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ABSTRACT
Software bloat refers to code and features that are not used by a software during runtime. For Machine Learning
(ML) systems, bloat is a major contributor to their technical debt, leading to decreased performance and resource
wastage. In this work, we present Negativa-ML, a novel tool to identify and remove bloat in ML frameworks by
analyzing their shared libraries. Our approach includes novel techniques to detect and locate unnecessary code
within GPU code - a key area overlooked by existing research. We evaluate Negativa-ML using four popular ML
frameworks across ten workloads over 300 shared libraries. Our results demonstrate that ML frameworks are
highly bloated on both the GPU and CPU code side, with GPU code being a primary source of bloat within ML
frameworks. On average, Negativa-ML reduces the GPU code size by up to 75% and the CPU code by up to
72%, resulting in total file size reductions of up to 55%. Through debloating, we achieve reductions in peak CPU
memory usage, peak GPU memory usage, and execution time by up to 74.6%, 69.6%, and 44.6%, respectively.

1 INTRODUCTION

From personalized recommendations (Ko et al., 2022), to
healthcare diagnostics (Bhardwaj et al., 2017), and au-
tonomous vehicles (Parekh et al., 2022), ML is revolutioniz-
ing nearly every industrial sector. Besides Large Language
Models (LLMs) which enabled natural language understand-
ing and content generation (OpenAI Team, 2024; Touvron
et al., 2023b), smaller models are also now widely deployed
in many use-cases, from robots and autonomous vehicles,
to cameras and mobile phones. As these models grow in
numbers, size, and complexity, managing and optimizing
ML systems has become increasingly challenging. LLMs
often contain billions of parameters, requiring substantial
computational resources and vast amounts of training data.
Smaller models on the other hand, are typically deployed
in resource-constrained environments. To manage this com-
plexity, substantial technical overhead is introduced to ML
systems, exacerbating the issue of software bloat within
these systems (Zhang et al., 2024).

Software bloat refers to code that is unnecessary for a pro-
gram during runtime, typically caused by extraneous func-
tions, libraries, or features that do not contribute to the core
functionality. Software bloat can cause a range of issues,
including decreased performance, increased resource us-
age, and security vulnerabilities. While bloat can affect
any type of software, ML systems have a special capacity
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for incurring it, as they have all the maintenance problems
of traditional code plus an additional set of ML-specific
issues, such as boundary erosion, data dependencies, and
so on (Sculley et al., 2015). As ML models grow in scale
and complexity, the bloat in ML systems increases, leading
to additional inefficiencies that hinder runtime performance
and increase the cost of deployment, particularly in resource-
constrained environments (Zhang et al., 2024; Jiang et al.,
2020).

At the heart of ML systems are ML frameworks, such as
TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al.,
2019). These frameworks provide the essential libraries and
tools for model training and inference. ML frameworks are
typically developed using multiple programming languages
with C++ and CUDA used to implement the core function-
alities in order to maximize performance. Both C++ and
CUDA code are compiled into shared libraries. Python acts
as the frontend, wrapping these core functionalities and en-
hancing the frameworks’ usability for developers. However,
with the ease of use and flexibility that these frameworks
provide, they also introduce framework tax (Fernandez et al.,
2023) - these frameworks can introduce performance over-
heads and diminish the benefits of new hardware and model
architecture advancements. Furthermore, integrating these
frameworks also leads to large binary sizes and brings un-
necessary overhead for smaller GPUs (Jiang et al., 2020).

In this paper, we aim to identify and reduce bloat in ML
frameworks by debloating, i.e., removing the bloat, in ML
shared libraries. Shared libraries encapsulate the core func-
tionalities of ML frameworks and constitute most of the
size of ML framework. These libraries can be hundreds of
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megabytes to a few gigabytes in size. Debloating ML shared
libraries involves the following challenges:

• ML frameworks rely on some proprietary libraries,
such as cuDNN (nvi, b) and cuBLAS (nvi, c). These
libraries are not open-source, making it impossible to
perform source code analysis.

• ML frameworks contain code that runs on both the
CPU and GPU. GPU code is overlooked by existing
research and no method measure and reduce bloat in it.

• Although CPU code has a well-defined structure and
the bloat in it has been previously studied (Brown et al.,
2024), the structure of GPU code is not publicly avail-
able, making it difficult to analyze and debloat.

To address these challenges, we propose Negativa-ML 1, a
tool to identify and remove bloat in both CPU and GPU
code within ML shared libraries. Leveraging insights into
how ML systems execute ML workloads on CPU and GPU,
we propose a novel approach to detect the GPU code used
by an ML workload with low performance overhead. Sub-
sequently, we locate the file ranges occupied by this GPU
code within ML shared libraries. This involves a deep un-
derstanding of how GPU code is compiled and how they
are organized within a shared library, which is challenging
because GPU code structure lacks an open specification.
Finally, we utilize a debloating tool that we have previously
developed (Zhang & Ali-Eldin, 2025) to remove bloat from
ML shared libraries according to the file ranges located. Our
contributions are as follows:

• We propose an approach to detect GPU code used by
ML workloads with low performance overhead.

• We analyze the structure of GPU code in ML shared
libraries and propose a method to locate the file ranges
of used GPU code.

• We extend a debloating tool that we have devel-
oped (Zhang & Ali-Eldin, 2025) to remove bloat in
both CPU and GPU code in ML shared libraries.

• We evaluate Negativa-ML on four ML frameworks
across ten ML workloads with three models and over
300 shared libraries and perform in-depth analysis of
the results. Our evaluation shows the extent of bloat
in ML frameworks, their causes and the overhead the
bloat incurs.

Our evaluation shows that ML frameworks are highly
bloated, with 72% of CPU code and 75% of GPU code

1Code will be available at: https://github.com/
negativa-ai/negativa-ml

being unnecessary for target ML workloads. In addition,
10% of the shared libraries account for up to 90% of the total
bloat in the ML frameworks. This bloat not only increases
storage overhead but also degrades runtime performance
with increased CPU memory usage, GPU memory usage,
and longer execution times.

2 BACKGROUND AND RELATED WORK

This section provides background about ML frameworks,
ML shared libraries, software bloat and debloating.

