
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Anonymous Authors1

Abstract

Best-of-N selection is a key technique for improv-
ing the reasoning performance of Large Language
Models (LLMs) through increased test-time com-
putation. Current state-of-the-art methods often
employ computationally intensive reward models
for response evaluation and selection. Reward-
free alternatives, like self-consistency and univer-
sal self-consistency, are limited in their ability to
handle open-ended generation tasks or scale effec-
tively. To address these limitations, we propose
self-certainty, a novel and efficient metric that
leverages the inherent probability distribution of
LLM outputs to estimate response quality without
requiring external reward models. We hypothe-
size that higher distributional self-certainty, ag-
gregated across multiple samples, correlates with
improved response accuracy, as it reflects greater
confidence in the generated output. Through ex-
tensive experiments on various reasoning tasks,
we demonstrate that self-certainty (1) scales ef-
fectively with increasing sample size N , akin
to reward models but without the computational
overhead; (2) complements chain-of-thought, im-
proving reasoning performance beyond greedy
decoding; and (3) generalizes to open-ended tasks
where traditional self-consistency methods fall
short. Our findings establish self-certainty as a
practical and efficient way for improving LLM
reasoning capabilities.

1. Introduction
Large Language Models (LLMs) have achieved impres-
sive reasoning abilities, yet reliably producing accurate
outputs for complex tasks often requires techniques to en-
hance inference-time performance (Wu et al., 2024; Xiang
et al., 2025). Best-of-N selection, generating and select-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

10.0 12.5 15.0 17.5 20.0
Self-certainty

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

Correct
Incorrect
No Answer

2.0 1.8 1.6 1.4 1.2 1.0
Negative Perplexity

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

Correct
Incorrect
No Answer

Figure 1. Distribution of self-certainty and negative perplexity
for correct, incorrect, and no-answer responses on the MATH
dataset (Level 4) (Hendrycks et al., 2021) using the Llama-3.1-
8B-Instruct with 64 samples per question. For self-certainty, the
distributions of correct and incorrect groups concentrate around
different central values, with frequencies decreasing smoothly to-
ward both extremes. In contrast, negative perplexity fails to clearly
separate correct from incorrect outputs and favors no-answer re-
sponses, highlighting self-certainty’s effectiveness in distinguish-
ing response quality.

ing from multiple candidate responses, has emerged as a
powerful paradigm for significantly improving reasoning
accuracy (Snell et al., 2024). Current Best-of-N methods
frequently rely on reward models, such as Outcome Reward
Models (ORMs) (Cobbe et al., 2021a) and Process Reward
Models (PRMs) (Lightman et al., 2023; Uesato et al., 2022),
not only for output selection but also for data annotation
to further refine LLM reasoning capabilities (Uesato et al.,
2022; Wang et al., 2022).

However, reward models introduce substantial computa-
tional and practical challenges. They are computationally
expensive to train or fine-tune, often requiring as many
parameters as the LLM itself (Wang et al., 2024), are vul-
nerable to distribution shifts, and can suffer from “reward
hacking” (Eisenstein et al., 2023). While techniques like
reward model ensembles (Coste et al., 2023) offer partial
mitigation, they further increase overhead.

As a lighter-weight alternative, Self-Consistency (Wang
et al., 2022) aggregates multiple outputs using majority vot-
ing. However, it is applicable only to tasks with directly
comparable string-matched answers, limiting its use for dif-
ferentiating reasoning paths or open-ended tasks. Universal
Self-Consistency (USC) (Chen et al., 2023) prompts the
LLM to choose the most consistent response, but its gains
are constrained by context length and model ability, some-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

times declining with larger N (Cobbe et al., 2021b), and can
be ineffective for small models, as our research confirms.
Moreover, self-consistency and USC lack a direct quality
score for responses, limiting their applicability in tasks such
as candidate ranking.

To overcome these limitations, we propose leveraging the
LLM’s inherent probabilistic output for a more practical,
general, and robust approach to Best-of-N selection. We
hypothesize that an LLM’s probability distribution natu-
rally encodes its certainty. We introduce self-certainty, a
novel metric quantifying this confidence by measuring the
divergence of the predicted token distribution from a uni-
form distribution. A distribution diverging significantly
from uniform indicates a more peaked—and thus more
certain—prediction. As shown in Figure 1, self-certainty
demonstrates a stronger signal for distinguishing correct
responses. Notably, it incurs almost no computational over-
head, as the token distribution is generated alongside the
tokens during inference. Inspired by Borda Voting, we en-
hance self-consistency by incorporating self-certainty-based
ranking, assigning weighted votes based on self-certainty
rank using a scaling factor of (N−ranking+1)p, effectively
prioritizing more confident responses.

We rigorously evaluate our methods across diverse reason-
ing benchmarks, including LiveBench-Math (White et al.,
2024), GSM8K (Cobbe et al., 2021b), MATH (Hendrycks
et al., 2021), CRUXEval (Gu et al., 2024) and Live-
CodeBench (Jain et al., 2024), spanning mathematical rea-
soning, code reasoning, and code generation. Our exper-
iments reveal that self-certainty-based voting consistently
outperforms self-consistency in Best-of-N selection of rea-
soning tasks, effectively adapting to varying sample sizes
and question difficulties.

The key advantages of self-certainty are:

• Scalability: Self-certainty scales efficiently with increas-
ing sample size N , mirroring reward models in scalability
but without their computational burden.

• Orthogonal Enhancement to Chain-of-Thought: Self-
certainty complements chain-of-thought (CoT) reason-
ing (Wei et al., 2022), outperforming self-consistency
through weighted voting.

• Generalizability to Open-Ended Tasks: Self-certainty
generalizes effectively to open-ended responses (e.g.,
code) where self-consistency is inapplicable, surpassing
greedy decoding and USC.

2. Related Works
Reward Models for Response Reranking and Selection.
Evaluating LLM outputs with external models like verifiers

or reward models (ORMs, PRMs) can enhance reasoning
and select best samples (Lightman et al., 2023; Wang et al.,
2024). However, these models are often task-specific, sensi-
tive to the base model (Eisenstein et al., 2023), and compu-
tationally expensive to train, sometimes requiring parameter
counts similar to the LLMs they evaluate (Wang et al., 2024).
Our approach, self-certainty, avoids additional training by
using the LLM’s own logits for efficient quality assessment.

