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Abstract

We introduce AdaMoLE, a novel method for fine-tuning large language
models (LLMs) through an Adaptive Mixture of Low-Rank Adaptation
(LoRA) Experts. Moving beyond conventional methods that employ a
static top-k strategy for activating experts, AdaMoLE dynamically adjusts
the activation threshold using a dedicated threshold network, adaptively
responding to the varying complexities of different tasks. By replacing
a single LoRA in a layer with multiple LoRA experts and integrating a
gating function with the threshold mechanism, AdaMoLE effectively selects
and activates the most appropriate experts based on the input context.
Our extensive evaluations across a variety of commonsense reasoning and
natural language processing tasks show that AdaMoLE exceeds baseline
performance. This enhancement highlights the advantages of AdaMoLE’s
adaptive selection of LoRA experts, improving model effectiveness without
a corresponding increase in the expert count. The experimental validation
not only confirms AdaMoLE as a robust approach for enhancing LLMs
but also suggests valuable directions for future research in adaptive expert
selection mechanisms, potentially broadening the scope for optimizing
model performance across diverse language processing tasks.

1 Introduction

The evolution of large language models (LLMs) has been a cornerstone in the advancement
of natural language processing (NLP), enabling an unprecedented depth of understanding
and generation of human language. Fine-tuning these sophisticated models is essential for
tailoring their capabilities to specific tasks, thereby enhancing their applicability and per-
formance across a spectrum of NLP challenges. Despite significant progress, conventional
fine-tuning methods often lack the dynamism to adapt to the diverse and complex nature of
various language tasks, highlighting the need for more flexible and adaptable fine-tuning
strategies.

Amidst the quest for efficiency in fine-tuning LLMs, the concept of parameter efficiency has
gathered attention, particularly due to the vast size and intricate architecture of modern
models. Parameter-efficient fine-tuning (PEFT) approaches (Liu et al., 2022) aim to adapt
LLMs to specialized tasks by fine-tuning a small subset of model parameters, significantly
reducing computational and storage costs while mitigating the risk of catastrophic forgetting.
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Among these approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2021) is notable for
its ability to introduce adaptability without altering the original model’s weights. LoRA
applies low-rank decomposition to represent weight updates through smaller matrices,
allowing the model to adapt to new data while the core weight matrix remains unchanged,
thus embodying a targeted and efficient method for model refinement.

Building on this foundation, recent advancements have combined LoRA with the Mixture of
Experts (MoE) (Shazeer et al., 2017) framework to further enhance the model’s adaptability
and performance. LoRA’s integration allows for precise modification of weights through
low-rank matrices, while MoE leverages a set of expert networks, each specializing in differ-
ent tasks or aspects of the data. The synergy between LoRA’s targeted weight adaptation
and MoE’s expert-driven approach offers a dynamic avenue for model enhancement. How-
ever, the prevalent static top-k expert selection in MoE does not fully leverage the potential
for task-specific adaptability, prompting the need for more dynamic selection mechanisms
that can respond to the varying complexities and subtleties of different tasks and contents.

Addressing this gap, we present AdaMoLE!, a novel method that synergizes LoRA with an
adaptive MoE, incorporating a dynamic threshold network for expert activation, which is
illustrated in Figure 1. This innovation allows AdaMoLE to fine-tune its activation of experts
based on the context of the input, providing a more refined and context-aware approach to
model adaptation.
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Figure 1: Illustration of Adaptive Mixture of Low-Rank Adaptation Experts (AdaMoLE).
AdaMoLE employs a gating function alongside a threshold function to determine the
activation of experts. In the training phase, pre-trained weights are frozen while the LoRA
experts and two functions are updated.

Our main contributions are as follows:

1. AdaMoLE represents an advanced integration of LoRA and an adaptive MoE
framework, featuring a dynamic threshold network that facilitates context-sensitive
expert activation, transcending the limitations of static top-k strategies.