2.1 ML Frameworks

ML frameworks are software libraries that provide essen-
tial tools for building, training, and deploying ML models.
Some ML frameworks are general-purpose and designed to
support both training and inference for a wide variety of ML
models. While others are optimized for specific use cases,
such as LLM inference. Two of the most popular general-
purpose ML frameworks are TensorFlow (Abadi et al., 2016)
and PyTorch (Paszke et al., 2019), both of which are widely
adopted in industry and academia. Although the two frame-
works target various ML models, the rise of LLMs has intro-
duced new requirements for ML frameworks, such as effi-
cient KV cache management (Kwon et al., 2023; Sinha et al.,
2024). LLM inference — which is highly latency-sensitive
and resource-demanding — is particularly challenging. To
meet these demands, new frameworks specifically designed
for LLM inference have been proposed (LMDeploy Con-
tributors, 2023; Kwon et al., 2023; Wolf et al., 2020; hug).

The core functionalities of ML frameworks are packaged
as shared libraries. A shared library is a file that contains
machine code that can be shared among different programs.
Shared libraries account for the majority of the total size
of ML frameworks. For example, in PyTorch and Tensor-
Flow, shared libraries constitute 93% and 75% of the total
framework size, respectively.

The standard file format for shared libraries is the Exe-
cutable and Linkable Format (ELF) (ora), which organizes
a file into various sections, such as .text and .data. A
generic shared library only contains code running on CPU
in the .text section. However, ML shared libraries are
unique in that they also contain the code designed to run
on GPUs. This GPU code is usually included in another
section called .nv fatbin in an ML shared library.

GPU code—also known as device code—significantly in-
creases the size of ML shared libraries compared to tradi-
tional shared libraries. The core shared library in PyTorch,
torch.so, is 881 MB for the GPU version and 482 MB
for the CPU version, nearly double the size. Furthermore,
GPU code makes up a substantial portion of these libraries.
Analyzing the top four largest shared libraries in PyTorch,

https://github.com/negativa-ai/negativa-ml
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GPU code accounts for between 68% to more than 91% of
the size of each shared library, as shown in Figure 1. In
contrast, CPU code—also known as host code—represents
only a small fraction of these libraries. Despite GPU code
forming the majority of ML shared libraries, no existing
research has investigated bloat within GPU code.

libtorch cuda.so

libcudnn cnn infer.so.8

libcublasLt.so.12

libcusparse.so.12

10.4

86.7

68.3

78.2
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Figure 1. Distribution of CPU code and GPU code in the top 4
largest shared libraries in PyTorch.

2.2 Software Bloat

Software bloat is mainly caused by unnecessary code in a
software, which can be categorized into two types (Brown
et al., 2024): Type I bloat is universally unnecessary, for ex-
ample, dead and unreachable code. Type II bloat is end-use
dependent, code may be or may not be Type II bloat de-
pending on the use case, for example, unnecessary program
features can be used by other programs that use the shared
library. Software bloat exists across the entire modern soft-
ware stack, from operating systems (Quach et al., 2017; Kuo
et al., 2020), shared libraries (Ziegler et al., 2019; Quach
et al., 2018; Biswas et al., 2021), to executables (Navas
& Gehani, 2023; Ahmad et al., 2021; Qian et al., 2019)
and even containerized applications (Rastogi et al., 2017;
Zhang et al., 2024). Bloat causes software to grow in size
and complexity over time, leading to performance degrada-
tion, increased memory consumption, longer startup times,
and increased security vulnerabilities, without providing
any benefits. Recently, bloat in ML systems has attracted
increasing attention. Sculley et al. (Sculley et al., 2015)
identify that ML systems are easy to accumulate hidden
technical debt due to a set of ML-specific issues. Zhang et
al. (Zhang et al., 2024) show that containerized ML appli-
cations are significantly bloated, wasting storage resources
and network bandwidth, increasing their attack surface, and
slowing down their deployment process.

2.3 Software Debloating

Software debloating is the process of removing unneces-
sary code from software to improve efficiency and reduce
resource consumption. Many debloating tools have been
developed for traditional software, which can be categorized
by their debloating targets: source code, binary code, and
containerized applications. Source code debloating tools
eliminate unused code directly from the source, such as
dead or unreachable code, based on specific usage scenar-

ios (Brown & Pande, 2019; Ye et al., 2021; Azad et al.,
2019). Binary debloating tools operate on software binaries,
including shared libraries and executables, to remove unnec-
essary functions or instructions (Qian et al., 2019; Ahmad
et al., 2021; Ziegler et al., 2019; Agadakos et al., 2019).
Container debloating tools target containerized applications,
removing unnecessary files in container images (Rastogi
et al., 2017; Zhang et al., 2023). Most of these tools remove
code that is not used by the specific workload, i.e., Type
II bloat (Qian et al., 2019; Ahmad et al., 2021; Brown &
Pande, 2019; Rastogi et al., 2017; Azad et al., 2019). While
debloating traditional software has been extensively studied,
to the best of our knowledge, all existing work focus only
on traditional applications where code runs only on CPUs.
GPU code, which constitutes a significant portion of ML
frameworks, remains unstudied.

One major issue with debloating tools that focus on binary
debloating is that they are generally unreliable (Brown et al.,
2024). To solve their reliability issues, we have recently
developed Negativa, a debloating tools that only debloat
CPU code (Zhang & Ali-Eldin, 2025). Negativa demon-
strates effectiveness in debloating shared libraries, profiling
workloads with the target shared libraries, then removing
any code not used by the workload. Negativa’s debloating
process involves three phases: detection, location, and com-
paction. In the detection phase, it identifies CPU functions
used by the workload; in the location phase, it locates the
used CPU functions within the shared library; and in the
compaction phase, it removes unused functions from the
shared library and only keeps the used ones.

In this work, we extend Negativa, introducing Negativa-ML,
a technique that we have developed to enable GPU code
debloating. In addition, we build on Negativa’s capabilities
to also debloat CPU code in ML shared libraries. Building
on Negativa’s three-phase debloating process, we introduce
novel approaches for detecting and locating used GPU code
in the detection and location phases. Negativa’s compaction
phase is then reused to remove unused GPU code.

