(b) Polar biased (M = 1).

(c) Equator biased (M = 1)

(d) Non-trivial (M > 1)

Fig. 3. Different sampled unitary spheres, where each point on the unit sphere
represents the center of a candidate Voronoi cell orientation.

3.3. Cylinder parametric fitting

Our approach is based on the former work of Rabbani et al. [6]
that splits the cylinder detection and pose estimation problem in
two independent Hough transform stages. In the first stage, 3D
point normals cast votes for possible cylinder orientations, in a
2D orientation accumulator. In the second stage, the point cloud
is rotated according to the determined orientation and each point
votes for a position and radius of the cylinder in a 3D Hough
accumulator. In that work the unit sphere of orientations is uni-
formly and deterministically sampled at a predefined number of
points [40], to generate a discrete Hough accumulator space, in
which voting is subsequently performed. A larger number of cells
on the unit sphere improves the accuracy of the orientation esti-
mate, at the cost of increased computational effort. In the present
work, we propose several improvements to the orientation voting
stage of [6].

In this section we describe in detail our methodology for im-
proved orientation estimation during cylinder detection. First, we
introduce a novel randomized sampling scheme which enables
the creation of non-uniform, problem-specific orientation Hough
accumulators. Then we present a novel and more efficient Hough
voting scheme that relies on simple inner products. As opposed
to [6], we avoid the computational burden of explicitly voting in
spherical coordinates, which requires the computation of rotation
matrices and, consequently, of inefficient trigonometric functions.
Furthermore, our voting scheme is richer than the one of [6] since
it allows incorporating curvature information. When compared
with the work of [6], the proposed methodology is able to cope
with higher levels of outliers, including flat surfaces such as
ground planes, hence avoiding the need of prior plane detection
and removal.

3.3.1. Randomized orientation hough accumulator

The proposed orientation Hough accumulator space is com-
posed of a set of cells D lying on a unit sphere. The center
of each cell corresponds to a unique absolute orientation. The
accumulator is analogous to a Voronoi diagram defined on a
spherical 2-manifold S? in 3D space, as depicted in Fig. 3, and
is represented by a set of Ny 3D Cartesian sample points with
unit norm, centered in the reference frame origin (center of the
sphere)

D={deR%i ..., Ng:|d|| =1} (1)

which are i.i.d. and randomly generated from a three dimensional
Gaussian Mixture Model (GMM) distribution
i

M
. vV .
d = o where v~ p(6) = ) [ ¢"N (ug =) (2)

m=1

where M is the number of mixture components and each d' e
D represents an orientation, allowing for efficient voting with
observed surface normals, using inner products (Eq. (3)).

The parameters of the GMM components are chosen according
to task at hand (e.g. find vertically aligned cylinders) or prior
knowledge on how likely specific orientations are (e.g. cylin-
ders are unlikely to be in relative diagonal orientations). On one
hand, in order to produce uniform and unbiased accumulator
structures, the surface should be sampled from a rotationally
symmetric distribution, i.e., from a single Gaussian with zero
mean and variance equal in all dimensions [41] (Fig. 3a). On the
other hand, non-uniform, task-dependent sampling biasing can
be achieved by manipulating the GMM parameters (see Fig. 3).

Hypothetical accumulator spaces that may be suitable for dif-
ferent priors are depicted in Fig. 3. In the absence of prior in-
formation or task definition, one should sample from a single
component Gaussian, with zero mean and standard deviation
equal in all dimensions (Fig. 3a). If for instance the task is to
find cylinders that are vertically aligned with the reference frame
(e.g. table reference plane), one should privilege orientations at
the pole (Fig. 3b) rather than the equator (Fig. 3c). In the latter
case, varying the Gaussian mean is not sufficient. One could
sample from a single-component zero mean GMM with larger
variance in the horizontal directions. Finally, prior knowledge or
more complex detection tasks (e.g. locating diagonal pipes or ma-
chine handles) can benefit from GMMs with many components
(Fig. 3d).

Our randomized sampling scheme offers several advantages
over the one of [6], namely:

e it is easier to implement than its deterministic counter-
part [40] and allows for the fast creation of biased orien-
tation voting spaces.

e the non-deterministic nature of the representation offers a
convenient mechanism for encoding task-related biases or
probabilistic prior knowledge about possible orientations,
depending on the environment (e.g. cups are typically ori-
ented vertically on tables). Biasing the orientation Hough ac-
cumulator space leads to more efficient, flexible and adapt-
able resource allocation and to more accurate orientation
estimation, for the same memory and computational re-
sources.