Consistency-Based Response Selection. Self-
consistency (Wang et al., 2022) leverages the model’s
internal understanding by selecting the most common
response from multiple outputs, improving reliability.
However, it’s limited to tasks with convergent final answers
and hard to generalize to open-ended generation. Universal
Self-Consistency (USC) (Chen et al., 2023) extends to
more tasks but faces scalability issues and lacks a certainty
measure. Self-certainty overcomes these limitations
by directly measuring response confidence from token
distributions, handling open-ended tasks and scaling
efficiently.

Confidence Estimation for Model Responses. Various
methods estimate model confidence (Geng et al., 2023).
Self-Evaluation (Ren et al., 2023) uses yes/no token proba-
bilities. BSDetector (Chen & Mueller, 2024) measures sim-
ilarity and prompts for self-verification. TrustScore (Zheng
et al., 2024) computes likelihood against modified-prompt
distractors. These often require multiple evaluations, hin-
dering scalability for Best-of-N selection. In contrast, self-
certainty leverages the output token distribution directly,
avoiding extra prompts and enabling efficient, scalable se-
lection.

3. Measuring Confidence of LLMs
This section explores metrics for quantifying LLM predic-
tion confidence, comparing probabilistic measures with dis-
tributional ones to identify the most effective for reliable
output selection.

3.1. LLM Background

LLMs, typically Transformer-based (Vaswani, 2017), au-
toregressively generate token sequences y = (y1, . . . , ym)
from an input x = (x1, . . . , xn). At each step i, the
model produces logits ℓi ∈ RV (where V = |V| is vo-
cabulary size), which convert to a probability distribution
p(·|x, y<i) ∈ [0, 1]V over the vocabulary for the next token
yi. This distribution reflects the model’s belief about the
next token.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

3.2. Sentence-Level Probabilistic Confidence

Probabilistic confidence quantifies a model’s certainty in its
predictions by directly leveraging the probabilities assigned
to sampled tokens.

Average log-probability. A common confidence measure
is the average log-probability (AvgLogP) of sampled tokens:

AvgLogP :=
1

n

n∑
i=1

log [p(yi|x, y<i)]

where p(yi|x, y<i) is the probability of token yi. Higher Av-
gLogP values indicate the model assigns higher probabilities
to generated tokens, reflecting greater confidence.

Perplexity. Perplexity is a common metric for evaluat-
ing language models, defined as the exponentiated average
negative log-likelihood:

Perplexity := exp

(
− 1

n

n∑
i=1

log [p(yi|x, y<i)]

)
(1)

Since Perplexity = exp(−AvgLogP), both measures are
equivalent when selecting responses. We use negative per-
plexity for Best-of-N selection, though studies show it strug-
gles with long contexts (Hu et al., 2024), suggesting the
need for alternatives.

3.3. Distributional Confidence

Distributional confidence measures consider the entire prob-
ability distribution over the vocabulary at each generation
step, capturing a more holistic view of the model’s certainty
beyond just sampled token probabilities.

A sentence-level distributional confidence measure can be
defined as:

Distributional-Confidence := F (f(Py|x))

where Py|x = (p(·|x), p(·|x, y1), . . . , p(·|x, y<n)) repre-
sents the sequence of token-level probability distributions,
f produces a confidence score for each token, and F aggre-
gates these into a sentence-level confidence. With output
length n, we define F as the average across all positions:

F (C1, . . . , Cn) =
1

n

n∑
i=1

Ci, Ci = f(p(·|x, y<i)) (2)

For function f , we explore metrics that quantify how
”peaked” or ”concentrated” the probability distribution is,
with more concentrated distributions suggesting higher
model certainty:

Kullback-Leibler (KL) Divergence. Drawing upon neu-
ral networks as Maximum Likelihood Estimators (LeCun
et al., 2015), we hypothesize that higher confidence corre-
sponds to distributions further from a uniform distribution
U (representing maximum uncertainty). KL Divergence
quantifies this difference:

CKL
i := KL(U ∥ p(·|x, y<i)) =

V∑
j=1

1

V
log

(
1/V

p(j|x, y<i)

)

= − 1

V

V∑
j=1

log (V · p(j|x, y<i)) (3)

Gini Impurity. Originally introduced in decision trees
(Breiman, 2017), Gini Impurity measures the probabil-
ity that two randomly sampled tokens belong to different
classes. A more concentrated distribution indicates higher
confidence:

CGini
i := 1− IG(p(·|x, y<i)) =

V∑
j=1

(p(j|x, y<i))
2

Entropy. Entropy measures the disorder in a probability
distribution. Higher entropy indicates greater uncertainty,
so we use negative entropy as a confidence measure:

CEntropy
i :=

V∑
j=1

p(j|x, y<i) log(p(j|x, y<i))

Distributional Perplexity (DP). We apply a negative sign
to perplexity to interpret it as confidence. To distinguish
from standard perplexity (Equation 1), we denote it as DP:

CDP
i := − exp

(
−

V∑
j=1

p(j|x, y<i) log(p(j|x, y<i)

)

3.4. Our Primary Metric: Self-Certainty

Empirical evaluations (Fig. 1, 4) demonstrate that KL-
divergence-inspired distributional confidence more effec-
tively distinguishes correct samples from incorrect ones
and achieves superior accuracy at higher N values. Based
on these findings, we define self-certainty as our primary
confidence metric for best-of-N selection:

Self-Certainty = − 1

nV

n∑
i=1

V∑
j=1

log (V · p(j|x, y<i))

(4)
Cross entropy between the predicted distribution and
a uniform distribution provides an equivalent confi-
dence measure, differing from KL-divergence only by
a constant. The self-certainty based on cross-entropy
is: Self-Certainty (CE) = − 1

nV

∑n
i=1

∑V
j=1 log

(
p(j |

x, y<i)
)
.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Question

Points Q and A lie on the graph of y = log₂(x). The midpoint of line
segment QA is (6, 2). What is the positive difference between the
x-coordinates of Q and A?

Given Reasoning Path

The midpoint of QA is (6, 2), with Q and A on y = log₂(x). This gives
the system:
x₁ + x₂ = 12, x₁x₂ = 16.
Substituting leads to the quadratic:
x₁² - 12x₁ + 16 = 0.