3 METHODOLOGY

Figure 2 provides an overview of Negativa-ML. Negativa-
ML is composed of two components: the kernel detector and
the kernel locator. During the execution of an ML workload,
many shared libraries of the ML framework are utilized.
The kernel detector monitors the kernel execution of the
workload and records the names of the kernels used. The
kernel locator analyzes the shared libraries, extracting GPU
code within these libraries and finding the file ranges of
the used kernels within the shared library. These ranges
are subsequently passed to Negativa’s compaction module
for debloating. Finally, a debloated ML shared library with
reduced CPU code and GPU code is generated.
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Figure 2. Overview of Negativa-ML. The components proposed in
this work are highlighted in yellow rectangles.

3.1 Kernel Detector

The kernel detector is responsible for detecting the ker-
nels used by the ML workload. Although existing tools
like Nsight Systems (NSys) (nvi, f) can profile GPU code,
they are designed primarily to profile and debug GPU per-
formance runtime rather than for kernel detection. These
tools, to provide comprehensive information, usually im-
pose a high performance overhead on the target applications
by recording data each time a kernel is called. However,
for kernel detection, we are only interested in determining
whether a kernel has been used, without needing repetitive
call data, which results in unnecessary overhead. To offer
a more efficient solution, we propose a novel, lightweight
approach that specifically detects kernels used within ML
shared libraries, achieving low performance overhead. Since
kernels execute on GPUs, an intuitive approach would be
to monitor GPU execution directly. However, this approach
is not feasible because the code execution on GPUs is not
directly accessible.

Our approach leverages insights into how ML systems ex-
ecute ML workloads on both the CPU and the GPU; Con-
sidering the interaction between CPU and GPUs, first, the
CPU launches a kernel(s), then the CPU-launching kernel
may or maybe not launch other kernels. A kernel launched
from another kernel is called GPU-launching kernel. These
kernels form a kernel call graph, where the start of the graph
is the CPU-launching kernel. The kernel detector only de-
tects CPU-launching kernels. By monitoring the CPU code,
we can identify kernels launched from the CPU and subse-
quently consider them as “used”. This allows us to detect
used kernels without the need for GPU-level monitoring.

To launch a kernel from the CPU, the CUDA driver must call
the CPU function cuModuleGetFunction first. The
function takes the name of the kernel to be launched as one
of its inputs. It returns a function handle, which is used to
execute the kernel. Moreover, cuModuleGetFunction

is only called once for each kernel, no matter how many
times the kernel is executed, making it ideally suited for
our used kernel detection. Inspired by this observation, we
implement a hook to the cuModuleGetFunction using
Nvidia CUPTI API (nvi, d). This hook records the kernel
names passed to the function, which are then considered
as used kernels. The kernel detector intercepts each CPU-
launching kernel only once and does not intercept GPU-
launching kernels. Consequently, the performance overhead
is lower than profiling tools like NSys.

Figure 3 illustrates an example of the kernel detector work-
flow. When an ML workload invokes the matmul kernel,
it first calls the cuModuleGetFunction, which resides
in the CPU code, to launch the kernel. The kernel detec-
tor intercepts the call to cuModuleGetFunction and
records the kernel name, marked as a used kernel, which
is matmul in this example. This kernel may launch other
kernels in the GPU code and form a kernel call graph. How-
ever, these GPU-launching kernels are not detected by the
kernel detector.
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Figure 3. Kernel detector work-
flow.
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Figure 4. Structure of GPU code.

The kernel detector outputs a list of names of CPU-
launching kernels. These kernels are considered as used
kernels and are passed to the kernel locator for further pro-
cessing. GPU-launching kernels are also handled by the
kernel locator, as we show in the next section.

3.2 Kernel Locator

The kernel locator locates the file ranges (start and end file
offset) of the used kernels in the ML shared library. It
identifies a list of file ranges that need to be retained in
the shared library. The difficulty in locating kernels in the
GPU code is that there is no public specification for the
structure of the GPU code. Finding the exact location of
used kernels requires in-depth analysis of the GPU code,
which can be overfitted to a specific version of the CUDA
toolkit and error-prone. In addition, because GPU-launching



The Hidden Bloat in Machine Learning Systems

kernels are not detected by the kernel detector, the kernel
locator must also handle these kernels appropriately to avoid
mistakenly removing them.

To address these issues, we propose an approach to approxi-
mately locate the used kernels in the GPU code. Instead of
finding the exact location of kernels, we find the location
of the cubins that contain the kernels. A cubin is a CUDA
binary file that contains kernel code. If a kernel is launched
by another kernel, the two kernels are compiled into the
same cubin (nvi, e). Based on this observation, we can de-
duce that if a cubin contains a CPU-launching kernel, it also
contains all the kernels in the kernel call graph starting from
the CPU-launching kernel, including those GPU-launching
kernels. Therefore, retaining a cubin that contains a CPU-
launching kernel also retains all the kernels in the kernel call
graph starting from the CPU-launching kernel, including
those GPU-launching kernels as well.

To find whether a cubin contains a CPU-launching kernel,
we use the cuobjdump tool (nvi, a) to extract a list of cu-
bin files from the shared library. For each cubin, we extract
the kernels included in it using cuobjdump. If a cubin
contains a used CPU-launching kernel, the whole cubin
needs to be retained. In doing so, we also retain the GPU-
launching kernels in the cubin. The next step is to locate
the cubin in the shared library file, i.e., find the file range
occupied by the cubin. This involves understanding the
structure of the GPU code in the shared library. As shown
in Figure 4, the GPU code in a shared library is organized
as a list of regions. Each region includes a region header
and a list of elements. Each element includes an element
header and a cubin. A cubin extracted by cuobjdump has
an index starting from one in its file name. This index is
equal to the index of the element containing the cubin in the
shared library. Using this index, we can map the cubin to
the corresponding element in the shared library. In doing so,
we can locate the file range occupied by the cubin.

