
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANYTOUCH 2: GENERAL OPTICAL TACTILE REPRE-
SENTATION LEARNING FOR DYNAMIC TACTILE PER-
CEPTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world contact-rich manipulation demands robots to perceive temporal tactile
feedback, capture subtle surface deformations, and reason about object properties
and force dynamics. Although optical tactile sensors are uniquely capable of pro-
viding such rich information, existing tactile datasets and models remain limited.
These resources primarily focus on object-level attributes (e.g., material) while
largely overlooking fine-grained temporal dynamics. We consider that advancing
dynamic tactile perception requires a systematic hierarchy of dynamic percep-
tion capabilities to guide both data collection and model design. To address the
lack of tactile data with rich dynamic information, we present ToucHD, a large-
scale tactile dataset spanning tactile atomic actions, real-world manipulations, and
touch-force paired data. Beyond scale, ToucHD establishes a comprehensive dy-
namic data ecosystem that explicitly supports hierarchical perception capabilities
from the data perspective. Building on it, we propose AnyTouch 2, a general
tactile representation learning framework for diverse optical tactile sensors that
unifies object-level understanding with fine-grained, force-aware dynamic per-
ception. The framework captures both pixel-level and action-specific deforma-
tions across frames, while explicitly modeling physical force dynamics, thereby
learning multi-level dynamic perception capabilities from the model perspective.
We evaluate our model on benchmarks that covers static object properties and
dynamic physical attributes, as well as real-world manipulation tasks spanning
multiple tiers of dynamic perception capabilities—from basic object-level under-
standing to force-aware dexterous manipulation. Experimental results demon-
strate consistent and strong performance across sensors and tasks, highlighting
the framework’s effectiveness as a general dynamic tactile perception model.

1 INTRODUCTION

Tactile perception is a cornerstone of human interaction with the physical world, providing rich
contact information that complements vision and audition. It enables fine-grained understanding of
subtle deformations and force dynamics that are essential for various contact-rich tasks (Heng et al.,
2025; Feng et al., 2025a; Xue et al., 2025; Iskandar et al., 2024). With the rapid progress of high-
resolution optical tactile sensors Lambeta et al. (2024); Zhao et al. (2025a), robotics is poised to enter
a new era of dynamic tactile perception, where robots will be able to perceive temporal variations in
contact, force, and material interactions to accomplish increasingly complex real-world tasks.

In stark contrast, existing tactile datasets and models remain largely limited to static object-level
properties, due to the absence of a systematic perspective on dynamic tactile perception, thereby
overlooking the rich temporal dynamics of touch and the underlying force-related physical princi-
ples. Many large-scale datasets primarily rely on press-only actions to collect material properties
like texture and hardness (Yang et al., 2022; Fu et al., 2024), with limited extensions to random slid-
ing or rotation (Suresh et al., 2023; Higuera et al., 2025a; Feng et al., 2025b). A recent press-based
touch–force dataset (Shahidzadeh et al., 2025) provides preliminary physical grounding but still
lacks richer dynamic interactions. Similarly, mainstream tactile pre-training models, often adapted
from image-based self-supervised (He et al., 2022) or multi-modal alignment frameworks (Radford
et al., 2021), struggle to capture fine-grained deformations and force-aware dynamics. Deficiencies
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Figure 1: Tactile Dynamic Pyramid and ToucHD dataset. We organize tactile pre-training data
into 5 tiers based on data rarity and the complexity of the dynamic perception capabilities they sup-
port. Datasets shown in black font are existing ones. Most current datasets fall into the lower tiers
(4 and 5), while higher tiers (1, 2, and 3) remain notably scarce. To bridge this gap, we present
ToucHD, a hierarchical dynamic tactile dataset spanning tactile atomic actions, real-world manip-
ulations, and touch–force paired data. ToucHD is designed to enrich high-tier data and establish a
complete dynamic data ecosystem, thereby comprehensively supporting dynamic tactile perception.

in both datasets and models for supporting dynamic perception capabilities required by complex
tasks ultimately limit the effectiveness of tactile pre-training in manipulation (Luu et al., 2025).

To establish a systematic paradigm for dynamic tactile perception, we first introduce a tactile dy-
namic pyramid that organizes tactile data into five tiers based on the complexity level of the per-
ception capabilities they support, as shown in Fig. 1. Most existing datasets reside at the lowest
Press Only and Random Action tiers, offering limited action diversity and supporting only static
attributes or shallow surface-level dynamics. In contrast, higher tiers, though far more challenging
to collect, enable richer perception capabilities: Specific Action data facilitate learning structured
tactile dynamic semantics, Manipulation data capture temporally evolving contact patterns crucial
for dexterous skills, and Force data explicitly ground tactile dynamics in physical force proper-
ties. To fill this critical gap, we introduce ToucHD, a large-scale dataset with 2,426,174 contact
samples, designed as a Tactile Hierarchical Dynamic resource to enrich the higher tiers. By in-
corporating diverse tactile sensors and techniques, ToucHD integrates simulated atomic action data,
real-world manipulation data collected with a modified FastUMI (Wu et al., 2024), and extensive
touch–force pairs obtained from 71 indenters. Together, these hierarchical components form a sys-
tematic dynamic data architecture that provides broad diversity in objects, sensors, and contacts, and
establishes a comprehensive foundation for advancing dynamic tactile perception across all tiers.

Building on this foundation, we introduce AnyTouch 2, a general tactile representation learning
framework that unifies sensor-invariant object properties understanding with progressively enhanced
perception of fine-grained deformations, action-specific dynamics, and force-related physical prop-
erties. Beyond masked video reconstruction, multi-modal alignment, and cross-sensor matching,
we incorporate multi-level modules to advance dynamic tactile perception along the hierarchical
capabilities outlined by our dynamic pyramid. Concretely, we enhance sensitivity to subtle tempo-
ral deformations via frame-difference reconstruction, promote semantic-level action understanding
through action matching, and model the underlying physical properties by predicting temporal force
variations from large-scale touch–force pairs. Collectively, these components yield a unified repre-
sentation that bridges object-level semantics, dynamic interaction modeling, and physical reasoning
across all tiers, offering a solid foundation for diverse downstream tasks.

We evaluate AnyTouch 2 on benchmarks spanning static object properties, dynamic physical pre-
diction, and real-world manipulation tasks across all tiers of the tactile dynamic pyramid. Exper-
imental results show that our approach delivers consistently strong performance across both static
and dynamic tactile perception tasks, validating its effectiveness as a general tactile representation
framework. By grounding our framework in the tactile dynamic pyramid, we hope this work lays
a solid foundation for advancing the era of dynamic tactile perception and inspires future research
toward more dexterous, physically grounded robotic intelligence.
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2 RELATED WORK

Large-Scale Tactile Dataset. Early tactile datasets were typically collected via handheld or robotic
pressing, focusing on object-level semantic properties such as material and hardness (Yuan et al.,
2018; Li et al., 2019; Yang et al., 2022; Gao et al., 2023; Fu et al., 2024). These press-only
datasets exhibit limited dynamic variation and primarily support learning static tactile features.
Some datasets expand this paradigm by applying simple random actions on object surfaces to cap-
ture basic dynamic interactions (Suresh et al., 2023; Yu et al., 2024; Higuera et al., 2025a; Feng
et al., 2025b). While such data can help models gain an initial understanding of tactile dynamics,
they remain insufficient for supporting complex dynamic tasks like dexterous manipulation. Luu
et al. (2025) collected a touch–force paired dataset by pressing sensors with different indenters, of-
fering initial insight into physical contact properties, but the dataset still lacks richer dynamics like
sliding or rotation. In this work, we collect the largest hierarchical dynamic tactile dataset to address
the scarcity of high-tier tactile data with rich dynamic interactions and paired force measurements.

Optical Tactile Representation Learning. Optical tactile sensors can capture high-resolution
spatio-temporal deformations of contact surfaces, enabling fine-grained perception of object prop-
erties and interaction dynamics. Leveraging the image-based nature of optical tactile data, recent
studies have explored leveraging vision-related representation learning, using visual self-supervised
learning methods (He et al., 2022) for fine-grained feature learning (Xu et al., 2025; Zhao et al.,
2025b; Higuera et al., 2025a) and multi-modal alignment with vision and language for semantic-
level understanding (Yang et al., 2024; Cheng et al., 2025; Ma et al., 2025; Feng et al., 2025b). To
handle sensor heterogeneity, some works employ joint training (Zhao et al., 2025b), alignment (Yang
et al., 2024; Gupta et al., 2025), or cross-sensor matching (Feng et al., 2025b). More recent works
have explored dynamic tactile representation learning by transferring self-supervised video learning
techniques (Higuera et al., 2025a; Feng et al., 2025b; Xie et al., 2025), allowing models to capture
temporal deformation patterns. In this work, we unify the strengths of previous methods by inte-
grating object-level feature understanding with hierarchical dynamic tactile perception capabilities,
resulting in a general tactile representation capable of supporting a variety of downstream tasks.

Dynamic Tactile Perception. While early tactile models primarily focused on static object-level
properties, real-world contact-rich manipulation requires perceiving the temporal tactile dynamics
and reasoning about underlying physical principles (Xue et al., 2025; Higuera et al., 2025b). Recent
studies have begun to explore dynamic tactile perception in both real and simulated environments.
A common approach adapts visual models to process continuous tactile inputs and model temporal
variation, but often without tailoring them to the unique characteristics of tactile data (Feng et al.,
2025a; Hao et al., 2025; Zhang et al., 2025). (Heng et al., 2025) enhanced dynamic perception for
manipulation tasks by forecasting future tactile signals. (Xie et al., 2025) proposed a masking strat-
egy tailored to tactile videos, enhancing the capture of simple physical properties. (Li et al., 2025a)
further incorporated force prediction as an auxiliary task to better model interaction dynamics. In
parallel, advances in tactile simulators have enabled simple dynamic interactions and manipulation
with tactile feedback in simulation (Akinola et al., 2025; Sun et al., 2025). For instance, Luu et al.
(2025) built a manipulation benchmark based on the TacSL (Akinola et al., 2025) simulator, provid-
ing a scalable platform to evaluate dynamic tactile perception in interactive manipulation scenarios.
In this work, we go beyond these directions by introducing multi-level dynamic enhanced modules
to more comprehensively capture interaction dynamics and their underlying physical principles.

3 TACTILE HIERARCHICAL DYNAMIC DATASET

As a primary medium of human interaction with the physical world, touch exhibits rich and in-
tricate dynamic characteristics. Capturing these dynamics requires not only advanced sensors but
also large-scale, high-quality datasets that reflect the temporal and physical nature of tactile interac-
tions. However, most existing tactile datasets remain limited to simple paradigms such as pressing
or random sliding, providing insufficient support for complex dynamic perception. To address this
gap, we systematically establish a hierarchy of dynamic perception capabilities and propose a tactile
dynamic pyramid that stratifies tactile data into five tiers based on the complexity of the dynamic per-
ception capabilities they support, as shown in Fig. 1. This pyramid provides a principled framework
to guide the collection of more informative dynamic tactile data. Specifically: (T5) Press Only data
mainly support recognition of object-level attributes with minimal temporal variation; (T4) Random

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Action data introduce limited temporal changes, enabling perception of surface-related dynamics
but lacking task relevance; (T3) Specific Action data capture structured dynamics associated with
atomic interactions, facilitating action-level tactile understanding; (T2) Manipulation data reflect
task-driven, temporally evolving contact changes, essential for learning real-world manipulation
skills; and (T1) Force data explicitly ground tactile dynamics in physical force principles, enabling
reasoning about force–deformation relationships and supporting fine-grained, force-sensitive ma-
nipulation tasks. As the tier level increases, data collection becomes more challenging or requires
stricter constraints, and the data rarity increases. However, higher-tier data provides richer annota-
tions or more realistic manipulation scenarios, enabling the development of stronger dynamic tactile
perception capabilities. Most existing tactile datasets reside in Tier 4 and 5, offering insufficient
support for advanced dynamic perception tasks such as dexterous manipulation, while higher-tier
data remain scarce. Shahidzadeh et al. (2025) introduced a press-based touch–force dataset, but it
excludes complex interactions like sliding, restricting its support for complex dynamic perception.