Sample I

Step1: We can factor the left-hand side as: (x₁ - 4)(x₁ - 4) = 0

Step2: x₁ - 4 = 0, x₁ = 4

Sample II

Step 1: This is a quadratic equation in x₁. We can solve for x₁
using the quadratic formula: x₁ = (-b ± √(b² - 4ac)) / (2a)

Step 2: In this case, a = 1, b = -12, and c = 16. Substituting
these values, we get: x₁ = (12 ± √((-12)² - 4(1)(16))) / (2(1))
x₁ = 6 ± 2√5

Large Language Model

14.98↓

-1.09↑ 13.91↓

-1.21↑

16.92↑

-1.11↓ 17.01↑

-1.26↓

Step ScoreFirst Token Score: 14.85↓-6.78↑

First Token Score: 17.53↑-9.56↓
Step Score

Average Score: 14.49↓-1.18↑

Average Score: 17.02↑-1.21↓

Self-Certainty:Negative Perplexity:

Figure 2. Comparison of reasoning paths in solving a quadratic equation for the given problem using self-certainty and negative perplexity.
Sample I factors the quadratic equation directly, while Sample II applies the quadratic formula. The figure illustrates an example of how
the two measures assign confidence scores at each reasoning step, showing that self-certainty distinguishes between correct and incorrect
reasoning more effectively than negative perplexity.

3.5. Analysis

Reward Models (PRMs and ORMs) typically evaluate re-
sponses using the minimum reward across all reasoning
steps (Lightman et al., 2023; Wang et al., 2024), prioritiz-
ing error detection over progress assessment. Self-certainty
methods effectively identify mistakes through averaging
because early errors propagate, reducing confidence in sub-
sequent steps. As illustrated in Figure 2, when sample I
contains an initial error, self-certainty assigns lower confi-
dence to all following steps despite their correctness, while
negative perplexity fails to distinguish between reasoning
paths following correct versus incorrect premises. Addition-
ally, distributional confidence detects correct reasoning from
the first token, whereas negative perplexity only identifies it
in later stages.

4. Self-Certainty with Voting Method
While self-certainty demonstrates greater robustness than
alternative confidence measures, it remains vulnerable to
distortion from samples with artificially high confidence
scores. Our analysis reveals that self-certainty-driven Best-
of-N selection underperforms compared to self-consistency
in accuracy on mathematical datasets with definitive an-
swers when using identical N values (Table 1). This does
not, however, indicate inherent inferiority. Self-consistency
operates at the response layer of LLMs, while self-certainty
aggregates information at the decoding layer. By integrating
both layers, we can extract more reliable responses from
multiple outputs with explicit answers.

Traditional methods of combining majority voting with

score-based selection, such as summing scores across sam-
ples with identical answers, suffer from sensitivity to score
scaling. Similarly, using average confidence may inade-
quately represent frequently sampled answers. To address
these limitations, we propose a Borda count-inspired ap-
proach:

First, we rank N outputs of models by confidence, obtaining
a ranking [r1, r2, . . . , rN]. We then assign votes to these
ranked outputs using the following formula:

v(r) = (N − r + 1)p (5)

where r is the rank of the output (1 ≤ r ≤ N). Each valid
response contributes votes to its final answer proportional
to its rank. The answer accumulating the highest vote total
becomes the consensus selection. When p = 0, Equation (5)
reduces to simple majority voting. As p approaches infin-
ity, the highest-ranked output dominates, reverting to pure
distributional confidence selection.

Figure 3 illustrates how Borda Voting successfully identifies
the correct answer by integrating both confidence ranking
and answer frequency, thereby overcoming limitations of
both confidence-driven selection and self-consistency. The
parameter p, which controls ranking influence, serves as a
tunable hyperparameter discussed in Section 6.2.

5. Experiment Setup
We compare various confidence measures for selecting reli-
able reasoning responses, extending evaluation to additional
datasets and exploring self-certainty with voting methods.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Question

Kylar went to the store to buy glasses for his new apartment. One
glass costs $5, but every second glass costs only 60% of the
price. Kylar wants to buy 16 glasses. How much does he need to
pay for them?

Correct Solution:

Kylar needs to pay 64​ dollars for the 16 glasses, as each pair
costs $8 and he buys 8 pairs.

Response 1: Reasoning 1 + Answer: 12.5 Self-Certainty: 17.13

Response 2: Reasoning 2 + Answer: 64 Self-Certainty: 16.94

Response 3: Reasoning 3 + Answer: 64 Self-Certainty: 16.36

Response 4: Reasoning 4 + Answer: 50 Self-Certainty: 16.21

Response 5: Reasoning 5 + Answer: 50 Self-Certainty: 16.13

Response 6: Reasoning 6 + Answer: 50 Self-Certainty: 15.87

Wrong Step: Understanding the question as a geometric series.

Wrong Step: Calculating the remaining 15 glasses at $3 each.

Self-Consistency: 50

Self-Certainty: 12.5

Self-Certainty + Borda Voting (𝑝 = 1):
12.5: 6 votes
64: 9 votes
50: 6 votes

Figure 3. Example of Borda Voting correctly identifying the answer when confidence-driven selection and self-consistency fail. The figure
illustrates how Borda Voting aggregates confidence scores and ranks to select the correct answer.

22 23 24 25 26

N (Number of Candidate Responses)

17

18

19

20

21

22

23

Ac
cu

ra
cy

 (%
)

KL
DP
Entropy
Gini
Perplexity
FirstAns

Figure 4. Best-of-N selection accuracy on LiveBench-MATH
across multiple confidence measures. KL achieves the best perfor-
mance at larger N , while other measures plateau or decline after
N = 16.

5.1. Comparison of Confidence Measures

To evaluate confidence formulations from Section 3, we
select the most confident response from N outputs generated
by Llama-3.1-8B-Instruct (Dubey et al., 2024). We use
LiveBench-Math dataset (White et al., 2024), released post-
model deployment, to mitigate potential data contamination.

We sample 64 responses (temperature=0.6, top-p=0.9) and
create subsets of N = 4, 8, 16, 32, 64 for Best-of-N selec-
tion. All measures are evaluated on identical sample sets.
Responses without extractable answers are masked. We in-
clude a FirstAns baseline that selects the first extractable an-
swer from N outputs. Evaluation uses the ZeroEval frame-
work (Lin, 2024), with results averaged across five repeti-
tions. All experiments are run on NVIDIA A100 GPUs.

