
Temporal Logic Imitation: Learning Plan-Satisficing
Motion Policies from Demonstrations

Yanwei Wang
MIT

Nadia Figueroa
University of Pennsylvania

Shen Li
MIT

Ankit Shah
Brown University

Julie Shah
MIT

Abstract: Learning from demonstration (LfD) has successfully solved tasks fea-
turing a long time horizon. However, when the problem complexity also includes
human-in-the-loop perturbations, state-of-the-art approaches do not guarantee the
successful reproduction of a task. In this work, we identify the roots of this chal-
lenge as the failure of a learned continuous policy to satisfy the discrete plan im-
plicit in the demonstration. By utilizing modes (rather than subgoals) as the dis-
crete abstraction and motion policies with both mode invariance and goal reacha-
bility properties, we prove our learned continuous policy can simulate any discrete
plan specified by a linear temporal logic (LTL) formula. Consequently, an imitator
is robust to both task- and motion-level perturbations and guaranteed to achieve
task success. Project page: https://sites.google.com/view/ltl-ds

Keywords: Certifiable Imitation Learning, Dynamical Systems, Formal Methods

Figure 1: (a) A successful replay of the scooping task. The robot is (b) robust to motion-level perturbations;
(c) experiences an invariance failure (i.e., drops material) after a task-level perturbation; and (d) re-scoops after
a task-level perturbation, avoiding failure after DS motion policy modulation.

1 Introduction
In prior work, learning from demonstration (LfD) [1, 2] has successfully enabled robots to
accomplish multi-step tasks by segmenting demonstrations (primarily of robot end-effector or
tool trajectories) into sub-tasks/goals [3, 4, 5, 6, 7, 8], phases [9, 10], keyframes [11, 12], or
skills/primitives/options [13, 14, 15, 16]. Most of these abstractions assume reaching subgoals se-
quentially will deliver the desired outcomes; however, successful imitation of many manipulation
tasks with spatial/temporal constraints cannot be reduced to imitation at the motion level unless
the learned motion policy also satisfies these constraints. This becomes highly relevant if we want
robots to not only imitate, but also generalize, adapt and be robust to perturbations imposed by hu-
mans who are in the loop of task learning and execution. LfD techniques that learn stable motion
policies with convergence guarantees (e.g., Dynamic Movement Primitives (DMP) [17], Dynamical
System (DS) [18]) are capable of providing such desired properties but only at the motion level.
As shown in Fig. 1 (a-b) the robot can successfully replay a soup-scooping task while being robust
to physical perturbations with a learned DS. Nevertheless, if the spoon orientation is perturbed to
a state where the material is dropped, Fig. 1 (c), the motion policy will still lead the robot to the
target, unaware of the task-level failure or how to recover from it. To alleviate this, in this work, we
introduce an imitation learning approach that is capable of i) reacting to such task-level failures with
Linear Temporal Logic (LTL) specifications, and ii) modulating the learned DS motion policies to
avoid repeating those failures as shown in Fig. 1 (d).

Example We demonstrate that successfully reaching a goal via pure motion-level imitation does
not imply successful task execution. The illustrations in Fig. 2 represent a 2D simplification of the
soup-scooping task, where task success requires a continuous trajectory to simulate a discrete plan
of consecutive transitions through the colored regions. Human demonstrations, shown in Fig. 2 (a),
are employed to learn a DS policy [19], depicted by the streamlines in Fig. 2 (b). The policy is

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://sites.google.com/view/ltl-ds

Figure 2: A mode abstraction of the 2D soup-scooping task: x1 is the spoon’s orientation, and x2 is spoon’s
distance to the soup. (a) Task: To move the spoon’s configuration from white region (spoon without soup)
) yellow region (spoon in contact with soup)) pink region (spoon holding soup)) green region (soup at
target). (Note that transitions (white) pink) and (white) green) are not physically realizable.) Black curves
denote successful demonstrations. (b) Learning DS policies [19] over unsegmented data can result in successful
task replay (blue trajectories), but lacks a guarantee due to invalid transitions (red trajectories). (c) Trajectories
segmented into three colored regions (modes) with orange attractors. (d-f) Learning DSs on segments may still
result in invariance failures (i.e., traveling outside of modes as depicted by red trajectories).

stress-tested by applying external perturbations, displacing the starting states of the policy rollouts.
As shown, only blue trajectories succeed in the task, while the red ones fail due to discrete transi-
tions that are not physically realizable (e.g., white) pink). As shown in Fig. 2 (c-f), even if the
demonstrations are further segmented by subgoals (and corresponding DS policies are learned), this
issue is not mitigated. While one could treat this problem as covariate shift and solve it by asking the
humans for more demonstrations [20], in this work, we frame it as the mismatch between a learned
continuous policy and a discrete task plan specified by the human in terms of a logical formula.
Specifically, the core challenges illustrated by this example are two-fold: 1) subgoals only impose
point constraints that are insufficient to represent the boundary of a discrete abstraction; and 2) the
continuous policy can deviate from a demonstrated discrete plan when perturbed to unseen parts of
the state space, and is incapable of replanning to ensure all discrete transitions are valid.

