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Abstract

Resource-constrained sensing systems must balance data quality and energy con-
sumption, yet the interaction between low-bit sensor input and model architecture
remains poorly understood. We present a systematic evaluation of how Binary
Neural Networks (BNNs) and FP32 models respond to joint optimization of data
volume (via coresets) and input bit-precision (1–8 bit quantization). Our experi-
ments on CIFAR-10 reveal a surprising architectural difference: BNNs maintain
near-constant accuracy across all input bit-depths, whereas FP32 models degrade
predictably (84.7% at 8-bit to 56.0% at 1-bit). This bit-invariance property en-
ables BNNs to operate with variable-quality sensors without retraining, critical
for adaptive sensing scenarios. We identify 75% of training data at 4-bit precision
as an optimal operating point, achieving 87.5% resource reduction. At this point,
accuracy remains 82.60% for FP32 models and 66.01% for BNNs. Additionally,
Mean Hassanat Distance (MHD) between original and compressed weights exhibits
strong negative correlations for BNNs (-0.87 to -0.95 PLCC), revealing fundamen-
tal differences in how binary networks respond to compression. These findings
provide practical guidelines for deploying neural networks in energy-constrained
environments with dynamically varying sensor quality, advancing the co-design of
sensors and models for efficient machine perception.

1 Introduction and Related Works

Mobile robots navigating disaster zones must process visual data under severe power constraints Chen
et al. (2024); Queralta et al. (2020). Autonomous vehicles need to adapt their sensing precision based
on weather conditions Yao et al. (2023); Mus, at et al. (2021). IoT devices monitoring infrastructure
must operate for years on limited batteries Bouguera et al. (2018). These scenarios share a fundamental
challenge: how can we maintain acceptable task performance while dramatically reducing the energy
cost of sensing?

Current approaches treat sensor design and neural network optimization as separate problems. Sensors
are typically designed to capture high-quality data for human perception Mennel et al. (2020), while
neural networks are optimized assuming fixed input quality Chen et al. (2024); Liao et al. (2021).
This separation misses a critical opportunity-jointly optimizing how we sense and how we process
can lead to surprising efficiencies. In this work, we systematically explore what happens when
we simultaneously reduce both data volume (through coresets) and data precision (through bit
quantization) across different neural architectures.

Our experiments reveal an unexpected finding that challenges conventional wisdom: Binary Neural
Networks (BNNs) are essentially blind to input bit-depth. Whether processing 8-bit images or
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1-bit silhouettes, BNNs maintain remarkably stable accuracy (65-69%). Meanwhile, standard FP32
networks suffer catastrophic degradation, dropping from 84.7% to 56.0% accuracy. This discovery
has profound implications, a single BNN model can handle sensors of varying quality without
modification, enabling truly adaptive sensing systems.

Consider a practical scenario: a drone performing search-and-rescue operations. During daylight with
full battery, it captures 8-bit images for maximum detail. As battery depletes or visibility decreases,
it seamlessly switches to 4-bit or even 1-bit sensing, extending operational time while maintaining
usable performance. With FP32 models, this would require multiple models or accept severe accuracy
loss. With BNNs, the same model handles all conditions.

Related Work. The intersection of efficient sensing and deep learning has attracted significant
attention. Diamond et al. Diamond et al. (2021) demonstrated that image signal processors designed
for human vision discard information valuable for machine perception. LiKamWa et al. (2016)
showed that analog processing before digitization can reduce energy by 85% for vision tasks.

Network quantization has progressed from 8-bit implementations Jacob et al. (2018) suitable for
mobile deployment to extreme 1-bit networks Courbariaux et al. (2016); Rastegari et al. (2016).
While these works demonstrate that binary weights can maintain reasonable accuracy, the interaction
between weight quantization and input precision remains unexplored. Hubara et al. (2016) studied
quantized networks but focused on weight/activation quantization, not input bit-depth effects.

Coreset selection Mirzasoleiman et al. (2020); Pooladzandi et al. (2022) reduces training data while
preserving model performance, but prior work assumes high-quality inputs. The joint optimization of
data quantity and quality represents an unexplored dimension.

Model similarity metrics Kornblith et al. (2019); Raghu et al. (2017) traditionally assume continuous
weights. Our work reveals these metrics behave fundamentally differently for binary networks,
showing strong negative correlations that indicate inverse relationships between weight changes and
performance.

Contributions. This work makes the following contributions:

• We propose a systematic framework to evaluate joint optimization of input bit-depth (k ∈
{8, 6, 4, 2, 1}) and data volume via coreset selection on FP32 and BNN models, revealing
fundamental architectural differences in response to sensor constraints.