3.3.2. Fast robust orientation voting scheme

At run-time time, the input of our algorithm is a scene input
point cloud which comprises a finite set of 3D Cartesian points
P CR®,whereP ={p’,s=1,...,N.

First, we estimate the surface normals at each scene point
p° € P using the Principal Component Analysis (PCA) [42] of
the covariance matrix created from its k-nearest neighbors. Let
N ={n’,s =1,..., N} denote the set of surface normals. Then,
we proceed with the computation of the principal curvatures
as follows. For each scene point p’, we compute a projection
matrix for the tangent plane given by the associated normal n°.
After, we project all normals from the k-neighborhood onto the
tangent plane. Finally, we compute the centroid and covariance
matrix in the projected space. We finally employ eigenvalue
decomposition of this covariance matrix to obtain the principal
curvature directions ¢, € R® and ¢, € R? and the
corresponding eigenvalues ky.x € R and kyi, € R (see Fig. 4).
Let Chax = {€0oS = 1,...,Ns}, Cin = {€ipo5 = 1,..., Ng}

max’
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Fig. 4. Normal (n) and principal curvatures’ directions (Cmax and cmi) for a
cylinder surface point.

denote the sets of principal curvature directions and Knax =
{kohaxsS = 1,...,Ng}, Kmin = {k},;p»s = 1,..., N} the sets of
the corresponding eigenvalues.

The orientation voting procedure goes as follows: For each
direction cell d' in the orientation Hough accumulator A, we
compute the inner product with all the scene surface normals
n® € N and their associated larger principal curvature directions
C..x € C to cast continuous votes in the accumulator according
to the function

Sk kS , .
: max min 1 145
All) = k. |(l—dcfmx)||(1—dn)| (3)
s—1 'max min
This soft voting function gives more weight to directions that
are simultaneously orthogonal to thes normal and the principal

curvature directions. The term :?::’X‘% benefits surface points
min

with large and low curvature along directions vpmax and vpmin,

respectively.

After determining the cylinder orientation we proceed with
the estimation of the cylinder position and radius, as detailed
in [6]. First, we align the estimated cylinder axis with the camera
z-axis. Then, we project the inlier points on the camera xy plane
and use a Circular Hough Transform (CHT) [43] to estimate the

cylinder position and radius.

3.3.3. Goodness-of-fitting criterion
Finally, the goodness of the fitting of a cylinder is evaluated
using the following conditional confidence measure:

N
Nmodel (4)
cluster

where Npodel Tepresents the number of points that fit the esti-
mated cylinder parametric model (i.e. inliers) and Njyster the total
number of 3D points belonging to the object. Estimations below
a user-defined quality threshold are discarded and considered as
non-cylindrical shapes. We have used this criterion as a baseline
for cylinder detection.

p(cylinder|object) =

3.4. Datasets description

In this subsection we introduce the details of the datasets
created for assessing the proposed pipeline, as well as their
generation and gathering procedures.

3.4.1. Simulation environment

To be able to quantitatively measure the robustness of the
proposed cylinder fitting approach, when dealing with variable
levels of outliers, noise and occlusion, we created a simulation
environment, to synthetically generate cylindrical point clouds
with user-specified characteristics, namely:

e cylinder parameters:
height;

e outlier levels: the percentage of points belonging to cylin-
der bases, compared with points belonging to the cylinder
surface (Fig. 7);

e noise levels: the standard deviation of additive Gaussian
noise (Fig. 8);

e occlusion levels: partial cut length along the axial direction
of the complete cylinder surface (Fig. 9)

radius, orientation, position and

By using synthetically generated scenes, one is able to assess the
robustness of 3D cylinder fitting algorithms, in the face of noise,
outliers, and occlusion, with known ground truth.

3.4.2. Real data

In order to assess the proposed CNN classifier impact on the
fitting pipeline, we created multiple tabletop scenarios, contain-
ing cylindrical and other object shapes, that were recorded from
various view points, with a hand-held Asus Xtion RGB-D sensing
device. This dataset was partitioned in the following two sets:

3.4.2.1. Classifier dataset. this set was collected with the purpose
of training, validating and testing the performance of the clas-
sifier. Each scene contained either cylinders or non-cylindrical
shapes, which facilitates automatic generation of labeled datasets
(see 5).