To address these challenges, our proposed approach employs “modes” as the discrete abstractions.
We define a mode as a set of robot and environment configurations that share the same sensor read-
ing [21, 22]; e.g., in Fig. 2 each colored region is a unique mode, and every mode has a bound-
ary that imposes path constraints on motion policies. Additionally, we use a task automaton as a
receding-horizon controller that replans when a perturbation causes the system to travel outside a
mode boundary and triggers an unexpected sensor change; e.g., detecting a transition from yellow
) white instead of the desired yellow) pink will result in a new plan: white) yellow) pink
) green. In this work, we synthesize a task automaton from a linear temporal logic formula (LTL)
that specifies all valid mode transitions. We denote the problem of learning a policy that respects
these mode transitions from demonstrations as temporal logic imitation (TLI). In contrast to tempo-
ral logic planning (TLP) [23], where the workspace is typically partitioned into connected convex
cells with known boundaries, we do not know the precise boundaries of modes; consequently, the
learned policy might prematurely exit the same mode repeatedly, causing the task automaton to loop
without termination. To ensure any discrete plan generated by the automaton is feasible for the con-
tinuous policy, the bisimulation criteria [24, 25] must hold for the policy associated for each mode.
Specifically, every state starting in the same mode should stay in the mode (invariance) until even-
tually reaching the next mode (reachability). The violations of these conditions are referred to as
invariance failures and reachability failures respectively.

Contributions First, we investigate TLP in the setting of LfD, and introduce TLI as a novel for-
mulation to address covariate shift by proposing imitation with respect to a mode sequence instead
of a motion sequence. Second, leveraging modes as the discrete abstraction, we prove that a state-
based continuous behavior cloning (BC) policy with a global stability guarantee can be modulated
to simulate any LTL-satisficing discrete plan. Third, we demonstrate that our approach LTL-DS,
adapts to task-level perturbations via a LTL-satisficing automaton’s replanning and recovers from
motion-level perturbations via DS’ stability during a multi-step, non-prehensile manipulation task.

2 Related Works
Temporal Logic Motion Planning LTL is a task specification language widely used in robot mo-
tion planning [26, 27, 28, 23]. Its ease of use and efficient conversion [29] to an automaton have
spurred substantial research into TLP [25, 30, 31], which studies how to plan a continuous trajec-
tory that satisfies a LTL formula. However, TLP typically assumes known workspace partitioning
and boundaries a priori, both of which are unknown in the rarely explored TLI setting. While
a robot can still plan in uncertain environments [32, 33], LfD bypasses the expensive search in
high-dimensional space. Recent works [34, 35] have considered temporal logic formulas as side-
information to demonstrations, but these formulas are treated as additional loss terms or rewards,

2

and are not guaranteed to be satisfied. The key motivation for using LTL is to generate a reactive
discrete plan, which can also be achieved by a finite state machine [14] or behavior tree [36].
Behavior Cloning We consider a subclass of LfD methods called state-based behavior cloning (BC)
that learns the state-action distribution observed during demonstrations [37]. DAGGER [20], a BC-
variant fixing covariate shift, could reduce the invariance failures depicted in Fig. 2, but requires
online data collection, which our framework avoids with a LTL specification. To satisfy goal reach-
ability, we employ a DS-based LfD technique [38]. Alternatives to this choice include certified
NN-based methods [39, 40], DMPs [41], partially contracting DS [42] and Euclideanizing-flows
[43]. To satisfy mode invariance, we modulate the learned DS to avoid invariance failure as state-
space boundaries [44], similar to how barrier functions are learned to bound a controller [45, 46, 47].
Multi-Step Manipulation Prior LfD works [13, 14, 10, 48] tackle multi-step manipulation by seg-
menting demonstrations via a hidden Markov model. Using segmented motion trajectories, [13]
learned a skill tree, [14] learned DMPs, [10] learned phase transitions, and [49] learned a task
model. Most of these works assume a linear sequence of prehensile subtasks (pick-and-place) with-
out considering how to replan when unexpected mode transitions happen. [48, 49] considered a
non-prehensile scooping task similar to ours, but their reactivity only concerned collision avoidance
in a single mode. [50, 6] improved BC policies with RL, but offered no guarantee of task success.

3 Temporal Logic Imitation: Problem Formulation
Let x 2 Rn represent the n-dimensional continuous state of a robotic system; e.g., the robot’s end-
effector state in this work. Let ↵ = [↵1, ...,↵m]T 2 {0, 1}m be an m-dimensional discrete sensor
state that uniquely identifies a mode � = L(↵). We define a system state as a tuple, s = (x,↵) 2
Rn ⇥ {0, 1}m. Overloading the notation, we use � 2 ⌃, where ⌃ = {�i}Mi=1, to represent the set
of all system states within the same mode—i.e., �i = {s = (x,↵) | L(↵) = �i}. In contrast, we
use �i = {x|s = (x,↵) 2 �i} to represent the corresponding set of robot states. Note x cannot
be one-to-one mapped to s, e.g., a level spoon can be either empty or holding soup. Each mode is
associated by a goal-oriented policy, with goal x⇤

i 2 Rn. A successful policy that accomplishes a
multi-step task ⌧ with a corresponding LTL specification � can be written in the form:

ẋ = ⇡(x,↵;�) = ⌃M
i=1�⌦�(↵)�i

fi(x; ✓i, x
⇤
i) (1)

with �⌦�(↵)�i
being the Kronecker delta that activates a mode policy fi(x; ✓i, x⇤

i) : Rn+m ! Rn

encoded by a set of learnable parameters ✓i and goal x⇤
i . Mode activation is guided by an LTL-

equivalent automaton ⌦�(↵) ! �i choosing mode �i based on current sensor reading ↵.
Demonstrations Let demonstrations for a task ⌧ be ⌅ = {{xt,d, ẋt,d,↵t,d}Td

t=1}Dd=1 where
xt,d, ẋt,d, ↵t,d are robot state, velocity, and sensor state at time t in demonstration d, respectively,
and Td is the length of each d-th trajectory. A demonstration is successful if the continuous motion
traces through a sequence of discrete modes that satisfies the corresponding LTL task specification.
Perturbations External perturbations, which many works in Sec. 2 avoid, constitute an integral part
of our task complexity. Specifically, we consider: (1) motion-level perturbations that displace the
continuous motion within the same mode, and (2) task-level perturbations that drive the robot out-
side of the current mode. Critically, motion-level perturbations do not cause a plan change instanta-
neously, but they can lead to future unwanted mode transitions due to covariate shift. Environmental
stochasticity is ignored, as its cumulative effects can also be simulated by external perturbations.
Problem Statement Given (1) an LTL formula � specifying valid mode transitions for a task ⌧ , and
(2) successful demonstrations ⌅, we seek to learn a policy defined in Eq. 1 that generates continuous
trajectories guaranteed to satisfy the LTL specification despite arbitrary external perturbations.

4 Preliminaries
4.1 LTL Task Specification
LTL formulas consist of atomic propositions (AP), logical operators, and temporal operators [51,
23]. Let ⇧ be a set of Boolean variables; an infinite sequence of truth assignments to all APs in ⇧ is
called the trace [⇧]. The notation [⇧], t |= � means the truth assignment at time t satisfies the LTL
formula �. Given ⇧, the minimal syntax of LTL can be described as:

� ::= p | ¬�1 | �1 _ �2 | X�1 | �1U�2 (2)

where p is any AP in ⇧, and �1 and �2 are valid LTL formulas constructed from p using Eq. 2. The
operator X is read as ‘next,’ and X�1 intuitively means the truth assignment to APs at the next time
step sets �1 as true. U is read as ‘until’ and, intuitively, �1U�2 means the truth assignment to APs

3

sets �1 as true until �2 becomes true. Additionally, first-order logic operators ¬ (not), ^ (and), _
(or), and ! (implies), as well as higher-order temporal operators F (eventually), and G (globally),
are incorporated. Intuitively, F�1 means the truth assignment to APs eventually renders �1 true and
G�1 means truth assignment to APs renders �1 always true from this time step onward.
4.2 Task-Level Reactivity in LTL
To capture the reactive nature of a system given sensor measurements, the generalized reactivity
(1) (GR(1)) fragment of LTL [29, 30] can be used. Let the set of all APs be ⇧ = X [Y , where
sensor states form environment APs X = {↵1, ...,↵m} and mode symbols form system APs Y =
{�1, ...,�l}. A GR(1) formula is of the form � = (�e ! �s) [29], where �e models the assumed
environment behavior and �s models the desired system behavior. Specifically,

�e = �e
i ^ �e

t ^ �e
g, �s = �s

i ^ �s
t ^ �s

g (3)

�e
i and �s

i are non-temporal Boolean formulas that constrain the initial truth assignments of X and
Y (e.g., the starting mode). �s

t and �e
t are LTL formulas categorized as safety specifications that

describe how the system and environment should always behave (e.g., valid mode transitions). �s
g

and �e
g are LTL formulas categorized as liveness specifications that describe what goal the system

and environment should eventually achieve (e.g., task completion) [23]. The formula � guarantees
the desired system behavior specified by �s if the environment is admissible—i.e., �e is true—and
can be converted to an automaton ⌦� that plans a mode sequence satisfying � by construction [30].

4.3 Motion-Level Reactivity in DS
LPV-DS [19] can be learned in minutes from as few as a single demonstration and has form:

ẋ = f(x) =
KX

k=1

�k(x)(A
kx+ bk) (4)

⇢
(Ak)TP + PAk = Qk, Qk = (Qk)T � 0
bk = �Akx⇤ 8k (5)

where Ak 2 Rn⇥n, bk 2 Rn are the k-th linear system parameters, and �k(x) : Rn ! R+ is
the mixing function. To certify global asymptotic stability (G.A.S.) of Eq. 4, a Lyapunov function
V (x) = (x� x⇤)TP (x� x⇤) with P = PT � 0, is used to derive the stability constraints in Eq. 5.
Minimizing the fitting error of Eq. 4 with respect to demonstrations ⌅ subject to constraints in Eq.
5 yields a non-linear DS with a stability guarantee [19]. To learn the optimal number K and mixing
function �k(x) we use the Bayesian non-parametric GMM fitting approach presented in [19].