• We discover bit-invariance in BNNs, showing they maintain 65-69% accuracy across all input
precisions while FP32 models degrade predictably (84.7% to 56.0%), enabling single-model
deployment for variable-quality sensors.

• We identify practical operating points for resource-constrained systems, demonstrating that
75% data with 4-bit precision achieves optimal efficiency (87.5% resource reduction) while
maintaining usable accuracy.

• We present valuable results showing weight-distance metrics exhibit inverse correlations for
BNNs (-0.87 to -0.95 PLCC), advancing understanding of binary network evaluation and
highlighting the need for architecture-specific metrics.

2 Proposed Method

We evaluate the impact of joint data-precision optimization on neural network performance, system-
atically varying input bit-depth and training data volume to understand architectural differences in
compression response.

2.1 Problem Description

We model the sensing stage as an input quantizer that reduces each RGB channel to k bits by zeroing
the least significant (8 − k) bits. Formally, given image tensor x ∈ [0, 255]H×W×C , we apply:
x(k) =

⌊
x

28−k

⌋
· 28−k, followed by normalization.

Let (X ,Y) denote the input-label spaces and P a distribution on X × Y . A reference network M0

with parameters θ0 implements a measurable map fM0
: X → ∆K−1, producing a probability
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distribution over K classes. We evaluate models on a finite test set S = {(xi, yi)}ni=1 drawn i.i.d.
from P . Classification accuracy is defined as:

Acc(M ;S) =
1

n

n∑
i=1

1
[
argmax fM (xi) = yi

]
, (1)

where 1 is the indicator function counting correct predictions. Equation (1) measures task per-
formance, critical for assessing sensor-model systems under low-bit data constraints. This metric
evaluates how well models retain classification accuracy when processing quantized sensor inputs,
simulating real-world sensor limitations.

We consider two compression modalities applied to M0: (i) coreset selection (data compression)
producing Mc, and (ii) input quantization (low-bit data capture) producing Mq. Each modality
r ∈ R := {c, q} is represented by an operator:

Cr(·;λ) : M → M, Mr,λ := Cr(M0;λ), (2)

parametrized by a compression budget λ ∈ Λr (coreset fraction α ∈
[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0] for r = c, or input bit-depth k ∈ {8, 6, 4, 2, 1} for r = q).
Equation (2) formalizes the transformation of the reference model into a compressed model,
capturing data reduction or quantization effects. For coreset selection, Cc trains M0 on a subset of
training data, simulating constrained sensor data acquisition. For quantization, Cq trains M0 on k-bit
inputs, mimicking low-bit sensor capture.

To quantify compression impact, performance degradation is measured as:

ADROPr,λ = Acc(M0;S)−Acc(Mr,λ;S) ∈ [0, 1]. (3)

Equation (3) computes the accuracy drop between the reference model M0 and compressed model
Mr,λ, directly measuring the impact of compression on task performance. This metric quantifies how
sensor constraints (e.g., low-bit data, limited samples) affect downstream tasks, guiding task-driven
sensor design.

The primary objective is to investigate whether compression correlates with retained task performance.
Let MSIMr,λ := MSIM(M0,Mr,λ) denote the similarity between original and compressed models.
For each modality r, we analyze the family {(MSIMr,λ,ADROPr,λ)}λ∈Λr

using correlation mea-
sures: Pearson (PLCC), Spearman (SRCC), and Kendall’s tau (KRCC). The pooled SRCC across all
modalities is:

ρall = Spearman
(
{MSIMr,λ}r∈R,λ∈Λr

, {ADROPr,λ}r∈R,λ∈Λr

)
. (4)

Equation (4) assesses whether higher similarity (lower MSIM) predicts lower accuracy drop, indicat-
ing preserved representational geometry. This objective of joint optimization, as strong correlations
suggest that sensor compression (e.g., low-bit quantization) can maintain task performance, critical
for energy-efficient systems.

2.2 Proposed Model Quality Metrics

To evaluate the quality of compressed neural networks, we propose the Mean Hassanat Distance
(MHD) metric to measure alignment with the original model’s representational geometry:

MHD(x, y) =
1

n

n∑
i=1

|xi − yi|
max(|xi|, |yi|) + c

, c = 1.0, (5)

where x and y are weight vectors of the original and compressed models, n is the number of weights,
and c = 1.0 ensures numerical stability. Equation (5) normalizes weight differences by the maximum
absolute value, making it robust to scale variations in FP32 models. For BNNs, where weights are
±1, this normalization may reduce sensitivity to task-relevant changes. Unlike standard metrics (e.g.,
L1, Jensen-Shannon), MHD balances robustness and sensitivity, making it suitable for evaluating
sensor-model systems under low-bit quantization.