3.4.2.2. Run-time benchmark dataset. the goal of gathering this
set is to benchmark the whole framework performance improve-
ments in the presence of salient visual distractors, which dif-
ferentiates from the previous set, as each scene contains both
cylindrical and distracting shapes (see Fig. 6).

Table 1 contains the statistics of the two sets.

4. Experiments and results

In this section we describe the experiments carried to evaluate
the components of our fast cylinder identification framework.
First, we evaluate individually the proposed classification and
fitting approaches, and then we report the performance of the
whole methodology, with an emphasis on the computational
benefits introduced by the proposed cylinder classifier.

4.1. Cylinder fitting performance

Several experiments were conducted in order to quantitatively
evaluate the quality of the cylinder parameters recovered by
our method and the one of Rabbani et al. [6] , when dealing
with increasing levels of outliers, noise and occlusion. The fit-
ting performance comparison was assessed using the simulation
environment outlined in 3.4.1. By using synthetically generated
scenes, we were able to compare the algorithm pose results with
a known ground truth.

In all fitting experiments, we generated 1000 scenes, each
containing a single instance of a cylinder. The selected cylinder
parameters were the following: The radius was fixed to r =
0.3m and the height was uniformly sampled from the interval
[0.05, 2.0] m. The number of cylinder surface points was fixed
and set to |P| = 900 and the number of orientation sample
points in the Hough accumulator space was set to Ny = 450.
To validate the advantages of our randomized sampling scheme
for the creation of the orientation Hough accumulator, in all
generated scenes the orientation of the cylinder was fixed and
aligned with the z-axis of the frame of reference. We considered
and compared the following different sampling distributions for
creating the orientation Hough accumulator space (see Table 2):
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Fig. 5. Object image crop examples from the created classifier training (top row) and testing (bottom row) datasets.
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Fig. 6. Scene samples from the collected 200 frame RGB-D benchmark dataset.

Table 1
Real dataset statistics.

Training/validation Test Run-time benchmark

Cylinders  Distractors Total Cylinders Distractors Total Cylinder Distractor Total
#scenes 1387 669 2056 694 679 1373 200 200
#objects 5657 3725 9382 2300 2219 4519 480 900 1380

e an unbiased distribution reflecting the absence of prior
knowledge about the cylinder orientation.

e a mildly and a strongly biased distribution that favors ver-
tical orientations.

Finally, for each scene we generated 30 Hough accumulators to
reduce estimation error bias and variance.

4.1.1. Robustness to outliers
In order to assess the performance gains of the proposed
strategies in the presence of flat surfaces (i.e. outliers)
total scene points

outliers = —————— — (5)
|P]

we added synthetically generated planar extremities to cylinders,
that simulate realistic cylindrical shapes such as containers/cans
with lids. Surface points on cylinder tops are problematic for
orientation estimation since they vote for orthogonal directions,
and in this experiment were considered as planar clutter (i.e. sta-
tistical outliers). The surfaces were generated with a total of
10, increasing point density levels, to each previously generated
cylinders’ bottom and top extremities (see Fig. 7). The quanti-
tative results illustrated in Fig. 10 (center column) demonstrate
the advantage of considering both the surface curvature and the
surface normal in the orientation voting step. When dealing with
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(a) Ours (b) Rabanni et al.

Fig. 7. Our method against Rabbani et al. when dealing with flat surfaces.

(a) Onoise = 1%

(b) Onoise — 10%

Fig. 8. Estimated cylinder parameters with our method, from a synthetically
generated point cloud with increasing levels of noise.

flat surfaces that belong to cylinders, our method estimates bet-
ter the cylinder orientation, as shown by the absolute orientation
errors in Figs. 10a and 10b.

According to our implementation, the original method of Rab-
bani et al. can deal with cases where up to 50% of the points
are outliers, without failing. When the number of outliers exceed
150% of the relative number of candidate points belonging to
the cylinder surface, the method exhibits an orientation error
of 90 degrees, since points belonging to flat surfaces (i.e. out-
liers) vote for orthogonal directions to the ground truth cylinder
orientation. Our method is able to cope with up to 200% of
planar outliers, with minimal impact in orientation estimation.
The linear transition in between can be justified by the fact that
the error increases linearly with the number of outliers voting
for orthogonal, wrong orientations. This is an artifact of the soft-
voting scheme, resulting in consistent response to small and large
amount of outliers. In between, the response exhibits a linear
decrease in the pose estimation accuracy.

As expected, these improvements have a direct and positive
impact in the quality of the position and radius estimations,
depicted through the absolute radius and position errors plots in
Figs. 10e and 10d.