4.4 Bisimulation between Discrete Plan and Continuous Policy
To certify a continuous policy will satisfy a LTL formula �, one can show the policy can simulate
any LTL-satisficing discrete plan of mode sequence generated by ⌦�. To that end, every mode’s
associated policy must satisfy the following bisimulation conditions [25, 23]:
Condition 1 (Invariance). All states starting in a mode must remain within the same mode when
following that mode’s policy; i.e., 8i 8t (s0 2 �i ! st 2 �i)

Condition 2 (Reachability). All states starting in a mode must reach their next modes while fol-
lowing the current mode’s policy; i.e., 8i 9T (s0 2 �i ! sT 2 �j)

5 LTL-DS: Methodology
To solve the TLI problem in Sec. 3, we introduce a mode-based imitation policy—LTL-DS:

ẋ = ⇡(x,↵;�) = ⌃M
i=1�⌦�(↵)�i| {z }
offline learning

Mi

�
x;�i(x), x

⇤
i

�
| {z }

online learning

fi(x; ✓i, x
⇤
i)| {z }

offline learning

, (6)

During offline learning, we synthesize the automaton ⌦� from � as outlined in Sec. 4.2 and learn
DS policies fi from ⌅ according to Sec. 4.3. While the choice of DS satisfies the reachability
condition as explained later, DS rollouts are not necessarily bounded within any region. Neither do
we know mode boundaries in TLI. Therefore, an online learning phase is necessary where for each
mode policy fi we learn an implicit function, �i(x) : Rn ! R+, that inner-approximates the mode
boundary in the state-space of the robot x 2 RN . With a learned �i(x) for each mode, we can
construct a modulation matrix Mi that ensures each Mifi to be mode invariant as discussed below.
5.1 Offline Learning Phase
In the offline learning phase, the user provides successful demonstrations ⌅ and a LTL formula � as
described in Sec. 4.2, which necessarily includes the definition of sensors and AP regions.

4

Figure 3: (a) Task automaton for a scooping task LTL. Mode a, b, c, d are reaching, scooping, transporting and
done mode respectively. Atomic proposition r, s, t denote sensing the spoon reaching the soup, soup on spoon
and task success respectively. During successful demonstration, only black mode transition a) b) c) d
is observed. Additional gray valid transitions b) a, c) a and c) b are given by the LTL to help recover
from unexpected mode transitions. (b) System flowchart of LTL-DS.

Synthesis of LTL-Satisficing Automaton Given �, we use [52] to convert it into an automaton,
which plans a mode sequence that satisfies � by construction. Assuming all possible initial condi-
tions for the system are specified in the LTL, the automaton is always deployed from a legal state.
Sensor-based Motion Segmentation and Attractor Identification Given the demonstration set ⌅
and AP regions related to the set of M modes we can automatically segment the trajectories into M
clusters and corresponding attractor set X⇤. For more details, refer to Appendix C.
Ensuring Goal Reachability with Learned DS Mode Policies While any BC variant with a sta-
bility guarantee can satisfy reachability (see Sec. 2), we focus on the G.A.S. DS formulation and
learning approach defined in Section 4.3 that ensures every x 2 Rn is guaranteed to reach x⇤

i . By
placing x⇤

i within the boundary set of �j for a mode �j , we ensure mode �j is reachable from every
s in mode �i. Note f(x) cannot model sensor dynamics in ↵. Yet, we employ mode abstraction to
reduce the imitation of a system state trajectory in s—which includes the evolution of both the robot
and sensor state—to just a robot state trajectory in x.

5.2 Online Learning Phase
Iterative Mode Boundary Estimation via Invariance Failures As shown in Fig. 2, DS can suffer
from invariance failures in regions without data coverage. Instead of querying humans for more
data in those regions [20], we leverage sparse events of mode exits detected by sensors to estimate
the unknown mode boundary. Specifically, for each invariance failure, we construct a cut that sep-
arates the failure state, xTf , from the mode-entry state, x0, the last in-mode state, xTf�1, and the
mode attractor, x⇤. We ensure this separation constraint with a quadratically constrained quadratic
program (QCQP) that searches for the normal direction (pointing away from the mode) of a hyper-
plane that passes through xTf�1 such that the plane’s distance to x⇤ is minimized. The intersection
of half-spaces cut by the hyper-planes inner-approximates a convex mode boundary, as seen in Fig.
4. Adding cuts yields better boundary estimation, but is not necessary unless the original vector field
flows out of the mode around those cuts. For more details, refer to Appendix E.3.
Ensuring Mode Invariance by Modulating DS We treat each cut as a collision boundary that de-
flects the DS flows following the approach in [44, 53]. In our problem setting the mode boundary is
analogous to a workspace enclosure rather than a random task-space object. Let existing cuts form
an implicit function, �(x) : Rn ! R+, denote the estimated interior with �(x) < 1, �(x) = 1 the
boundary and �(x) > 1 the exterior of a mode. 0 < �(x) < 1 monotonically increases as x moves
away from a reference point xr inside the mode. For x outside the cuts, or inside but moving away
from the cuts, we leave f(x) unchanged; otherwise, we modulate f(x) to not collide with any cuts
as ẋ = M(x)f(x) by constructing a modulation matrix M(x) through eigenvalue decomposition:

(
M(x) = E(x)D(x)E(x)�1, E(x) = [r(x) e1(x) ... ed�1(x)], r(x) = x�xr

kx�xrk
D(x) = diag(�r(x),�e1(x), ...,�ed�1(x)), �r(x) = 1� �(x), �e(x) = 1

(7)

The full-rank basis E(x) consists of a reference direction r(x) stemming from xr toward x, and
d� 1 directions spanning the hyperplane orthogonal to r�(x), which in this case is the closest cut
to x. In other words, all directions e1(x)...ed�1(x) are tangent to the closest cut, except r(x). By
modulating only the diagonal component, �r(x), with �(x), we have �r(x) ! 0 as x approaches the
closest cut, effectively zeroing out the velocity penetrating the cut while preserving velocity tangent
to the cut. Consequently, as long as there are cuts bounding the mode, the modulated DS will not
experience invariance failures where the original DS would. Notice this modulation strategy is not
limited to DS, and can apply to any state-based BC methods to achieve mode invariance.

