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ABSTRACT

Self-organization is ubiquitous in nature and mind. However, machine learning
and theories of cognition still barely touch the subject. The hurdle is that gen-
eral patterns are difficult to define in terms of dynamical equations and designing
a system that could learn by reordering itself is still to be seen. Here, we pro-
pose a learning system, where patterns are defined within the realm of nonlinear
dynamics with positive and negative feedback loops, allowing attractor-repeller
pairs to emerge for each pattern observed. Experiments reveal that such a sys-
tem can map temporal to spatial correlation, enabling hierarchical structures to be
learned from sequential data. The results are accurate enough to surpass state-
of-the-art unsupervised learning algorithms in seven out of eight experiments as
well as two real-world problems. Interestingly, the dynamic nature of the system
makes it inherently adaptive, giving rise to phenomena similar to phase transitions
in chemistry/thermodynamics when the input structure changes. Thus, the work
here sheds light on how self-organization can allow for pattern recognition and
hints at how intelligent behavior might emerge from simple dynamic equations
without any objective/loss function.

1 INTRODUCTION

Self-organization is present in diverse scientific fields, from biology (Misteli, 2007; Deglincerti et al.,
2016; Sasai, 2013) to neuroscience (Linsker, 1988; Tognoli & Kelso, 2014; Imam & L. Finlay, 2020;
Schoner & Kelso, 1988), chemistry (Montalti et al., 2017; Lehn, 2002a;b) and physics (Haken,
1975; Wickman & Korley, 1998; Tersoff et al., 1996; Haken, 1977). It shows how order can arise
intrinsically from a system. It is a set of interactions that allows for the emergence of patterns and
is responsible for complex behavior from simple interactions (Kauffman et al., 1993; Haken, 1977).
Albeit the ubiquitous presence of self-organization in nature and in the brain, it is unknown how
self-organization can lead to intelligence. For this reason, theories of intelligence rarely use the
concept in their development. The free energy principle (Friston, 2010; 2009) and reinforcement
learning paradigms (Sutton & Barto, 2018; Mnih et al., 2015; Schrittwieser et al., 2020) define a
top-down view of learning based on objectives that are satisfied locally or globally. However, from
a bottom-up perspective, it is still barely understood how Hebbian learning (Hebb, 2005; Magee &
Johnston, 1997) and other neuron behaviors allow for top-down theories of intelligence to emerge.
In fact, there is strong evidence the brain does not behave as a computer but as a more self-organizing
system (GRAY, 1987; Eckhorn et al., 1988). In this paper, we show how the learning of patterns
can be achieved by Hebbian and anti-Hebbian learning dynamics, linking between Hebbian learning
and top-down theories of intelligence (Hebb, 2005).

The recent success of machine learning, similar to the current theories of intelligence, is mostly
given to optimization-based deep learning algorithms. While deep learning utilizes optimization
and loss functions (objective functions) to learn the model’s parameters and improve in the task
at hand, self-organization existence in machine learning is mostly limited to Self-Organizing Map
(SOM) variations (Kohonen, 1982; Chang et al., 2020; Reker et al., 2014). Such SOMs are only
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employed in clustering and dimensional reduction tasks, as they lack the ability to find patterns in
data required for further processing and acting on the environment.

Here, inspired by many successful modelings of neuron behaviors based on dynamical equations
composed of attractor dynamics (Tognoli & Kelso, 2014; Wills et al., 2005; Spalla et al., 2021; Ooi
et al., 2018), we show how a system of dynamical equations can give rise to order and represent pat-
terns. Our proposed system is arguably more biologically plausible, and it is also shown to be more
accurate and adaptive than state-of-the-art unsupervised algorithms. In fact, it sets up a foundation
for a new paradigm in machine learning solely based on self-organization from dynamical equa-
tions, namely Self-Organizing Dynamical Equations, which are inherently accurate and adaptive.
We propose Hierarchical Temporal Spatial Feature Map (TSFMap), a learning system implement-
ing the Self-Organizing Dynamical Equations paradigm. It creates a space in which distances in it
reflect the temporal correlation between input variables. A simple clustering in this self-organized
space reveals that the representation learned is very accurate. Adaptation comes from the fact that
the proposed system, Hierarchical TSFMap, couples its internal dynamics with the input, resulting
in patterns encoded as emergent attractor-repellers at equilibrium. Consequently, alterations in the
underlying structure of the problem result in different equilibrium with new attractor-repellers, trig-
gering an inherent adaptation when the problem changes. Interestingly, structural changes in the
environment cause in Hierarchical TSFMap a phenomenon very similar to phase transition observed
in thermodynamics, and chemistry, among other areas (Fig. 1).

Figure 1: Hierarchical TSFMap’s phase transition. A phenomenon similar to phase transition takes
place in the proposed algorithm when the underlying structure of the problem changes. (a) Lines
indicate the relative distance for all weight pairs. (b) The average rate of change for all weight pairs’
distances (a). Random initialized weights start to form patterns with respect to the input and enter an
equilibrium state. Once the problem’s data structure is altered, Hierarchical TSFMap automatically
adapts its weights. Subsequently, weights enter another equilibrium state.

In this paper, Hierarchical TSFMap is evaluated in one of the hardest types of patterns, e.g., recog-
nition of dynamical and imbalanced hierarchical patterns present in sequential data. The problem of
learning the hierarchical relationships from sequential input is a challenging unsolved one (Uddén
et al., 2020). This becomes even harder when the problem structure is dynamic, e.g., variable cor-
relations change over time. Since any information can be serialized, the pattern recognition over
sequences is a general one that can be applied ubiquitously to any type of serialized data. Albeit the
difficulty of the task, Hierarchical TSFMap provides, perhaps surprisingly, near-optimal solutions to
more than half of the problems. Lastly, we have demonstrated that Hierarchical TSFMap can extract
hierarchical structures from sequential data generated from two real-world networks: (1) Zachary’s
karate club network and (2) Lusseau’s bottlenose dolphin social network.