MHD is computed by flattening model parameters into vectors and applying Equation (5), comparing
M0 to Mr,λ. We also evaluate standard metrics (L1, L2, Cosine, CKA, Hamming, Jensen-Shannon) to
benchmark MHD’s performance. High correlations between MHD and accuracy drop (Equation (3))
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indicate effective geometry preservation, critical for task-driven sensor design. MHD’s simplicity and
robustness make it a promising metric for optimizing sensor-model systems in energy-constrained
environments, such as mobile devices.

Our method quantifies the impact of low-bit quantization and coreset selection on model performance,
with MHD offering a novel metric for sensor-model evaluation. The framework supports energy-
efficient sensing in embedded systems, with results for BNNs guiding our metric design. By linking
geometric perturbations to task performance, we advance the co-design of sensors and models for
real-world applications.

3 Experimental Setup

This section details the experimental setup for evaluating the proposed metric, designed to quantify
weight divergence in neural networks under low-bit sensor data and reduced training sets (coresets).
The setup focuses on sensor optimization, quantization, and task-driven design, simulating real-
world constraints in mobile and embedded systems where efficient data capture and processing are
paramount.

Dataset. We conduct experiments on the CIFAR-10 dataset Krizhevsky et al. (2009), which includes
50,000 training and 10,000 test images of size 32× 32 across 10 classes. CIFAR-10 is widely used
in compression and quantization studies Han et al. (2015); Frankle and Carbin (1810), making it an
effective benchmark for evaluating low-bit sensor data processing. Its compact size and moderate
complexity facilitate efficient testing of quantization effects, though its low resolution may limit
generalization to high-resolution sensor data. Training images are augmented with random horizontal
flips and 4-pixel random cropping, and both training and test images are normalized using mean
[0.4914, 0.4822, 0.4465] and standard deviation [0.2470, 0.2435, 0.2616]. To simulate low-bit sensor
capture, input images are quantized to k ∈ {1, 2, 4, 6, 8} bits using the process described in previous
section, aligning with focus on low-bit data capture.

Model Architecture. We use a ResNet-18 architecture He et al. (2016), balancing expressivity and
computational efficiency, as demonstrated in prior compression studies Mirzasoleiman et al. (2020).
For FP32 models, we modify the first convolutional layer to use a 3 × 3 kernel with stride 1 and
padding 1, remove the max-pooling layer, and adjust the fully connected layer to output 10 classes.
For Binary Neural Networks (BNNs), we use weights constrained to {−1,+1} and apply a sign
activation function, reducing computational cost for low-power sensor systems Courbariaux et al.
(2016). ResNet-18’s residual connections and moderate depth make it ideal for studying the interplay
between low-bit sensor data and model weights, supporting joint sensor-model optimization tasks.

Training Implementation Details. Experiments are implemented in PyTorch on a Kaggle envi-
ronment with an NVIDIA Tesla P100 GPU. FP32 models are trained using SGD with momentum
0.9, weight decay 5 × 10−4, initial learning rate 0.01, batch size 128, and 10 epochs, following
standard CIFAR-10 baselines He et al. (2016). BNN models use Adam with learning rate 0.01 and
20 epochs to accommodate binarization constraints, as binary weights require more iterations to
converge Courbariaux et al. (2016). Early stopping with patience of 5 epochs prevents overfitting,
enhancing robustness for sensor-model systems. Random seeds are fixed at 42 for reproducibility.
These settings prioritize computational efficiency, with emphasis on energy-efficient sensing for
mobile and autonomous platforms.

Coreset Setup. Training subsets (coresets) are selected with fractions [0.75, 0.5, 0.25, 0.1, 0.05, 0.01]
using random sampling from the CIFAR-10 training set. Random sampling ensures simplicity and
reproducibility, though advanced coreset methods Mirzasoleiman et al. (2020) could enhance task-
driven selection, a direction for future work. Models are trained from scratch using the above
hyperparameters. Coresets simulate constrained data acquisition in sensor systems, such as mobile
devices with limited storage.

Evaluation. For each input bit-depth of 8, 6, 4, 2, and 1, we evaluate test accuracy on the CIFAR-10
test set. The input images are first scaled to the 0–255 range, then quantized to retain only the most
significant bits corresponding to the chosen bit-depth, effectively simulating low-bit sensor capture.
After quantization, the images are re-normalized to the [0, 1] range before being fed to the model.
This procedure reduces data precision while preserving task-relevant information. Test accuracy is
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Table 1: Test accuracy of FP32 and BNN models under varying input bit-depth (k-bit) and training
data fractions (coresets). Each entry shows the accuracy achieved when training with a specific
k-bit input and coreset percentage, highlighting how FP32 models degrade with lower bit-depth and
reduced data, while BNNs exhibit relative robustness across input precision levels.