5

Figure 4: An illustration of iterative estimation of mode boundary with cutting planes. A system enters a mode
with an unknown boundary (dashed line) at the black circle, and is attracted to the goal at the orange circle. Its
trajectory in black shows the original policy rollout, and its trajectory in red is driven by perturbations. After
the system exits the mode and before it eventually re-enters the same mode through replanning, a cut is placed
at the last in-mode state (yellow circle) to bound the mode from the failure state (red cross). When the system
is inside the cuts, it experiences modulated DS that never leaves the mode (flows entering the mode are not
modulated); when the system is outside the cuts but inside the mode, it follows the original DS. Note only
mode exits in black are invariance failures in need of modulation (green circles); mode exits in red are driven
by perturbations to illustrate that more cuts lead to better boundary approximation.

6 Proof
Next, we prove LTL-DS produces a continuous trajectory that satisfies a LTL specification. We start
with assumptions and end with theorems. Detailed proofs are provided in Appendix A.
Assumption 1. All modes are convex.
This assumption leads to the existence of at least one cut—i.e., the supporting plane [54], which
can separate a failure state on the boundary from any states within the mode. A corollary is that a
boundary shared by two modes, which we call a guard surface, Gij = �i \ �j , is also convex. Since
all transitions out of a mode observed during demonstrations reside on the mode boundary, their
average location—which we use as the attractor for the mode—will also be on the boundary.
Assumption 2. There are a finite number of externally exerted motion- and task-level perturbations
of arbitrary magnitude.
Given zero perturbation, all BC methods should succeed in any task replay, as the policy rollout will
always be in distribution. If there are infinitely many arbitrary perturbations, no BC methods will
be able to reach a goal. Here, we study the setting between these extremes—where there are a finite
number of external perturbations causing unexpected mode exits.
Assumption 3. Every unexpected mode transition only results in sensor states that have been seen
in the demonstrations.
While demonstrations of all valid mode transitions are not required, they must minimally cover all
possible modes. If the system encounters a completely new sensor state during online interaction, it
is reasonable to assume that no BC methods could recover from the mode unless more information
about the environment were provided.
Theorem 1. (Key Contribution 1) A nonlinear DS defined by Eq. 4, learned from demonstrations,
and modulated by cutting planes as described in Section 5.2 with the reference point xr set at the
attractor x⇤, will never penetrate the cuts and is G.A.S. at x⇤. Proof: See Appendix A.
Theorem 2. (Key Contribution 2) The continuous trace of system states generated by LTL-DS de-
fined in Eq. 6 satisfies any LTL specification � under Asm. 1, 2, and 3. Proof: See Appendix A.

7 Experiments
7.1 Single-Mode Invariance and Reachability
We show quantitatively both reachability and invariance are necessary for task success. We compare
DS and a NN-based BC policy (denoted as BC) to represent policies with and without a stability
guarantee respectively. Fig. 5 shows that policy rollouts start to fail (turn red) as increasingly larger
perturbations are applied to the starting states; however, DS only suffers from invariance failures,
while BC suffers from both invariance and reachability failures (due to diverging flows and spurious
attractors). Fig. 5 (right) shows that all flows are bounded within the mode for both DS and BC after
two cuts. In the case of DS, flows originally leaving the mode are now redirected to the attractor by
the cuts; in the case of BC, while no flows leave the mode after modulation, spurious attractors are
created, leading to reachability failures. This is a counterfactual illustration of Thm. 1, that policies
without a stability guarantee are not G.A.S. after modulation. Fig. 6 verifies this claim quantitatively
and we empirically demonstrate that a stable policy requires only four modulation cuts to achieve a
perfect success rate—which an unstable policy cannot be modulated to achieve.

6

Figure 5: Policy rollouts from different starting states for a randomly generated convex mode. The top row
shows BC results, and the bottom row depicts DS results. The left column visualizes the original policies
learned from two demonstrations (black trajectories) reaching the orange attractor. The middle columns add
different levels of Gaussian noise to the initial states sampled from the demonstration distribution. Blue trajec-
tories successfully reach the attractor, while red trajectories fail due to either invariance failures or reachability
failures. (Note that these failures only occur at locations without data coverage.) The right columns show that
cutting planes (blue lines) separate failures (red crosses) from last-visited in-mode states (yellow circles), and
consequently can modulate policies to be mode-invariant. Applying cutting planes to BC policies without a
stability guarantee cannot correct reachability failures within the mode. More results are in Appendix E

Policy Reachability Invariance No Noise Small Noise Large Noise
BC 7 7 88.9 72.4 58.6