2 RELATED WORK

A recent work (Vasconcellos Vargas & Asabuki, 2021) demonstrated how a self-organizing system
called SyncMap, can learn features from sequences using dynamical equations alone (e.g., without
any type of optimization). Here we go beyond this work on simple chunks to show how dynamical
equations that self-organize compose a paradigm and can be used to deal with challenging hierarchi-
cal structures and imbalanced problems. In fact, the experiments suggest that Hierarchical TSFMap
can deal with dynamical variations of the problems with little difficulty.
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Community detection in complex networks can also extract hierarchies (Clauset et al., 2007;
Corominas-Murtra et al., 2013). Although the input data, and therefore the problem, is different
from the one seen here, sequence data and complex networks can interchangeably convert to one an-
other (e.g., via an adjacency matrix from transition probabilities or a random-walk over a complex
network). This reveals Hierarchical TSFMap’s connection with complex networks. Having said
that, the similarities stop here as both the objective and methodology differ. Complex networks’ al-
gorithms usually maximize a metric on the network to find communities (while here only dynamical
equations are used). Given the nature of optimization problems, such models are inherently not able
to deal with any possible dynamics of the network.

A closely related body of work is that of learning an embedding that also preserves the variables’
correlations. Word2vec, specifically, can create embeddings that preserve the relationships of neigh-
boring variables based on their context (Mikolov et al., 2013). However, we showed here that hi-
erarchical structure does not seems to be preserved in this embedding. To make matters worse,
adaptation is tricky with deep neural networks (it is in direct conflict with techniques that make
them learn well such as decreasing learning rate) and there is no inherent system that can adapt to
changes in the environment.

3 HIERARCHICAL TEMPORAL SPATIAL FEATURE MAP

Here we demonstrated the general workflow of Hierarchical TSFMap, which is composed of three
steps: (1) input encoding, (2) the dynamics process, and (3) the hierarchical chunking phase. Refers
to Fig. 2 for an overview of Hierarchical TSFMap’s workflow.

Input Encoding. We first encoded the sequence data generated from the problem into a specific type
of input before feeding it into our model. Given a sequence of data X with τ be the sequence length,
all unique items in X represent different states and we denote the total number of unique states using
n. We converted input sequence into a sequence of state St = (S1, S2, · · · , Sτ ). St be a vector of
state values in time t. We set st = s1,t, s2,t, · · · , sn,t with st ∈ St and total number of unique state
n as the dimension of states. For st ∈ {0, 1}n :

∑n
i=1 si,t = 1, simulating the activation of neurons.

The input encoding is modeled as an exponentially decaying vector xt, sharing the same size as the
number of states:

xi,t =

{
si,ta × e−0.1×(t−ta), t− ta < m× tstep

0, otherwise
(1)

in which ta is the most recent state transition to state si. State transitions happen every tstep step
and variables with time of activation greater than m× tstep are set to 0. Thus, only the last m states
activated are remembered as xi,t > 0, and we set m to 10. At each time step, xi,t will be fed into
the model as a spike encoded input.

Dynamics. Hierarchical TSFMap represents patterns with a formation of attractor-repeller pairs for
each identified one. The space made of attractor-repeller pairs defines a temporal to spatial mapping
of variables’ correlation, and is given the name σ space. There is no optimization or objective
function, the dynamical system merely self-organizes to the input, following positive and negative
feedback loops. Experiments suggest that the distance between patterns in the learned σ space is
proportional to the strength of their temporal correlation.

To begin the dynamic process, all inputs xi,t have a set of corresponding weights wi,t initialized to
a random position in a σ space wi,t ∈ Rk at the beginning, with k be a hyperparameter that defines
the dimension of the map, or the degrees of freedom that organize the weights.

Hierarchical TSFMap defines positive and negative feedback loops related to which state variables
activate together (synchronous behavior). In each iteration t, state variables that activate or deac-
tivate together are first included into PS or NS sets respectively. Here, PS or NS refers to: (1)
activated and recently activated input set PSt and (2) non-recently activated input set NSt. Inputs
with value greater than or equal to 0.1 are considered an element of PSt; otherwise, inputs are a
member of NSt. Thus, we define PSt = {i|xi,t > 0.1} and NSt = {i|xi,t ≤ 0.1}. If and only if
the cardinality of both sets are greater than one, where |PSt| > 1 and |NSt| > 1, the centroid of
both sets are computed as follows (otherwise no update is made in this iteration):

3



Under review as a conference paper at ICLR 2023

Figure 2: Hierarchical TSFMap’s workflow. (a) A sequence of variables is converted to spikes that
decay exponentially. (b) Hierarchical TSFMap’s weights are initialized randomly with a weight for
each possible variable. Every time step the spike encoded input is presented to the algorithm which
self-organizes to it. (c) The σ space stores the temporal relationship of variables spatially. To extract
this hierarchical information into dendrograms, a simple hierarchical clustering is used.

cpt =

∑
i∈PSt

wi,t

|PS|
, cnt =

∑
i∈NSt

wi,t

|NS|
(2)

where cpt and cnt are the centroids of PSt and NSt respectively. With cpt and cnt, we determine
the distance of all weights to cpt and cnt as dcp = ∥wi,t − cpt∥ and dcn = ∥wi,t − cnt∥ respec-
tively, using Euclidean distance metric. Subsequently, state variables are updated (Fig. 3) by either
attracting to cpt (activated states) or repelling from cnt (inactive states).

vi,t+1 = θvi,t +
[
1PSt

(i)
µ1(cpt − wi)

dcp
+ 1NSt

(i)
(µ2(wi − cnt)

dcn
+

µ3(wi − cpt)

d2cp

)]
(3)

wi,t+1 = wi,t + αvi,t+1 (4)

where α = 1e− 3 is the learning rate, θ = 0.999 is the velocity decay and v is the velocity. 1PSt
(i)