Train k-bit FP32 BNN
100% 75% 50% 25% 10% 5% 1% 100% 75% 50% 25% 10% 5% 1%

8-bit 0.8466 0.8304 0.7742 0.6817 0.5356 0.4564 0.2540 0.6765 0.6492 0.5842 0.4932 0.3685 0.3373 0.2389
6-bit 0.8557 0.8262 0.7754 0.6906 0.5454 0.4556 0.2410 0.6616 0.6382 0.5547 0.5130 0.3270 0.3396 0.2136
4-bit 0.8491 0.8260 0.7655 0.6883 0.5238 0.4412 0.2556 0.6774 0.6601 0.5579 0.4526 0.3038 0.3419 0.2372
2-bit 0.7766 0.7351 0.6979 0.5606 0.4260 0.3084 0.2190 0.6889 0.6469 0.5705 0.4683 0.3039 0.3400 0.2748
1-bit 0.5598 0.4996 0.4528 0.2904 0.2301 0.1825 0.1669 0.6568 0.6512 0.5723 0.5155 0.3323 0.3439 0.2335

reported to assess model performance under these quantized inputs, although extending these results
to diverse or high-resolution datasets remains a future consideration.

Cross-Bit Testing Protocol. Models trained at bit-depth ktrain are tested across all bit-depths
ktest ∈ {1, 2, 4, 6, 8}, revealing robustness to variable sensor quality-critical for adaptive sensing
scenarios.

Evaluation Metrics. We assess compressed models using classification accuracy, accuracy drop, and
similarity metrics. Classification accuracy is the top-1 accuracy on the CIFAR-10 test set, measuring
task performance. Accuracy drop is defined as: ∆Acc = Acc(M0)−Acc(M), where Acc(M0) is the
accuracy of the original model (trained on full data), and Acc(M) is the accuracy of the compressed
model (trained on a coreset). Equation (3) quantifies performance degradation due to data reduction,
critical for evaluating sensor efficiency in constrained settings. Our proposed Mean Hassanat Distance
(MHD) measures weight divergence between the original and compressed models. Equation (5)
normalizes weight differences by the maximum absolute value plus a constant c, ensuring robustness
to scale variations in FP32 models. For BNNs, where weights are ±1, the normalization stabilizes
comparisons but may fail to capture task-relevant changes, leading to negative correlations.

We also evaluate L1, L2, Cosine, CKA, Hamming, and JS distances Lin (2002) for comprehensive
benchmarking. Correlation analysis uses Pearson (PLCC), Spearman (SRCC), and Kendall (KRCC)
correlations between similarity metrics and accuracy drop across coreset settings, following best
practices Kornblith et al. (2019); Neyshabur et al. (2018). MHD’s simplicity and robustness make
it a promising metric for FP32 sensor-model systems, though its limitations for BNNs guide future
metric design. Visualizations are generated using seaborn and matplotlib to illustrate neural
representation changes.

This setup evaluates low-bit quantization (k = 1 to 8) and coreset-based training, simulating real-
world sensor constraints. MHD offers a novel, task-driven metric for sensor-model evaluation, with
applications in energy-efficient mobile and autonomous systems. Negative correlation results for
BNNs provide insights for refining metrics, advancing joint sensor-model optimization.

4 Results and Discussion

We present experimental results evaluating the impact of low-bit input quantization and reduced
training data (coresets) on FP32 and Binary Neural Networks (BNNs) using CIFAR-10, with a focus
on the proposed Mean Hassanat Distance (MHD) metric. Our experiments simulate constrained
data acquisition in mobile and embedded systems. We analyze test accuracies, train-test bit-depth
interactions, sensing efficiency, robustness, and correlations to assess model performance and MHD’s
predictive power, providing insights for energy-efficient sensing.

We evaluate FP32 and BNN models with input bit-depths k ∈ {8, 6, 4, 2, 1} and coreset fractions
{1.0, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01}. Equation (1) measures task performance under low-bit sensor
constraints, critical for assessing model effectiveness in task-driven sensor design. Equation (3)
captures the impact of sensor constraints on performance, guiding the design of efficient sensors
for resource-constrained systems. The MHD metric, measures weight divergence between M0 and
Mr,λ, with x, y as weight vectors, n as weight count, and c ensuring numerical stability. Equation (5)
normalizes weight differences to assess representational geometry preservation, but its effectiveness
is limited for BNNs due to binary weight constraints (±1).
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Figure 1: Test accuracy matrices for 100% training data (full coreset). Each cell indicates accuracy
for a specific train-test bit-depth combination. The FP32 model (left) shows a strong diagonal pattern,
reflecting sensitivity to input bit-depth, whereas the BNN model (right) exhibits nearly uniform
values, demonstrating bit-invariance.