5.2. Validation on Additional Datasets and Combined
Voting Methods

We evaluate self-certainty and Borda Voting against self-
consistency, universal self-consistency (USC), greedy de-
coding, and FirstAns across diverse reasoning tasks.

The sampling strategy follows the procedures outlined in
Section 5.1. For USC, we use the template from the original
paper (Chen et al., 2023) (with minor wording modifications,
as shown in Appendix B.2). To ensure a fair comparison,
we assist USC in selecting the first valid response when it
fails to choose one with an extractable answer.

We evaluate different methods using the Llama-3.1-8B-
Instruct across the following benchmarks:

• Mathematical Reasoning: We utilize the LiveBench-
Math dataset (White et al., 2024), the validation set of
GSM8K dataset (Cobbe et al., 2021b) and the test set of
MATH dataset (Hendrycks et al., 2021).

• Code Reasoning: The CRUXEval-O benchmark (Gu
et al., 2024) is employed, which involves predicting the
output of Python codes.

• Code Generation: We adopt the LiveCodeBench code
generation benchmark (Jain et al., 2024) to assess the
improvements introduced by our methods. Note that this
is an open-ended task where self-consistency cannot be
applied.

For all test models and datasets, we employ Chain-of-
Thought reasoning (Wei et al., 2022), except for the code
generation dataset. To evaluate the generalization of our
measure across different training methodologies, particu-
larly for the recent R1-series large reasoning models (Guo
et al., 2025), we test our approach on DeepSeek-R1-Distill-
Llama-8B using the MATH dataset (Level 3). Given the
increased reasoning time required by this model, we con-
duct a single trial for this experiment. To further validate
and assess generalizability, we apply both USC and self-
certainty to the Qwen-2.5-Coder-32B-Instruct model (Hui
et al., 2024), in addition to Llama-3.1-8B-Instruct, on the
LiveCodeBench dataset.

6. Results and Analysis
6.1. Self-Certainty

KL-Divergence-Inspired Distributional Confidence Out-
performs Other Measures in Best-of-N Selection. Fig-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Figure 5. Scatter plot showing various confidence measures against response length (measured in number of characters) in the LiveBench-
Math dataset, using the Llama-3.1-8B-Instruct model with 64 samples per question. The figure demonstrates that, with the exception of
self-certainty, all other measures exhibit a bias towards longer responses.

Table 1. Performance comparison of various methods across different datasets using Llama-3.1-8B-Instruct. Some USC results are omitted
due to over 20% of the data exceeding context window limits under the settings. Self-certainty consistently outperforms sampling, greedy
decoding, and perplexity, while Borda Voting with the optimal parameter p delivers the best performance across all methods.

Method LiveBench-Math GSM8K MATH CRUXEval-O Avg.
N = 8 N = 32 N = 8 N = 64 N = 8 N = 64 N = 8 N = 64

Greedy 12.23 84.00 47.96 39.88 46.02
FirstAns 17.66 17.66 82.08 82.08 49.08 49.09 42.93 42.93 47.94

PRM / / 93.48 95.15 / / 47.53 48.61 /
ORM / / 88.57 89.91 / / 42.00 39.62 /

Perplexity 20.44 18.32 87.01 87.81 53.34* 51.96* 44.67 45.10 51.08
USC 21.08 - 87.32 85.65 54.66 - 43.78 41.25 51.19
Self-consistency 22.50 26.25 89.42 90.99 58.60 63.40 47.58 50.42 56.15

Self-certainty 20.87 22.01 87.32 88.90 54.63 56.70 45.38 45.83 52.71
- Borda (p = 0.3) 23.69 26.47 89.57 91.07 59.04 63.60 47.94 50.42 56.48
- Borda (p = 0.7) 23.59 26.36 89.51 91.04 59.04 63.85 47.85 50.65 56.49
- Borda (p = 1.2) 23.21 26.69 89.51 90.95 58.86 64.10 47.93 50.85 56.51
- Borda (p = 2.0) 22.45 26.41 89.13 90.90 57.94 60.02 47.25 51.23 55.67

ure 4 shows distributional confidence measures outperform
perplexity when N ≥ 16. KL divergence uniquely contin-
ues improving as N increases to 32 and 64, demonstrating
its robustness as a confidence measure with superior insight
into response accuracy. Self-certainty, defined in Equation 3
as KL divergence from a uniform distribution, generalizes
better than alternative empirical distributions (evaluated in
Appendix A.4), confirming the efficacy of our original de-
sign.

Self-Certainty’s Robustness to Reasoning Length in Re-
sponse Selection. Figure 5 reveals a critical insight: while
most confidence measures show positive correlation with
response length, self-certainty remains largely invariant to
reasoning length. This confirms (Basu et al., 2020)’s ob-
servation that perplexity decreases with increasing output
length under low p values. Unlike metrics that potentially
conflate verbosity with correctness, self-certainty provides
an unbiased assessment of response quality, preventing mod-
els from artificially inflating confidence through extended

but potentially meaningless reasoning.

Self-Certainty Effectively Separates Correct and Incor-
rect Responses. Analysis of self-certainty and negative
perplexity distributions across correct, incorrect, and no-
answer responses on MATH dataset Level 4 (Figure 1)
demonstrates self-certainty’s superior discriminative power.
For self-certainty, the distributions of correct and incorrect
responses are centered around distinct means, with frequen-
cies tapering off smoothly toward both tails. In contrast,
perplexity fails to distinguish between correct and incorrect
responses when applied to the full dataset, despite perform-
ing adequately at small N values (Figure 4). This aligns
with (Zhang et al., 2020)’s finding that response quality
initially improves as perplexity declines but subsequently
deteriorates significantly. Notably, perplexity assigns higher
confidence to no-answer responses—often resulting from
self-repetition or early stopping—while self-certainty reli-
ably assigns these responses lower confidence scores. This
behavior is consistent with (Basu et al., 2020)’s observation

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Table 2. Accuracy of different voting methods on the test set of
MATH dataset using Llama-3.1-8B-Instruct. Self-certainty-based
Borda voting outperforms other voting methods.