(or 1NSt
(i)) is the indicator function that maps elements of the subset PSt (or PNt) to one, and

all other elements to zero. The term 1PSt
(i)µ1(cpt−wi)

dcp
acts as an attraction force between activated

variables; On the other hand, 1NSt
(i)

(
µ2(cnt−wi)

dcn
+ µ3(wi−cpt)

d2
cp

)
acts on in-active variables as an

attraction force between in-active variables and repulsion force from activated variables. µ1 = 6,
µ2 = 3, and µ3 = 2 are the coefficients that control the strength of the attraction and repulsion
forces, tuned from a range of values that were tried as they produced the best results. This dynamic
law governed by the Hebbian and anti-Hebbian learning dynamics is arguably analogous to a force-
directed algorithm (Fruchterman & Reingold, 1991), or even a gravity and anti-gravity force. We
then specify the attraction force (F1) with 1PSt

(i) indicating that F1 only appears among the
activated state variables. For the inactive ones (1NSt

(i)), we specify the attraction force between
inactive variables (F2) and a repulsion force from activated variables (F3). Weights (e.g., state
variables) are finally updated by Eq. 4. Each update iteration ends by scaling all weights to a
fixed size space. Furthermore, the velocity parameters create inertia to avoid the instability caused
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by instantaneous weight update. At the end of the iteration, all values of the updated weights are
normalized: ŵi,t+1 =

wi,t+1

max(w) to keep them in a relative space. Overall, the dynamical equation
was found to work well in preserving the hierarchical structure of the corresponding input, despite
its simplicity. The process above iterates until the final time step. Theoretically, a final time step is
not required to be defined, as this is an adaptive system.

Figure 3: Hierarchical TSFMap’s main dynamical equations and emerging behavior. The cir-
cles with arrows represent the emergent attractor-repeller pairs (or just repellers); a consequence
of the dynamical equations. Regarding the equations, vi,t is the velocity with θ as its decaying
factor at time t, while wi,t is the weight. The positive centroid (cpt =

∑
i∈PSt

wi,t/|PS|) at-
tracts recently activated weights (F1) and repels inactive weights (F3); while the negative centroid
cnt =

∑
i∈NSt

wi,t/|NS| only repels inactive weights (F2). Distance of all weights to cpt and cnt

are computed as dcp = ∥wi,t − cpt∥ and dcn = ∥wi,t − cnt∥ respectively using Euclidean distance
metric. With α as learning rate, w is subsequently updated with regard to v.

Hierarchical Chunking Phase. Methods like hierarchical clustering can produce a dendrogram.
Yet, a dendrogram does not promptly reveal which level of the hierarchy should be viewed as a
collection of meaningful chunks. To solve that, we use Hierarchical Chunking Phase to extract the
information of how variables are chunked together on each level of the hierarchy. With Hierarchical
Chunking Phase, the proposed algorithm produces an L ×N matrix, which refers to the output Y ,
including the predicted class label, with L being the total levels of hierarchy (see Appendix. A for
the implementation detail of Hierarchical Chunking Phase).

4 EXPERIMENTS AND RESULTS

We investigate the performances of Hierarchical TSFMap and the baselines (SyncMap, Word2vec,
Modularity Maximization, and transition probability matrix) in two types of hierarchical problems:
imbalanced hierarchies and dynamical hierarchies (hierarchies that change during experiments).
Each problem is represented by a graph preserving the hierarchical structures. Each sequence ob-
served by the algorithms is derived from a random walk in the above-mentioned graph, with de-
creasing transition probabilities when variables pertain to different chunks. Variable is placed into
the sequence input whenever random-walker travel to one. Refer to Appendix. B for the implemen-
tation of the baselines and Appendix. C for the details of graph-to-input-sequence generation.

4.1 IMBALANCED HIERARCHICAL STRUCTURE

Real-world events rarely share equal possibilities, suggesting that most of the real-world structures
are arguably imbalanced. We first introduce three environments to quantify the performances of the
models on imbalanced data: Imbalanced Hierarchy (IH), Hierarchy with Branches (HB), and Im-
balanced with Extra Hierarchy (IEH). These are generated from three graphs indicating the desired
imbalanced structures (Fig. 4). The environments create a distribution of variables where the occur-
rence of some variables is more frequent than others. In detail, IH defines a sequence where a single
chunk contains much more variables than other chunks, while HB is a hierarchical structure where
a branch has a shallower hierarchy with fewer nodes. With more complexity, IEH has a branch with
deeper hierarchical structure.

Results shown in Fig. 4 reveal that Hierarchical TSFMap surpasses all other algorithms in imbal-
anced hierarchical problems. This suggests that self-organization alone can, perhaps surprisingly,
represent such complex structures. Hierarchical TSFMap’s behavior also resembles the bottom-up
behavior observed in natural self-organization processes (Simon, 1991) (Fig. 5). Weights tend to
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form chunks that belong to the lower level of hierarchies at first. These chunks then proceed to
cluster into bigger chunks that belong to the next level of the hierarchy. It is important to note that
weights manoeuvre and form chunks around the surface of a k − 1 dimensional n-sphere. Such an
n-sphere composition allows for negative centroids (cnt) mostly at the center of the n-sphere and
for positive centroids (cpt), when correctly clustered, to be at the border. The result is a uniform
negative feedback (F2) away from the center and a non-uniform positive feedback perpendicular to
the center (F1). Notice that, since all weights are scaled back to a fixed size space, the negative
feedback F2 is canceled, bringing the system to equilibrium (only F1 and F3 move weights re-
spectively close and far apart from each other on the border of the n-sphere; proportionally to their
temporal correlation). Important to notice that F2 allows for a degree of freedom (e.g., they are not
fixed at the border of the n-sphere) for weights to move around while keeping them mostly stable
in equilibrium. See Fig. 13 for the visualization of Hierarchical TSFMap’s dynamic in Imbalanced
Hierarchical Structure problems.