Figure 2: Test accuracy versus coreset percentage for FP32 (left) and BNN (right) models. Each
line corresponds to a specific input bit-depth (8-bit to 1-bit). FP32 models display clear separation
between bit-depths, indicating sensitivity to input precision, whereas BNN curves largely overlap,
demonstrating bit-invariance across training data fractions.

FP32 and BNN Performance Analysis. We analyze train-test bit-depth interactions to assess model
robustness to quantization mismatches, critical for real-world sensors with varying precision. Table 1
and Table 3 (Appendix A) reports accuracies for FP32 and BNN models across coreset fractions and
train-test bit-depths. Figure 1 visualizes accuracies for 100% coreset as heatmaps, where each cell
represents accuracy for a train-test bit-depth pair. We chose heatmaps to highlight patterns in accuracy
degradation, with color intensity reflecting performance levels. For FP32 models, the diagonal
concentration (e.g., 0.8466 at 8-bit train/test) indicates sensitivity to mismatches (e.g., 0.3716 at 8-bit
train/1-bit test), emphasizing the need for aligned sensor-model pipelines. BNNs’ uniform coloring
(e.g., 0.6765 to 0.6636 for 8-bit training) demonstrates robustness to test-time quantization, making
them suitable for low-bit sensor applications. This visualization illustrates how sensor precision
impacts performance in real-world systems .The uniform BNN heatmap reveals the bit-invariance
property that enables adaptive sensing .

Bit-Depth Impact on Data Efficiency. Table 1 shows test accuracies across bit-depths and coreset
fractions. For FP32 models, accuracy decreases with lower bit-depths (e.g., 0.8466 at 8-bit to 0.5598
at 1-bit for 100% data) and smaller coresets (e.g., 0.8466 at 100% to 0.2540 at 1% for 8-bit). BNNs
exhibit less sensitivity to bit-depth (e.g., 0.6765 at 8-bit vs. 0.6568 at 1-bit for 100% data-only
3%change versus FP32’s 29% drop ), but lower baseline accuracy (0.6765 vs. 0.8466 for FP32).
Figure 2 plots accuracy versus coreset fraction, with lines for each bit-depth. FP32 models show
clear separation by bit-depth (e.g., 8-bit outperforms 1-bit), while BNNs’ overlapping curves indicate
robustness to input bit-precision variations. This visualization underscores data efficiency challenges
in low-bit sensor systems, with focus on constrained data acquisition for embedded platforms.

Sensing Efficiency. We introduce sensing efficiency, defined as Accuracy/Bit, to evaluate perfor-
mance per bit of sensor data, critical for energy-constrained systems. Figure 3 plots sensing efficiency
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Figure 3: Sensing efficiency (accuracy per input bit) for FP32 (left) and BNN (right) models across
varying coreset percentages. FP32 efficiency decreases at lower bit-depths, reflecting sensitivity
to input precision, whereas BNNs maintain high efficiency across bit-depths, demonstrating bit-
invariance.

Figure 4: Robustness to input bit reduction across coreset percentages for FP32 (left) and BNN (right)
models. Each line represents a training bit-depth (8-bit to 1-bit). FP32 models exhibit decreasing
relative accuracy with smaller coresets, while BNNs maintain higher robustness across training data
fractions.

versus bit-depth for various coreset fractions, to highlight trends across input bit-depth levels. We
chose line plots to emphasize efficiency changes, with distinct line styles for coreset fractions to
ensure readability. For FP32 models, efficiency decreases at lower bit-depths (e.g., from 0.106 at
8-bit to 0.560 at 1-bit for 100% data), reflecting sensitivity to input bit-depth variations.Importantly
, BNNs maintain high efficiency at low bits (e.g., 0.656 at 1-bit), due to robustness, making them
suitable for low-bit sensors. This metric and visualization guiding sensor design for mobile and
autonomous platforms.

Robustness to Bit Reduction. We assess robustness to bit reduction by computing relative accuracy,
defined as Acc(k)/Acc(8-bit), across coreset fractions. Figure 4 plots relative accuracy versus coreset
percentage, for different train bit-depths. FP32 models show decreasing relative accuracy with smaller
coresets (e.g., 0.66 at 1-bit for 100% data), indicating sensitivity to combined quantization and data
reduction. BNNs maintain higher robustness (e.g., 0.97 at 1-bit), due to binary weight constraints,
making them suitable for low-bit sensor systems. This visualization supports robust sensor-model
co-optimization.