BC+mod 7 3 91.9 83.6 76.0
DS 3 7 100 97.0 86.9

DS+mod 3 3 100 100 100

No Noise Small Noise Large Noise
0

20

40

60

80

100

%
 T

as
k

Su
cc

es
s

BC
BC+mod
DS
DS+mod

0 1 2 3 4
Number of Cuts

50

60

70

80

90

100

%
 T

as
k

Su
cc

es
s

DS+mod no noise
DS+mod small noise
DS+mod large noise
BC+mod no noise
BC+mod small noise
BC+mod large noise

Figure 6: (left) The success rate (%) of a single-mode reaching task. As we began to sample out of distribution
by adding more noise to the demonstrated states, the BC’s success rate degraded more rapidly than the DS’.
After modulation, DS (+mod) maintained a success guarantee, which BC (+mod) fell short of due to the base
policy’s lack of a stability guarantee. (right) Empirical evidence that single-mode invariance requires only a
finite number of cuts for a base policy with a stability guarantee. Regardless of the noise level, DS achieves a
100% success rate after four cuts, while BC struggles to improve performance with additional cuts. Thick lines
represent mean statistics; shaded regions the interquartile range. More details are provided in Appendix E.

Figure 7: Rollouts of a multi-step scooping task under perturbations. The first row indicates that DS policies
sequenced by an automaton but without boundary estimation can lead to looping; the second and third rows
show that modulation can prevent looping and eventually allow the system to reach the goal mode despite re-
peated perturbations. We depict the mode sequence planned by the automaton at the top of each sub-figure, and
blue bounding boxes indicate the current mode transitions actually being detected. Black and red trajectories
signify original and perturbed policy.

7

7.2 Multi-Modal Reactivity and Generalization to New Tasks
We now empirically demonstrate that a reactive discrete plan alone is insufficient to guarantee task
success without mode invariance for tasks with multiple modes. Consider the multi-modal soup-
scooping task introduced in Fig. 2. Formally, we define three environment APs, r, s, t, sensing the
spoon is in contact with the soup, has soup on it, and has arrived at a target location respectively.
Given successful demonstrations, sensors will record discrete transitions (¬r^¬s^¬t)) (r^¬s^
¬t)) (¬r^s^¬t)) (¬r^¬s^ t), from which four unique sensor states are identified. We label
each sensor state as a mode with robot AP a (reaching)) b (scooping)) c (transporting))
d (done) . Invariance of mode b enforces contact with soup during scooping, and invariance of
mode c constrains the spoon’s orientation in order to avoid spilling. We follow the TLP convention
to assume LTL formulas are provided by domain experts (although they can also be learned from
demonstrations [51, 55].) The specific LTL for the soup-scooping task is detailed in Appendix F,
and can be converted into a task automaton as shown in Fig. 3.

One might assume the automaton is sufficient to guarantee task success without modulation, as it
only needs to replan a finite number of times assuming a finite number of perturbations; however, not
enforcing mode invariance can lead to looping at the discrete level, and ultimately renders the goal
unreachable, as depicted in the top row of Fig. 7. In contrast, looping is prevented when modulation
is enabled, as the system experiences each invariance failure only once. We found 50% of the learned
policies without modulation could get stuck in looping after a finite number of perturbations, while
all experiments with modulation succeeded in the task replay.

Robot Experiments First, we implemented the soup-scooping task on a Franka Emika robot arm as
shown in Fig. 1. We show in videos on our website that (1) DS allowed our system to compliantly
react to motion-level perturbations while ensuring system stability; (2) LTL allowed our system to
replan in order to recover from task-level perturbations; and (3) our modulation ensured the robot
learned from previous invariance failures in order to avoid repeating them. To test robustness against
unbiased perturbations, we collected 25 trials from 5 humans as seen in in Appendix H. All trials
succeed eventually in videos. We did not cherry-pick these results, and the empirical 100% success
rate further corroborates our theoretic success guarantee. Second, we implemented an inspection
task as a permanent interactive exhibition at MIT museum, with details documented in Appendix I.
Lastly, we show a third color tracing task testing different automaton structures on our website.

Generalization Once a DS is learned we can generalize to a new task sharing the same set of modes
observed in demonstrations given a new LTL formula. Consider another multi-step task of adding
chicken and broccoli to a pot. Different humans might give demonstrations with different modal
structures (e.g., adding chicken vs adding broccoli first). LTL-DS could learn individual DS which
can be flexibly combined to solve new tasks with new task automatons. To get these different task
automatons, a human just needs to edit the �s

t portion of the LTL formulas differently. We provide
further details of this analysis in Appendix G.

8 Limitations
Our approach of integrating logic formulas into LfD requires defining an appropriate abstraction
for a task. For example, allocating a sensor to detect contact events requires domain knowledge.
Our work is based on the assumption that for well-defined tasks (e.g., assembly tasks in factory set-
tings), domain expertise in the form of a logic formula is a cheaper knowledge source than collecting
hundreds of motion trajectories to avoid covariate shift (we use up to 5 demonstrations in all exper-
iments). However, even when abstractions for a task are given by an oracle, a LfD method without
either the invariance or the reachability property will not have a formal guarantee of successful task
replay, which is this work’s focus. In future work, we will learn such abstractions directly from
sensor streams such as videos so that our approach gains more autonomy without losing reactivity.