2. Through comprehensive evaluations across various tasks, AdaMoLE showcases
superior adaptability and performance, highlighting the effectiveness of dynamic
expert selection and setting a new baseline in the fine-tuning of LLMs.

1GitHub: https://github.com/zefang-1iu/AdaMoLE
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3. Threshold sensitivity and expert activation analyses of AdaMoLE provide crucial in-
sights into the model’s operational dynamics, confirming that its adaptive threshold
mechanism plays a pivotal role in balancing computational efficiency with expert
engagement across diverse tasks.

By introducing AdaMoLE, we aim to not only refine the fine-tuning process for LLMs but
also encourage further research in developing models that are inherently flexible and attuned
to the specificities of diverse application domains. This work reflects our commitment
to enhancing the capabilities of LLMs, suggesting a promising direction for increased
personalization and efficiency in NLP.

2 Related Work

The intersection of Mixture of Experts (MoE) and Low-Rank Adaptation (LoRA) in enhanc-
ing large language models (LLMs) has been a prominent area of research. Here, we explore
recent works related to our AdaMoLE model.

2.1 Integration of MoE and LoRA

The integration of Mixture of Experts (MoE) and Low-Rank Adaptation (LoRA) is a notable
trend in recent advancements aimed at enhancing the performance of LLMs. Zadouri et al.
(2023) introduce a novel, parameter-efficient MoE framework, Mixture of Vectors (MoV)
and Mixture of LoORA (MoLORA), designed for constrained environments, achieving perfor-
mance comparable to full fine-tuning with significantly fewer parameter updates. Huang
et al. (2023) investigate the composability of LoRA in LoraHub, a framework designed
for cross-task generalization through the dynamic assembly of LoRA modules, aiming
to achieve adaptable performance on unseen tasks. Wu et al. (2023) present Mixture of
LoRA Experts (MoLE), a method that combines multiple LoRA modules within an MoE
framework to improve task performance through hierarchical control and branch selection.
Dou et al. (2023) introduce LORAMOE, which integrates several LoRA adapters within
an MoE-style plugin to alleviate world knowledge forgetting in LLMs during supervised
fine-tuning. While these studies contribute valuable insights into the fusion of MoE and
LoRA, our AdaMoLE framework stands out by implementing a dynamic thresholding mech-
anism, which offers a more context-responsive and flexible strategy for expert activation,
optimizing the fine-tuning process across various tasks.

2.2 Adaptive MoE Approaches

The adaptability within Mixture of Experts (MoE) architectures is a key focus of recent
research, aimed at enhancing the flexibility and efficiency of large model training and
inference. Li et al. (2023) introduce an innovative adaptive gating mechanism for MoE-
based language models, which adjusts the number of experts processing each token based
on its linguistic complexity, a step toward optimizing computational costs. Chen et al.
(2023) present AdaMV-MOoE, a framework that dynamically modulates the number of active
experts according to the complexity of the task at hand, underscoring the importance of
adaptiveness in multi-task learning environments. Furthering this theme, Gou et al. (2023)
develop MoCLE, an MoE architecture that activates parameters based on instruction clusters,
enhancing the model’s adaptability to diverse tasks. Moreover, Gao et al. (2024) introduce a
novel MoE-LoRA method with layer-wise expert allocation, MoLA, demonstrating that more
LoRA experts in higher layers can significantly enhance the performance of transformer-
based models. While these advancements mark significant progress in adaptive MoE
models, AdaMoLE distinguishes itself by employing a dynamic threshold network to
fine-tune expert selection in real-time, ensuring that each input is processed by the most
appropriate experts. Unlike the adaptive gating in Li et al. (2023), which relies on a fixed
threshold to determine expert involvement, AdaMoLE’s thresholding is contextually driven,
offering a more granular and responsive approach to expert activation, tailored to the
specific requirements of each input.
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3 Methodology

This section delves into the core components of our proposed AdaMoLE framework, begin-
ning with an overview of the foundational technologies it builds upon and then introducing
the main design behind the AdaMoLE.