Correlation Analysis. Table 2 presents Pearson (PLCC), Spearman (SRCC), and Kendall (KRCC)
correlations between distance metrics (L1, L2, Cosine, CKA, Hamming, JS, MHD) and accuracy
drop (Equation (3)) across coreset settings. For FP32 models, MHD achieves high correlations (e.g.,
PLCC: 0.8970–0.9831, SRCC/KRCC: 1.0000), outperforming JS (0.7082–0.8475 PLCC), indicating
strong predictive power. For BNNs, MHD shows negative correlations (e.g., PLCC: -0.8696 to
-0.9473), unlike JS (0.6555–0.9621 PLCC), due to normalization in Equation (5) reducing sensitivity
to binary weights (±1). Figure 5 plots absolute PLCC (|PLCC|) versus model layers for each metric,
to highlight correlation trends across bit-depths. The negative correlations for BNNs underscore
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Figure 5: Absolute Pearson correlations (|PLCC|) between weight-distance metrics and model
layers for varying input bit-depths. FP32 models (left) show strong positive correlations for the
Mean Hassanat Distance (MHD), whereas BNNs (right) exhibit negative correlations, highlighting
fundamental differences in how the two architectures respond to compression.

MHD’s ability in capturing task-relevant changes in binary architectures, a key failure case guiding
future metric design.

4.1 Discussion

BNN bit-invariance fundamentally changes adaptive sensing design.Our results reveal distinct be-
haviors of FP32 and BNN models under sensor constraints, with implications for task-driven sensor
design. FP32 models’ sensitivity to quantization and data reduction highlights the need for aligned
sensor-model pipelines, while BNNs’ robustness supports their use in low-bit systems despite lower
baseline accuracy. MHD’s high correlations for FP32 models (e.g., PLCC: 0.9831 at 1-bit) position
it as a robust metric for predicting performance degradation, outperforming standard metrics like
JS. However, its negative correlations for BNNs (e.g., PLCC: -0.9473) suggest that normalization
in Equation (5) over-smooths binary weight differences, reducing task-relevant sensitivity. This
failure case, underscores the need for BNN-specific metrics. Our framework advances sensor-model
co-optimization, with applications in energy-efficient mobile and autonomous platforms.

Limitations and Impact. The use of CIFAR-10 limits generalization to high-resolution sensor
data, a direction for future work alongside advanced coreset methods Mirzasoleiman et al. (2020).
Limited coreset samples prevented statistical significance testing for correlations, addressable with
larger datasets. Our framework and MHD metric provide a foundation for optimizing low-bit sensor
systems, with negative BNN results guiding future metric design for energy-efficient embedded
applications.

5 Conclusion

In this work, we investigate the interplay of low-bit input precision and reduced training data (coresets)
in FP32 and Binary Neural Networks (BNNs) using CIFAR-10, with a focus on the proposed Mean
Hassanat Distance (MHD) metric. Our findings demonstrate that FP32 models exhibit high sensitivity
to quantization and data reduction, necessitating aligned sensor-model pipelines, while BNNs offer
robustness to low-bit inputs, making them ideal for energy-efficient sensor systems despite lower
baseline accuracy. The MHD metric achieves strong correlations with accuracy drop in FP32 models
(e.g., PLCC: 0.9831 at 1-bit), outperforming standard metrics like JS divergence, but shows negative
correlations for BNNs (e.g., PLCC: -0.9473), highlighting a critical limitation due to its normalization
scheme. We introduce a novel sensing efficiency metric (Accuracy/Bit) to guide energy-constrained
sensor design, supported by comprehensive analyses of accuracy, robustness, and train-test bit-depth
interactions. These insights inform the development of efficient, robust sensor-model systems for
mobile and autonomous platforms. The negative MHD results for BNNs provide a foundation
for designing metrics tailored to binary architectures, to optimize sensing for resource-constrained
environments.
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Table 2: Correlation coefficients (PLCC, SRCC, KRCC) between various weight-distance metrics
and model layers for FP32 (left) and BNN (right) models across input bit-depths. The Mean Hassanat
Distance (MHD) exhibits the strongest positive correlations for FP32 and strong negative correlations
for BNNs, highlighting fundamental differences in how the two architectures respond to compression
and input quantization. Bold values indicate the best-performing metric per model.