9 Conclusion
In this paper, we formally introduce the problem of temporal logic imitation as imitating continuous
motions that satisfy a LTL specification. We identify the fact that learned policies do not necessarily
satisfy the bisimulation criteria as the main challenge of applying LfD methods to multi-step tasks.
To address this issue, we propose a DS-based approach that can iteratively estimate mode boundaries
to ensure invariance and reachability. Combining the task-level reactivity of LTL and the motion-
level reactivity of DS, we arrive at an imitation learning system able to robustly perform various
multi-step tasks under arbitrary perturbations given only a small number of demonstrations, and
demonstrate our system’s practicality on a real Franka robot.

8

Acknowledgments

We would like to thank Jon DeCastro, Chuchu Fan, Terry Suh, Rachel Holladay, Rohan Chitnis,
Tom Silver, Yilun Zhou, Naomi Schurr, and Yuanzhen Pan for their invaluable advice and generous
help.

References
[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[2] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances in robot
learning from demonstration. Annual Review of Control, Robotics, and Autonomous Systems,
3:297–330, 2020.

[3] S. Ekvall and D. Kragic. Robot learning from demonstration: a task-level planning approach.
International Journal of Advanced Robotic Systems, 5(3):33, 2008.

[4] D. H. Grollman and O. C. Jenkins. Incremental learning of subtasks from unsegmented demon-
stration. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
261–266. IEEE, 2010.

[5] J. R. Medina and A. Billard. Learning stable task sequences from demonstration with linear
parameter varying systems and hidden markov models. In Conference on Robot Learning,
pages 175–184. PMLR, 2017.

[6] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

[7] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-Fei. Learning to general-
ize across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085,
2020.

[8] S. Pirk, K. Hausman, A. Toshev, and M. Khansari. Modeling long-horizon tasks as sequential
interaction landscapes. arXiv preprint arXiv:2006.04843, 2020.

[9] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal. Towards associative skill memories.
In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012),
pages 309–315. IEEE, 2012.

[10] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters. Towards learning hierarchical
skills for multi-phase manipulation tasks. In 2015 IEEE international conference on robotics
and automation (ICRA), pages 1503–1510. IEEE, 2015.

[11] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes for kines-
thetic teaching: A human-robot interaction perspective. In Proceedings of the seventh annual
ACM/IEEE international conference on Human-Robot Interaction, pages 391–398, 2012.

[12] C. Pérez-D’Arpino and J. A. Shah. C-learn: Learning geometric constraints from demonstra-
tions for multi-step manipulation in shared autonomy. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 4058–4065. IEEE, 2017.

[13] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration by
constructing skill trees. The International Journal of Robotics Research, 31(3):360–375, 2012.

[14] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski. Incremental semantically
grounded learning from demonstration. In Robotics: Science and Systems, volume 9, pages
10–15607. Berlin, Germany, 2013.

[15] R. Fox, S. Krishnan, I. Stoica, and K. Goldberg. Multi-level discovery of deep options. arXiv
preprint arXiv:1703.08294, 2017.

9

[16] N. B. Figueroa Fernandez. From high-level to low-level robot learning of complex tasks:
Leveraging priors, metrics and dynamical systems. Technical report, EPFL, 2019.

[17] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel. Dynamic movement prim-
itives in robotics: A tutorial survey. CoRR, abs/2102.03861, 2021. URL https://arxiv.
org/abs/2102.03861.

[18] A. Billard, S. S. Mirrazavi Salehian, and N. Figueroa. Learning for Adaptive and Reactive
Robot Control: A Dynamical Systems Approach. MIT Press, Cambridge, USA, 2022.

[19] N. Figueroa and A. Billard. A physically-consistent bayesian non-parametric mixture model
for dynamical system learning. In CoRL, pages 927–946, 2018.

[20] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-
ceedings, 2011.

[21] A. J. Van Der Schaft and J. M. Schumacher. An introduction to hybrid dynamical systems,
volume 251. Springer London, 2000.

[22] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[23] H. Kress-Gazit, M. Lahijanian, and V. Raman. Synthesis for robots: Guarantees and feedback
for robot behavior. Annual Review of Control, Robotics, and Autonomous Systems, 1:211–236,
2018.

[24] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the IEEE, 88(7):971–984, 2000.

[25] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic motion planning for mobile
robots. In Proceedings of the 2005 IEEE International Conference on Robotics and Automa-
tion, pages 2020–2025. IEEE, 2005.

[26] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas. Symbolic planning
and control of robot motion [grand challenges of robotics]. IEEE Robotics & Automation
Magazine, 14(1):61–70, 2007.

[27] E. M. Wolff, U. Topcu, and R. M. Murray. Automaton-guided controller synthesis for nonlinear
systems with temporal logic. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4332–4339. IEEE, 2013.

[28] E. Plaku and S. Karaman. Motion planning with temporal-logic specifications: Progress and
challenges. AI communications, 29(1):151–162, 2016.

[29] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive (1) designs. In International Work-
shop on Verification, Model Checking, and Abstract Interpretation, pages 364–380. Springer,
2006.

[30] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive mission and
motion planning. IEEE transactions on robotics, 25(6):1370–1381, 2009.

[31] J. A. DeCastro and H. Kress-Gazit. Synthesis of nonlinear continuous controllers for verifiably
correct high-level, reactive behaviors. The International Journal of Robotics Research, 34(3):
378–394, 2015.