4.1.2. Robustness to noise

In pursuance of quantifying the behavior of the Rabbani et al.
algorithm [6] and our proposed extensions in the presence of
noisy visual sensors, each of the 1000 generated scenes was
corrupted by 10 different levels of additive Gaussian noise, with
standard deviation proportional to the cylinder radius (see Fig. 8).

Fig. 10 (left column) depicts the cylinder parameters estima-
tion errors for both methodologies in the presence of noise. The
results show that both methodologies have similar robustness to
noise, hence, demonstrating the benefit of our approach when
considering the superior performance of our method in clut-
tered scenes. Additionally, biasing the orientation accumulator in
the face of prior structural knowledge significantly improves the

(a) Toce — 10000

(b) Tocc — 4000

Fig. 9. Estimated cylinder parameters with our method, for different levels of
occlusion.

Table 2
Orientation Hough accumulator biasing parameters used for the creation of the
orientation Hough accumulators in the experiments with synthetic data.

Bias “y =,

X y z XX yy zz
Unbiased 0 0 0 0.5 0.5 0.5
Mildly top-biased 0 0 1.0 0.5 0.5 0.5
Strongly top-biased 0 0 1.0 0.05 0.05 0.05

estimation accuracy. Overall, our extensions result in dramatic
improvements regarding robustness to clutter, without sacrificing
robustness to noise. Furthermore, a simple qualitative assessment
of our method with data acquired from a RGB-D camera demon-
strates its applicability to real-scenarios, as exemplified in Figs. 1
and 12, and its superior robustness to outliers.

4.1.3. Robustness to occlusion

To evaluate the robustness of our methodology to occlusion
we simulated cylinder partial views by cutting the original cylin-
der along the axial directions by different amounts (see Fig. 9).
The amount of occlusion is given by the ratio of points in the
original and occluded cylinders |P|, according to:
occlusion =1 — @ (6)

|P]

where P’ is the set of points of the occluded cylinder. Fig. 10
(right column) demonstrates that the performance of our soft
voting scheme sightly improves on the method of [6]. Including
the sampling bias in the direction of the cylinder orientation, the
improvement becomes significant for large levels of missing data.

4.2. Shape-based attention

To train and evaluate the performance of the CNN classifier we
have used the dataset outlined in Section 3.4.2.1. As explained in
the previous section, we fine-tune the final layer of SqueezeNet
with our which contains 9382 train samples (out of which,
we used 10% for validation) and 4519 test samples of unseen
objects. 5 shows a few samples that were used to train and test
the network. The original training dataset contained less than
10000 samples and, in order to gain more robustness to different
orientations, they were mirrored in vertical and horizontal direc-
tions, effectively quadrupling the amount of available data. The
learning rate for fine-tuning the network was empirically selected
as 0.0005 and we kept other parameters as their proposed values
by [39]. Fig. 11a shows the performance of the classifier at various
points during training.

Our experiments with the neural network classifier demon-
strates generalization to unseen cylindrical and non-cylindrical
objects. In order to quantitatively evaluate the performance of
the 2D image-based deep neural network classifier, it is compared
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Fig. 10. Robustness of our method against the method of Rabbani et al. Left: different levels of noise. Center: different levels of flat surface outliers. Right: different
levels of occlusion.
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Fig. 11. Evaluation of the performance of the binary classifier. (a) Loss and accuracy evolution of the classifier on training and validation data. (b) Precision-Recall
curves of the cylinder class for baseline and SqueezeNet classifier on the test data. AUC: Area Under the Curve.
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Without prior classification

Fig. 12. Qualitative assessment of our framework with data acquired with an Asus Xtion 3D camera. Cylinder identification for an example scene. . Detection: Good
and bad classifications in green and red, respectively. Parameter identification: green represents correct parameter estimation; blue represents correct non-cylindrical
shape objects identified by the baseline quality of fitting criterion; red represents wrong estimations without the classifier . (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

with a baseline indicator of the fit quality criteria defined in
Section 3.3.3. Fig. 11b compares the precision-recall curves of
the two classifiers on the test set, demonstrating the superior
performance of the proposed classifier.