To maintain the integrity of the shared library, the kernel lo-
cator retains or removes the whole element containing a cu-
bin. Finally, the kernel locator uses the following criteria to
determine whether to retain an element; The element header
has a field called compute-capability, which shows the GPU
architecture the cubin is compiled for. We find that only
the elements that match the GPU architecture can be loaded
into the GPU memory. Therefore, if an element matches
the GPU architecture which the ML workload is running on
and contains a cubin that has used CPU-launching kernels,
then we retain the element.

Figure 4 also shows an example of the relationship between
kernels, cubins and elements in the shared library. The used
kernel matmul, which is detected by the kernel detector, is
contained in a cubin as shown in the figure. The kernel may
launch other kernels, forming a kernel call graph. All the

kernels in the kernel call graph are contained in the same
cubin. The cubin is in turn contained in an element in the
shared library. By retaining the whole element, we ensure
that all the kernels in the kernel call graph are retained,
including the GPU-launching kernels in the call graph.

Compaction: The file ranges occupied by elements that
meet the criteria are retained in the ML shared library, while
the rest are removed. This process is handled by Nega-
tiva’s compaction phase. In this phase, the unused files
are zeroed out. Negativa then maps the file offsets to their
original memory addresses where the original shared library
is loaded into memory to retain memory address validity.
More details on the compaction process can be found in
(Zhang & Ali-Eldin, 2025).

4 EXPERIMENTS

We evaluate Negativa-ML’s bloat removal with four ML
frameworks: two general-purpose ML frameworks, PyTorch
and TensorFlow for their wide usage; and two LLM infer-
ence frameworks, vLLM (Kwon et al., 2023) and Trans-
formers (Wolf et al., 2020) for their state-of-the-art per-
formance. Using these frameworks, we run various ML
workloads with both training or inference of different pop-
ular models, to identify unnecessary code with respect to
each workload.

Table 1 shows the details of the workloads. For the ML
models, we choose three models of different sizes: A small
model, MobileNetV2 (Sandler et al., 2018), which is a
computer vision model of 4.3M parameters; A medium
model, Transformer (Vaswani, 2017), which is a natu-
ral language processing model of 65M parameters; And
a large model, Llama-2-7b-chat-hf (LLama2 for
brevity) (Touvron et al., 2023a), which is a large language
model of 7B parameters. In total, 10 workloads were ex-
ecuted using the four ML frameworks. We did not train
the models to convergence, as our primary goal is to eval-
uate the bloat in the frameworks rather than fully train the
models. Since training mainly involves repeated iterations,
training a few epochs is sufficient to obtain representative
results.

All the workloads in Table 1 were run on an AWS instance
with 16 CPUs, 64 GB of memory, and an NVIDIA T4
GPU. For the vLLM and Transformers frameworks, we also
evaluate nine more LLM models using 8×A100 GPUs, to
further evaluate the bloat in a different hardware setup.

4.1 Overview of Bloat in ML Frameworks

We execute the workloads listed in Table 1 running Negativa-
ML to debloat the shared libraries used by the workloads.
After debloating, we re-run the workloads using the de-
bloated shared libraries to verify the correctness of debloat-



The Hidden Bloat in Machine Learning Systems

Table 1. Details of evaluated ML frameworks and ML workloads.
Model Framework Operation DataSet Batch Size Epochs

MobileNetV2
PyTorch:2.3.1 Train CIFAR10 (Krizhevsky et al., 2009) Train Set 16 3

Inference CIFAR10 Test Set1 4 -

TensorFlow:2.16.2 Train CIFAR10 Train Set 16 3
Inference CIFAR10 Test Set1 4 -

Transformer
PyTorch:2.3.1 Train Multi30k (Elliott et al., 2016) Train Set 128 3

Inference Multi30k Test Set1 32 -

TensorFlow:2.16.2 Train WMT14 (Bojar et al., 2014) Train Set 128 1
Inference WMT14 Test Set 1 32 -

Llama2
vLLM:0.6.3 Inference Manual Input 1 -

Transformers:4.42.3 Inference Manual Input 1 -
1 Only one batch from test set is used.

Table 2. Total file size, CPU code, GPU code and their reductions of all shared libraries in each ML framework. The table shows the
original value of a metric and the reduction in percentage of the metric in parentheses. K=1,000.

Model Framework Operation #Lib. Total File
Size/MB

CPU Code GPU Code

Size/MB #Functions Size/MB #Elements

MobileNetV2
PyTorch Train 113 3,762 (55) 557 (68) 616K (93) 2,279 (75) 14,062 (98)

Inference 111 3,569 (55) 545 (70) 616K (93) 2,103 (75) 12,035 (98)

TensorFlow Train 253 3,274 (48) 598 (46) 984K (65) 1,774 (73) 15,081 (99)
Inference 251 3,087 (47) 586 (48) 984K (65) 1,603 (72) 13,056 (99)

Transformer
PyTorch Train 154 2,901 (53) 547 (71) 615K (93) 1,592 (72) 7,165 (97)

Inference 154 2,901 (53) 547 (71) 615K (93) 1,592 (73) 7,165 (98)

TensorFlow Train 398 2,727 (42) 696 (46) 1,043K (66) 1,184 (70) 8,478 (98)
Inference 396 2,640 (40) 692 (47) 1,042K (67) 1,103 (66) 8,325 (97)

LLama2
vLLM Inference 170 3,884 (48) 724 (68) 873K (93) 1,901 (72) 7,690 (97)

Transformers Inference 98 2,860 (53) 511 (72) 582K (92) 1,592 (71) 7,165 (97)

ing. Specifically, we first compared outputs by the original
and debloated workloads, confirming they are essentially
identical. Then, we compared final metrics such as test
loss, validation loss or generated text for the original and
debloated workloads. We found that there are no differences
between the output and final metrics, demonstrating that
the debloating process does not affect the correctness of the
workloads. We omit these comparisons due to space.

We then compare the total file sizes of the shared libraries
before and after debloating to assess file size reductions.
Moreover, for CPU code, we compare both code size and
the number of functions before and after debloating. For
GPU code, we also analyze code size reductions and the
number of elements removed. The results are presented in
Table 2.

For the small model MobileNetV2, training with PyTorch
involves 113 shared libraries, totaling 3762 MB. After de-
bloating, the total file size decreases by 55%. Notably, the

CPU code size is reduced by 68%, with 93% of functions re-
moved. The GPU code size decreases by 75%, with 98% of
elements removed. The GPU code also accounts for the ma-
jority of the total file size and file size reduction. Inference
MobileNetV2 with PyTorch shows similar reductions.