Method N = 8 N = 64

Majority 58.60 63.40
Average 46.92 32.94
Sum 59.06 63.51
Borda (p = 0.5) 59.08 63.71
Borda (p = 1.2) 58.86 64.10

that maximizing perplexity increases self-repetition. These
findings provide compelling evidence that self-certainty
more effectively measures model certainty by correlating
more closely with response quality.

6.2. Self-Certainty and Voting

Borda Voting in Combination with Self-Certainty. As
discussed in Section 4, self-certainty can be integrated with
voting methods to enhance accuracy when responses contain
explicit answers. Table 2 demonstrates that self-certainty-
based Borda voting outperforms majority voting, average
self-certainty, and sum self-certainty on the MATH dataset.

Performance Comparison Across Four Datasets. Fig-
ure 6 illustrates the scaling properties of self-certainty
and self-certainty-based Borda voting. Self-certainty sig-
nificantly outperforms sampling, greedy decoding, and
perplexity-based selection, with performance improving as
N increases. This confirms that self-certainty effectively
measures the model’s confidence in its responses, providing
valuable insight into output correctness. Furthermore, Borda
voting consistently outperforms self-consistency across var-
ious settings of p and N on all four datasets, indicating
that self-certainty enhances final-answer-based voting by
providing effective ranking information.

Optimizing the Borda Parameter p for Different N .
Figure 8 shows the relationship between the Borda parame-
ter p in Equation 5 and selection efficiency across varying
sample sizes N . The optimal p increases from 0.5 to 1.2
as N increases from 8 to 64, suggesting that larger sample
sizes require stronger control from self-certainty. For prac-
tical applications, grid search remains the most effective
approach for determining the optimal p, though a simple
heuristic is to use p = 0.3 when N ≤ 16 and p = 1.2 when
N ≥ 32, with the caveat that optimal values may vary by
model and task complexity.

6.3. Generalization

Generalization of Self-Certainty on Open-Ended Gener-
ation Tasks. Self-consistency faces limitations with cre-

Table 3. Accuracy of various methods on the Level 3 test set of the
MATH dataset using DeepSeek-R1-Distill-Llama-8B (single trial).
Self-certainty outperforms Greedy and FirstAns, while Borda Vot-
ing with an appropriate p surpasses self-consistency.

Method N = 4 N = 16 N = 64

Greedy 77.54 77.54 77.54
FirstAns 81.17 81.43 81.43

Self-consistency 83.64 86.47 87.62

Self-certainty 83.29 83.73 84.08
- Borda (p = 0.3) 84.79 87.00 87.80
- Borda (p = 0.7) 84.70 86.91 87.62
- Borda (p = 1.2) 84.62 87.00 88.06
- Borda (p = 2.0) 83.29 87.00 87.98

ative, open-ended tasks like code generation, where each
sample produces unique answers, defaulting to standard
sampling. Both USC and our self-certainty method ad-
dress this limitation. Comparing these approaches on Live-
CodeBench (Figure 7), we find that USC underperforms
greedy decoding on Llama-3.1-8B-Instruct, likely due to
limited consistency recognition capabilities. This is con-
firmed by results from the larger Qwen model, where USC
successfully outperforms greedy decoding. In contrast, self-
certainty consistently outperforms greedy decoding across
both models and surpasses USC on Qwen-2.5-Coder-32B-
Ins, with performance scaling positively with sample size
N .

Generalization of Self-Certainty on Reasoning Models.
Recent work on DeepSeek-R1 (Guo et al., 2025) shows
that reinforcement learning with verifiable rewards and
long-chain-of-thought (CoT) significantly enhance LLM
reasoning capabilities. Our evaluation of self-certainty
on DeepSeek-R1-Distill-Llama-8B (Table 3) demonstrates
that it consistently outperforms both greedy decoding and
sampling, with performance scaling with N . Additionally,
Borda voting with self-certainty surpasses self-consistency
when using appropriate p values. These results confirm
the robustness of our methods across various fine-tuning
approaches.

7. Discussion and Future Research
Our study establishes self-certainty as a scalable,
lightweight, and effective metric for evaluating LLM out-
puts, particularly for open-ended and complex reasoning
tasks. While it scales well with increasing sample size and
outperforms existing reward-free methods across multiple
settings, several directions for refinement remain.

First, self-certainty can underperform self-consistency on
problems with definitive, convergent answers (Section 6).
This reflects the complementary nature of different aggre-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

22 23 24 25

N

12.5

15.0

17.5

20.0

22.5

25.0

Va
lu

e
LiveBench-Math

Greedy
FirstAns
Self-certainty
Borda (p=0.3)

22 23 24 25 26

N

82

84

86

88

90

Va
lu

e

GSM
Greedy
FirstAns
Self-certainty
Borda (p=0.3)

22 23 24 25 26

N
47.5

50.0

52.5

55.0

57.5

60.0

62.5

Va
lu

e

MATH
Greedy
FirstAns
Self-certainty
Borda (p=0.3)

22 23 24 25 26

N

40

42

44

46

48

50

Va
lu

e

CRUX
Greedy
FirstAns
Self-certainty
Borda (p=0.3)

Figure 6. Performance evaluation across four datasets using different strategies with Llama-3.1-8B-Instruct. The lines show strong scaling
ability of both self-certainty and Borda voting.

Greedy Sampling USC(N=8) SCe(N=8)SCe(N=64)
Method

18

19

20

21

22

23

Ac
cu

ra
cy

19.12

18.14

18.99

21.21

21.90

Results of Llama3.1-8B-Ins

Greedy Sampling USC(N=8) SCe(N=8)SCe(N=64)
Method

50

51

52

53

54

55

56

Ac
cu

ra
cy

52.12 52.12

54.48 54.74
55.43

Results of Qwen2.5-Coder-32B-Ins

Figure 7. Comparison of self-certainty and USC on the LiveCodeBench code generation task. The results show that self-certainty
outperforms USC and greedy decoding on both Llama-3.1-8B-Instruct and Qwen-2.5-Coder-32B-Ins models, with performance improving
as N increases.