3.1 Preliminaries

Low-Rank Adaptation (LoRA): LoRA (Hu et al., 2021) is a distinguished method for
enhancing parameter efficiency in the fine-tuning of large language models (LLMs). It
innovatively employs low-rank matrix factorization to modify the weight matrices within a
pre-trained model. For a given linear layer with weights Wy € R?*K, LoRA introduces two

lower-rank matrices, A € R"*K and B € R?*", where r < min(d, k) denotes the rank. The
modification does not alter Wy directly but adds a rank-constrained update BA, where the
product BA is the low-rank approximation that modifies the output:

h = Wox + AWx = Wox + BAx. 1)
During training, A and B are adjusted while Wy remains constant, thus allowing for efficient
fine-tuning. The initialization of A typically follows a random Gaussian distribution, and B

starts from zero, ensuring that the initial state mirrors the pre-trained model’s output. The
AWx is then scaled by a /7, where « is a constant.

Mixture of Experts (MoE): The MoE (Shazeer et al., 2017; Fedus et al., 2022a; Zoph et al., 2022;
Lepikhin et al., 2020; Fedus et al., 2022b) framework scales model complexity and capacity
by integrating multiple expert sub-networks, each potentially specializing in different data
segments or tasks. Within a MoE layer, N independent experts {E; })Y | are coordinated by a
router, which employs a trainable matrix We to distribute the input vector x among these
experts. This router generates a distribution of weights across the experts for each input,
using a softmax function for normalization:

pi = Softmax(Wgx);. )
The resultant output from the MoE layer is a weighted sum of the outputs from the top K
experts:
N
Y= ZM.&(@, 3)
i=1 Y=y TopK(py)
where the TopK function identifies and retains the highest K weights, setting the rest to
zero. The weights retained by the TopK function are subsequently normalized to ensure
their sum is one. Moreover, a load balancing loss following Switch Transformers (Fedus
et al., 2022b) is applied to encourage an even distribution of input across experts, promoting
diverse utilization of the available expertise.

3.2 AdaMoLE

Given the varying complexity of contexts and tasks, it is intuitive that some would require
more expert involvement than others. To accommodate this, we propose an adaptive
method that adjusts the number of engaged experts in each MoE layer dynamically, rather
than relying on a fixed top-k selection.

Traditionally, MoE layers select experts based on the highest weights, typically choosing top-
1 or top-2 experts as determined by TopK(p;). A flexible approach can be implemented by
defining a threshold 7 for the weights, selecting expert i if p; > T. The choice of 7 is critical; a

very high T could result in no experts being selected if all weights p; fall below the threshold.
To mitigate this, we set T = 1/N as a lower bound of expert weights, ensuring at least one

expert is selected. This is because if all p; < 7, then Y| p; < NT = 1, contradicting the

fact that the sum of expert weights Y- | p; must equal 1. Consequently, the output from the
MOoE layer with thresholding is calculated by

N 1 i > T) - p;
y:Z (P )Pz

S Wpy = 1) py

Ei(x)r (4)
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where 1(condition) equals 1 if the condition holds true and 0 otherwise. This threshold-
based selection ensures that the number of experts is dynamically adjusted to suit the task’s
demands, enhancing the MoE layer’s adaptability and effectiveness.

However, the fixed threshold approach lacks the flexibility required for the dynamic nature
of various contexts. To address this, we introduce an adaptive MoE, where the static
threshold is substituted with a threshold function. Specifically, we employ a single linear
layer followed by a sigmoid function to determine the threshold:

T= TmaxU(WTx + br)/ %)

where Tnax is the maximum threshold and can be set as 1/N. This adaptive threshold
allows for context-aware determination of the number of experts to engage. However, while
introducing this adaptive threshold, it is crucial to ensure the learnability of the threshold
function parameters during backpropagation. Therefore, we refine the weighted output
from the experts as follows:

N Api =1)(pi—7)
_ Ei(x), 6
Y z; Y py = 1) (pr — T) ®) ©

where p; in the previous formula was replaced by p; — 7.