To address this gap, we present ToucHD, a large-scale tactile dataset with 2,426,174 contact samples
designed as a Tactile Hierarchical Dynamic resource to enrich higher-tier dynamic tactile data.
Specifically, the dataset comprises three subsets corresponding to the highest 3 tiers of the pyramid:

Simulated Atomic Action Data (Sim). Using an IMPM-based simulator (Shen et al., 2024), we col-
lect 1,118,896 multi-sensor contact frames from five optical tactile sensors performing four atomic
actions—sliding left/right and rotating clockwise/counterclockwise—on 1,043 objects sourced from
ObjectFolder (Gao et al., 2022) and OmniObject3D (Wu et al., 2023). We further augment the data
by rotating the two sliding actions, thereby generating additional upward and downward sliding sam-
ples. This data corresponds to Tier 3 (Specific Action) of the tactile dynamic pyramid, supporting
explicit learning of tactile variations induced by structured dynamic interactions.

Real-World Manipulation Data (Mani). We modify FastUMI (Wu et al., 2024) by equipping
its two grippers with different tactile sensors, enabling efficient collection of multi-sensor tactile
manipulation data. Using two distinct sets of sensors, we collect 584,842 contact frames from 46
carefully designed manipulation tasks, while simultaneously recording the interaction videos. This
portion of the data corresponds to Tier 2 (Manipulation Data) and explicitly supports tactile pre-
training models in capturing fine-grained dynamic tactile variations during real manipulation tasks.

Touch-Force Paired Data (Force). We collect 722,436 touch–force pairs using five carefully se-
lected tactile sensors. All sensors are mounted on a fixed base, while 71 distinct indenters are se-
quentially attached to the end-effector of a robotic arm. Under programmatic control, each indenter
performs sliding motions in four directions—forward, backward, left, and right—across the sensor
surface, while a wrist-mounted force sensor records 3D contact force sequences. These touch–force
pairs correspond to Tier 1 (Force Data), providing explicit supervision for models to perceive fine-
grained contact forces and serving as evaluation benchmarks for physical understanding.

As illustrated in Fig. 1, ToucHD integrates action-specific, real-world manipulation, and force-paired
data, offering broad coverage across objects, sensors, and interaction dynamics. Together with ex-
isting lower-tier datasets, it forms a complete dynamic tactile data ecosystem, systematically sup-
porting hierarchical dynamic perception capabilities. More details are shown in Appendix A.2.

4 METHOD

Building on the dynamic tactile data ecosystem established by ToucHD, we introduce AnyTouch 2,
a general tactile representation learning framework that unifies sensor-invariant object-level under-
standing with multi-level dynamic perception capabilities, as shown in Fig. 2. Specifically, we start
from pixel-level dynamic detail learning as the foundation (Sec. 4.1), extend to semantic-level tac-
tile feature understanding (Sec. 4.2), and further advance to modeling dynamic physical properties
(Sec. 4.3), aligning with the hierarchical tiers in our tactile dynamic pyramid.

4.1 PIXEL-LEVEL DYNAMIC DETAILS

Understanding pixel-level tactile deformations forms the basis of higher-level dynamic perception.
To enhance the capacity for capturing fine-grained temporal changes, we employ a video masked
autoencoder (Tong et al., 2022) to learn diverse deformation patterns from consecutive frames across
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Figure 2: Overview of AnyTouch 2. Our model unifies object-level tactile semantics with fine-
grained dynamic and physical perception, learning a general tactile representation that supports
a broad spectrum of downstream tasks. By incorporating multi-level dynamic enhanced modules
aligned with the tiers of the tactile dynamic pyramid, it strengthens sensitivity to subtle tactile vari-
ations and improves reasoning about the physical properties underlying dynamic interactions.

multiple optical sensors. To focus on deformations rather than sensor-specific backgrounds, we
subtract the background frame from each frame, yielding a normalized input T = (T1, T2, ..., TN ) ∈
RN×H×W×3, where N is the number of frames and H × W denotes the shape of tactile images.
We partition T into non-overlapping 3D spatio-temporal tokens of size s × h × w where s is the
tube size and h×w denotes the patch size, yielding a token sequence of length M = N

s × H
h × W

w .
We apply tube masking with a mask ratio ρ, and reconstruct the masked video into T̂ via a frame
decoder. The training loss Lori

rec is defined as the mean squared error (MSE) over masked tokens:

Lori
rec =

1

N |ΩM |

N∑
n=1

∑
p∈ΩM

|T̂n(p)− Tn(p)|2, (1)

where p is the token index and ΩM is the set of masked tokens. Unlike natural videos, tactile
deformations are highly localized and subtle, requiring explicit mechanisms to highlight small
frame-to-frame changes. To this end, we further introduce frame-difference reconstruction to
strengthen the model’s sensitivity to fine-grained temporal variations. Specifically, we subtract
the first frame T1 of the video T from each subsequent frame to obtain the frame differences
D = (D2, ..., DN ) ∈ R(N−1)×H×W×3, where Dn = Tn − T1, n = 2, ..., N . A frame-difference
decoder is simultaneously trained to reconstruct D from masked tokens with an MSE loss:

Ldif
rec =

1

N |ΩM |

N∑
n=2

∑
p∈ΩM

|D̂n(p)−Dn(p)|2. (2)

The total pixel-level loss is defined as LPixel = Lori
rec+Ldif

rec. By jointly reconstructing both the original
frames and their frame differences, the model learns to capture both global deformation patterns and
subtle fine-grained temporal variations essential for dynamic perception. This dual reconstruction
strategy establishes a strong foundation for higher-level semantic and physical property perception.

4.2 SEMANTIC-LEVEL TACTILE FEATURES

While pixel-level deformation modeling lays the foundation for dynamic tactile perception, a general
tactile representation also requires capturing semantic-level features that generalize across objects,
sensors, and actions. To achieve this, we first leverage multi-modal alignment to embed tactile data
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into a shared semantic space grounded in perceptual and linguistic concepts such as object identity,
material properties, and interaction descriptions. Following the CLIP paradigm (Radford et al.,
2021; Feng et al., 2025b), tactile features are aligned with their paired visual and textual features as:

LAlign =
αTV

2
(LT→V + LV→T ) +

αTL

2
(LT→L + LL→T ), (3)

where LT→V ,LV→T and LT→L,LL→T are tactile–visual and tactile–language contrastive losses
respectively, while αTV , αTL control their aligning strength. The full formulations are provided in
Appendix A.7. In parallel, we employ cross-sensor matching (Feng et al., 2025b) to align tactile
signals from different sensors that contact the same object, promoting sensor-invariant object-level
feature learning. For each tactile video T from TacQuad, ToucHD (Sim), or ToucHD (Force), we
sample a positive T+

obj within these datasets that contacts the same object but originates from a
different sensor. Additionally, a negative T−

obj from a different object is randomly drawn from the
batch. For each triplet (T,T+

obj,T
−
obj), the model predicts similarity scores between T and the other

samples, and is trained with a binary cross-entropy loss to distinguish these pairs as:

Lobj = − log σ(sim(T,T+
obj))− log

(
1− σ(sim(T,T−

obj))
)
, (4)

where σ(·) denotes the Sigmoid function and sim(·, ·) represents the similarity score computed from
the CLS tokens of the two samples through a linear head.

While existing components mainly focus on static attribute learning, we introduce action matching
to capture the semantics of structured dynamic tactile interactions. In particular, this objective guides
the model to embed atomic action information into the representation space. The tactile videos from
ToucHD (Sim) and ToucHD (Force) are grouped into 8 atomic actions, including pressing, leaving,
sliding (4 directions), and rotating (2 directions). The model is trained to cluster representations of
the same action while separating different ones. This encourages the encoder to recognize the char-
acteristic temporal patterns, motion directions, and frame-to-frame deformations associated with
each action, effectively embedding semantic-level action information into the tactile representation.
Concretely, for a tactile video T, we sample a positive T+

act from the same action class (potentially
across different objects or sensors) within these datasets, and a negative T−

act from a different action
class within the batch. Similar to the cross-sensor matching, we train the model to pull together
frame sequences of the same action while pushing apart sequences of different actions:

Lact = − log σ(sim(T,T+
act))− log

(
1− σ(sim(T,T−

act))
)
. (5)

This objective explicitly incorporates semantic-level action information into the tactile represen-
tation, improving the model’s understanding of dynamic interactions and supporting downstream
manipulation tasks that depend on action-aware perception. The total matching loss is then
LMatch = Lobj + Lact. By jointly optimizing these objectives, the model captures both static object-
level and dynamic action-aware semantic features, effectively bridging low-level tactile signals with
high-level perceptual understanding. However, the model still falls short of fully understanding the
underlying physical properties that drive these interactions.

4.3 PHYSICAL-LEVEL DYNAMIC PROPERTIES

Understanding the physical properties underlying tactile interactions requires integrating knowledge
of both object-level attributes and action dynamics. Among these properties, contact force is funda-
mental, as it directly governs how objects deform, slip, or respond during manipulation (Huang et al.,
2025). Accurately modeling force dynamics not only provides explicit supervision for the temporal
evolution of tactile signals but also grounds the learned representations in the underlying physics
of interactions. Therefore, we introduce the force prediction task to explicitly model the physical
properties underlying tactile interactions. Using the large-scale touch–force pairs (Tn, Fn) from
ToucHD (Force), the model is trained to predict the 3D contact force F ∈ R(N−1)×3 for each frame
in a tactile video T, excluding the first frame. This enables the model to directly associate dynamic
tactile deformations with their physical magnitudes. To further enhance sensitivity to fine-grained
dynamic deformations, we introduce delta-force prediction, which focuses on capturing the temporal
variations of contact forces. The model is trained to predict the force increments ∆F ∈ R(N−1)×3

where ∆Fn = Fn − Fn−1, n = 2, ..., N . This shifts the focus from static force values to dynamic
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transitions, encouraging the encoder to attend to subtle temporal cues and continuous deformation
patterns. The force and delta-force decoders are jointly trained with an L1 Loss:

LForce =
1

3(N − 1)
||F̂− F||1 +

1

3(N − 1)
||∆̂F−∆F||1. (6)

By explicitly predicting the 3D contact forces and their temporal variations from tactile videos, the
model can bridge high-level semantic understanding with fine-grained dynamic properties. This en-
ables a comprehensive and physically grounded representation across all tiers of the tactile dynamic
pyramid, supporting dexterous manipulation and robust generalization across tasks and objects.

4.4 TRAINING RECIPE

Our model integrates tactile perception tasks spanning the hierarchical tiers of the tactile dynamic
pyramid, from low-level pixel deformations to high-level semantic and force-sensitive interactions.
To jointly optimize these multi-level objectives while mitigating task interference, we adopt a cur-
riculum task scheduling strategy with task-specific start iterations and gradually increasing weights.
Concretely, pixel-level reconstruction, as the foundation of tactile perception, is trained from the
beginning with the highest weight. Higher-level tasks, including semantic tactile feature learning
and dynamic physical property modeling, are introduced after several iterations i with gradually in-
creasing weights λi

task. This strategy ensures the model first captures robust low-level tactile patterns
before learning more complex capabilities. The total loss L of our framework is defined as:

Ltotal = LPixel + λi
AlignLAlign + λi

MatchLMatch + λi
ForceLForce,

λi
task =

max(0, i− itask)

itotal − itask
λmax

task , task ∈ {Align,Match,Force},
(7)

where itask is the task start iteration and λmax
task denotes the maximum task-specific weight.