0.0 0.3 0.5 0.7 1.0 1.2 1.5 2.0
p (Borda Parameter)

58.0

58.5

59.0

59.5

60.0

60.5

61.0

61.5

Ac
cu

ra
cy

N=8, 16

Best-of-N

N=8
Self-consistency
N=16
Self-consistency

0.0 0.3 0.5 0.7 1.0 1.2 1.5 2.0
p (Borda Parameter)

62.8

63.0

63.2

63.4

63.6

63.8

64.0

Ac
cu

ra
cy

N=32, 64

Best-of-N

N=32
Self-consistency
N=64
Self-consistency

Figure 8. Performance of Borda voting on MATH dataset using
Llama-3.1-8B-Instruct with varying p and N . Accuracy initially
increases with p, peaks, then declines. The optimal p varies with
N . Note that self-consistency corresponds to Borda voting with
p = 0.

gation methods rather than a limitation. Combining self-
certainty with answer-level voting mechanisms—such as
Borda voting—bridges this performance gap, achieving re-
sults that rival or exceed self-consistency. These findings
suggest that self-certainty could enhance reward model de-
sign by shifting from token-level scoring to distribution-
aware confidence estimation. The use of KL divergence
from a uniform distribution offers greater robustness than
traditional average log-probability metrics and may lead to
more stable reward training objectives.

Second, our implementation uses a simple averaging strat-
egy for aggregating token-level confidence (Equation 2)
and a basic power function for distributing votes in Borda
voting (Equation 5). Future work should explore more so-
phisticated aggregation functions or data-driven approaches

for learning optimal vote weighting schemes to improve
accuracy in specialized applications.

Self-certainty also enables broader research opportunities.
Its computational efficiency makes it ideal for test-time op-
timization techniques (Snell et al., 2024), producing higher-
quality outputs without additional inference passes. It offers
potential value in data filtering, auto-labeling, and reinforce-
ment learning pipelines (Bai et al., 2022; Ouyang et al.,
2022), where confidence estimation is crucial. Specifically,
self-certainty could guide reward shaping or provide intrin-
sic signals for autonomous agents, better aligning learning
objectives with model certainty.

8. Conclusion
In this paper, we introduce self-certainty and self-certainty-
based Borda voting as novel approaches for evaluating and
enhancing model response performance. Self-certainty func-
tions as an internal measure of response quality, demon-
strating robustness in several key aspects. Compared to
traditional scoring methods, such as average log probability
and perplexity, it offers superior scalability when applied to
Best-of-N selection. Additionally, the ranking information
provided by self-certainty improves chain-of-thought rea-
soning and outperforms universal self-consistency (USC) in
code generation tasks. Its stability, flexibility, and generaliz-
ability make it applicable across a wide range of domains,
with the potential to enhance the autonomous learning capa-
bilities of LLMs.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

References
Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-

Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Basu, S., Ramachandran, G. S., Keskar, N. S., and Varsh-
ney, L. R. Mirostat: A neural text decoding algo-
rithm that directly controls perplexity. arXiv preprint
arXiv:2007.14966, 2020.

Breiman, L. Classification and regression trees. Routledge,
2017.

Chen, J. and Mueller, J. Quantifying uncertainty in answers
from any language model and enhancing their trustwor-
thiness. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 5186–5200, 2024.

Chen, X., Aksitov, R., Alon, U., Ren, J., Xiao, K., Yin, P.,
Prakash, S., Sutton, C., Wang, X., and Zhou, D. Univer-
sal self-consistency for large language model generation.
arXiv preprint arXiv:2311.17311, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021a.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

Coste, T., Anwar, U., Kirk, R., and Krueger, D. Reward
model ensembles help mitigate overoptimization. arXiv
preprint arXiv:2310.02743, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Eisenstein, J., Nagpal, C., Agarwal, A., Beirami, A.,
D’Amour, A., Dvijotham, D., Fisch, A., Heller, K., Pfohl,
S., Ramachandran, D., et al. Helping or herding? reward
model ensembles mitigate but do not eliminate reward
hacking. arXiv preprint arXiv:2312.09244, 2023.

Geng, J., Cai, F., Wang, Y., Koeppl, H., Nakov, P., and
Gurevych, I. A survey of confidence estimation and
calibration in large language models. arXiv preprint
arXiv:2311.08298, 2023.

Gu, A., Rozière, B., Leather, H., Solar-Lezama, A., Syn-
naeve, G., and Wang, S. I. Cruxeval: A benchmark
for code reasoning, understanding and execution. arXiv
preprint arXiv:2401.03065, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hu, Y., Huang, Q., Tao, M., Zhang, C., and Feng, Y. Can
perplexity reflect large language model’s ability in long
text understanding? arXiv preprint arXiv:2405.06105,
2024.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., et al. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Lin, B. Y. ZeroEval: A Unified Framework for Evaluating
Language Models, July 2024. URL https://github.
com/WildEval/ZeroEval.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Ren, J., Zhao, Y., Vu, T., Liu, P. J., and Lakshminarayanan,
B. Self-evaluation improves selective generation in large
language models. In Proceedings on, pp. 49–64. PMLR,
2023.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

9

https://github.com/WildEval/ZeroEval
https://github.com/WildEval/ZeroEval

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426–9439, 2024.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

White, C., Dooley, S., Roberts, M., Pal, A., Feuer, B., Jain,
S., Shwartz-Ziv, R., Jain, N., Saifullah, K., Naidu, S.,
et al. Livebench: A challenging, contamination-free llm
benchmark. arXiv preprint arXiv:2406.19314, 2024.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Infer-
ence scaling laws: An empirical analysis of compute-
optimal inference for problem-solving with language
models. arXiv preprint arXiv:2408.00724, 2024.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan,
D., et al. Towards system 2 reasoning in llms: Learning
how to think with meta chain-of-though. arXiv preprint
arXiv:2501.04682, 2025.

Zhang, H., Duckworth, D., Ippolito, D., and Neelakantan,
A. Trading off diversity and quality in natural language
generation. arXiv preprint arXiv:2004.10450, 2020.

Zheng, D., Liu, D., Lapata, M., and Pan, J. Z. Trustscore:
Reference-free evaluation of llm response trustworthiness.
arXiv preprint arXiv:2402.12545, 2024.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

A. More Experiment Results
A.1. Oracle Best-of-N Selection Performance and Scaling Effects on LiveCodeBench

In our experiment described in Section 5.2, we evaluate the performance of Llama-3.1-8B-Instruct and compare Borda
voting and self-certainty against the upper bound of Best-of-N selection methods, as shown in Figure 9. While both methods
demonstrate continued improvement as N increases, they remain significantly outperformed by the Oracle selection method,
which assumes perfect knowledge of the correct answer.