Corr. Metric Distance Method FP32 BNN
8-bit 6-bit 4-bit 2-bit 1-bit 8-bit 6-bit 4-bit 2-bit 1-bit

PLCC

L1 0.8921 0.8772 0.9076 0.9207 0.9683 -0.8227 0.7364 -0.3586 -0.8037 0.1456
L2 0.8916 0.8765 0.9097 0.9177 0.9634 -0.7356 0.7332 -0.4170 -0.7608 0.3851
Cosine 0.7921 0.8031 0.7720 0.7533 0.6852 -0.4026 0.0971 -0.5476 -0.5115 0.0282
CKA 0.7956 0.8060 0.7751 0.7622 0.6917 -0.4014 0.0718 -0.5424 -0.5082 0.0133
Hamming 0.2435 -0.7303 0.5309 0.8544 0.7555 0.2939 0.6137 0.2023 0.3609 0.6835
JS 0.8365 0.8475 0.8411 0.8423 0.7082 0.6555 0.7062 0.9621 0.8627 0.9613
Ours MHD 0.8970 0.8831 0.9011 0.9353 0.9831 -0.8696 -0.8772 -0.9473 -0.9176 -0.8800

SRCC

L1 1.0000 1.0000 1.0000 1.0000 1.0000 -0.8286 0.6000 -0.4286 -0.4857 0.0857
L2 1.0000 1.0000 1.0000 1.0000 1.0000 -0.6000 0.5429 -0.3143 -0.6000 0.2571
Cosine 1.0000 1.0000 1.0000 1.0000 1.0000 -0.3714 -0.0286 -0.4286 -0.3714 0.0857
CKA 1.0000 1.0000 1.0000 1.0000 1.0000 -0.3714 -0.0286 -0.4286 -0.3714 0.0857
Hamming 0.0857 -0.7714 0.2000 0.7714 0.6000 -0.0286 0.6000 0.2571 0.2571 0.6000
JS 0.8117 0.8286 0.7714 0.7714 0.8286 0.4857 0.4857 0.9429 0.7714 0.9429
Ours MHD 1.0000 1.0000 1.0000 1.0000 1.0000 -1.0000 -0.9429 -0.9429 -0.9429 -0.9429

KRCC

L1 1.0000 1.0000 1.0000 1.0000 1.0000 -0.7333 0.4667 -0.3333 -0.3333 0.0667
L2 1.0000 1.0000 1.0000 1.0000 1.0000 -0.4667 0.4667 -0.2000 -0.4667 0.2000
Cosine 1.0000 1.0000 1.0000 1.0000 1.0000 -0.3333 -0.0667 -0.4667 -0.3333 0.0667
CKA 1.0000 1.0000 1.0000 1.0000 1.0000 -0.3333 -0.0667 -0.4667 -0.3333 0.0667
Hamming 0.0667 -0.6000 0.0667 0.6000 0.4667 -0.0667 0.4667 0.2000 0.2000 0.4667
JS 0.6901 0.7333 0.6000 0.6000 0.7333 0.3333 0.3333 0.8667 0.6000 0.8667
Ours MHD 1.0000 1.0000 1.0000 1.0000 1.0000 -1.0000 -0.8667 -0.8667 -0.8667 -0.8667

Future Work. Future research will explore high-resolution datasets beyond CIFAR-10 to enhance
generalization, incorporate advanced coreset selection methods, and develop BNN-specific distance
metrics to address MHD’s limitations. Statistical significance testing with larger coreset samples will
further validate correlation analyses. These directions will strengthen sensor-model co-optimization,
enabling scalable, energy-efficient sensing for real-world applications.
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A Train-Test Analysis

Table 3 provides detailed accuracies for FP32 and BNN models across coreset fractions and varying
train-test bit-depths. The results highlight FP32’s sensitivity to quantization mismatches (e.g., 8-bit
train/1-bit test yields 0.3716 at 100% data) versus BNNs’ robustness (e.g., 0.6636 at 8-bit train/1-bit
test), supporting the design of robust sensor-model systems for energy-efficient applications.
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Table 3: Test accuracy of FP32 and BNN models across varying coreset percentages and input
bit-precision. Each row corresponds to a specific training bit-depth (k-bit), and columns show
accuracy for different testing bit-depths. BNNs exhibit consistent performance across test bit-depths,
demonstrating bit-invariance, whereas FP32 models show accuracy degradation as input precision
decreases.