5 EXPERIMENTS

In this section, we comprehensively evaluate our model’s general tactile perception. We first test it
on benchmarks covering object-level properties and dynamic physical attributes (Sec. 5.2), then on
four real-world manipulation tasks spanning multiple tiers of the tactile dynamic pyramid, assessing
its ability to generalize across hierarchical dynamic capabilities (Sec. 5.3).

5.1 DATASETS AND BASELINES

During pre-training, we filtered contact samples from 9 different tactile datasets, including: Touch
and Go (TAG) (Yang et al., 2022), VisGel (Li et al., 2019), ObjectFolder Real (Gao et al., 2023) ,
TVL (Fu et al., 2024), YCB-Slide (Suresh et al., 2023), SSVTP (Kerr et al., 2022), Octopi (Yu et al.,
2024), TacQuad (Feng et al., 2025b), and ToucHD. For downstream evaluation, we adopt TAG and
Cloth (Yuan et al., 2018) for object property understanding, and Sparsh (Higuera et al., 2025a)
together with ToucHD Bench (10 unseen indenters) for dynamic physical understanding, covering 3
mainstream optical tactile sensors: GelSight (Yuan et al., 2017), DIGIT (Lambeta et al., 2020), and
GelSight Mini (Inc.). We compare the AnyTouch 2 model with representative tactile representation
learning methods: UniTouch (Yang et al., 2024) and T3 (Zhao et al., 2025b) (single-frame input),
and MAE (Sparsh), VJEPA (Sparsh) (Higuera et al., 2025a), and AnyTouch 1 (Feng et al., 2025b)
(multi-frame input). Single-frame models are fed two consecutive frames along the batch dimension
to handle temporal data without architecture changes. To fairly compare and simultaneously evaluate
the benefits of our ToucHD dataset, we also train an MAE (Sparsh)† model on the same training data,
including ToucHD as AnyTouch 2. The detailed introduction is provided in Appendix A.3 and A.4.

5.2 OFFLINE BENCHMARK EVALUATION

To evaluate both object-level and dynamic physical perception, we conduct extensive experiments
on Object Bench (TAG Material and Cloth Textile Classification), Sparsh Bench (Force Prediction,
Pose Estimation and Slip Detection) and our ToucHD Bench (Force Prediction). For the Sparsh
Force Prediction task, we evaluate the models on the unseen flat indenter. To more comprehensively
evaluate the model’s understanding of force, we further conduct comparisons on the ToucHD Bench,
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Table 1: Evaluation of object-level attribute understanding on ObjectBench and physical-level dy-
namic perception on SparshBench and our ToucHD Bench. The evaluation covers three mainstream
optical tactile sensors: GelSight (GS), DIGIT (DG), and GelSight Mini (Mini). Green rows indicate
static models that take a single frame as input, while blue rows denote dynamic models that process
multiple consecutive frames. (S) marks the pre-trained Sparsh model, and † indicates the use of
additional training data including ToucHD. Underlined numbers denote the second-best results.

Method

Object Bench Sparsh Bench ToucHD Bench
TAG Cloth Pose Slip (Delta Force) Force Force

Acc(↑) Acc(↑) Acc(↑) F1 Score(↑) / RMSE(↓) RMSE(↓) RMSE(↓)
GS GS DG DG Mini DG Mini DG Mini

CLIP 51.65 26.76 54.54 33.13 / 174.39 85.47 / 177.67 1278.08 553.19 4880.94 4492.77
UniTouch 61.27 20.43 54.92 35.43 / 169.26 87.73 / 211.81 1540.76 652.61 4146.55 4400.57

T3 52.51 (Seen) 55.01 52.12 / 152.55 77.65 / 210.39 1535.84 640.39 4805.63 4877.66
VJEPA (S) 54.67 18.66 55.09 83.33 / 105.63 97.00 / 121.31 957.73 428.56 4766.11 3208.10
MAE (S) 59.47 19.40 55.92 83.30 / 98.33 97.50 / 102.64 821.26 297.96 1953.82 3655.39
MAE (S)† 63.32 36.84 57.09 85.67 / 92.47 97.40 / 98.85 741.67 239.98 1714.84 2467.42

AnyTouch 1 80.82 (Seen) 56.22 40.60 / 169.42 88.92 / 162.41 1235.11 488.31 3968.81 4050.45
AnyTouch 2 76.97 42.31 57.83 86.66 / 87.80 97.96 / 80.83 624.26 202.14 894.32 1051.03

which consists of 10 unseen indenters, and select 3 of them as testing indenters. To further probe
fine-grained dynamic understanding, we add an additional evaluation within the Slip Detection task,
where the model predicts 3D force changes across the input contact frame sequences. All reported
root mean squared error (RMSE) values are measured in mN.

As shown in Tab. 1, our AnyTouch 2 model achieves performance comparable to AnyTouch 1 on
Object Bench, which primarily emphasizes static semantic features. At the same time, AnyTouch
2 consistently outperforms prior approaches across all other evaluation tasks requiring fine-grained
dynamics and force-sensitive reasoning. This demonstrates its ability to unify object-level under-
standing with action-aware and force-grounded dynamic perception. Models leveraging multiple
consecutive frames show clear advantages on the two dynamic benchmarks. In contrast, single-
frame baselines sometimes perform even worse than CLIP model on Force Prediction and Slip De-
tection, largely because they lack temporal position embeddings and thus cannot capture the ordering
of tactile inputs. This highlights the indispensable role of dynamic tactile perception and reveals the
limitations of training solely on lower-tier datasets, which lack the temporal richness needed for
capturing fine-grained dynamics. Interestingly, while MAE (Sparsh) and VJEPA (Sparsh) achieve
competitive results on dynamic tasks, they still fall behind CLIP and UniTouch, which benefit from
semantic-level multi-modal alignment, on Cloth classification. This further underscores the value of
AnyTouch 2: enhancing dynamic perception while preserving robust static understanding, achieving
a general tactile representation. Finally, augmenting MAE (Sparsh) with more training data, includ-
ing our ToucHD dataset, yields consistent improvements across all tasks—even without additional
objectives—highlighting the unique value of ToucHD as a high-tier dynamic tactile dataset.

5.3 ONLINE REAL-WORLD MANIPULATION

To evaluate our model in realistic scenarios, we design four challenging real-world manipulation
tasks that explicitly span the tactile dynamic pyramid: Tactile Grasping (Tier 5), Whiteboard Wip-
ing (Tier 4 & 3), USB Insertion (Tier 2) and Chip Moving (Tier 1), as shown in Fig. 3. These tasks
comprehensively cover all tiers of the dynamic pyramid, from force-sensitive precision manipula-
tion to object-level property recognition, providing a holistic benchmark for validating the model’s
dynamic tactile perception capabilities in real-world environments. We adopt Diffusion Policy (Chi
et al., 2023) as the policy head and freeze all tactile encoders during training. Each task is tested 20
times, and we report the average success rate. Detailed task setups are provided in Appendix A.6.

As shown in Fig. 4, static single-frame models perform significantly worse than dynamic models
in real-world manipulation, particularly on higher-tier tasks, highlighting the necessity of dynamic
perception for contact-rich manipulation. Moreover, depending on the tier of the training data and
objectives, different dynamic perception models exhibit varying performance across different tiers
of tasks. The three Tier 4 dynamic perception models achieve comparable performance on the
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Tac�le Grasping (Tier 5) Whiteboard Wiping (Tier 4 & 3)

USB Inser�on (Tier 2) Chip Moving (Tier 1)

Figure 3: Real-world manipulation tasks. We evaluate models on real-world manipulation tasks
that span the dynamic capabilities of different tiers in our tactile dynamic pyramid: Tactile Grasping
(Tier 5), Whiteboard Wiping (Tiers 4 & 3), USB Insertion (Tier 2), and Chip Moving (Tier 1).

Chip Moving (Tier 1)USB Inser�on (Tier 2)Whiteboard Wiping (Tier 4 & 3)Tac�le Grasping (Tier 5)

UniTouch
(Sta�c)

T3
(Sta�c)

VJEPA (Sparsh)
(Tier 4)

MAE (Sparsh)
(Tier 4)

MAE (Sparsh)
(Tier 2)

AnyTouch 1
(Tier 4)

AnyTouch 2
(Tier 1)

Figure 4: Evaluation of real-world manipulation tasks. This evaluation spans DIGIT and Gel-
Sight Mini. Each dynamic model that takes consecutive tactile frames as input has a corresponding
dynamic tier, which denotes the highest level of the training data and objectives used in our tactile
dynamic pyramid shown in Fig. 1, reflecting the model’s dynamic perception capability. † denotes
additional training data including ToucHD.

Tier 5 Tactile Grasping task, while AnyTouch 1, which focuses more on static object attributes,
lags behind MAE (S) and VJEPA (S), which better capture inter-frame variations on the Tier 4
& 3 task. However, all three models perform poorly on the higher-level Tier 1 and Tier 2 tasks
that are not covered by their training data, revealing the limits of using only lower-tier dynamic
data. By further incorporating ToucHD into the training data of MAE (S), the model gains dynamic
perception capabilities across all other Tier 2 and lower-tier tasks, except accurate force perception
for Tier 1, achieving significant improvements over the original MAE (S) in all tasks. Ultimately, by
integrating the ToucHD dataset with multi-level dynamic enhanced modules, AnyTouch 2 achieves
the strongest Tier-1 dynamic perception capability, outperforming all baselines across all 4 real-
world tasks, including the most delicate and challenging Tier 1 Chip Moving task. This demonstrates
that the hierarchical dynamic data provided by ToucHD effectively supports higher-tier dynamic
capabilities, and that our AnyTouch 2 framework effectively bridges all tiers of the tactile dynamic
pyramid, establishing a solid foundation for general tactile perception in real-world manipulation.

Beyond model comparisons, we also observe notable differences between the two optical tactile sen-
sors. GelSight Mini, with its cleaner background and sharper deformation imaging, excels at cap-
turing fine-grained details, outperforming DIGIT on the Tier-5 task using AnyTouch 2. In contrast,
DIGIT’s higher acquisition frequency (30 Hz vs. GelSight Mini’s 18 Hz) provides more training
samples and denser dynamic information, leading to superior performance on higher-tier manipula-
tion tasks. These findings underscore not only the complementary strengths of different sensors but
also the importance of models that can effectively integrate data from diverse tactile sensors.
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Table 2: The impact of the modules in AnyTouch 2 on offline benchmarks. This evaluation spans
three mainstream optical tactile sensors: GelSight (GS), DIGIT (DG), and GelSight Mini (Mini).
The red arrow ↓ indicates a significant drop in performance.