10 20 30
N

20

30

40

50

Va
lu

e

LiveBench-Math
Greedy
Oracle
FirstAns
Self-certainty
Borda (p=0.3)

20 40 60
N

85

90

95

Va
lu

e

GSM
Greedy
Oracle
FirstAns
Self-certainty
Borda (p=0.3)

20 40 60
N

50

60

70

80

90

Va
lu

e

MATH
Greedy
Oracle
FirstAns
Self-certainty
Borda (p=0.3)

20 40 60
N

40

50

60

70

80

Va
lu

e

CRUX
Greedy
Oracle
FirstAns
Self-certainty
Borda (p=0.3)

20 40 60
N

18

19

20

21

22

Va
lu

e

LiveCodeBench

Greedy
Sampling
Self-certainty

Figure 9. Performance across five datasets using different strategies with Llama-3.1-8B-Instruct. The oracle selection method significantly
outperforms the other strategies. Additionally, both Borda voting and self-certainty demonstrate strong scaling effects.

A.2. Average Self-certainty Across Difficulty Levels on MATH Dataset

To explore how self-certainty is influenced by question difficulty, we evaluate the average self-certainty score across different
difficulty levels of the MATH dataset, as shown in Figure 10. The results indicate that the average self-certainty generally
decreases as the difficulty level increases, regardless the correctness of the questions. This trend makes self-certainty a
promising parameter-free approach for assessing question difficulty, offering a potential alternative to training classifiers
(Snell et al., 2024) when determining difficulty levels for scaling test-time compute strategies.

1 2 3 4 5
Difficulty Level

16.4

16.6

16.8

17.0

17.2

17.4

17.6

17.8

Se
lf-

ce
rta

in
ty

Correct
Incorrect
All

Figure 10. Comparison of the average self-certainty score on the MATH test dataset across increasing difficulty levels using Llama-3.1-
8B-Instruct for 64 responses per question (single trial). The average self-certainty decreases as questions become more challenging. This
trend is observed for both correct and incorrect responses.

A.3. Evaluation of Methods Across Difficulty Levels on the MATH Dataset

We conduct experiments to evaluate different methods across varying difficulty levels of reasoning problems. Figure 11
presents the performance of various methods on the MATH dataset at different difficulty levels. As question difficulty
increases, the scaling effect of Borda voting and self-certainty becomes more pronounced, demonstrating their effectiveness
in handling more challenging reasoning tasks.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Level1 Level2 Level3 Level4 Level5
Difficulty Level

0

20

40

60

80

M
AT

H
Te

st
 A

cc
ur

ac
y

(%
)

Methods
Borda p=0.5
Self-certainty
FirstAns

Figure 11. Comparison of evaluation methods on the MATH test dataset across increasing difficulty levels using Llama-3.1-8B-Instruct.
The four bars in each difficulty bin correspond to an increasing choice of N in the Best-of-N selection (8, 16, 32, and 64 generations).
Performance differences among settings become more pronounced as the difficulty level increases.

A.4. Replacing Uniform Distribution with Empirical Distribution

Table 4. Accuracy of various self-certainty definitions for Best-of-N selection on the MATH and GSM8K test sets using Llama-3.1-8B-
Instruct (single trial). The empirical distribution is derived by sampling from the MATH training dataset. While the empirical self-certainty
results are comparable to those based on a uniform distribution for the MATH test set, it is significantly outperformed by the latter, likely
due to a distributional shift.

Base Distribution MATH GSM8K
N = 8 N = 64 N = 8 N = 64

Uniform 54.60 56.46 87.19 88.55
Empirical 54.70 56.78 85.97 86.35

In Equation 3, we define tokenwise self-certainty as the KL divergence between the generated token distribution and a
uniform distribution, which quantifies deviation from random sampling. An alternative approach replaces the uniform
distribution with an empirical token distribution estimated from training data. To evaluate the impact of this modification,
we conduct the following experiment.

We first estimate token frequencies in the MATH training set by generating eight responses per question and averaging
token occurrences. The resulting empirical distribution is approximated from these frequencies, with the 20 most frequent
tokens shown in Figure 12. We then compute KL divergence between the generated token distribution and the empirical
distribution, using this as the self-certainty measure for Best-of-N selection. This experiment was conducted for a single
trial, with all other setup parameters as described in Section 5.1.

Results show that replacing the uniform distribution with the empirical distribution has minimal impact on MATH test
accuracy but leads to a noticeable performance drop on GSM8K, suggesting a sensitivity to distributional shifts. Thus, we
recommend retaining the uniform distribution in Equation 3 for improved generalization.

B. Case Study and Examples
In this section, we present several examples to illustrate the practical behavior of self-certainty and universal self-consistency
(USC). These examples are drawn from Llama-3.1-8B-Instruct generating responses to questions from the GSM8K and
LiveCodeBench code generation datasets.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Frequency

<space>
the

2
,

=
\

 $
+
{

of
1
^
-
3
is
}

we
.
$

frac

To
ke

ns

Token Frequency Distribution

Figure 12. Frequency of the top 20 tokens in Llama-3.1-8B-Instruct responses to MATH training set questions (generated eight times per
question).

B.1. Self-certainty

In this example, self-certainty correctly assigns higher confidence to the correct answer. Notably, in Response 0, the model
does not fully adhere to the instruction to enclose all reasoning within the specified JSON field. Instead, it follows its
trained reasoning process first and then summarizes the reasoning path in the reason field. This approach appears to be
a compromise between the model’s training objective and the given instruction, balancing structured formatting with its
natural reasoning process.