4.3. Overall framework assessment

The complete framework was evaluated using the dataset
described in Section 3.4.2.2, where each scene contains on av-
erage 7 objects (see Table 3a). Fig. 12 depicts an example of the
cylinder parameters estimation quality for the proposed method-
ology in the presence of noisy 3D point cloud data. The use of
prior classification, results not only in temporal gains, but also
on early filtering of non-cylindrical distractors, hence improving
the reliability of the 3D cylinder fitting approach (see Table 3).
Overall, improvements on detection speed and robustness to
visual distractors can be achieved by incorporating the shape-
based pre-attention mechanism, which results in improvements
on detection speed and robustness to visual distractors without
sacrificing robustness to noise. Furthermore, the evaluation of
our method with data acquired from a consumer RGB-D camera
demonstrates our method applicability to real-scenarios and its
advantages in scenes populated with salient visual distractors.
In order to better ground the time complexity of this pipeline,
we have also experimented with an off-the-shelf state-of-the-art
object detector (Faster-RCNN) [44], which similar to SqueezeNet
was also fine-tuned to detect cylinders in RGB images. This detec-
tor uses ResNet101 as the classifier. Using the detector, one can
achieve a constant run-time with respect to the number of objects
in a scene, however, according to Table 3, only the segmentation
and classification provided by Faster-RCNN takes more time than
our complete pipeline, even with an average of 7 visible objects.
Furthermore, unlike off-the-shelf object detectors, 3D tabletop
segmentation allows the definition of a table coordinate frame
and, hence, the incorporation of prior knowledge in the fitting
process.

5. Conclusions

In this paper, we have proposed a complete, robust and, effi-
cient cylinder detection and parameter identification framework.
Unlike previous approaches that are only based on 3D depth
information, our methodology incorporates RGB information by
means of a novel shape-based pre-attentive top-down attentional
mechanism that filters out visual distractors at an early stage.
Furthermore, we have developed a robust soft-voting scheme

Table 3
Quantitative analysis of the time performance of the proposed pipeline in a set
of 200 RGB-D frames acquired with an Asus Xtion camera.

(a) Detected objects per scene

Cylinders Distractors Total
Ground truth 2.4+0.68 4.5+ 1.50 69+ 1.8
No classifier 4.00 £0.77 4.00+0.77 8.00 + 0.00
With classifier 1.90 £0.70 6.10 +0.70 8.00 + 0.00

(a) Processing times (ms)

Segmentation Classification Identification Total

No classifier  37.38 £9.29 - 97.89 +44.46 135.27 +48.27
With classifier 37.38 £9.23 14.524+5.21 28.71+£23.29 80.61+28.53
F-RCNN 142.12 +6.61 - -

based on the Generalized Hough Transform for the detection
and pose estimation of arbitrary cylindrical structures from 3D
point clouds. The proposed method incorporates curvature in-
formation in the voting scheme, that improves the rejection of
outliers, mainly those arising from planar surfaces that pollute
the orientation voting space and introduce erroneous biases in
cylinder orientation estimation. The results demonstrate signif-
icant detection accuracy and time speed-ups as well as major
improvements on the detection rates and pose estimations with
respect to previous schemes. A systematic quantitative analysis of
robustness to outliers and noise validates our approach and sets
a benchmark for future research.

For future work, we note that robustness to noise could be
further enhanced by sequentially integrating cylinder detections
through sequential Bayesian filtering [45]. In addition, the current
classifier is trained with a limited number of cylinders, however,
it is expected to improve the generalization to unseen cylinders
if the training set contains multiple cylindrical objects of various
shapes and colors. On the other hand, even finetuning such meth-
ods commonly require training with large amounts of data which
is time consuming and sometimes unfeasible. We have circum-
vented this issue by devising an automated data collection and
annotation scheme, however, recent advances in using simulated
data for finetuning is another promising approach to overcome
this challenge [46,47].

In this paper we have focused on cylindrical shapes but the
proposed core ideas can be easily extended to other shape types,
depending on training data availability. Combining a generic
multi-label classifier with the proposed randomized Hough ac-
cumulator and the soft voting scheme, paves the way to extend
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the current cylinder identification pipeline to various shapes
(e.g. cuboids, ellipsoids, cones). As a final remark, we empha-
size that the computational complexity of the proposed solution
scales linearly with the number of objects in the scene, which
may become problematic in environments with many distrac-
tors. However, all components of the pipeline are parallelizable
and, depending on the application requirements, one can benefit
from an increase in the available hardware resources to further
improve run-time performance. Finally, complex objects such
as cylindrical containers require more elaborate representations
such as semantic or relational. In the case of cylindrical containers
one can consider that containers have two object primitives:
planes and cylinders. Future work should consider these type
of representations through the use of Probabilistic Graphical
Models [48] to further improve the pipeline performance.
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