Method

Object Bench Sparsh Bench ToucHD Bench
TAG Cloth Slip (Delta Force) Force Force

Acc(↑) Acc(↑) F1 Score(↑) / RMSE(↓) RMSE(↓) RMSE(↓)
GS GS DG Mini DG Mini DG Mini

AnyTouch 2 76.97 42.31 86.66 / 87.80 97.96 / 80.83 624.26 202.14 894.32 1051.03
- Diff Recon 76.19 41.33 84.39↓ / 94.88↓ 97.81 / 100.84↓ 687.13↓ 225.18↓ 1009.44↓ 1123.47

- Action Match 76.93 42.05 84.42↓ / 87.98 97.68↓ / 83.84 643.75 203.61 896.21 1082.39
- Force Pred 76.46 41.45 86.35 / 90.72 97.88 / 96.34↓ 770.44↓ 254.10↓ 1646.95↓ 2008.38↓

- MM Aligning 63.84↓ 37.61↓ 87.31 / 81.44 98.16 / 85.89 589.13 193.73 976.73↓ 972.37
- ToucHD (Sim) 76.54 41.97 84.68↓ / 88.78 97.83 / 108.25↓ 624.39 207.83 992.96↓ 1113.56
- ToucHD (Mani) 76.43 41.01 86.13 / 88.12 97.93 / 80.96 655.56 208.46 1118.49↓ 1193.84
- ToucHD (Force) 74.33↓ 40.87↓ 84.91↓ / 107.43↓ 97.85 / 109.37↓ 777.41↓ 266.43↓ 1792.49↓ 2424.68↓

- ToucHD 68.92↓ 40.39↓ 84.16↓ / 110.68↓ 97.67↓ / 136.36↓ 783.64↓ 257.95↓ 2448.89↓ 2982.46↓

5.4 ABLATION STUDY

To comprehensively evaluate the contributions of each module in our model to its general tactile
perception capabilities, we conduct extensive ablation studies on three benchmarks. The experi-
mental results are shown in Tab. 2. When the action matching module is removed, the model’s
performance on the slip detection task decreases. Similarly, removing the force prediction module
leads to reduced performance on the force prediction and delta force prediction tasks. Furthermore,
when the frame-difference reconstruction task, which serves as a fundamental fine-grained dynamic
perception objective, is removed, the model exhibits decreased performance across all dynamic
tasks. These results demonstrate the effectiveness of our designed multi-tier dynamic enhancement
modules in improving dynamic perception capabilities. However, when the multi-modal alignment
module is removed, we observe an interesting phenomenon: the model shows some performance
improvement across most dynamic perception tasks, while exhibiting a noticeable decline on Object
Bench, which focuses more on object-level static semantic features. This is because multi-modal
alignment inherently emphasizes static tactile features, bringing together different possible actions
on the same object, which can somewhat compromise the model’s fine-grained dynamic perception
capabilities. This essentially reflects a trade-off between perceiving static tactile object properties
and dynamic tactile features, as both are crucial for general tactile perception. We further investigate
the contribution of the ToucHD dataset and its subsets to the dynamic perception capabilities. When
we remove the ToucHD (Sim) subset which contains a large number of atomic tactile actions, the
model’s performance on the two slip tasks decreases. This indicates that this Tier 3 dataset does
primarily supports the perception of structured dynamic tactile deformations. When the ToucHD
(Mani) subset is removed, the model also shows a consistent performance drop. However, since
this subset primarily supports dynamic perception in real-world manipulation tasks corresponding
to Tier 2, the magnitude of the decrease is relatively small. In contrast, when the ToucHD (Force)
subset is removed, the model loses data support for perceiving Tier 1 dynamic physical properties,
resulting in a performance drop across all benchmarks. Finally, when the entire ToucHD dataset is
removed, the model exhibits a significant performance drop across all tasks, highlighting the cru-
cial role of the ToucHD dataset in supporting general dynamic tactile perception capabilities. More
ablation and hyper-parameter experiments are shown in Appendix A.9 and A.10.

6 CONCLUSION

In this work, we advance dynamic tactile perception by introducing the tactile dynamic pyramid as
a systematic paradigm to guide both data collection and model design for hierarchical tactile per-
ception capabilities. From the data perspective, the proposed ToucHD dataset serves as the final
missing piece, completing a comprehensive dynamic tactile data ecosystem that supports multiple
tiers of perception. From the model perspective, our AnyTouch 2 general representation learning
framework integrates multi-level objectives across all tiers, endowing it with comprehensive dy-
namic tactile perception capabilities. We believe this work establishes a solid foundation for general
tactile perception and will push tactile intelligence into the new era of dynamic perception.
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A APPENDIX

In the appendix, we first provide a detailed description of the structure of Tactile Dynamic Pyramid
(A.1) and the ToucHD data collection process (A.2), followed by comprehensive statistics and char-
acteristics of the training dataset (A.3). We then present the details of benchmarks and baselines
(A.4), implementation details (A.5), and the setup of real-world tasks (A.6). In addition, we include
the formulation of the complete multi-modal alignment loss (A.7) and detailed figures for force pre-
diction evaluation (A.8). We also report an extensive ablation study (A.9) and a hyper-parameter
study (A.10), conduct cross-sensor generation experiments (A.11), and discuss limitations and fu-
ture work (A.12). Finally, we provide a statement regarding the usage of LLMs (A.13).

A.1 STRUCTURE OF TACTILE DYNAMIC PYRAMID

In this section, we further clarify the criteria of the tiered structure of our Tactile Dynamics Pyramid
in Fig. 1. These tiers are defined based on the data collection efforts, the types of actions, and the
difficulty of obtaining labels:

• Tier 5 (Press-Only): This tier of data is collected by only pressing the sensor against
objects using either handheld operation or a robot arm. No detailed action-type annotations
or paired force labels are provided.

• Tier 4 (Random Action): This tier of data is collected by pressing the sensor against
objects, followed by random sliding and rotation using either handheld operation or a
robot arm. No detailed action-type annotations or paired force labels are provided.

• Tier 3 (Specific Action): This tier of data is collected by programmatically controlling
the sensor to press and slide along the object surface following specific predefined actions.
Detailed action-type labels are available, but no paired force data is provided.

• Tier 2 (Manipulation Data): This tier of data is collected during real object manipula-
tion tasks using a robot arm or a UMI device. No paired force data is provided.

• Tier 1 (Force Data): This tier of data is collected by a robot arm equipped with a force
sensor, with either an indenter or an object interacting with the tactile sensor. This is the
only tier that contains paired force labels.

As the tier level increases, the corresponding data collection process becomes more challenging or
requires stricter constraints, and the data rarity increases. However, higher-tier data provides richer
annotations or more realistic manipulation scenarios, enabling the development of stronger dynamic
tactile perception capabilities.

A.2 DETAILS OF TOUCHD COLLECTION

A.2.1 SIMULATED DATA

With the advancement of tactile simulators, simple dynamic contact can now be rendered with high
fidelity (Shen et al., 2024; Sun et al., 2025). Moreover, simulators allow easy replacement of sen-
sors and objects, enabling the collection of large-scale multi-sensor paired dynamic contact data at
low cost. Therefore, we employ an IMPM (Improved Material Point Method) optical tactile sim-
ulation platform (Shen et al., 2024), which consists of two main components: elastomer–object
contact simulation and rendering. The input objects are point clouds sourced from ObjectFolder
2 (Gao et al., 2022) and OmniObject3D (Wu et al., 2023). The total number of objects reaches
over 1000, and These objects cover more than 10 different material types across five major environ-
ments—household, office, video, industrial, and natural, surpassing the material diversity of several
existing large-scale tactile datasets such as YCB-Slide and ObjectFolder Real. Each object is first
converted into a standardized NumPy format. We then initialize the grids and particles based on
the object’s initial position. Specifically, the 3D grid dimensions are manually specified, including
the number of nodes, their velocities, masses, and the grid size. Particle initial parameters are also
defined, which consist of particle number, position x ∈ R3, velocity v ∈ R3, mass m ∈ R+, affine
velocity field C ∈ R3, deformation gradient F ∈ R3, density ρ ∈ R+, Young’s modulus E ∈ R+

and Poisson’s ratio ν ∈ R. From these, particle volumes and Lamé parameters are computed. To
reduce the movement time, the object is placed so that its center aligns with the elastomer’s center,
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Simulated tac�le images

IMPM simula�on Blender-based rendering3D object models

Time Time Time

Digit Digit Digit

GelSight GelSight GelSight

DuraGel GelSight Mini GelSlim

Figure 5: Simulated data acquisition. 3D object models are processed using an IMPM optical
tactile simulation platform, which comprises two components: the IMPM simulator and a Blender-
based rendering module. Firstly, the IMPM simulator generates 3D elastomer models that capture
deformations caused by object rotations and sliding motions. The Blender-based rendering module
then converts these elastomer models into tactile images for different optical sensors.

and its bottom surface is tangent to the top surface of the elastomer. The object is then driven down-
ward using IMPM until the elastomer reaches the target deformation depth. During this process,
the simulation continues to advance the object step by step until the specified deformation threshold
is met. We define six object motions including clockwise rotation, counter-clockwise rotation, and
translation to the left and right as the atomic actions. These motions are simulated step by step using
IMPM until the target pose is reached. Each simulated interaction produces 30 frames capturing
the elastomer deformation throughout the motion. After these, the reconstructed triangle meshes
are imported into Blender. Different tactile sensor backgrounds are then projected onto the mesh
surface, thereby producing simulated images corresponding to five optical tactile sensors, including
GelSight (Inc.), DIGIT (Lambeta et al., 2020), GelSight Mini (Inc.), GelSlim (Donlon et al., 2018),
and DuraGel (Zhang et al., 2024). As surface geometry deforms during contact, the marker patterns
deform accordingly, eliminating the need for manual annotation. LED lighting effects are then in-
corporated according to the sensor design, including LED positions, colors, and power settings, and
the corresponding rendered images are generated. By rotating the left and right translation samples,
we can additionally obtain upward and downward translation samples. These eight atomic actions
are sufficient to serve as the minimal fundamental action units for most tasks, while combinations
of these actions may occur in some complex tasks.

There are also tactile datasets that use implicit neural representations to store object-level tactile
information (Gao et al., 2022; Li et al., 2025b; Dou et al., 2024). By providing a contact location
as input, these neural fields can generate large numbers of tactile frames. While these datasets
can increase material diversity, they cannot directly render tactile images during dynamic contact,
providing only large numbers of static images. Therefore, these data essentially belong to Tier 5 of
the tactile dynamics pyramid, offering few advantages compared to tactile simulators that can render
dynamic contact processes.

A.2.2 MANIPULATION DATA

The advent of UMI (Chi et al., 2024) has enabled the large-scale collection of real-world manipula-
tion data at relatively low cost. Building on the FastUMI design (Wu et al., 2024), we adapt the grip-
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Table 3: Manipulation task descriptions.

Index Task Name Description
1 Cap a Pen The UMI grips the pen body while the left hand places the cap back on.
2 Uncap a Pen The UMI grips the pen body while the left hand pulls the cap off.
3 Insert Hex Wrench The UMI inserts a hex wrench into a socket fixed by the left hand.
4 Insert USB The UMI grips a USB cable and inserts it into the port.
5 Remove USB The UMI grips the USB cable and pulls it out of the port.
6 Cut Paper The UMI grips a cutter to cut a slit while the left hand holds the paper.
7 Assemble Pen The UMI and left hand align and rotate pen parts to assemble.
8 Disassemble Pen The UMI and left hand rotate to separate pen parts.
9 Detach Velcro The UMI grips the Velcro end and pulls while the left hand holds the other side.