Figure 4: Experiment setting and results of imbalanced hierarchical structure (HB). (a, b, c) The
graphs of hierarchical structures (left) of the environments IH, HB and IEH used to generate input
sequences. Leaf nodes represent variables, and sibling nodes with the same color coding belong to
the same chunk linked by the nodes in red. A chunk can contain either child chunks or variables. The
plot (right) illustrated the Normalized Mutual Information (NMI) score progression over time. The
solid lines and shade represent the mean and standard deviation of the NMI score over 30 instances.
Results are smoothed by a ten-timestep moving average. (d) The NMI score of Hierarchical TSFMap
compared to baselines in table view. The result indicates that Hierarchical TSFMap performs the
best in all imbalanced hierarchical structure experiments.

Figure 5: Analyzing Hierarchical TSFMap’s Dynamics. Weights are initialized randomly in a three-
dimensional space (k = 3). The weights progressively self-organize into six smaller chunks, these
smaller chunks proceed to then merge into two bigger chunks respectively. This emerging behavior
reveals the bottom-up self-organization properties of Hierarchical TSFMap, in which individual
components gradually aggregate to form more complex systems iteratively.

To understand the reason for the accurate results from Hierarchical TSFMap when compared to other
embedding-based learning systems such as Word2vec and SyncMap, we compared their learned
embeddings/maps in Fig. 6. Specifically, the σ space learned by Hierarchical TSFMap shows it can
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learn the temporal correlation between variables. In fact, the learned σ space respects both local
and global temporal correlations. Word2vec is shown able to identify local chunks with substantial
accuracy, but global relationships are not preserved in its embedding. The rationale behind this
lies in how Word2vec learns, e.g., by using local contextual information which is less predictive of
global contexts/relationships. SyncMap, on the contrary, can identify high-level chunks precisely.
However, there seems to be a scaling problem in how local chunks are clustered, that is, local chunks
tend to overlap with each other, making it difficult to accurately identify the lower level structure
of a given hierarchy. Regarding the TP matrix, the precision of the transition probability’s table
is affected strongly by the standard deviation of variables. This problem further increases in cases
with smaller chunks that have a smaller probability of activating, justifying the poor performance.
This is also the case of Modularity Maximization which is also based on the transition probabilities.
Moreover, researchers have already shown that the used modularity metric tends to overestimate
either the global context or local context of a chunk (Sun, 2016).

Figure 6: Comparison of the Learned Representation of Hierarchical TSFMap, SyncMap, and
Word2vec. Here we show (b) the 2D learned σ space of Hierarchical TSFMap, (c) the learned
map of SyncMap, and (d) the word embedding of Word2vec; together with the dendrogram formed
corresponding to their pattern in (a) HB environment. Chunks in the lowest level of hierarchies are
color-coded. As shown in (b), Hierarchical TSFMap can produce a pattern that matched the distri-
bution of variables. (c) The word embedding learned by Word2vec can identify local chunks, yet
failed to identify chunks beyond the lowest level of hierarchies. (d) SyncMap successfully identi-
fies chunks on a global scale; however, local chunks overlapped, which increases the difficulty to
distinguish them.

4.2 DYNAMIC HIERARCHICAL STRUCTURE

Real-world problems are constantly changing. Yet, humans adapt to it almost effortlessly while
understanding complex hierarchical relationships (Conway & Christiansen, 2001; Werchan et al.,
2015; Collins & Frank, 2013). To quantify the performance of algorithms under problems with hi-
erarchies that change over time (dynamical hierarchies), five problems with different characteristics
are defined (Fig. 7). In detail, DIH (Dynamic Imbalanced Hierarchy) starts with HB’s imbalanced
hierarchical structure and then merges two chunks into a new branch. DCH (Dynamic Chunk Hi-
erarchy) splits two chunks into three chunks over time. EC2EH (Extra Chunk to Extra Hierarchy)
shifts from shallow hierarchical structure with two levels to a deep hierarchical structure with four
levels. EH2EC (Extra Hierarchy to Extra Chunk) is the reverse of EC2EH, specifically designed
to test what happens when hierarchical structures decrease in the number of levels. DCS (Dynamic
Chunk Swap) swaps chunks of level two to form a different structure. The distribution of variables in
dynamic environments shifts over time (Fig. 9), halfway through the input sequence, when τ/2 with
a total number of input τ = 600000 (This scheme applies to all the following dynamic problems).
Note that the number of variables remains consistent despite the changes. The dynamic problems
aim to evaluate how models can adapt to the latest changes in the environment.
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Results show that Hierarchical TSFMap can adapt well in dynamic environments, achieving near-
optimum solutions in 4 out of 5 environments. The experiments here extend the results with im-
balance hierarchies to demonstrate that the good performance is not only limited to static problems.
Moreover, the rapid remapping of the weights when an instantaneous change occurred in environ-
ments is analogous to the attractor dynamics of place cells, as they switch between representations
to respond to the changes in environments (Wills et al., 2005).

Figure 7: Experiment setting and results of dynamic hierarchical structure. (a, b, c, d, e) The graphs
of hierarchical structures (left) of the environments DIH, DCH, EC2EH, EH2EC, and DCS used to
generate input sequences. The blue arrow implies that the distribution of variables changes through-
out a single experiment. The plot (right) illustrated the NMI score progression over time. The
proposed method, Hierarchical TSFMap, is shown to be the only one capable of quickly adapting
to structural changes. (f) The table showed the NMI score of Hierarchical TSFMap compared to
baselines. The proposed algorithm performs the best in nearly all dynamic hierarchical structure
experiments.