For the same MobileNetV2 model, TensorFlow uses
more shared libraries compared to PyTorch, with 253 li-
braries for training and 251 for inference The total file sizes
and reductions are smaller than PyTorch. The CPU code
in TensorFlow presents interesting results: it has a larger
size and a greater number of functions than PyTorch, yet
the reduction is less significant, indicating that TensorFlow
uses more CPU code and functions than PyTorch. Given
the fact that PyTorch can train(inference) the same model
with less CPU code and functions, this suggests there may
be unnecessary function calls within TensorFlow’s CPU
code—functions that are used but do not contribute mean-
ingfully to the target ML workload. The GPU code in
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TensorFlow also shows a significant reduction in size and
elements, with over 99% of elements removed.

For the medium model, Transformer, both PyTorch and
TensorFlow show similar results to MobileNetV2, indi-
cating that different models do not significantly affect the
bloat in the ML frameworks. For the large model, LLama2,
the frameworks vLLM and Transformers were used for infer-
ence, and despite differences in frameworks, the reductions
in file size, CPU code and GPU code remain significant.

The size of GPU code is considerably larger than that of
CPU code for all ML frameworks. GPU code also exhibits
a higher reduction in both size and element count for all ML
frameworks. In particular, the element count reduction in
GPU code exceeds 97% across all workloads, underscoring
that GPU code is significantly more bloated than CPU code.

SUMMARY. All ML frameworks show substantial
reductions in both CPU code (≥ 46%) and GPU
code (≥ 66%). GPU code is notably more bloated
than CPU code, contributing to the majority of the
bloat within the ML frameworks.

4.2 Shared Library Level Analysis

In this section, we delve deeper into the distribution of bloat
within CPU and GPU code at the shared library level. For
each shared library used in the workloads, we calculate the
CPU code size reduction and function count reduction in
percentage. Similarly, for each shared library, we calculate
the reduction percentage in GPU code size and element
count as well. If a shared library does not have GPU code,
we exclude it from the GPU code analysis.

Figure 5a illustrates the violin plots of distribution of size
reduction in CPU and GPU code. The distribution patterns
of CPU and GPU code show distinct differences. The me-
dian reduction for CPU code size is approximately 25%,
with many shared libraries showing a reduction from 0% to
10%. In contrast, the median reduction for GPU code size
is almost 80%, significantly higher than that for CPU code,
and its distribution is also more concentrated. Figure 5b
depicts the distribution of reductions in function and ele-
ment counts. Notably, all shared libraries exhibit an element
reduction of over 80%. The concentrated distributions for
GPU code size and element count reductions highlight that
GPU code is considerably more bloated than CPU code in
all shared libraries.

For each workload, we sorted the shared libraries by their
absolute file size reductions in descending order. We found
that the top 10% shared libraries contribute over 90% of
the total size reduction for all ML frameworks. Reductions
in CPU code size and GPU code size also follow a similar
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Figure 5. Violin plots of distribution of CPU and GPU code reduc-
tion in size and function count.

pattern. For instance, as illustrated in Figure 6, the Pareto
chart for the PyTorch Training MobileNetV2 workload
shows that among 113 shared libraries, the top 8 libraries
account for 90% of the total file size reduction. This result
suggests that bloat follows a Power Law distribution, with a
few shared libraries containing the majority of the bloat.
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Figure 6. Pareto chart of file size reduced in the shared libraries
used by the PyTorch Training MobileNetV2 workload. The
names of shared libraries are shown as indices in x-axis for brevity.

SUMMARY. 50% of shared libraries in ML frame-
works have GPU code reductions more than 80%.
10% of shared libraries contribute over 90% of the
total size reduction.

4.3 Function and Element Level Analysis

To deepen the analysis, Table 3 presents reductions for
the largest shared library used in each workload. All
the four ML frameworks while running the different mod-
els use one of two shared libraries, torch cuda.so
and tensorflow cc.so. These two libraries, which
provide the core functionalities of the ML frameworks,
also exhibit significant reductions in file size, GPU code,
and CPU code. For the torch cuda.so, the reduc-
tion in file size, CPU code size, and GPU code size
are 76%, 91% and 82%, respectively. The CPU code
in tensorflow cc.so also presents the interesting re-
sults as we have discussed in §4.1: it has a much larger
CPU code size and a greater number of functions than
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Table 3. Static size, function count and element count of the core shared libraries in ML frameworks. The table shows the original value
of a metric and the reduction in percentage of the metric in parentheses. K=1000.

Model Framework Operation Lib. Name File
Size/MB

CPU Code GPU Code

Size/MB #Functions Size/MB #Elements

MobileNetV2
PyTorch Train torch cuda.so 841 (76) 42 (91) 78K (93) 729 (82) 2,324 (98)

Inference torch cuda.so 841 (76) 42 (92) 78K (93) 729 (82) 2,324 (98)

TensorFlow Train tf cc.so2 965 (43) 300 (59) 670K (51) 298 (79) 1,637 (100)1

Inference tf cc.so2 965 (43) 300 (61) 670K (52) 298 (79) 1,637 (100)1

Transformer
PyTorch Train torch cuda.so 841 (73) 42 (91) 78K (93) 729 (79) 2,324 (96)

Inference torch cuda.so 841 (76) 42 (92) 78K (94) 729 (82) 2,324 (98)

TensorFlow Train tf cc.so2 965 (43) 300 (59) 670K (51) 298 (79) 1,637 (100)1

Inference tf cc.so2 965 (41) 300 (59) 670K (52) 298 (73) 1,637 (94)

LLama2
vLLM Inference torch cuda.so 861 (74) 43 (91) 78K (93) 747 (80) 2,359 (97)

Transformers Inference torch cuda.so 841 (73) 42 (91) 78K (93) 729 (79) 2,324 (96)
1 The reduction is 99.8% and rounded to 100%.
2 tf cc.so is the abbreviation of tensorflow cc.so.