10 Seal Zip Bag The UMI moves along the sealing strip to close the bag.
11 Install Drill Bit The UMI inserts a bit into a screwdriver fixed by the left hand.
12 Remove Drill Bit The UMI pulls the bit out of the screwdriver.
13 Close Box Lid The UMI grips the lid and closes the plastic box.
14 Tear Paper The UMI tears a paper sheet apart while the left hand holds the other side.
15 Slide Mouse The UMI grips and slides a mouse steadily on a mousepad.
16 Rotate Glue Stick The UMI rotates the bottom while the left hand holds the top.
17 Apply Glue Stick The UMI applies glue on paper with the glue stick.
18 Open Bit Case The UMI grips and opens the lid of a bit case.
19 Close Bit Case The UMI grips and closes the lid of a bit case.
20 Insert Key The UMI removes a key from a lock.
21 Unlock with Key The UMI rotates the key to unlock.
22 Place Test Tube The UMI places a test tube into a rack.
23 Sweep Fruit The UMI sweeps fruit into a dustpan held by the left hand.
24 Fold Towel The UMI and left hand fold a towel twice.
25 Twist Towel The UMI and left hand twist a towel.
26 Seal Document Bag The UMI grips and slides the bag seal to close it.
27 Pull Tissue The UMI pulls and unfolds a tissue with left-hand assistance.
28 Assemble Chopsticks The UMI and left hand rotate chopstick halves to assemble.
29 Open Fan The UMI assists in unfolding a fan held by the left hand.
30 Wipe Table The UMI grips a rag and wipes stains back and forth.
31 Rotate Rubik’s Cube The UMI rotates the top and left faces while the left hand fixes the base.
32 Stack Blocks The UMI stacks blocks on a base held by the left hand.
33 Unstack Blocks The UMI removes blocks one by one from a stacked tower.
34 Assemble Medicine Bottle The UMI grips and seals a bottle cap.
35 Scoop Rice The UMI scoops rice and places it on the desk.
36 Remove Scissor Cover The UMI pulls off a scissor cover while the left hand holds the handle.
37 Pick up Chip The UMI transfers a chip without breaking it.
38 Straighten Cable The UMI grips and straightens a bent cable with the left hand.
39 Flatten Clay The UMI flattens a clay ball into a disc with assistance.
40 Stretch Clay The UMI stretches a clay ball into a strip with assistance.
41 Press Clay into Mold The UMI presses clay into a mold held by the left hand.
42 Shape Clay The UMI shapes clay into a cylinder with assistance.
43 Zip Bag The UMI grips and pulls a zipper to close the bag.
44 Write Whiteboard The UMI holds a marker and writing a few words on the whiteboard.
45 Wipe Whiteboard The UMI grips an eraser and wipes in a straight line.
46 Pour Water The UMI grabs a bottle and pours half a cup of water into another cup.
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Figure 6: Real-world manipulation data. (a) and (b) were collected with a GelSight Mini (with
markers) paired with DIGIT, corresponding to the tasks Cap a Pen and Place Test Tube, respectively.
(c) and (d) were collected with a GelSight Mini (without markers) paired with DM-Tac W, corre-
sponding to the tasks Detach Velcro and Close Box Lid, respectively. For each task, synchronized
frames from the external camera and the two tactile sensors are shown to illustrate the dynamic tac-
tile and visual changes during execution.
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per structure to accommodate multiple tactile sensors for diverse data acquisition. Specifically, we
employ three commercial optical tactile sensors: GelSight Mini (with and without markers) (Inc.),
DIGIT (Lambeta et al., 2020), and DM-Tac W (Daimon , Shenzhen). These sensors exhibit comple-
mentary properties in terms of resolution, sensitivity, and dynamic response, allowing us to capture
richer and more diverse tactile signals under the same manipulation scenarios. To facilitate the ac-
quisition of paired tactile data, we divide the three sensors into two groups: GelSight Mini (with
markers) with DIGIT and GelSight Mini (without markers) with DM-Tac W, and mount each group
onto a pair of customized FastUMI grippers, enabling sensor-combination-based data collection.

In terms of task design, particular emphasis is placed on eliciting fine-grained dynamic tactile vari-
ations during the manipulation process. To this end, we design 46 manipulation tasks of varying
difficulty that cover typical interaction patterns such as pushing, pulling, squeezing, rotating, slid-
ing, and aligning. The detailed task specifications are summarized in the task description table
provided in Tab.3. During data collection, both sensor groups perform the complete set of 46 tasks,
ensuring direct comparability of tactile data across sensors under identical task conditions. For each
task, we perform 4–10 repetitions, choosing different contact points whenever possible to manipu-
late the objects, thereby ensuring the diversity of the dataset. In total, we collect 584,842 real contact
frames along with synchronized interaction videos. This portion of the dataset corresponds to Tier
2 Manipulation Data and is explicitly designed to support tactile pre-training models in perceiving
fine-grained and dynamic tactile variations during real manipulation tasks. Representative synchro-
nized visual and tactile data streams from the two different sensor groups across four example tasks
are illustrated in Fig. 6.

It is worth noting that during data collection, we used the left hand in collaboration with the UMI
device, rather than employing two UMI devices. This is because after we modified the UMI device
by adding two tactile sensors, the overall setup became bulkier, and using dual UMIs to collect data
would make many tasks difficult to perform. Therefore, we switched to a UMI+hand collaboration
setup for large-scale data collection, which is essentially a trade-off. This may introduce some bias
in the visual modality, but many existing studies (Yu et al., 2025; Wang et al., 2024; Zhou et al.,
2025; Ye et al., 2024) have shown that even human-hand manipulation data can help improve the
generalization ability of robotic manipulation.

Many existing works have collected tactile data using such specialized handheld devices (Liu et al.,
2025; Zhu et al., 2025; Wu et al., 2025), but these were typically constrained to specific downstream
tasks. In contrast, we are the first to collect tactile data across up to 46 diverse interaction tasks to
support tactile representation learning.

A.2.3 FORCE DATA

Figure 7: GelStereo BioTip Sensor.

Le� Camera Right Camera

Figure 8: Raw stereo camera data from the Gel-
Stereo BioTip sensor.

Force represents one of the most essential physical properties in contact (Chen et al., 2025). Hence,
equipping models with the ability to accurately perceive the force is key to achieving dexterous
manipulation (Huang et al., 2025). Therefore, we collect paired touch–force data using five differ-
ent optical tactile sensors, including GelSight Mini, DIGIT, DuraGel, DM-Tac W, and GelStereo
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Figure 9: Illustration of the indenters. All of the
indenters are made of 3D-printed materials.

Le�ward Sliding

Forward Sliding Backward Sliding

Rightward Sliding

Figure 10: Illustration of the 3D markers ob-
tained as the indenter slides over the GelStereo
BioTip sensor surface.

BioTip (Cui et al., 2023). Among these, DIGIT and Mini are widely used commercial sensors,
Duragel is a laboratory-built sensor, and DM-Tac W and BioTip are marker-based optical sensors.
Notably, BioTip is also a spherical sensor, as shown in Fig. 7 and Fig. 8. As a result, our collected
touch–force paired dataset encompasses a wide variety of sensor types. We mount the five sensors
on a unified base and design 71 indenters with different shapes, as shown in Fig. 9 and Tab. 4. Using
a UFACTORY xArm 6 robotic arm, we performed pressing, sliding in forward, backward, left, and
right directions, and lifting actions sequentially on each sensor. A six-axis force sensor is mounted
on the robotic arm’s wrist, enabling the collection of 3D contact forces (including both shear and
normal forces) when the indenter makes contact with the sensor surface. Specifically, by tracking
the marker captured by the stereo cameras inside the GelStereo BioTip sensor, we construct the 3D
marker distributions on the sensor surface during the indenter pressing and sliding. Some examples
are shown in Fig. 10. In addition, we provide a textual description for each sample, capturing the
current motion state and indenter shape, forming a Touch–Force–Language dataset. We also locate
segments in each trail where the forces along X, Y, and Z axes change smoothly, and determine the
action type based on the direction of these changes. In this way, we add atomic action labels to some
samples in this dataset and use them together with ToucHD (Sim) for the action matching task.

Although the sensors integrated into AnyTouch 2 are mainly planar optical tactile sensors, many
non-planar and even non-optical tactile sensors are still widely used in practice. While their surface
geometry (non-planar) and data representation (3D markers) differ from planar optical tactile sen-
sors, these tactile sensors share the same fundamental principles of converting tactile signals into
visual information (either 2D or 3D), indicating clear potential for further integration. Thus, the
ToucHD dataset which contains both planar and non-planar optical tactile sensors can serve as a
bridge between planar optical sensors and non-planar or non-optical tactile sensors, enabling future
integration of a broader range of tactile sensors.

A.3 TRAINING DATASET STATISTICS

In this section, we provide a detailed description of all the training datasets we used, including
sensor types, paired modalities, sizes, and other relevant details. We use data from 9 different tactile
datasets for model training, including: Touch and Go (TAG) (Yang et al., 2022), VisGel (Li et al.,
2019), ObjectFolder Real (OF Real) (Gao et al., 2023) , TVL (Fu et al., 2024), YCB-Slide (Suresh
et al., 2023), SSVTP (Kerr et al., 2022), Octopi (Yu et al., 2024), TacQuad (Feng et al., 2025b) and
ToucHD. These datasets differ in terms of the tier in the tactile dynamic pyramid, the modalities
paired with tactile data, the sensors used for collection, and the data scale. We summarize them
in Tab. 5. Most of these open-source datasets are situated at the lower dynamic tiers 4 and 5,
and contain a large number of contact-static frames. As a result, there is a substantial amount of
redundant training data, particularly in the VisGel and ObjectFolder Real datasets. To address this
issue, we compute the variance of the Laplacian for each frame relative to its preceding frame, and
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Table 4: List of the 71 indenters and whether they are in ToucHD Bench.

Index Indenter In ToucHD
Bench Index Indenter In ToucHD

Bench
1 Semi-cylindrical ✗ 37 Small Pentagrams Array ✗

2 Wavy Cylindrical ✗ 38 Small Rectangular Bars ✗

3 Hexagonal ✗ 39 Large Ring ✗

4 Isosceles Trapezoidal ✗ 40 Rectangular Bar Array ✗

5 One-third cylindrical ✗ 41 Rectangular Holes ✗

6 Five-sixths Cylindrical ✗ 42 Star-shaped Holes ✗

7 Small Sphere ✗ 43 Elliptical Holes ✗

8 Heart-shaped ✗ 44 Radial Hole ✗

9 One-quarter Cylindrical ✗ 45 Dense Circular Holes ✗

10 Regular Triangular ✗ 46 Circular Holes ✗

11 Square Prism ✗ 47 Irregular Holes ✗

12 Cylindrical ✗ 48 Circular Hole Array ✗

13 Elliptical ✗ 49 Regular Pentagonal Holes ✗

14 Rectangular ✗ 50 Large Star-shaped Hole ✗

15 T-shaped ✗ 51 Small Rectangular Holes ✗

16 U-shaped ✗ 52 Teardrop-shaped Hole ✗

17 Cross-shaped ✗ 53 Large Circular Hole ✗

18 Isosceles Triangular ✗ 54 Cross-shaped Hole ✗

19 Ring-shaped ✗ 55 Diamond-shaped Holes ✗

20 Raised Elliptical ✗ 56 Dense Small Holes ✗

21 Five Small Spheres ✗ 57 S-shaped Holes ✗

22 Small sphere Array ✗ 58 Teardrop ✗

23 Square Holes ✗ 59 Moon-shaped ✗

24 Triangular Hole ✗ 60 Rectangular Bar ✗

25 Regular Hexagonal Hole ✗ 61 Pentagram ✗

26 Moon-shaped Hole ✗ 62 Elliptical ✓

27 Rectangular Holes ✗ 63 Right-angled Trapezoidal ✓

28 Raised Small Sphere ✗ 64 Small Square Array ✓

29 Small Ring ✗ 65 Rectangular Bar ✓

30 Pentagram-shaped Holes ✗ 66 Semicircular Hole Array ✓

31 Grid-like Gaps ✗ 67 T-shaped Hole Array ✓

32 Small Trapezoid Array ✗ 68 Dense Circular Holes ✓

33 Small Pentagons Array ✗ 69 Large Triangular Hole ✓

34 Small ellipse Array ✗ 70 Regular Octagonal ✓

35 Crescent-shaped ✗ 71 Clover-shaped ✓

36 Sun-like Cylindrical ✗

apply a threshold to select frames that capture more informative dynamic contact events. In addition,
to further reduce data redundancy and improve training efficiency, we perform interval sampling on
the YCB-Slide, Touch-Slide, and ToucHD (Mani) datasets, thereby significantly reducing the overall
volume of training data.