In fact, when compared with other methods, Hierarchical TSFMap shows a great performance be-
fore and after the change in structure (Fig. 7). Much of the great performance derives from phase
transitions that happen naturally in Hierarchical TSFMap when the input structure changes (Fig. 1).
See Fig. 14 and Fig. 15 for the visualization of Hierarchical TSFMap’s dynamic in Dynamic Hi-
erarchical Structure problems. All the other methods face different but related problems related to
adaptation. TP matrix and Modularity Maximization are based on transition probabilities which
become imprecise when the underlying probabilities change throughout the test. Word2vec has
learned weights that become, after the change, a local minimum which is hard to overcome and bias
the learning toward a previously learned nearby region. SyncMap was not designed for hierarchies
(reflected by the relatively poor performance even in static problems). Increasing the difficulty of
hierarchical problems with dynamical structural changes only makes matters worse. Additionally,
although initialized in higher dimensional weight space, the rank of SyncMap’s weight matrix con-
verged to 1 given enough time, where ρ(W ) = 1 with W being the weight matrix. This indicates that
SyncMap’s dynamic can be restricted in one-dimensional space. The weight matrix of Hierarchical
TSFMap however, can retain its high dimensionality, where 1 ≤ ρ(W ) ≤ k (Fig. 12).

4.3 REAL WORLD SCENARIOS

In this section, we consider two network datasets with interpretable hierarchical structures: (1)
Zachary’s karate club network and (2) Lusseau’s bottlenose dolphin social network. Despite being
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well-establish benchmarks, the hierarchical information of both networks is seldom explored in
depth. Therefore, we investigate the hierarchical structure extracted from Hierarchical TSFMap,
utilizing the input sequence generated from the networks (refers to Appendix. D for the experiment
details).

The ground truths provided by Girvan & Newman (2002); Zachary (1977) and Lusseau et al. (2003)
are only available for one level of the hierarchy; Thus, the interpretation of the remaining hierarchi-
cal structure relies on the visualization of the representation space. The table in Fig. 8 showed the
NMI score of the most significant chunk predicted by the models compared to the ground truth in
both tasks. The result showed that our models could configure their weights to match the ground
truth in most instances, reflected by the relatively high NMI score. Furthermore, Fig. 8 (c) demon-
strated the weight space of Hierarchical TSFMap for the Karate club network. Two chunks are
formed on the most significant level of the hierarchy, aligning with the ground truth where the
members of the Karate club were eventually split into two factions. When looking deeper into the
hierarchy, smaller groups of members and less social individuals are formed into their own chunks,
showing signs of hierarchical structure in the network. Lastly, Fig. 16 and Fig. 17 displayed the
representation space of Hierarchical TSFMap, SyncMap, and Word2vec in both tasks.

Figure 8: Hierarchical TSFMap can extract the hierarchical structure of real-world networks. (a)
The NMI score of Hierarchical TSFMap compare to baselines on Karate club and Dolphin social
network. (b) The ground truth of the Karate club network provided by Zachary (1977). (c) The
dendrogram shows the hierarchical clustering of weights, where the red dashed lines are the cut-
off. The weight space (k = 5) describes how weights are chunked in three of the most significant
hierarchies, visualized using multidimensional scaling.

5 CONCLUSION

We show here how dynamical equations alone are enough to create self-organizing systems capable
of learning complex structures such as imbalanced and dynamical hierarchies. In fact, experiments
have shown that these dynamical equations have two emerging properties that are typical of self-
organization systems: (a) bottom-up organization and (b) presence of phase transition. Moreover,
we propose Self-Organizing Dynamical Equations as a paradigm for machine learning together with
an algorithm that implements it (Hierarchical TSFMap). Results show that, perhaps surprisingly,
Hierarchical TSFMap is both more accurate and more adaptive than state-of-the-art algorithms in
seven out of eight tasks.

This work also has implications in many areas such as cognitive science and neuroscience, shed-
ding light on how self-organization circuits can be established as fundamental a mechanism in the
brain. Results here suggest that the learning of chunking and hierarchical structures can be done
by self-organizing circuits with Hebbian and anti-Hebbian plasticity. Thus, it reveals a relationship
of Hebbian theory with brain self-organization and sets up the stage for novel cognitive theories to
emerge, using self-organization as a principle rather than a byproduct.
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REPRODUCIBILITY STATEMENT

We have made the experiments easily reproducible by providing the following: (1) The parameters
setting to reproduce results is available in Appendix. B. (2) The parameters setting and implemen-
tation details of our model are available in the main text and Appendix. A. (3) We have provided
extensive details regarding the setup of the environment (generating input sequence) in Appendix. C.
(4) Code to reproduce our environments from scratch, the proposed model, and the baselines will
be submitted as supplementary material and made available through GitHub after acceptance. All
the result for Imbalanced Hierarchical Structure and Dynamic Hierarchical Structure experiments
was obtained from at least 30 independent experiments. Values in different experimental groups are
expressed as the mean ± s.t.d. p < 0.05 was considered statistically significant. The p-values of
each experiment are shown in Table 1.
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A HIERARCHICAL CHUNKING PHASE

The output reveals the information on how many levels of hierarchy can be distinctively identified
and how variables of each level form chunks. We first perform linkage (Müllner, 2011) on input
w and return a distance matrix Z (or sometimes referred as a linkage matrix). Using Z, we com-
pute the distance between each formation of the non-singleton cluster as δ(Z). We index δ(Z)
with ascending order, sort it according to branch distance with descending order sort(δ(Z)) =
[d ∈ D|di > di−1] and return their corresponding index, where sorted δid = argsort(δ(Z)). In
other words, index sorted δid represents the n-th number of the formation of the non-singleton
cluster. We then remove the index in sorted δid that is larger than its previous index. The length
of sorted δid defined as H is considered as the total number of levels in the hierarchy. Lastly, We
iterate over sorted δid and perform flat clustering from linkage matrix Z based on the criteria of
number of cluster n cluster = n − sorted δid − 1 on the same flat level. Predicted chunks y on
each level are then combined to form the final output Y .

Doing so essentially prioritizes putting the chunks with the most distinctive distance feature together,
and divisively decomposing them into smaller chunks while taking the overall distance feature of all
chunks into account. This opposes merely performing hierarchical clustering as it does not infers
the exact number of levels in the hierarchy and which levels are important enough to be highlighted
(Bar-Joseph et al., 2001). Algorithm 1 displays the pseudo-code for this method. Though we feed
Hierarchical TSFMap’s weight as an input, other feature vectors are acceptable. Here we use linkage
with single method (Gower & Ross, 1969), yet other methods such as complete, ward, or average
can be used.