Incorporating the LoRA module, we derive the Adaptive Mixture of LoRA Experts
(AdaMoLE):

N
h=Wox+ Y Nl(Pz >7)(pi — 1) -BAx, @)

iZ1 Lo Upy = 1) (pr — 7)
where each pair (A;, B;) corresponds to a different LoORA expert. AdaMoLE'’s adaptive
thresholding mechanism offers significant advantages over previous methods. By dynam-
ically adjusting the number of engaged experts based on the input context, AdaMoLE
ensures that the model’s capacity is utilized more efficiently and effectively, enhancing its
ability to tackle a wide array of tasks and contents with varying complexity.

4 Experiments

In this section, we present the comprehensive evaluation of AdaMoLE, detailing the baseline
models, benchmark datasets, experimental setup, and performance outcomes.

4.1 Baseline Models

To benchmark AdaMoLE’s effectiveness, we compare its performance with several baseline
models: Low-Rank Adaptation (LoRA) (Hu et al., 2021), Sparse Mixture of Low Rank
Adaptation (SiRA) (Zhu et al., 2023), three configurations of the Mixture of LoRA Experts
(MoLE) (Wu et al., 2023; Gao et al., 2024). LoRA, a method that applies low-rank matrix
updates for model fine-tuning, serves as the initial baseline. SiRA applies the Sparse Mixture
of Expert (SMoE) for increasing the LoRA performance. The first two MoLE variants activate
the top-2 and top-3 experts respectively among N experts based on their weights, embodying
the original MoLE approach. The third MoLE variant employs a hard thresholding strategy,
selecting experts whose weights exceed the fixed threshold 7 of 1/ N, introducing a basic
level of adaptiveness into the expert selection process. These baseline models, with their
distinct mechanisms for expert activation, provide a comprehensive backdrop to evaluate
AdaMoLE'’s dynamic thresholding approach.

4.2 Benchmark Datasets

In this study, we conduct a thorough evaluation of AdaMoLE using a meticulously selected
array of benchmark datasets, concentrating on two pivotal areas: commonsense reason-
ing and natural language processing (NLP) tasks, to thoroughly probe and ascertain the
model’s cognitive prowess and linguistic agility. For commonsense reasoning, we employ a
diverse suite of datasets, including CommonsenseQA (Talmor et al., 2018), which challenges
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the model’s grasp of everyday knowledge; Cosmos QA (Huang et al., 2019), which tests
inferential reasoning through narrative comprehension; and SociallQA (Sap et al., 2019),
PhysicallQA (Bisk et al., 2020), and ScienceQA (Lu et al., 2022), which respectively exam-
ine the model’s understanding of social interactions, physical phenomena, and scientific
principles, each demanding a deep-seated comprehension of factual content and deductive
logic.

Our investigation also extends to encompass NLP tasks from the SuperGLUE benchmark
(Wang et al., 2019), renowned for its stringent standards, containing BoolQ (Clark et al.,
2019), which assesses the model’s ability to evaluate the veracity of statements; CB (De Marn-
effe et al., 2019), which probes into textual entailment and contradiction; COPA (Roemmele
etal., 2011), which tests causal reasoning; RTE (Dagan et al., 2005; Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009), which evaluates the model’s ability to recognize
textual entailment; and WiC (Pilehvar & Camacho-Collados, 2018), which examines the
model’s proficiency in interpreting word meanings across varying contexts. We reformat
all benchmark datasets into a multiple-choice format (Gao et al., 2021), structuring each
item with a distinct question and a set of choices, to ensure uniformity and enhance the
evaluation process across different tasks.