Coreset % Train k-bit FP32 BNN
8-bit 6-bit 4-bit 2-bit 1-bit 8-bit 6-bit 4-bit 2-bit 1-bit

100%

8-bit 0.8466 0.8472 0.8383 0.6916 0.3716 0.6765 0.6755 0.6636 0.6636 0.6636
6-bit 0.8557 0.8554 0.8476 0.7086 0.3803 0.6615 0.6616 0.6517 0.6517 0.6517
4-bit 0.8491 0.8492 0.8501 0.7205 0.3751 0.6785 0.6794 0.6774 0.6774 0.6774
2-bit 0.7766 0.7792 0.7911 0.8009 0.5732 0.6772 0.6772 0.6889 0.6889 0.6889
1-bit 0.5598 0.5653 0.5815 0.6146 0.6898 0.6469 0.6463 0.6568 0.6568 0.6568

75%

8-bit 0.8304 0.8300 0.8212 0.6702 0.3217 0.6492 0.6473 0.6386 0.6386 0.6386
6-bit 0.8262 0.8256 0.8192 0.6903 0.3951 0.6406 0.6382 0.6283 0.6283 0.6283
4-bit 0.8260 0.8257 0.8215 0.7039 0.4150 0.6569 0.6587 0.6601 0.6601 0.6601
2-bit 0.7351 0.7377 0.7495 0.7711 0.5538 0.6493 0.6478 0.6469 0.6469 0.6469
1-bit 0.4996 0.5032 0.5221 0.5997 0.6583 0.6473 0.6473 0.6512 0.6512 0.6512

50%

8-bit 0.7742 0.7741 0.7651 0.6308 0.3571 0.5842 0.5818 0.5695 0.5695 0.5695
6-bit 0.7754 0.7755 0.7682 0.6447 0.3295 0.5569 0.5547 0.5385 0.5385 0.5385
4-bit 0.7655 0.7664 0.7657 0.6542 0.3758 0.5506 0.5495 0.5579 0.5579 0.5579
2-bit 0.6979 0.7007 0.7150 0.7338 0.5314 0.5728 0.5736 0.5705 0.5705 0.5705
1-bit 0.4528 0.4564 0.4616 0.4812 0.5873 0.5724 0.5720 0.5723 0.5723 0.5723

25%

8-bit 0.6817 0.6819 0.6815 0.5484 0.3096 0.4932 0.4938 0.4933 0.4933 0.4933
6-bit 0.6906 0.6921 0.6896 0.5631 0.3232 0.5110 0.5130 0.5003 0.5003 0.5003
4-bit 0.6883 0.6895 0.6876 0.5990 0.3648 0.4519 0.4523 0.4526 0.4526 0.4526
2-bit 0.5606 0.5618 0.5781 0.6228 0.4121 0.4574 0.4597 0.4683 0.4683 0.4683
1-bit 0.2904 0.2945 0.3154 0.4071 0.5400 0.4972 0.4965 0.5155 0.5155 0.5155

10%

8-bit 0.5356 0.5351 0.5331 0.4457 0.2712 0.3685 0.3687 0.3610 0.3610 0.3610
6-bit 0.5454 0.5464 0.5454 0.4563 0.2972 0.3269 0.3270 0.3316 0.3316 0.3316
4-bit 0.5238 0.5247 0.5299 0.4500 0.3040 0.2956 0.2983 0.3038 0.3038 0.3038
2-bit 0.4260 0.4312 0.4515 0.5014 0.3553 0.2951 0.2970 0.3039 0.3039 0.3039
1-bit 0.2301 0.2352 0.2511 0.3342 0.4317 0.3332 0.3329 0.3323 0.3323 0.3323

5%

8-bit 0.4564 0.4578 0.4592 0.3876 0.2482 0.3373 0.3377 0.3399 0.3399 0.3399
6-bit 0.4556 0.4559 0.4549 0.3839 0.2304 0.3411 0.3396 0.3248 0.3248 0.3248
4-bit 0.4412 0.4400 0.4393 0.4031 0.2712 0.3408 0.3391 0.3419 0.3419 0.3419
2-bit 0.3084 0.3130 0.3351 0.3795 0.2509 0.3294 0.3339 0.3400 0.3400 0.3400
1-bit 0.1825 0.1826 0.1866 0.2194 0.2876 0.3328 0.3311 0.3439 0.3439 0.3439

1%

8-bit 0.2540 0.2558 0.2584 0.2499 0.1219 0.2389 0.2378 0.2322 0.2322 0.2322
6-bit 0.2410 0.2402 0.2426 0.2350 0.1286 0.2120 0.2136 0.1982 0.1982 0.1982
4-bit 0.2556 0.2553 0.2565 0.2606 0.1644 0.2160 0.2218 0.2372 0.2372 0.2372
2-bit 0.2190 0.2189 0.2304 0.2655 0.1966 0.2591 0.2607 0.2748 0.2748 0.2748
1-bit 0.1669 0.1685 0.1764 0.2041 0.2326 0.2161 0.2205 0.2335 0.2335 0.2335
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