A.4 BENCHMARK AND BASELINE DETAILS

For downstream evaluation, we adopt Touch and Go (Yang et al., 2022) and Cloth (Yuan et al.,
2018) for object property understanding, and Sparsh (Higuera et al., 2025a) together with ToucHD
Bench (10 unseen indenter) for dynamic physical understanding. These benchmarks cover three
mainstream optical tactile sensors: GelSight (Yuan et al., 2017), DIGIT (Lambeta et al., 2020)
and GelSight Mini (Inc.). Touch and Go is a dataset for material recognition, while Cloth focuses
on clothing texture classification. Each of them contains 20 categories. Sparsh Bench comprises

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Training dataset statistics. V: Vision. L: Language. F: Force.

Dataset Dynamic
Tier

Paired
Modalities Sensor Total Size Used Size

Touch and Go (Yang et al., 2022) Tier 5 V, L GelSight 250k 250k
VisGel (Li et al., 2019) Tier 5 V GelSight 587k 121k
TVL (Fu et al., 2024) Tier 5 V, L DIGIT 39k 39k

SSVTP (Kerr et al., 2022) Tier 5 V, L DIGIT 4.5k 4.5k
YCB-Slide (Suresh et al., 2023) Tier 4 / DIGIT 183k 91k

Touch-Slide (Higuera et al., 2025a) Tier 4 / DIGIT 180k 81k
ObjectFolder Real (Gao et al., 2023) Tier 5 V, L GelSlim 1165k 71k

Octopi (Yu et al., 2024) Tier 4 L GelSight Mini 39k 39k

TacQuad (Feng et al., 2025b) Tier 4 V, L
GelSight, DIGIT

GelSight Mini
DuraGel

55k 47k

ToucHD (Sim) Tier 3 /

GelSight, DIGIT
GelSight Mini

GelSlim
DuraGel

1119k 252k

ToucHD (Mani) Tier 2 V DIGIT, DuraGel
GelSight Mini 585k 182k

ToucHD (Force) Tier 1 L, F DIGIT, DuraGel
GelSight Mini 722k 248k

three dynamic perception tasks: force prediction, slip detection, and pose estimation. For the force
prediction task, the training set consists of data collected with sphere and sharp indenters, while data
from the unseen flat indenter is used for testing. In the slip detection task, an additional objective is
included, namely predicting the total contact force change over tactile frames. For all Sparsh tasks,
we use the official data splits.

Due to the limited diversity of indenter shapes in Sparsh Bench, we additionally select 10 probes
from the full set of 71 collected touch–force paired probes to form the ToucHD Bench dataset (which
is not included in the pre-training data), as shown in Tab. 4. Among these, 7 indenters are used for
training and 3 for testing (Right-angled Trapezoidal, Small Square Array and Large Triangular Hole
indenters). This setup allows us to more comprehensively evaluate the model’s perception of force-
related physical properties through the force prediction task.

We compare our AnyTouch 2 model with several representative tactile representation learning frame-
works: UniTouch (Yang et al., 2024) and T3 (Zhao et al., 2025b), which use single tactile images
as input, as well as MAE (Sparsh) (Higuera et al., 2025a), VJEPA (Sparsh) (Higuera et al., 2025a)
and AnyTouch 1 (Feng et al., 2025b), which leverage multiple consecutive frames as input. Uni-
Touch implicitly integrates multi-sensor representations into a unified space through tactile–visual
alignment and learns tactile properties from vision. T3 is a multi-task, multi-sensor joint train-
ing framework in which all sensors share a common chunk. During training, both methods take
single-frame tactile images as input and cannot directly handle multiple consecutive tactile frames.
Therefore, when feeding two consecutive tactile frames to these models, we unfold them along the
batch dimension. MAE (Sparsh) and VJEPA (Sparsh) are two visual self-supervised learning mod-
els trained on tactile data in (Higuera et al., 2025a). They take 2 frames and 4 frames as input,
respectively, and thus possess preliminary dynamic perception capabilities. However, since their
training data constitute only a subset of AnyTouch 2, to fairly compare and simultaneously evaluate
the benefits of our ToucHD dataset, we additionally trained an MAE (Sparsh)† model on the same
training data including ToucHD as AnyTouch 2 to serve as a baseline.

A.5 IMPLEMENTATION DETAILS

We build our encoders on top of OpenCLIP-Base (Cherti et al., 2023). For the tactile decoder, we
adopt a Vision Transformer (ViT) (Dosovitskiy et al., 2020) with 6 layers, 8 attention heads, and a
hidden dimension of 512. Model optimization is performed using AdamW (Loshchilov, 2017) with a
learning rate of 3×10−4 and a batch size of 64. After a warm-up of 1 epoch, we apply a linear decay
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schedule to the learning rate. All pre-training experiments are conducted on 4 NVIDIA H100 GPUs.
For most tactile sensors operating at 30 Hz, we subsample every other frame and use a sequence of
N = 4 frames as the input at time step t, i.e., T = (Tt−6, Tt−4, Tt−2, Tt). For the GelSight Mini,
which operates at approximately 18 Hz, we instead use four consecutive frames as input. In the two
masked reconstruction tasks, we set the masking ratio to ρ = 0.75. During the alignment, we use
alignment strengths of αTV = αTL = 0.2. The model is trained for a total of 40 epochs: at epoch
20, we introduce cross-sensor matching, action matching, and force prediction tasks (iMatch = iForce),
and at epoch 30, we further incorporate the aligning task (iAlign). The maximum task weights are
set to λmax

Align = 1.0, λmax
Match = 0.02, and λmax

Force = 0.1. Following (Feng et al., 2025b), we use L = 5
sensor tokens for each type of sensor, with the probability of using universal sensor tokens increasing
linearly from 0 to 0.75. During training, if a sample lacks the label required for a specific training
objective, it is excluded from the loss computation for that objective. Since completing matching
tasks requires feeding both positive and negative samples into the encoder simultaneously, we fix the
proportion of samples in each batch that participate in the matching tasks to stabilize GPU memory
usage. For the Cloth Task, Sparsh Bench, and ToucHD Bench, we freeze the tactile encoder and
evaluate its representations using an attentive probe, following (Higuera et al., 2025a). In TAG and
Cloth tasks, we input consecutive N = 4 frames (Tt−3, Tt−2, Tt−1, Tt. to our AnyTouch 2 models.
For other dynamic models, we input N = 2 frames (Tt−3, Tt. For the static models that only accept
single-frame input, we ensured a fair comparison by processing the same N = 2 frames for these
models. Specifically, the N frames were temporally unfolded into a batch of B × N independent
samples for the static model. The final prediction was then obtained by averaging the output features
across all N frames for each original sample.

A.6 REAL-WORLD TASK SETUP

To evaluate the practical effectiveness of our model, we design a set of four real-world manipulation
tasks that comprehensively cover the dynamic tactile capabilities defined by our tactile dynamic
pyramid. Each task targets different levels of tactile perception, ranging from object-level property
understanding to fine-grained, force-sensitive dexterous manipulation:

Tactile Grasping (Tier 5: Basic Tactile Properties). In this task, the robot is required to grasp
small balls of two different materials and textures and place them into the corresponding boxes.
Successful completion demands an accurate perception of object tactile properties such as material
stiffness, hardness, and surface texture during manipulation. A particular challenge arises from one
ball’s smooth surface, which requires the robot to continuously monitor fine-grained deformation
feedback and adapt its gripping force in real time to prevent slippage. Furthermore, hesitation or
oscillations in movement direction can destabilize the grasp and lead to dropping the ball. This task
therefore evaluates the model’s ability to differentiate objects based on static tactile attributes and
leverage contact cues for stable manipulation in dynamic settings. We collect 50 human trajectories,
with synchronized vision and tactile data recorded as task inputs.

Whiteboard Wiping (Tier 4 & 3: Action-Specific Dynamics). In this task, the robot must use an
eraser to wipe letters off a whiteboard until the surface is completely clean. The process involves
structured contact interactions characterized by directional motions and temporally evolving tactile
feedback. A key challenge is that the robot has only a single opportunity to complete the wiping
action: if the applied force is inadequate, the letters cannot be fully erased, leaving no chance for
correction. This strict one-shot requirement forces the model to precisely perceive action-specific
tactile cues (e.g., sliding direction and applied pressure) and to adapt its wiping motion dynamically
throughout execution. It evaluates the model’s capacity for action-specific understanding during
manipulation. Since the dynamic perception capabilities corresponding to Tier 4 and Tier 3 are
typically coupled in real-world manipulation, we integrate these two tiers for joint evaluation. We
collect 50 human trajectories, simultaneously recording vision and tactile data as task inputs.

USB Insertion (Tier 2: Complex Manipulation Dynamics). In this task, the robot must extract a
USB connector from one port and insert it into another. The manipulation involves complex, multi-
directional deformations during both insertion and removal, and is particularly challenging due to
the extremely small tolerance of USB sockets for misalignment. A further difficulty arises from
the fact that collisions during extraction or re-insertion may alter the pose of the USB connector,
requiring the robot to continuously monitor subtle deformation feedback and dynamically adjust its
motion strategy in real time. Success depends on accurately perceiving the subtle temporal changes
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in contact and adapting to dynamic shifts in alignment, thereby testing the model’s ability to process
continuous tactile deformations during the manipulation process. We collect 50 human trajectories,
with synchronized vision and tactile data recorded as task inputs.

Chip Moving (Tier 1: Force-Sensitive Manipulation Dynamics). Here, the robot delicately picks
up a single chip from the top of a bottle and transfers it to another bottle, ensuring the chip remains
intact. This task involves small displacements between the chip and the sensor and requires extreme
sensitivity to minute force variations and precise dynamic control during contact. During manipu-
lation, visual observations are partially occluded, and the robotic arm must primarily rely on tactile
feedback to control the gripper’s closure and the downward placement depth, in order to prevent the
chips from being crushed. It primarily tests the model’s capacity for high-resolution, force-aware
tactile perception and fine-grained dexterous manipulation. Since the surface of the DIGIT sensor
is relatively rigid, the deformation is not clearly visible when grasping the chip with small forces.
Therefore, we only use the GelSight Mini for testing in this task. We collect 50 human trajectories,
simultaneously recording vision and tactile data as task inputs.

In the Tactile Grasping and Chip Moving tasks, the gripper of the robotic arm does not initially
grasp the object but instead maintains a certain distance from it. This is because determining tactile
attributes and grasping fragile objects based on tactile inputs at different contact locations is itself the
core challenge of these two tasks. In contrast, for the Whiteboard Wiping and USB Insertion tasks,
the primary role of the tactile modality lies in the manipulations performed after the object has been
grasped, rather than in the grasping action itself. Therefore, in these two tasks, the gripper starts
by firmly holding the object to be manipulated. Moreover, among the four real-world manipulation
tasks, three of them inherently involve slip dynamics, including Whiteboard Wiping, USB Insertion,
and Chip Moving. These displacements are subtle but critical, and cannot be perceived easily using
force sensors. In summary, these four tasks provide a comprehensive evaluation of the model’s
ability to capture material properties, textures, and fine-grained geometric details.