Algorithm 1 Hierarchical Clustering Phase
W ← Retrieve Hierarchical TSFMap’s weights
Z ← Perform linkage on W and return distance matrix
δ(Z)← Return all the branch distance between each formation of non-singleton cluster
sorted δid = argsort(δ(Z)) Sort branch distance with descending order where sort(δ(Z)) =
[d ∈ D|di > di−1] and return their corresponding index
maximum id← sorted δid[0]
for id ∈ sorted δid do

if id > maximum id then
maximum id← id

else
Remove id from sorted δid

end if
end for
set H with length of sorted δid
Initialize predicted label Y
for h ∈ {0...H} do

Number of clusters ncluster = n− sorted δid[h]− 1
Form clusters y from linkage matrix Z with the number of cluster n cluster be the parameter
Set Y [h] = y

end for
Return predicted label Y

B BASELINES

We compare Hierarchical TSFMap to Word2Vec Mikolov et al. (2013), Modularity Maximization
Newman & Girvan (2004), SyncMap Vasconcellos Vargas & Asabuki (2021) and directly apply hi-
erarchical chunking phase on a transition probability matrix of state on every experiment mentioned
previously. NMI score, NMI(Ŷ , Y ) = 2 I(Ŷ ;Y )

H(Ŷ )+H(Y )
, is used as evaluation metric to compare pre-

dicted chunk Ŷ with the true label Y (provided by the environments) on each level of hierarchy,

which produce the final score defined by
∑L̂

i=0 NMI(Ŷi,Yi)

L̂
. Where I(Ŷ ;Y ) is the mutual informa-

tion between Ŷ and Y , H(·) is the entropy, L̂ is the total number of hierarchy in the environments,
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generated by the environments itself. Hierarchical TSFMap can produce more than L̂ number of
hierarchies L in its matrix output Y . In this case, we only take the first L̂ rows for evaluation as they
represent the most distinctive hierarchies.

B.1 SYNCMAP

SyncMap and Hierarchical TSFMap belong under the same learning paradigm - Self-Organizing Dy-
namical Equations. In summary, SyncMap learns by creating a dynamic map that performs chunking
from sequence data. Here, we inherited the parameters setting from the previous work. Learning rate
α is set to 1e − 3. Input time delay m is set to 10. We set the map dimension k = 5 to standardize
with Hierarchical TSFMap’s setting. Distance between weights is calculated using the Euclidean
metric. Note that we replaced DBSCAN Schubert et al. (2017) with Hierarchical clustering in the
clustering phase to remove the necessity to perform DBSCAN on different levels of hierarchies.
SyncMap can identify well the global context of the variables. However, local context is usually
difficult to extract due to the overlapping of local chunks. Moreover, little to no adaptation occurred
in responding to the structural changes in the environment (Fig. 12).

B.2 WORD2VEC

We adopted a Skip-gram Word2vec to compare with our model. The modified Word2vec used a
dense deep neural network model that takes the shape of a Variational Autoencoder. The latent di-
mension is set to 3 and the output size is equal to the number of input sizes. The model is trained
under 10 epochs with a batch size of 64, with a learning rate of 1e − 3. A window of 100 steps
was used to calculate the output probability of skip-gram. We then performed hierarchical chunking
on the learned word embeddings to identify its hierarchical structure and chunks on each hierar-
chy. Since word embedding can encode items with identical features closer in a vector space, we
assumed it might preserve the hierarchical relationships amongst variables to some extent. When
inspecting Fig. 11, it is apparent that variables that share the same direct parent chunk are clustered
together. Yet, the relationship of chunks beyond that is vague. This hints that Word2vec can learn
the relationship of co-occurrence of local variables effectively, but can hardly preserve any global
relationship amongst variables/chunks.

B.3 MODULARITY MAXIMIZATION

One of the community detection algorithms, Modularity Maximization is used here as a baseline.
Using modularity as a measure, the modularity maximization approach is used to identify commu-
nities from a network. It begins with each node in its community and joins the pair of communities
with maximum modularity until all nodes form into a single community. We can then select the
maxima of modularity to decide on how to split the network into communities. With multiple local
maxima, we constructed a hierarchy structure of communities Newman & Girvan (2004). Here, we
used a modified Clauset-Newman-Moore Modularity Maximization algorithm to incorporate multi-
ple local modularity maxima Clauset et al. (2004). Since modularity maximization can only operate
under the premise of a graph, we transformed the sequence of inputs into an adjacency/transition
probability matrix (Fig. 10), which can then turn into a weighted directed graph. Therefore, despite
being a deterministic algorithm, an imprecise description of the adjacency matrix can induce un-
certainty in the result. However, an accurate mean is achievable with a large sequence under the
asymptotic central limit theorem. Although the input data, and therefore the problem, is different
from the one seen in this work, sequence data and complex networks can interchangeably convert
to one another (e.g., via an adjacency matrix from transition probabilities or a random-walk over a
complex network). This reveals Hierarchical TSFMap’s connection with complex networks. Having
said that, the similarities stop here as both the objective and methodology differ.

B.4 HIERARCHICAL CHUNKING ON TRANSITION PROBABILITY MATRIX

We recorded the occurrence of state to state from the input sequence and create the transition prob-
ability matrix of the current state to the next state (Fig. 10). We then applied Hierarchical Chunking
Phase directly on the matrix as we considered it as a feature. The probability of the state transi-
tion does not necessarily reveal the hierarchical relationship among variables. Using the problems
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in the imbalanced hierarchical structure environment, for example, variables within a bigger chunk
have a smaller transition probability to other variables in the same chunk; Otherwise, if the chunk
is smaller. This can induce an inaccurate cut-off on the dendrogram produced by hierarchical clus-
tering and extract incorrect information about chunks. That being said, using merely the transition
probability of state-to-state transition can not interpret the hierarchical relationship of variables. In
the dynamic environment, TP matrix records all state transitions throughout the time step; it does not
account for the changes occurring throughout the time step. Moreover, the accuracy of this method
is also sensitive to the precision of the TP matrix itself.