Table 4. Jaccard Similarity of used functions and kernels in torch cuda.so for each pair of workloads. The bottom left shows the
similarity of kernels between each pair of workloads. The top right shows the similarity of functions between each pair of workloads.

MobileNetV2 Transformer Llama2
PyTorch PyTorch Transformers

Train Inference Train Inference Inference

MobileNetV2 PyTorch Train - 0.96 0.89 0.89 0.73
Inference 0.42 - 0.89 0.92 0.74

Transformer PyTorch Train 0.12 0.06 - 0.94 0.75
Inference 0.06 0.13 0.24 - 0.77

LLama2 Transformers Inference 0.07 0.08 0.07 0.08 -

torch cuda.so, yet the reduction is smaller. The re-
ductions in GPU code for tensorflow cc.so is as sig-
nificant as torch cuda.so.

In the table, torch cuda.so is used by three ML frame-
works, PyTorch, vLLM, and Transformers, involving 6
workloads. We collect the functions used by each workload
in torch cuda.so to compare their similarity. Since
vLLM uses a different version of torch cuda.so, we
exclude it from the analysis. Therefore, in total we collect
five sets of functions used by five different workloads. For
each pair of the function sets, we calculate their Jaccard
Similarity according to the following formula:

J(A,B) =
|A ∩B|
|A ∪B| (1)

where A and B are two sets of functions used by two work-
loads. The Jaccard Similarity is 1 if the two sets are the
same, and 0 if the two sets are disjoint. The Jaccard Sim-
ilarity is also calculated for the kernels used by the five
workloads. The results are shown in Table 4. We also
did the same analysis for tensorflow cc.so, and the
results are similar and shown in the appendix.

The bottom left part of Table 4 shows the similarity of ker-
nels between each pair of workloads. The similarity is quite
low, indicating that the kernels used by different workloads
are quite different. However, the similarity of functions
between each pair of workloads is very high, as shown in
the upper right part of Table 4. All pairs have a similarity
above 0.7, indicating different workloads used many com-
mon functions, even if the workloads run with different
models and frameworks. Given the fact that less than 10%
of functions are actually used in the torch cuda.so li-
brary in each of the five workloads, this suggests that a small
subset of functions is sufficient to run various workloads.

We also examine the reasons for removed elements in GPU
code. Negativa-ML removes an element due to one of
the following two reasons: Reason I: The element does
not match the GPU architecture; Reason II: The element
matches the GPU architecture, but it does not have any used
kernels. We identify the reason for each removed element.

Figure 7 shows that for all workloads, over 80% of removed
elements are due to Reason I, i.e., the element does not
match the GPU architecture. The cause of these unmatched
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Table 5. Average runtime performance using original shared libraries and reductions using debloated shared libraries. The numbers in
parentheses are the percentage of reduction. The standard deviation of all metrics for each workload is less than 2% and is not shown.

Model Framework Operation Peak CPU Memory/MB Peak GPU Memory/MB Execution Time/s

MobileNetV2
PyTorch Train 5,487 (64.2) 1,539 (48.1) 179 (2.3)

Inference 4,943 (74.6) 972 (69.6) 8 (44.6)

TensorFlow Train 6,009 (48.7) 14,395 (2.8) 53 (5.5)
Inference 4,850 (60.0) 14,323 (2.8) 12 (24.2)

Transformer
PyTorch Train 4,151 (56.0) 9,381 (5.0) 200 (1.1)

Inference 4,054 (65.8) 1,349 (42.3) 13 (20.3)

TensorFlow Train 15,652 (13.6) 14,149 (1.6) 4,779 (0.0)
Inference 4,217 (36.5) 14,069 (1.3) 69 (1.8)

Llama2
vLLM Inference 12,527 (11.8) 14,679 (2.1) 43 (12.7)

Transformers Inference 12,065 (10.4) 13,793 (3.2) 21 (8.9)

Average Absolute Reduction±σ 2501±825 443 ±171 2.6±1.6

PyTorch/Train/MobileNetV2
PyTorch/Inference/MobileNetV2
TensorFlow/Train/MobileNetV2

TensorFlow/Inference/MobileNetV2
PyTorch/Train/Transformer

PyTorch/Inference/Transformer
TensorFlow/Train/Transformer

TensorFlow/Inference/Transformer
vLLM/Inference/Llama2

Transformers/Inference/Llama2

87.8
87.6

80.2
80.1

89.0
87.6

80.2
86.4
88.8
89.2

12.2
12.4

19.8
19.9

11.0
12.4

19.8
13.6
11.2
10.8

Reason I Reason II

Figure 7. Reasons of removed elements in GPU code.

elements is that the GPU code in these shared libraries
are built to support various GPU architectures, leading to
numerous unnecessary elements for workloads on a specific
GPU. For example, in our experiment, we observed a single
shared library in the PyTorch framework contained elements
for 6 different GPU architectures. If the library is deployed
on a specific GPU architecture, the elements for the five
other architectures are unnecessary. This hints at a new
reason for bloat: software bloat can stem from hardware.

SUMMARY. Different workloads used a lot of com-
mon functions in the core shared libraries. Most
elements removed in GPU code are due to the mis-
match of GPU architecture.

4.4 Runtime Performance Analysis

In this section, we evaluate runtime performance improve-
ments after debloating. Initially, each workload is executed
ten times using the original shared libraries. Then, based on
the previous finding that a few shared libraries contribute
the majority of bloat, we replace the top 8 largest shared
libraries with their debloated versions and re-ran the work-

loads ten times. We then compare the average runtime
performance between the two runs. Table 5 summarizes the
average runtime performance improvements achieved with
the debloated shared libraries.

Running workloads with debloated libraries reduces mem-
ory usage (both CPU and GPU) and execution time. The
best improvement is observed in the PyTorch Inference
MobileNetV2 workload, with reductions of 74.6% in
peak CPU memory, 69.6% in peak GPU memory, and 44.6%
in execution time. Inference workloads generally show bet-
ter improvement than training workloads. Across all work-
loads, average absolute reductions are 2501 MB for peak
CPU memory, 443 MB for peak GPU memory, and 2.6
seconds for execution time. Notably, the absolute execution
time reduction remains relatively constant, regardless of the
actual execution duration. This improvement stems from
reduced code size, which decreases the time required to load
the code into memory. This execution time improvement is
especially impactful for tasks sensitive to cold start latency,
such as serverless ML applications.