For the Tactile Grasping, Whiteboard Wiping, and USB Insertion tasks, experiments are conducted
using the AGILEX Piper robotic arm equipped with GelSight Mini and DIGIT sensors on the fin-
gertips. The Chip Moving task is performed on the uFactory xArm 6 for higher precision and
embodiment diversity with GelSight Mini sensors on the fingertips, enabling comprehensive eval-
uation across different embodiments and sensor types. In each scenario, a third-person camera
records visual information. For all real-world manipulation tasks, we used a frozen ImageNet-
pretrained (Deng et al., 2009) ResNet-50 (He et al., 2016) as the visual encoder. We use an UNet-
based Diffusion Policy (Chi et al., 2023) as our policy head and freeze all the tactile encoders during
training. The diffusion policy adopted UNet channel sizes of [128,256,512], a positional encoding
size of 256, a kernel size of 5, and 8 GroupNorm (Wu & He, 2018) groups. As the tactile encoder
produces a large number of tokens, directly training the policy network on the full token sequence
could bring unacceptable costs of GPU memory and time. Hence, we inserted a trainable attentive
pooler between each tactile encoder and the diffusion policy. The pooler uses 30 learnable query to-
kens to extract information from the full tactile token sequence via cross-attention. These 30 pooled
tokens then replace the full tactile token sequence as the input to the policy network and are con-
catenated with the visual features after flattening. We trained the policy network using the AdamW
optimizer with a learning rate of 1 × 10−4, for a total of 100 epochs and a batch size of 64. For
each task, we randomly sampled 8 trajectories out of 50 as the validation set, and the model with the
lowest validation loss was used for real-world evaluation. Due to the high real-time requirements of
these tasks, we adopt an action chunking horizon of 8 and predict actions at a frequency of 3 Hz,
executing only the first 2 actions at each inference step.
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A.7 MULTI-MODAL ALIGNING LOSS

Following (Feng et al., 2025b), we maximize the utilization of paired data by selecting, within each
batch, the largest available subset for every modality combination to perform multi-modal alignment.
Specifically, let (xT , xV , xL) denote uni-modal representations obtained from their respective en-
coders, where xT ∈ Rd is the tactile representation, xV ∈ Rd ∪ ∅ is the visual representation, and
xL ∈ Rd ∪∅ is the textual representation. We then conduct multi-modal alignment (Radford et al.,
2021) within the batch as:

LT→V = − 1

|ΩV |
∑
i∈ΩV

log
exp(x⊤

T,i · xV,i/τ)∑
j∈ΩV

exp(x⊤
T,i · xV,j/τ)

,

LV→T = − 1

|ΩV |
∑
i∈ΩV

log
exp(x⊤

V,i · xT,i/τ)∑
j∈ΩV

exp(x⊤
V,i · xT,j/τ)

,

LT→L = − 1

|ΩL|
∑
i∈ΩL

log
exp(x⊤

T,i · xL,i/τ)∑
j∈ΩL

exp(x⊤
T,i · xL,j/τ)

,

LL→T = − 1

|ΩL|
∑
i∈ΩL

log
exp(x⊤

L,i · xT,i/τ)∑
j∈ΩL

exp(x⊤
L,i · xT,j/τ)

.

(8)

Here, B denotes the batch size, ΩV and ΩL are the index sets corresponding to samples that contain
visual and textual inputs, respectively, and τ is the temperature parameter. Finally, the overall multi-
modal alignment loss is defined as the weighted sum of all directional objectives:

LAlign =
αTV

2
(LT→V + LV→T ) +

αTL

2
(LT→L + LL→T ), (9)

where αTV , αTL are hyper-parameters to control the aligning strength.

A.8 FORCE PREDICTION EVALUATION

To provide a more intuitive comparison of the performance of different baselines and our AnyTouch
2 model on the force prediction task in ToucHD Bench, we visualize the 3D force probe results of all
models on the DIGIT and GelSight Mini subsets. The results are shown in Fig. 11, 12, 13, 14, 15,
and 16. Although the T3 model is pre-trained on a large amount of tactile data, this data comes
from the lower tiers (Tier 4 and 5) of the tactile dynamics pyramid and does not involve training
with consecutive frames for dynamic perception. Consequently, the model shows no advantage over
the CLIP model without tactile pre-training in the force prediction task. Compared with the CLIP
model, the prediction results of MAE(Sparsh) and VJEPA(Sparsh), which take multi-frame inputs,
are noticeably more accurate. However, they still exhibit considerable bias in predicting tangential
forces along the X and Y directions, indicating insufficient perception of sliding dynamics. For the
AnyTouch series, the AnyTouch 1 model, which primarily focuses on static tactile features, achieves
relatively accurate predictions in the Z-axis normal direction but performs poorly on tangential force
prediction in the X and Y directions. In contrast, our AnyTouch 2 model, equipped with multi-level
dynamic enhanced modules that incorporate force-related tactile dynamics and trained on the higher-
tier ToucHD dataset, demonstrates superior performance on our ToucHD Bench, achieving precise
force prediction across all three directions.
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(a) DIGIT

(b) GelSight Mini

Figure 11: 3D Force Probe Results of CLIP on ToucHD Bench Force Prediction.

(a) DIGIT

(b) GelSight Mini

Figure 12: 3D Force Probe Results of T3 on ToucHD Bench Force Prediction.
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(a) DIGIT

(b) GelSight Mini

Figure 13: 3D Force Probe Results of MAE (Sparsh) on ToucHD Bench Force Prediction.

(a) DIGIT

(b) GelSight Mini

Figure 14: 3D Force Probe Results of VJEPA (Sparsh) on ToucHD Bench Force Prediction.
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(a) DIGIT

(b) GelSight Mini

Figure 15: 3D Force Probe Results of AnyTouch 1 on ToucHD Bench Force Prediction.

(a) DIGIT

(b) GelSight Mini

Figure 16: 3D Force Probe Results of AnyTouch 2 on ToucHD Bench Force Prediction.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 6: Comparison between AnyTouch 2 trained with our pyramid-driven strategy and
non–pyramid-driven baselines.

Method Data
Size

Object Bench Sparsh Bench ToucHD Bench
TAG Cloth Slip (Delta Force) Force Force

Acc(↑) Acc(↑) F1 Score(↑) / RMSE(↓) RMSE(↓) RMSE(↓)
GS GS DG Mini DG Mini DG Mini

AnyTouch 2 248k 69.97 40.82 85.13 / 94.34 97.80 / 106.89 679.77 232.45 960.58 1153.19
→ Tier 4&5 Only 744k 68.92 40.39 84.16 / 110.68 97.67 / 136.36 783.64 257.95 2448.89 2982.46
→ Tier 1 Only 248k 61.81 36.62 84.45 / 98.26 97.60 / 115.32 699.12 240.26 987.91 1172.69

- task scheduling 248k 69.24 39.91 76.92 / 100.34 97.20 / 139.13 690.39 252.68 1023.67 1342.75

Table 7: The impact of ToucHD in AnyTouch 2 on real-world manipulation tasks.

Method Dynamic
Tier

Tier 5 Tier 4 & 3 Tier 2 Tier 1
Tactile Grasping Whiteboard Wiping USB Insertion Chip Moving
DG Mini DG Mini DG Mini Mini

AnyTouch 2 Tier 1 0.75 0.80 0.85 0.80 0.30 0.25 0.85
- ToucHD Tier 4 0.70 0.75 0.75 0.70 0.20 0.15 0.70

A.9 ABLATION STUDY

In the ablation study shown in Tab. 2, we found that removing the multi-modal alignment module
leads to a significant performance drop on the two material understanding datasets in Object Bench,
but it improves performance on most of the dynamic physical perception datasets. This is due to the
substantial difference in label granularity between the two types of tasks. The text labels currently
used for multi-modal alignment contain only coarse-grained object attributes, such as general shape,
material, hardness, and roughness, but they do not include fine-grained physical quantities related to
contact, such as contact force or pressing speed. As a result, an obvious consequence arises: during
multi-modal alignment, samples of the same object pressed with different forces are pulled closer
together. This is undesirable for downstream tasks that require distinguishing between different
levels of contact force. This issue is actually common in CLIP-style vision–language alignment
paradigms (Maninis et al., 2024; Jing et al., 2024; Xie et al.). As the text labels are coarse-grained,
multi-modal alignment can lead to suboptimal fine-grained visual perception.

In training AnyTouch 2, two key components are directly guided by the Tactile Dynamic Pyramid:
(1) We deliberately select training data that span all tiers of the pyramid. (2) Our task scheduling
strategy coordinates the learning of the multi-modal alignment (mainly Tier 4+5 data), action match-
ing (mainly Tier 3 data), and force prediction modules (mainly Tier 1 data). Therefore, to compare
pyramid-driven training against training without tiers and thereby demonstrate the value of the Tac-
tile Dynamic Pyramid, we conducted evaluations on four different models: (1) AnyTouch 2 trained
on a randomly sampled subset of 248k samples from the full training dataset. This model represents
a pyramid-driven method, trained on a data size comparable to that of the other baselines for a fair
comparison. (2) AnyTouch 2 trained using only Tier 4+5 data (744k samples in total). This base-
line represents the mainstream paradigm of tactile representation learning before the introduction of
our Tactile Dynamic Pyramid and the ToucHD dataset. (3) AnyTouch 2 trained using only Tier 1
data (248k samples in total). This baseline corresponds to the unified model on pooled data with
task-specific supervision. (4) AnyTouch 2 without task scheduling strategy (248k samples in total).
This baseline represents a training setup in which the model does not follow the pyramid-guided,
tier-by-tier task curriculum. Instead, all training objectives are activated and optimized jointly from
the very beginning of training. We conducted comprehensive comparisons across all offline bench-
marks, and the results are presented in Tab. 6. The results demonstrate three key findings: (1) The
baseline trained only on Tier 4+5 data performs substantially worse than AnyTouch 2 across all
tasks, highlighting the importance of high-tier data (such as our ToucHD dataset) emphasized by
the tactile dynamic pyramid. (2) The baseline trained only on Tier 1 data for force prediction tasks
fails to outperform AnyTouch 2 on any force-related tasks in Sparsh Bench or ToucHD Bench. This
indicates that the tactile dynamic pyramid provides essential guidance on the comprehensive use of
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Table 8: The impact of ToucHD (Mani) in AnyTouch 2 on real-world manipulation tasks.

Method
Tier 2 Tier 1

USB Insertion Chip Moving
DG Mini Mini

AnyTouch 2 0.35 0.30 0.80
- ToucHD (Mani) 0.25 0.25 0.70

Table 9: The impact of ToucHD (Force) and its shear force labels in AnyTouch 2 on offline bench-
marks.

Frame
Number

Object Bench Sparsh Bench ToucHD Bench
TAG Cloth Slip (Delta Force) Force Force

Acc(↑) Acc(↑) F1 Score(↑) / RMSE(↓) RMSE(↓) RMSE(↓)
GS GS DG Mini DG Mini DG Mini

AnyTouch 2 76.97 42.31 86.66 / 87.80 97.96 / 80.83 624.26 202.14 894.32 1051.03
-Shear Force 76.32 42.18 86.08 / 97.25 97.89 / 96.33 675.83 232.34 1329.28 1707.41

-ToucHD (Force) 74.33 40.87 84.91 / 107.43 97.85 / 109.37 777.41 266.43 1792.49 2424.68

training data across tiers. (3) The baseline trained without our task scheduling strategy also under-
performs AnyTouch 2 on all benchmarks, demonstrating the value of the tactile dynamic pyramid
in guiding the design of model training strategy. Together, these results underscore the valuable
guidance provided by our proposed tactile dynamic pyramid.

We also evaluate the contribution of the ToucHD dataset to dynamic perception in real-world ma-
nipulation tasks. As shown in Tab. 7, when the ToucHD dataset is removed from the training data,
the model consistently exhibits performance drops across all manipulation tasks, particularly for
higher-tier tasks (Tier 1, 2, and 3) that correspond to the ToucHD dataset. As our ToucHD (Mani)
is the only Tier 2 dataset and is supposed to contains a large number of tactile dynamic deforma-
tion patterns commonly observed during real manipulation. Hence, to quantify the contribution of
this Tier 2 data to manipulation performance, we conducted ablation studies on the USB Insertion
and Chip Moving tasks. Both tasks involve a variety of dynamic deformation patterns drawn from
the 46 tasks in ToucHD (Mani), including pressing, sliding, interactions with fragile objects, and
overcoming stiction. The results are presented in Tab. 8. The results show that removing the only
Tier 2 dataset from the training data leads to a performance drop in both manipulation tasks. This
demonstrates that incorporating Tier 2 training data indeed enables the model to better perceive the
dynamic tactile characteristics that arise during real-world manipulation.