C INPUT GENERATION

In our experiments, we consider the extraction of hierarchical structure and presume the input se-
quence comes in a discrete form. Overall, any events that can be serialized as a sequence can be
processed by Hierarchical TSFMap. To reproduce the environments used in our experiment or to cre-
ate a new environment, one can utilize a graph to generate sequence input. Such a graph G = (V,E)
resembles the distribution of variables, with v ∈ V being a set of nodes and e ∈ E being a set of
edges. The graphs reveal the number of variables, the composition of chunks, and their hierarchical
structure. A leaf node vl ∈ Vl signifies a variable; while a non-leaf node vc represents a chunk. A
chunk is composed of sub-chunks or variables.

Based on G, we create an all-to-all connection weighted directed graph T that describes the transi-
tion probability from variable to variable, composed of merely variables, with the weight of edges
ω be the transition probability. The transition probability between variables ω can be defined as:

ω =
1

[d(vl, v′l)/2]
3

(5)

with d(vl, v
′
l) be the path length between variables vl, v

′
l in G. We then normalized all out-going

edges from variables:

ω̂vl,v′
l
=

ωvl,v′
l∑|Vl| ωvl,v′

l

(6)

that ω̂vl,v′
l
∈ [0, 1]. To generate a sequence of input, we apply a random-walker on graph T to travel

from variable to variable, based on the probabilities ω̂vl,v′
l

associated with the current variable.
Variable is placed into the sequence input whenever random-walker travel to one.

In the imbalanced hierarchical structure and two real-world networks environments, the models
receive 300,000 sequential input signals St = {S1, S2, · · · , Sτ} where τ = 300000. In the dynamic
hierarchical structure environment, We doubled τ to 600,000 to accommodate the time step needed
for adaptation. The number of variables, chunks, and hierarchies varies across different problems.

D EXPERIMENTAL SETUP FOR REAL-WORLD SCENARIOS

In this paper, we consider Zachary’s karate club network and Lusseau’s bottlenose dolphin social
network as the modelings of real-world scenarios. Since the dataset we used here is graphs, we
generate the input sequence using the same method from Appendix. C. For the experiments, ward
linkage is used by all the baselines when performing the hierarchical chunking phase, except TP
matrix, to increase the NMI score for all baselines.

The metric used to evaluate the performance of our model on this dataset can be difficult. Consider
the case of the karate club network: despite the ground truth provided by the literature is usually two
communities formed according to the factions; Members can form a smaller community within the
faction. This indicated that such networks contain a hierarchical structure in them, which is useful as
it provides more insight into the data but is often overlooked by literature. Hence, for evaluation: (1)
we compare the predicted chunk from the most significant hierarchy with the ground truth provided
using NMI score, and (2) visualize the representation formed in weight space/word embedding for
the remaining hierarchies. Note that, we provided here the hierarchical structure extracted using
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our model as a reference, rather than a ground truth, whereas the definition of it depends on various
perspectives.

D.1 ZACHARY’S KARATE CLUB NETWORK

The well-establish Zachary’s karate club network data collected by Zachary (1977) represents the
social interactions ties among the members of the club. Due to internal conflict, the club later split
up into two factions that become the ground truth for the community detection/clustering of this
dataset. This network contains 34 nodes and 78 edges, with nodes representing the members of the
club and edges the presence of social interactions within or away from the karate club (Fig. 16).

D.2 LUSSEAU’S BOTTLENOSE DOLPHIN SOCIAL NETWORK

Another famous network, Lusseau’s bottlenose dolphin social network, is used as a benchmark to
verify the performance of our model. The network contains 62 nodes that represent each individual
bottlenose dolphin and 159 edges that represent the interaction between dolphin pairs observed to
co-occur more often than expected. Furthermore, the ground truth of this network can be partitioned
into two main groups (Lusseau et al., 2003); On the other hand, Cheng et al. (2014) considers the
ground truth with four groups. After all, we compare our prediction to the former ground truth
using NMI score while taking the latter as a reference when visualizing the representation formed
in weight space (Fig. 17).
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Figure 9: Setting of dynamic hierarchical structure experiment. (a) Leaf node indicates vari-
ables and node in red represents a chunk. Color coding is used to indicate chunks. Consequently,
sibling nodes belong to the same chunk. A chunk can contain either child chunks or variables. The
graph shows the distribution of how the sequence of variables is generated. Transition probability
between variables increases as the number of edges connecting them decreases. Essentially, the
transition probability is higher when variables belong to the same chunk. In a dynamical setting,
the distribution of variables started with the graph on left, changes halfway through the time step
to the graph on right. In this example, two big chunks are split into three big chunks. (b) The dy-
namic of weights in Hierarchical TSFMap reconfigure to adapt to the changes in the distribution of
input sequence, in three-dimensional weight space. Observation shows that the weights first form
into two big chunks and enter an equilibrium state. Once the distribution of the sequence is altered,
the weights reconfigure their position to split into three big chunks. (c) The dendrogram produced
during the hierarchical chunking phase, extracted from the weights in (b). The color coding reveals
the hierarchical structure produced matches against the latest distribution of variables in (a).
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Figure 10: Heat map of transition probability matrix of the current state (Y-axis) to the next
state (X-axis). (IH, HB, IEH) Transition probability matrix (TP matrix) from the imbalanced hierar-
chical structure environments. Alternatively, The recorded transition of state represents an adjacency
matrix, convertible to an all-to-all connection weighted directed graph. The boundaries shown in the
heat map usually hint at the presence of chunks. (DIH, DCH, EC2EH, EH2EC, DCS) TP matrix
generated from dynamic hierarchical structure environments. It is important to note that the TP
matrix has encoded the transition from two kinds of distribution. Therefore, the TP matrix failed
to capture the dynamic of changes in environments. Consequently, baselines that utilized the TP
matrix are only as accurate as the probability distribution is.