This extensive and multifaceted evaluation is designed to provide a comprehensive assess-
ment of AdaMoLE'’s fine-tuning effectiveness, illustrating its capacity to adapt and excel
across a broad spectrum of commonsense reasoning and NLP tasks. For benchmark evalu-
ations, we employ accuracy as the primary metric, selecting the choices with the highest
probability from the causal language model to determine the model’s performance across
various tasks.

4.3 Experiment Settings

In the experimental setup, we employ Llama-2-7B (Touvron et al., 2023) as the foundation
model. For the LoRA (Hu et al., 2021) baseline, each LoRA module is configured with a rank
of 32, an alpha of 16, and a dropout rate of 0.05. In contrast, for the Mixture of Experts (MoE)
models, which include both MoLE and AdaMoLE, we utilize 8 LoRA experts, with each
expert having a rank of 4, ensuring that the total LoORA rank remains consistent at 32 across
all models to maintain parameter parity, besides parameters in the gating and threshold
functions. The adaptation is specifically targeted at four weight matrices in the self-attention
module (Wy, Wy, Wy, W) of Llama-2, focusing our fine-tuning efforts on key components
of the model’s architecture. Input sequences are truncated to a maximum length of 256
tokens by following Sanh et al. (2021) and Gao et al. (2024). Training is conducted with the
AdamW (Loshchilov & Hutter, 2017) optimizer, a total batch size of 16, and a learning rate
of le-4, employing a constant learning rate scheduler with an initial warm-up phase of 200
steps to stabilize the training process. The number of training epochs is tuned between 1
to 20 by the validation accuracy on the specific dataset, allowing for flexible adjustment to
optimize performance. An auxiliary loss coefficient of 1e-3 is applied to the load balancing
loss (Fedus et al., 2022b) to ensure effective distribution of computation across experts.
We utilize models and frameworks provided by Hugging Face’s Transformers and PEFT
libraries (Wolf et al., 2019; Mangrulkar et al., 2022). All experiments are conducted on a
single NVIDIA H100 GPU.

44 Experiment Results

The performance of AdaMoLE, as shown in Tables 1 and 2, demonstrates its advantage
over traditional baselines, with notable accuracy improvements across both commonsense
reasoning and NLP tasks. These tables highlight AdaMoLE’s capacity to handle a variety of
datasets, showcasing its effective logical reasoning and language comprehension.

In the realm of commonsense reasoning, as detailed in Table 1, AdaMoLE demonstrates
a consistent lead over the LoRA baseline and MoLE variations on multiple benchmarks,
including CommonsenseQA, SociallQA, and ScienceQA, showcasing its aptitude for com-
plex query processing and deep reasoning. Furthermore, AdaMoLE asserts itself as a close
contender in Cosmos QA and PhysicallQA, trailing just behind the top performer, which
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Model Gating CommonsenseQA Cosmos QA  SocialIQA  PhysicallQA  ScienceQA
LoRA - 76.25% 82.71% 76.25% 83.08% 88.67%
SiRA top-2 73.55% 82.18% 76.77% 82.59% 86.29%
MoLE top-2 77.15% 83.48% 76.92% 82.81% 88.71%
MoLE top-3 77.07% 83.48% 77.02% 82.10% 90.02%
MoLE 1/N 75.35% 84.69% 76.51% 82.43% 90.62%
AdaMoLE 0-1/N 78.71% 84.25% 77.28% 82.92% 91.00%

Table 1: Experiment results on commonsense reasoning benchmarks, where the MoLE
gating is the threshold number for expert activation, the AdaMoLE gating is the threshold
range, N is the number of experts in one MoE module, and the evaluation metric is accuracy.