To further evaluate the impact of Tier 1 data and its shear force labels on downstream tasks, we
conducted comparisons across all offline benchmarks and two real-world manipulation tasks. The
results are presented in Tab. 9 and 10. The results show that Tier 1 data, along with its shear
force labels, make a clear contribution to various downstream dynamic perception tasks, including
force prediction and real-world manipulation tasks. The consistent performance drop observed when
removing the shear force labels further highlights the importance of collecting and predicting both
shear and normal forces simultaneously. To more precisely quantify the contribution of the shear
force labels in the ToucHD (Force) dataset to downstream 3D force prediction tasks—including both
shear and normal forces, we also report the prediction errors along each force direction on Sparsh
Bench and ToucHD Bench after removing either the ToucHD (Force) dataset entirely or only its
shear force labels. The results are shown in Tab. 11 and 12. The results show that removing the
shear force labels has a significant impact on the prediction performance along the x and y axes
(shear forces) in downstream tasks. Training the model using only z-axis (normal force) labels is
clearly insufficient to support accurate shear force prediction. This highlights the advantage of our
ToucHD dataset in providing both normal and shear force labels.

Another important parameter of the model is the number of input frames N . To evaluate the impact
of the input frame count on the model’s dynamic perception capability, we compare the performance
of our AnyTouch 2 model using 4-frame inputs versus using only 2-frame inputs across all bench-
marks. As shown in Tab. 13, the model using 4-frame inputs outperforms the 2-frame variant across
all tasks, indicating that denser dynamic tactile information benefits dynamic tactile perception.
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Table 10: The impact of ToucHD (Force) and its shear force labels in AnyTouch 2 on real-world
manipulation tasks.

Method
Tier 2 Tier 1

USB Insertion Chip Moving
DG Mini Mini

AnyTouch 2 0.35 0.30 0.80
- ToucHD (Force) 0.25 0.20 0.70

- Shear Force in ToucHD (Force) 0.25 0.25 0.75

Table 11: Contribution of ToucHD (Force) and its shear force labels on the shear force and normal
force prediction tasks on Sparsh Bench

Method

Sparsh Bench
Force (RMSE(↓))

DG Mini
X (Shear) Y (Shear) Z (Normal) X (Shear) Y (Shear) Z (Normal)

AnyTouch 2 268.03 161.57 194.66 42.29 57.31 102.54
-Shear Force 302.58 176.60 196.65 58.18 67.73 106.43

-ToucHD (Force) 308.18 215.56 253.67 76.52 78.59 111.32

However, this also presents a trade-off with computational cost, as using 4 frames nearly doubles
the token sequence length compared to 2 frames.

A.10 HYPER-PARAMETER STUDY

Our training process incorporates multiple objectives and brings additional hyper-parameters λmax
task

and itask. To evaluate the stability of our model under hyper-parameter variations, we train and eval-
uate the model under different hyper-parameter settings. Specifically, we fix the setting of λmax

Align =

1.0, λmax
Match = 0.02, λmax

Force = 0.1, iAlign = 30(Epoch), iMatch = 20(Epoch), iForce = 20(Epoch)
as the anchor configuration, and in each experiment we change only one hyper-parameter at a time.
The evaluation results are presented in Tab. 14. The findings indicate that our model is not sensi-
tive to these hyper-parameters: although minor fluctuations and noticeable peaks exist, within each
parameter’s feasible range, our model consistently outperforms the baselines.

We also present the full training loss curves for each task and the overall objective in our AnyTouch
2 model in Fig. 17. It can be observed that the loss for each training objective decreases smoothly.
We also observe that the Force Loss LForce and Matching Loss LMatch occasionally become zero for
a few iterations after these tasks start. This behavior is expected and stems from how we designed
the sampler to stabilize GPU memory usage, as described in Appendix A.4. Since the matching task
requires feeding both positive and negative samples into the encoder simultaneously, we modified
the sampler to fix the proportion of ToucHD (Force), ToucHD (Sim), and TacQuad samples used for
matching in each batch. However, because the sampler prioritizes satisfying the matching sample
ratio, a small number of batches (similar to “the last batch”) may end up containing no matching
samples, resulting in zero Matching Loss and Force Loss. Importantly, this does not affect training
because such batches are extremely rare, and when using multi-GPU training, the probability that
all GPUs simultaneously receive a batch without these samples is negligible.

A.11 CROSS-SENSOR GENERALIZATION

To validate our model’s ability to extract sensor-invariant features, we conduct additional experi-
ments on the USB Insertion task by switching the tactile sensor at test time. Specifically, we eval-
uated two settings: (1) fine-tuning the policy network using GelSight Mini data but testing with a
DIGIT sensor, and (2) fine-tuning with DIGIT data but testing on a GelSight Mini sensor. We com-
pare our AnyTouch 2 model with T3 baseline and both of the encoders are frozen during fine-tuning.
This setup is similar to CTTP (Rodriguez et al., 2025). However, since CTTP is trained using spa-
tially aligned samples ( collected at exactly the same contact location) from different sensors, while
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Table 12: Contribution of ToucHD (Force) and its shear force labels on the shear force and normal
force prediction tasks on ToucHD Bench.

Method

ToucHD Bench
Force (RMSE(↓))

DG Mini
X (Shear) Y (Shear) Z (Normal) X (Shear) Y (Shear) Z (Normal)

AnyTouch 2 285.89 334.37 274.06 273.48 397.17 380.38
-Shear Force 433.24 594.77 301.26 443.54 820.00 443.87

-ToucHD (Force) 530.30 708.32 553.86 730.16 1012.12 682.40

Table 13: The impact of the number of input frames in AnyTouch 2 on offline benchmarks.

Frame
Number

Object Bench Sparsh Bench ToucHD Bench
TAG Cloth Slip (Delta Force) Force Force

Acc(↑) Acc(↑) F1 Score(↑) / RMSE(↓) RMSE(↓) RMSE(↓)
GS GS DG Mini DG Mini DG Mini

4 Frames 76.97 42.31 86.66 / 87.80 97.96 / 80.83 624.26 202.14 894.32 1051.03
2 Frames 74.15 40.76 86.60 / 83.15 97.85 / 89.21 643.91 208.41 1076.33 1311.27

our model uses only coarsely aligned samples (collected at nearby contact locations) and addition-
ally incorporates other training data sources, the training data used by the two approaches are not
comparable. As a result, it is difficult to conduct a fair comparison, and therefore we do not include
a comparison with this method. The results shown in Tab. 15 indicate that when changing the sensor
during the test time, our AnyTouch 2 model still outperforms the T3 baseline. This indicates that our
model possesses stronger sensor-invariant capabilities than T3. These capabilities primarily bene-
fit from three factors: the integration of large-scale multi-sensor data during training, the unified
background removal applied during preprocessing, and the explicit aggregation of representations
from different sensors enabled by the multi-modal alignment and cross-sensor matching modules
in our model (which follow the same core principles as Contrastive Touch-to-Touch Pretraining).
However, we also acknowledge that relying solely on coarsely aligned samples for cross-sensor
matching makes it difficult to maintain performance when switching sensors, especially compared
with cross-sensor contrastive learning using spatially aligned samples.

To further evaluate our model’s robustness to changes in the gel pads of the sensors, we also tested
our model on the USB Insertion and Chip Moving tasks using GelSight Mini Sensor. After complet-
ing data collection and model training, we replaced the GelSight Mini’s gel pad only at test time.
The experimental results are shown in Tab. 16. We observe that replacing the gel pad causes only a
minor performance drop. This further demonstrates the sensor-invariant capability of our model.

A.12 LIMITATIONS

Our work still has several limitations that open avenues for future exploration:

• Unexplored sensors within the ToucHD dataset. During data collection, we included two
marker-based optical tactile sensors, DM-Tac W and GelStereo BioTip. Notably, GelStereo
BioTip is also a spherical sensor, which differs significantly in structure from other planar
tactile sensors. However, these additional data remain unexplored and are not utilized in
the present study. Incorporating them in future work may further enrich the diversity of
tactile representations.

• The force data collection setup can be further improved. paired tactile–force data can
only be collected by moving a specially designed indenter across the sensor surface, which
restricts interactions to simplified conditions and excludes a broad range of everyday ob-
jects. A more advanced setup capable of capturing tactile–force data during natural object
manipulations would significantly enhance the diversity of the dataset.

• Underutilization of multi-sensor paired manipulation data.. Although we collect multi-
sensor paired data through specifically designed UMI, in this work they are only fed into
the model and aligned with the corresponding visual modality, without introducing special-
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Table 14: Hyper-parameter study on λmax
task and itask

Parameter Value

Object Bench Sparsh Bench ToucHD Bench
Cloth Force Force
Acc(↑) RMSE(↓) RMSE(↓)

GS DG Mini DG Mini

λmax
Align

0.5 41.97 621.95 204.98 902.54 1076.93
1.0 42.31 624.26 202.14 894.32 1051.03
2.0 40.13 644.81 220.53 1054.97 1195.62
4.0 39.49 671.99 235.64 1096.87 1265.71

λmax
Match

0.01 42.01 631.75 206.98 913.89 1084.42
0.02 42.31 624.26 202.14 894.32 1051.03
0.05 41.67 640.46 210.93 907.52 1077.11
0.1 41.92 635.89 215.67 910.13 1085.62

λmax
Force

0.05 42.15 630.69 210.82 923.38 1079.62
0.1 42.31 624.26 202.14 894.32 1051.03
0.2 41.71 645.93 220.77 900.90 1012.45

iAlign
20 (Epoch) 41.55 657.13 232.35 1036.99 1231.94
30 (Epoch) 42.31 624.26 202.14 894.32 1051.03

iMatch

10 (Epoch) 41.24 632.98 207.16 909.88 1072.65
20 (Epoch) 42.31 624.26 202.14 894.32 1051.03
30 (Epoch) 41.89 635.17 205.72 916.25 1085.28

iForce

10 (Epoch) 42.12 670.82 225.76 925.76 1048.75
20 (Epoch) 42.31 624.26 202.14 894.32 1051.03
30 (Epoch) 42.01 651.79 196.09 936.41 1206.84

Table 15: Cross-sensor generalization results on the USB Insertion task.

Method Training
Sensor

Tier 2
USB Insertion
DG Mini

T3
DG

0.15 0.05
AnyTouch 2 0.35 0.15

T3
Mini

0.05 0.10
AnyTouch 2 0.15 0.30

ized architectures to exploit cross-sensor synergies. Beyond serving as a complementary
cue, the visual modality also holds potential as a predictor of future tactile signals, which
remains an underexplored direction.

• This work is still limited to general optical tactile sensors. Although achieving gen-
eral optical tactile representations is already a challenging and significant step, array-based
tactile sensors are also very common in robotics. Our framework does not yet integrate
such array-based modalities, and extending the model to handle heterogeneous tactile data
formats will be an important direction for future research.

A.13 LLM USAGE

We employed a large language model (LLM) solely for linguistic refinement of this manuscript,
such as grammar correction, phrasing improvement, and style polishing. The LLM was not involved
in research design, data collection, model development, experiments, or analysis. All scientific
contributions, results, and conclusions are entirely the work of the authors.
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Figure 17: Training loss curves for each task and for the overall objective.

Table 16: Generalization results on gel pad changes on GelSight Mini sensor.

Method Training
Gel Pad

Tier 2 Tier 1
USB Insertion Chip Moving

Gel Pad 1 Gel Pad 2 Gel Pad 1 Gel Pad 2

AnyTouch 2 Gel Pad 1 0.30 0.30 0.80 0.75
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