SUMMARY. Debloating shared libraries signifi-
cantly reduces both CPU and GPU memory usage.
The time required to load the code into memory is
also reduced, leading to shorter execution times.

4.5 Evaluation on Different GPUs

In this section, we present debloating results of the two LLM
inference frameworks, vLLM and Transformers, using dif-
ferent GPUs. We first evaluate the vLLM/Transformers
inference workload using Llama2 on a single H100 GPU.
The evaluation is conducted under both eager-loading and
lazy-loading modes. In eager-loading, all kernels are loaded
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Table 6. Total file size, CPU code, GPU code and their reductions of all shared libraries in vLLM/Transformers inference Llama2
workload on 1 H100 GPU under eager-loading and lazy-loading modes. The table shows the original value of a metric and the reduction
in percentage of the metric in parentheses. K=1000.

Framework Mode #Lib. Total File
Size/MB

CPU Code GPU Code

Size/MB #Functions Size/MB #Elements

vLLM Eager 170 4,068 (47) 726 (66) 872K (93) 2,104 (68) 7,692 (89)

Lazy 170 4,068 (47) 726 (66) 872K (93) 2,104 (68) 7,692 (89)

Transformers Eager 93 2,868 (51) 513 (72) 584K (92) 1,592 (69) 7,165 (88)

Lazy 93 2,868 (51) 513 (72) 584K (92) 1,592 (69) 7,165 (88)

Table 7. Average runtime performance using original shared libraries and reductions using debloated shared libraries in vLLM/Trans-
formers inference Llama2 workload on 1 H100 GPU under eager-loading and lazy-loading modes. The numbers in parentheses are the
percentage of reduction. The standard deviation of all metrics for each workload is less than 2% and is not shown.

Framework Mode Peak CPU Memory/MB Peak GPU Memory/MB Execution Time/s

vLLM Eager 13,333 (18.0) 91,946 (0.7) 44 (13.9)

Lazy 10,313 (0.3) 91,061 (0.0) 36 (8.3)

Transformers Eager 12,345 (12.2) 15,002 (2.4) 23 (32.0)

Lazy 10,049 (0.2) 13,764 (0.0) 17 (20.3)

into memory at application startup, whereas lazy-loading
loads kernels only when needed, reducing memory footprint.
Table 6 presents the size reductions achieved. For the same
framework, the reductions in file size, CPU code size, func-
tion count, and GPU code size are similar between the two
loading modes. The runtime performance improvements are
shown in Table 7. Under eager-loading, debloating results
in greater CPU memory reduction compared to lazy-loading,
while GPU memory reduction remains similar across both
modes. Both loading modes exhibit reductions in execution
time. Comparing these results with those obtained using
the T4 GPU (Table 2 and Table 5), we observe consistent
reductions across different GPUs. This demonstrates that
Negativa-ML effectively debloats shared libraries across
various GPU architectures.

Next, we present debloating results for additional ML
workloads using vLLM and Transformers. We select the
top 9 LLMs from the Hugging Face Open LLM Leader-
board (Beeching et al., 2023) and deploy them on both
frameworks using distributed inference with 8×A100 40GB
GPUs. This setup aims to evaluate whether debloating
works with distributed inference under a different hardware
setup. Results are detailed in Table 10 in the Appendix. The
debloating results of distributed inference with 8 GPUs are
still as significant as those of single-GPU inference. For
inference with 8 GPUs, vLLM uses slightly fewer shared li-
braries than the results of a single GPU, while Transformers
uses nearly the same number of libraries. The reductions in
file size, CPU code size, function count, and GPU code size

align closely with the results using a single GPU. However,
the element count reduction in GPU code is lower than that
of single-GPU inference, suggesting that distributed infer-
ence utilizes more kernels in GPU code. Additionally, the
reduction metrics are similar across different models, once
again indicating that different models do not significantly
affect the bloat in the ML frameworks.

SUMMARY. Negativa-ML effectively debloats ML
shared libraries across different GPUs and dis-
tributed inference setups.

4.6 Performance of Negativa-ML

In this section, we evaluate the performance of Negativa-
ML in terms of the time taken to debloat shared libraries.
We first evaluate the end-to-end time, i.e., the time taken
from running the target ML workload until obtaining the
debloated shared libraries. Then, we specifically evaluate
the overhead introduced to the target ML workload by the
kernel detector.

Table 8 shows the end-to-end time taken by Negativa-ML to
debloat shared libraries for each workload. The time varies
depending on three factors: the original execution time of
the workload, the number of shared libraries involved, and
the number of functions (kernels) utilized by the workload.
We note that the times taken are to debloat all the libraries
in the workload. If only debloating a single library, the
time needed will be significantly shorter. Moreover, the
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debloating process is a one-time overhead that can occur in,
e.g., a preprocessing stage prior to deployment.

Table 8. End-to-end time taken by Negativa-ML to debloat shared
libraries for each workload.

Model Framework Operation #Lib. Time/s

MobileNetV2
PyTorch Train 113 651

Inference 111 383

TensorFlow Train 253 659
Inference 251 585

Transformer
PyTorch Train 154 1,247

Inference 154 344

TensorFlow Train 398 18,420
Inference 396 639

Llama2
vLLM Inference 170 713

Transformers Inference 98 362

To assess the performance overhead introduced by the ker-
nel detector on the target ML workload, we first run the
PyTorch Training MobileNetV2 workload 10 times and
recorded the average execution time. Next, we ran the same
workload, this time with tracing enabled by the kernel de-
tector and by NSys respectively, each for 10 runs. We then
compare the average execution times across the three setups.
The average execution time for the original workload was
180 seconds. With the kernel detector enabled, the execu-
tion time increased to 253 seconds, a 41% overhead. In
contrast, tracing with NSys increases the execution time
to 407 seconds, introducing a 126% overhead. The kernel
detector imposes significantly lower overhead than NSys,
making it a more practical choice for detecting used kernels,
especially for long-running workloads like ML training.