Model Gating BoolQ CB COPA RTE WiC

LoRA - 80.28%  71.43% 93.00% 73.65%  62.07%
SiRA top-2 80.28% 73.21% 92.00% 77.26% 57.21%
MoLE top-2 84.37%  69.64% 92.00% 86.28%  70.06%
MoLE top-3 86.12% 71.43% 92.00% 84.84%  62.85%
MoLE 1/N 84.98% 69.64% 93.00% 86.28%  69.12%

AdaMoLE 0-1/N  86.27% 73.21% 94.00% 87.73% 70.22%

Table 2: Experiment results on NLP benchmarks from SuperGLUE, where the MoLE gating
is the threshold number for expert activation, the AdaMoLE gating is the threshold range,
N is the number of experts in one MoE module, and the evaluation metric is accuracy.

attests to its robust performance even in domains where it does not take the top position.
This performance underscores AdaMoLE’s sophisticated understanding of commonsense
reasoning and its strategic allocation of expertise to tackle the intricate challenges presented
by these tasks.

Moving to the NLP tasks as shown in Table 2, AdaMoLE'’s strong performance is evident.
It shows impressive accuracies in BoolQ and COPA, emphasizing its effectiveness in inter-
preting the veracity of statements and analyzing causal relationships. Notably, AdaMoLE
shines in CB and RTE, where it explicitly outperforms the baselines, showcasing its ability
to discern textual entailment with a high degree of accuracy. Similarly, in WiC, AdaMoLE
demonstrates its proficiency in understanding word meanings in various contexts. These
outcomes serve as a testament to AdaMoLE'’s strategic application of dynamic thresholding,
which adeptly engages the most appropriate LORA experts in response to the demands of
each unique task, illustrating its refined adaptability in language comprehension.

Overall, AdaMoLE’s remarkable performance across these diverse tasks illustrates its broad
applicability and potential to enhance fine-tuning methods for large language models. This
progress not only highlights AdaMoLE'’s adaptability but also underscores the possibility for
further advancements in language model fine-tuning, particularly through the strategic use
of dynamic thresholding to meet the complex demands of advanced language processing
tasks.

5 Model Analyses

In this section, we conduct a detailed examination of AdaMoLE’s threshold sensitivity,
expert activation behavior, and hyperparameter settings, offering insights into how these
elements influence the model’s overall performance.

5.1 Threshold Sensitivity Analysis

The threshold sensitivity analysis investigates how varying the threshold range in AdaMoLE
influences its performance on commonsense reasoning and natural language processing
(NLP) benchmarks. The results in Table 3 demonstrate that AdaMoLE achieves optimal
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performance on CommonsenseQA and COPA when the threshold is set within [0,1/(2N)],
where N is the number of experts in each MoE module. It is noteworthy that setting the
threshold too high such as [0, 1] leads to a significant drop in performance, since adaptive
thresholds can potentially exceed most expert weights, risking no expert activation and
reducing the model to its base performance without LoRA enhancements. Conversely,
a lower threshold range like [0,1/(2N)] allows for more expert activations, potentially
improving performance by leveraging a broader range of expertise at the cost of increased
computational demand during inference. This intricate interaction between threshold
selection and expert activation highlights the critical need for setting the proper threshold
parameter, aiming to find the suitable balance that maximizes model performance.

Model Gating CommonsenseQA  COPA
LoRA - 76.25% 93.00%
MoLE top-1 74.04% 90.00%
MoLE top-2 77.15% 92.00%
MoLE top-3 77.07% 92.00%
MoLE 1/N 75.35% 93.00%
AdaMoLE 0-1/(2N) 78.95% 96.00%
AdaMoLE 0-1/N 78.71% 94.00%
AdaMoLE 0-3/(2N) 77.15% 92.00%
AdaMoLE 0-2/N 74.45% 89.00%
AdaMoLE 0-1 31.94% 57.00%

Table 3: Evaluation of AdaMoLE’s performance with various threshold settings, where N is
the number of experts in one MoE module.