18



Under review as a conference paper at ICLR 2023

Figure 11: Word embeddings of Word2vec. The word embeddings of Word2vec are learned in a
three-dimensional latent space and its hierarchical structure is produced by hierarchical clustering
algorithm. This provides a clear indication that Word2vec can learn the relationship of co-occurrence
of local variables effectively; however, the embeddings reveal that it hardly preserves the global
relationship amongst variables.
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Figure 12: Comparison of adaptive capability between Hierarchical TSFMap and SyncMap in
DCS. We observed that Hierarchical TSFMap is significantly better than SyncMap when adapting to
the changes in the environment. To place both methods in a fair comparison, we initialized weights in
a three-dimensional space with the same seed. Both methods managed to form hierarchies of chunks
with respect to the input. Once the structural changes in the environment occurred, Hierarchical
TSFMap adapt its weights and form a new pattern accordingly; in contrast, SyncMap failed to
adapt and remained in the same configuration prior to the changes in the environment. Additionally,
although initialized in a higher dimensional weight space (in this example, three-dimensional weight
space), the rank of the weight matrix converged to 1 given enough time, 1 = ρ(w). This indicates
that SyncMap’s dynamic is restricted in one-dimensional space. The weight matrix of Hierarchical
TSFMap however, can retain its high dimensionality, 1 ≤ ρ(w) ≤ k.
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Figure 13: The dynamics of Hierarchical TSFMap in Imbalanced Hierarchical Structure envi-
ronments. The dynamics start with a set of weights initialized in σ space, and progressively form
into pattern that corresponds to the input. The patterns are extracted to produce a dendrogram that
describes the hierarchical structure of underlying data. Both the patterns and dendrogram portray
somewhat distinctive hierarchical structures, even through manual inspection.
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Figure 14: The dynamics of Hierarchical TSFMap in Dynamic Hierarchical Structure environ-
ments. Notice that the σ space shown in the third and fifth rows are the patterns corresponding to
the first and second data distribution respectively. The latest pattern formed is used for identifying
the hierarchical structure of the latest changes in data distribution. This proves that, given enough
time, Hierarchical TSFMap can adapt to any distribution of data, regardless of the current state; for
example, from either random initialization or pattern that are already established.
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Figure 15: Refers to Fig. 14.
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Figure 16: Extracting the hierarchical structure of Zachary’s karate club network. (a) The ground
truth of the Karate club network provided by Zachary (1977). (b) The NMI score of Hierarchical
TSFMap compared to its baselines, comparing only predicted chunks from the most significant level
of hierarchy to the ground truth. (c) The weight space/word embedding of Hierarchical TSFMap,
SyncMap, and Word2vec. The weight space (k = 5) describes how weights are chunked in three of
the most significant hierarchies, visualized using multidimensional scaling. The predicted chunks
are labeled by color. The dendrogram shows the hierarchical clustering of weights, where the red
dashed lines are the cut-off. It appears that the models shown here can configure their weights
to match the ground truth in most instances, with Hierarchical TSFMap being the most accurate
one reflected by the relatively high NMI score in (b). Interestingly, members can form a smaller
community within the faction. Removal of hubs can further break down a faction into a smaller
community and exhibit the property of hierarchy. It is also demonstrated in the weight space of
Hierarchical TSFMap, when looking deeper into the hierarchy, smaller groups of members and less
social individuals can be formed into their own chunks. Yet, a similar occurrence is not displayed
in the weight space/word embedding of SyncMap/Word2vec. Note that, individuals (i.e., node 9)
that are weakly associated with both factions cannot be mapped in the middle of the two factions.
This is due to the fact that edges are not weighted and hubs with smaller connectivity have a larger
probability to attract them.
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Figure 17: Extracting the hierarchical structure of Lusseau’s bottlenose dolphin social network. (a)
The ground truth of the dolphin social network provided by Lusseau et al. (2003). (b) The NMI
score of Hierarchical TSFMap compared to its baselines, comparing only predicted chunks from the
most significant level of hierarchy to the ground truth. (c) The weight space/word embedding of
Hierarchical TSFMap, SyncMap, and Word2vec. The weight space (k = 5) describes how weights
are chunked in three of the most significant hierarchies, visualized using multidimensional scaling.
The predicted chunks are labeled by color. The dendrogram shows the hierarchical clustering of
weights, where the red dashed lines are the cut-off. We observed that Hierarchical TSFMap can
form chunks on the most significant level of the hierarchy accurately when compare to the ground
truth. More surprisingly, going deeper into the hierarchy, the weights can form into four groups,
similar to the ground truth provided by Cheng et al. (2014) with slight differences. On the other
hand, SyncMap can form two chunks with lower accuracy, whereas some nodes are incorrectly
placed. Lastly, Word2vec failed to learn meaningful chunks, hence the lower NMI score.
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Table 1: Statistical Results. We used a two-sample t-test with a p-value larger than 0.05 to accept
the null hypothesis that the means are equal. We calculate the two-tailed p value. The results were
obtained from at least 30 independent experiments.

Environments SyncMap Hierarchical TSFMap Word2vec Modularity Maximization
IH 0.424 0.518 0.854 1.000
HB 0.618 0.766 0.496 1.000
IEH 0.846 0.153 0.734 1.000
DIH 0.535 0.673 0.635 1.000
DCH 0.578 0.556 0.932 1.000

EC2EH 0.897 0.173 0.649 1.000
EH2EC 0.554 0.368 0.395 1.000

DCS 0.880 0.759 0.639 1.000
Karate club network 0.882 1.000 0.553 0.440

Dolphin social network 0.629 0.702 0.541 0.362
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