SUMMARY. Debloating is a one-time overhead that
can be performed in a preprocessing stage prior to
deployment. The kernel detector introduces a 41%
overhead for the first run, significantly lower than
traditional tracing tools like NSys which introduce
a 126% overhead.

5 DISCUSSION

As Sculley et al. (Sculley et al., 2015) highlight, ML systems
have hidden technical debt due to a set of ML-specific issues.
Our work emphasizes this technical debt by exposing the
hidden bloat in ML frameworks. Software bloat has been
a long-standing issue in the software industry. While exist-
ing debloating research has focused on traditional software,
bloat in ML systems is not well understood. The uniqueness
of ML systems is that they contain both CPU and GPU code,
leading to significant bloat. Our evaluations over four ML
frameworks across ten workloads with around 300 shared

libraries show significant bloat in these frameworks, with up
to 72% size reduction in CPU code and 75% size reduction
in GPU code. Furthermore, unlike traditional software, ML
frameworks experience substantial bloat in GPU code. All
this bloat leads to increased storage needs, higher memory
usage, and longer execution times.

In our evaluations, only a small subset of code is consistently
utilized. This suggests that code unused by one workload
is likely unnecessary for others as well. Besides, existing
research focuses solely on unused code, overlooking “used
bloat” — code executed by a workload but not contribut-
ing meaningfully to the performance or functionality. For
instance, when training a model with a specific optimizer,
the optimizer may initialize a context with numerous non-
essential function calls. Compared with PyTorch, the larger
CPU code size but smaller reduction in TensorFlow may
indicate the presence of “used bloat”. Such “used bloat” is
particularly harmful, as it is executed and thus consumes
scarce memory, CPU, and GPU resources. Moreover, it is
more difficult to detect as it is actually executed. Future re-
search could focus on identifying and eliminating this “used
bloat”.

Shared libraries in ML frameworks are significantly larger
than traditional shared libraries (Zhang et al., 2024), mainly
due to GPU code as shown in this work. As storage and
network bandwidth are critical bottlenecks in edge data
centers (Richins et al., 2021), the file size reduction achieved
by debloating can help alleviate these bottlenecks.

6 CONCLUSION

We propose a novel approach to debloat ML frameworks
by removing unnecessary code in both CPU and GPU code
within shared libraries. Our approach first detects kernel
names used in GPU code by running ML workloads, such
as training or inference a model. We then locate the used
kernels within the shared libraries and remove the unused
code. We implement our approach based on an existing de-
bloating tool, and evaluate it on four ML frameworks across
ten workloads over 300 shared libraries. Our evaluation
shows that ML frameworks are highly bloated, with up to
55% size reduction in shared libraries in these frameworks.
We show that up to 75% of GPU code and 99% of GPU
elements being unnecessary for target ML workloads; Up to
72% of CPU code and 93% of CPU functions are unneces-
sary for target ML workloads. This bloat not only increases
storage overhead but also degrades runtime performance.
Debloating these frameworks reduces the peak memory us-
age, peak GPU memory usage, and startup time by up to
74.6%, 69.6%, and 44.6%, respectively.
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A APPENDIX

Listing 1. Command line used for Nsys profiling
nsys profile --trace=cuda -o report {

Command to run the ML workload}
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Table 9. Jaccard Similarity of used functions and kernels in tensorflow cc.so used each pair of workloads. The bottom left shows
the similarity of kernels between each pair of workloads. The top right shows the similarity of functions between each pair of workloads.

MobileNetV2 Transformer
TensorFlow TensorFlow

Train Inference Train Inference

MobileNetV2 TensorFlow Train - 0.89 0.95 0.89
Inference 0.5 - 0.86 0.82

Transformer TensorFlow Train 0.38 0.29 - 0.88
Inference 0.02 0.03 0.05 -

Table 10. Debloating results of vLLM and Transformers with the top 9 LLMs using distributed inference.

Framework Model #Lib. Total File
Size/MB

CPU Code GPU Code
Size/MB #Functions Size/MB #Elements

vLLM

c4ai command r plus 137 3,790 (54) 650 (70) 837K (93) 1,910 (84) 7,587 (85)
internlm2 5 7b chat 135 3,790 (54) 650 (70) 837K (93) 1,910 (84) 7,587 (85)
llama 3 70b instruct 135 3,790 (54) 650 (70) 837K (93) 1,910 (84) 7,587 (85)
mixtral 8x22b instruct 137 3,790 (54) 650 (70) 837K (93) 1,910 (84) 7,587 (85)
phi 3 medium 4k instruct 136 4,164 (54) 655 (71) 848K (93) 2,244 (79) 8,297 (84)
qwen 72b instruct 136 3,792 (54) 651 (70) 837K (93) 1,910 (84) 7,587 (85)
qwen15 110b chat 136 3,792 (54) 651 (70) 837K (93) 1,910 (84) 7,587 (85)
yi 15 34b 135 3,790 (54) 650 (70) 837K (93) 1,910 (84) 7,587 (85)
zephyr orpo 141b a35b 137 3,790 (54) 650 (70) 837K (93) 1,910 (84) 7,587 (85)

Transformers

c4ai command r plus 94 2,866 (61) 514 (73) 590K (92) 1,592 (86) 7,165 (85)
internlm2 5 7b chat 94 2,866 (61) 514 (73) 591K (92) 1,592 (86) 7,165 (85)
llama 3 70b instruct 96 2,863 (61) 513 (73) 587K (92) 1,592 (86) 7,165 (85)
mixtral 8x22b instruct 98 2,866 (61) 514 (73) 591K (92) 1,592 (86) 7,165 (85)
phi 3 medium 4k instruct 94 2,866 (61) 514 (73) 590K (92) 1,592 (86) 7,165 (85)
qwen 72b instruct 97 2,866 (61) 513 (73) 588K (92) 1,592 (86) 7,165 (85)
qwen15 110b chat 98 2,868 (61) 514 (73) 590K (92) 1,592 (86) 7,165 (85)
yi 15 34b 97 2,866 (61) 514 (73) 590K (92) 1,592 (86) 7,165 (85)
zephyr orpo 141b a35b 97 2,866 (61) 514 (73) 590K (92) 1,592 (86) 7,165 (85)