Additional insights into AdaMoLE'’s expert utilization can be gleaned from the analysis
of activated expert counts as shown in Table 4. Notably, the threshold set at [0,1/N]
activates more experts than the top-2 gating but achieves better performance metrics,
highlighting its efficiency in leveraging expert contributions. In contrast, the [0,3/(2N)]
threshold activates fewer experts than the MoLE top-2 configuration yet manages to deliver
comparable performance. This pattern suggests that AdaMoLE can maintain competitive
performance even with fewer experts activated, demonstrating the model’s effective balance
between computational efficiency and expert deployment. While the current study focuses
on AdaMoLE’s adaptive thresholding mechanism, future work could provide a more
detailed comparison of its performance and computational cost with other approaches such
as Sparse Mixture of Low Rank Adaptation (SiRA) (Zhu et al., 2023) and Chain of LoRA
(COLA) (Xia et al., 2024).

Model Gating CommonsenseQA COPA
AdaMoLE 0-1/(2N) 6.59 6.86
AdaMoLE 0-1/N 3.46 4.56
AdaMoLE 0-3/(2N) 1.26 1.71
AdaMoLE 0-2/N 0.33 0.33

Table 4: Averaged numbers of activated experts from MoE modules in AdaMoLE with
various threshold settings, where N is the number of experts in one MoE module.

5.2 Expert Activation Analysis

The analysis of expert activation within AdaMoLE reveals insightful trends in how the
model’s LoRA experts are engaged across different tasks. For both CommonsenseQA and
COPA, depicted in Figure 2, there is a noticeable trend of higher expert activation in the
lower layers of the Llama-2-7B model. This suggests that the initial layers are crucial
for processing foundational language features, which may be more complex and varied,
necessitating a broader range of expert knowledge. As the input passes through successive
layers, a reduced number of experts is engaged, indicating a refinement in processing where
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fewer specialized contributions are required. The distinct activation patterns across the
self-attention module’s weight matrices further reflect the model’s strategic allocation of
expertise to handle the task-specific complexities encountered at each layer.
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Figure 2: Numbers of activated LoRA experts in AdaMoLE for four weight matrices in the
self-attention module of each layer, where 7 is the threshold for expert activation and N is
the number of experts in one MoE module.

Building on the initial findings, we further explore how the upper bounds of threshold
settings affect expert activation in AdaMoLE. Figure 3 shows that as the upper bound
for the threshold Tmax increases, the model tends to activate fewer experts, suggesting a
more selective and targeted utilization of expertise. This trend is evident in both Common-
senseQA and COPA tasks and illustrates a key aspect of AdaMoLE’s design, where it is
able to dynamically adjust expert involvement not only enhances model performance but
also optimizes computational efficiency. Striking a balance between these two factors is
critical; too broad a threshold may underutilize available expertise, while too conservative
a threshold can lead to computational waste. Thus, fine-tuning the threshold bounds in
AdaMoLE becomes a pivotal strategy in future research, ensuring it leverages the right
amount of expertise to effectively process complex tasks without incurring unnecessary
computational costs.
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Figure 3: Averaged numbers of activated LoRA experts in AdaMoLE for each layer with
different upper bounds Tmax, Where the expert activation threshold 7 € [0, Tmax] and N is
the number of experts in one MoE module.
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5.3 Hyperparameter Setting Analysis

In our pursuit to optimize AdaMoLE’s configuration, we carry out a systematic exploration
of various hyperparameter settings on the combination of the number of experts and the
LoRA rank (N x r). The outcomes with the CommonsenseQA benchmark, as delineated in
Table 5, demonstrate that different configurations impact AdaMoLE’s performance. Our
experiments reveal that AdaMoLE consistently achieves its best performance across various
settings, surpassing both standard LoRA and MoLE under similar conditions. This analysis
not only helps in identifying the most effective hyperparameter combinations but also
underscores the adaptability of AdaMoLE to maintain superior performance across a range
of expert and rank configurations, validating its robustness and effectiveness in fine-tuning
LLMs.