Self-certainty Example

USER:
Question:
Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs only
60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Instruction:
Please answer this question by first reasoning and then providing your answer.
Present your reasoning and solution in the following json format. Please show your final answer in the answer field,
e.g.,“answer”: “42”. ‘json{ “reasoning”: “ ”, “answer”: “ ”}

Response 0:
ASSISTANT:
##Step 1: Calculate the cost of the first glass.
The cost of the first glass is $5.
##Step 2: Calculate the cost of every second glass.
Every second glass costs 60% of the price of the first glass, which is 0.6× 5 = 3 dollars.
##Step 3: Determine the number of glasses that are full price and the number of glasses that are discounted.
Kylar wants to buy 16 glasses. Since every second glass is discounted, we can divide 16 by 2 to get the number of
full-price glasses and the number of discounted glasses. 16

2 = 8 full-price glasses and 8 discounted glasses.
##Step 4: Calculate the total cost of the full-price glasses.
8 full-price glasses at $5 each is 8× 5 = 40 dollars.
##Step 5: Calculate the total cost of the discounted glasses.
8 discounted glasses at $3 each is 8× 3 = 24 dollars.
##Step 6: Calculate the total cost of all the glasses.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

The total cost is the sum of the cost of the full-price glasses and the cost of the discounted glasses. $40 + $24 = $64.
##Step 7: Determine the total amount Kylar needs to pay for the glasses.
The total amount Kylar needs to pay is $64.
The final answer is: {“reasoning”: “Kylar wants to buy 16 glasses. The first glass costs $5, and every second glass
costs 60% of the price of the first glass, which is $3. He buys 8 full-price glasses at $5 each and 8 discounted glasses
at $3 each. The total cost of the full-price glasses is $40, and the total cost of the discounted glasses is $24. The total
cost is $40 + $24 = $64.”, “answer”: ”64”}
(Self-certainty: 17.81)

Response 1:
ASSISTANT:
{“reasoning”: “To find the total cost, we need to calculate the cost of the first glass and the cost of the remaining
glasses. The first glass costs $5. The second glass costs 60% of $5, which is 0.6 * 5 = $3. The third glass costs 60%
of $3, which is 0.6 * 3 = $1.80. We can see that the price of each subsequent glass is 60% of the previous glass.
So, the price of the glasses follows a geometric sequence: 5, 3, 1.80, 1.08, To find the cost of 16 glasses, we
can use the formula for the sum of a geometric series: S = a ∗ (1− rn)/(1− r), where a is the first term, r is the
common ratio, and n is the number of terms. In this case, a = 5, r = 0.6, and n = 16. Plugging in the values, we get
S = 5 ∗ (1 − 0.616)/(1 − 0.6). Calculating the value of 0.616, we get 0.0000655. Now, we can plug this value
back into the formula: S = 5 ∗ (1 − 0.0000655)/(1 − 0.6) = 5 ∗ 0.9999345/0.4 = 5 ∗ 2.499335 = 12.496675.
Rounding to two decimal places, the total cost is $12.50.”, “answer”: “12.50”}
(Self-certainty: 17.13)

B.2. Universal Self-Consistency

The first example is taken from the GSM8K dataset, while the second comes from the LiveCodeBench dataset. The prompt
has been adapted from (Chen et al., 2023). We observe that in Example 1, the model evaluates the answers step by step
to assess consistency. In contrast, the model jumps directly to the conclusion in Example 2. This difference may stem
from the clarity of the task: in a MATH problem with a definite answer, the model can logically assess each step of the
reasoning process, as seen in Example 1. However, for the LiveCodeBench example, where the task involves determining
the most consistent code, the model struggles to elaborate on the reasoning process and relies on direct reasoning to arrive at
a conclusion.

USC Prompt Example 1

USER:
I have generated the following responses to the question: Elise is learning to write and decides to keep re-writing the
alphabet until she knows it. She writes it in full twice, writes half of it once, then re-writes everything she has
already written. How many letters has Elise written in total?

Response 0: {“reasoning”: ”To find the total number of letters Elise has written, we first need to determine the
number of letters in the alphabet. There are 26 letters in the English alphabet. Elise writes it in full twice, which
means she writes 26 letters twice, so 26 * 2 = 52 letters. Then, she writes half of it once, which is 26 / 2 = 13 letters.
So, the total number of letters written so far is 52 + 13 = 65. Finally, she re-writes everything she has already written,
which is 65 letters. Therefore, the total number of letters Elise has written is 65 + 65 = 130.”,“answer”: “130”}

· · ·
Response 3: {“reasoning”: “To solve this problem, we need to calculate the total number of letters Elise has written.
First, she writes the alphabet twice, which has 26 letters. So, she has written 26 + 26 = 52 letters. Then, she writes
half of the alphabet once, which is 13 letters. So, she adds 13 more letters to the total. Now, she re-writes everything
she has already written, which means she re-writes 52 + 13 = 65 letters. To find the total number of letters Elise has
written, we need to add the number of letters she wrote initially (52) and the number of letters she re-wrote (65).

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

The total number of letters is 52 + 65 = 117.”, “answer”: “117”}

· · ·

Evaluate these responses. Select the most consistent response based on majority consensus. Format your answer as
”The most consistent response is Response X” (without quotes).

ASSISTANT:
To evaluate the responses, I will analyze the answers and reasoning provided by each response.Response 0 and
Response 1 have the same answer (130) and similar reasoning. · · ·.The most consistent response is Response 0.

USC Prompt Example 2

USER:
I have generated the following responses to the question: Slavic is preparing a present for a friend’s birthday. He has
an array a of n digits, and the present will be the product of all these digits. Because Slavic is a good kid who wants
to make the biggest product possible, he wants to add 1 to exactly one of his digits.
What is the maximum product Slavic can make?
Input:

• The first line contains a single integer t (1 ≤ t ≤ 104) — the number of test cases.

• The first line of each test case contains a single integer n (1 ≤ n ≤ 9) — the number of digits.

• The second line of each test case contains n space-separated integers ai (0 ≤ ai ≤ 9) — the digits in the array.

Output:

• For each test case, output a single integer — the maximum product Slavic can make, by adding 1 to exactly one
of his digits.

Sample Input: · · ·
Sample Output: · · ·

Response 0:

‘‘‘python
YOUR CODE HERE
import sys

def max_product(n, arr):
min_digit = min(arr)
max_product = 1
for i in range(n):

if arr[i] == min_digit:
arr[i] += 1
break

for num in arr:
max_product *= num

return max_product

t = int(input())
for _ in range(t):

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

n = int(input())
arr = list(map(int, input().split()))
print(max_product(n, arr))

‘‘‘

This code first finds the minimum digit in the array and increments it by 1. Then, it calculates the product of all
digits in the array. The time complexity is O(n), where n is the number of digits in the array.
· · ·

Evaluate these responses. Select the most consistent response based on majority consensus. Format your answer as
”The most consistent response is Response X” (without quotes).

ASSISTANT:
The most consistent response is Response 0.

16