[32] A. M. Ayala, S. B. Andersson, and C. Belta. Temporal logic motion planning in unknown
environments. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5279–5284. IEEE, 2013.

[33] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi. Iter-
ative temporal planning in uncertain environments with partial satisfaction guarantees. IEEE
Transactions on Robotics, 32(3):583–599, 2016.

10

https://arxiv.org/abs/2102.03861
https://arxiv.org/abs/2102.03861

[34] C. Innes and S. Ramamoorthy. Elaborating on learned demonstrations with temporal logic
specifications. arXiv preprint arXiv:2002.00784, 2020.

[35] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis. Learning from demonstrations using signal
temporal logic in stochastic and continuous domains. IEEE Robotics and Automation Letters,
6(4):6250–6257, 2021.

[36] S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy. Reactive task and motion planning under
temporal logic specifications. arXiv preprint arXiv:2103.14464, 2021.

[37] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An algorithmic
perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179, 2018.
ISSN 1935-8253. doi:10.1561/2300000053.

[38] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with gaus-
sian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

[39] K. Neumann, A. Lemme, and J. J. Steil. Neural learning of stable dynamical systems based on
data-driven lyapunov candidates. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1216–1222. IEEE, 2013.

[40] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control using robust neural lyapunov-
barrier functions. In Conference on Robot Learning, pages 1724–1735. PMLR, 2022.

[41] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement
primitives: learning attractor models for motor behaviors. Neural computation, 25(2):328–
373, 2013.

[42] H. Ravichandar, I. Salehi, and A. Dani. Learning partially contracting dynamical systems from
demonstrations. In S. Levine, V. Vanhoucke, and K. Goldberg, editors, Proceedings of the
1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pages 369–378. PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.
press/v78/ravichandar17a.html.

[43] M. A. Rana, A. Li, H. Ravichandar, M. Mukadam, S. Chernova, D. Fox, B. Boots, and
N. Ratliff. Learning reactive motion policies in multiple task spaces from human demon-
strations. In Conference on Robot Learning, pages 1457–1468. PMLR, 2020.

[44] S. M. Khansari-Zadeh and A. Billard. A dynamical system approach to realtime obstacle
avoidance. Autonomous Robots, 32(4):433–454, 2012.

[45] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni. Learn-
ing control barrier functions from expert demonstrations. In 2020 59th IEEE Conference on
Decision and Control (CDC), pages 3717–3724. IEEE, 2020.

[46] M. Saveriano and D. Lee. Learning barrier functions for constrained motion planning with
dynamical systems. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 112–119. IEEE, 2019.

[47] C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A survey of neural
lyapunov, barrier, and contraction methods. arXiv preprint arXiv:2202.11762, 2022.

[48] G. Ye and R. Alterovitz. Demonstration-guided motion planning. In Robotics research, pages
291–307. Springer, 2017.

[49] C. Bowen and R. Alterovitz. Closed-loop global motion planning for reactive execution of
learned tasks. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1754–1760. IEEE, 2014.

[50] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[51] A. J. Shah, P. Kamath, S. Li, and J. A. Shah. Bayesian inference of temporal task specifications
from demonstrations. 2018.

11

http://dx.doi.org/10.1561/2300000053
https://proceedings.mlr.press/v78/ravichandar17a.html
https://proceedings.mlr.press/v78/ravichandar17a.html

[52] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot 2.0 —
a framework for LTL and !-automata manipulation. In Proceedings of the 14th International
Symposium on Automated Technology for Verification and Analysis (ATVA’16), volume 9938
of Lecture Notes in Computer Science, pages 122–129. Springer, Oct. 2016. doi:10.1007/
978-3-319-46520-3 8.

[53] L. Huber, A. Billard, and J.-J. Slotine. Avoidance of convex and concave obstacles with conver-
gence ensured through contraction. IEEE Robotics and Automation Letters, 4(2):1462–1469,
2019.

[54] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

[55] G. Chou, N. Ozay, and D. Berenson. Learning temporal logic formulas from suboptimal
demonstrations: theory and experiments. Autonomous Robots, pages 1–26, 2021.

[56] D. Kasenberg and M. Scheutz. Interpretable apprenticeship learning with temporal logic spec-
ifications. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages
4914–4921. IEEE, 2017.

[57] A. Billard, S. Mirrazavi, and N. Figueroa. Learning for Adaptive and Reactive Robot Control:
A Dynamical Systems Approach. 2022.

12

http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8

	Introduction
	Related Works
	Temporal Logic Imitation: Problem Formulation
	Preliminaries
	LTL Task Specification
	Task-Level Reactivity in LTL
	Motion-Level Reactivity in DS
	Bisimulation between Discrete Plan and Continuous Policy

	LTL-DS: Methodology
	Offline Learning Phase
	Online Learning Phase

	Proof
	Experiments
	Single-Mode Invariance and Reachability
	Multi-Modal Reactivity and Generalization to New Tasks

	Limitations
	Conclusion
	Proofs
	Motivation for Mode-based Imitation
	Sensor-based Motion Segmentation and Attractor Identification
	Relation of TLI to Prior Work
	Single-mode Experiments
	Experiment Details
	BC Policy Architecture and Training Details
	QCQP Optimization Details

	Multi-modal Experiments
	Generalization Results
	Robot Experiment 1: Soup-Scooping
	Robot Experiment 2: Inspection Line