Model Gating 4x4 4x8 8x4 8x8 16 x 4
LoRA - 75.43%  76.25% 76.25% 76.74%  76.74%
MoLE top-2 73.55% 74.45% 77.15% 76.82% 76.66%
MoLE 1/N 74.77%  74.28% 7535%  68.88%  75.18%

AdaMoLE 0-1/N  78.38% 77.89% 78.71% 78.13% 78.13%

Table 5: Experiment results with different hyperparameter settings of the number of experts
and the LoRA rank (N x r) on CommonsenseQA, where the evaluation metric is accuracy.

6 Conclusion

In conclusion, this study presents AdaMoLE, an innovative method that combines Low-
Rank Adaptation (LoRA) with an adaptive Mixture of Experts (MoE) framework, marking a
significant progress in the fine-tuning of large language models (LLMs). Through compre-
hensive testing on a variety of commonsense reasoning and natural language processing
(NLP) tasks, AdaMoLE has proven to surpass conventional baselines, including standard
LoRA and Mixture of LoRA Experts (MoLE) configurations. AdaMoLE’s effectiveness is
primarily attributed to its dynamic thresholding mechanism, which precisely adjusts the
activation of LoRA experts based on the context of each input, ensuring the most effective
use of expert knowledge. This mechanism allows AdaMoLE to achieve improvements in
performance across various tasks, demonstrating its capability as an effective instrument
for enhancing LLMs. Insights from our threshold sensitivity, expert activation, and hyper-
parameter setting analyses further highlight AdaMoLE’s strategic adaptability and expert
utilization, reinforcing its strong performance. Looking ahead, AdaMoLE encourages fur-
ther exploration into adaptable fine-tuning methods, suggesting opportunities for continued
advancements in the domain of NLP.

Limitations

While AdaMoLE demonstrates improvements in fine-tuning LLMs by dynamically selecting
LoRA experts, it has several limitations. First, the computational overhead introduced
by the adaptive thresholding mechanism may still be non-trivial, particularly for huge
models or when deploying in resource-constrained environments. Second, the evaluation
is limited to specific benchmarks for commonsense reasoning and NLP tasks, which may
not fully capture the model’s performance across all potential applications and specific
domains. Additionally, the current implementation of AdaMoLE does not account for the
potential interactions between experts, which might lead to suboptimal expert activations
in some contexts. Further research is needed to explore more sophisticated mechanisms for
expert selection and activation that could mitigate these issues and improve computational
efficiency.
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A Foundation Model Analysis

To thoroughly assess the adaptability and performance of AdaMoLE across different foun-
dational architectures, we conduct additional experiments using Gemma-7B (Team et al.,
2024) and Llama-2-13B (Touvron et al., 2023) models. The findings, as detailed in Tables
6 and 7, demonstrate that AdaMoLE consistently surpasses the performances of both the
standard LoRA and MoLE configurations across most benchmarks. These experiments are
designed to probe AdaMoLE'’s robustness and its capability to generalize effectively when
applied to different underlying model architectures. The results not only affirm the superior
performance of AdaMoLE in enhancing the accuracy on a variety of tasks, but also highlight
its generalizability across models, showcasing its potential as a versatile tool for fine-tuning
LLMs across diverse settings.

Model Gating CommonsenseQA ScienceQA BoolQ COPA
LoRA - 80.51% 91.56% 88.50%  98.00%
MoLE top-2 80.02% 91.28% 89.08%  97.00%
AdaMoLE 0-1/N 81.00% 91.93% 89.94%  98.00%

Table 6: Experiment results with the Gemma-7B foundation model, where N is the number
of experts in one MoE module and the evaluation metric is accuracy.

Model Gating CommonsenseQA SciencecQA BoolQ COPA
LoRA - 79.77% 89.04% 86.33%  93.00%
MoLE top-2 80.67% 90.16% 87.46%  93.00%
AdaMoLE 0-1/N 81.74% 90.67% 87.00%  95.00%

Table 7: Experiment results with the Llama-2-13B foundation model, where N is the number
of experts in one MoE module and the evaluation metric is accuracy.
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