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Abstract
Deep neural networks (DNNs) are vulnerable to
adversarial noise. Their adversarial robustness
can be improved by exploiting adversarial exam-
ples. However, given the continuously evolving at-
tacks, models trained on seen types of adversarial
examples generally cannot generalize well to un-
seen types of adversarial examples. To solve this
problem, in this paper, we propose to remove ad-
versarial noise by learning generalizable invariant
features across attacks which maintain semantic
classification information. Specifically, we intro-
duce an adversarial feature learning mechanism
to disentangle invariant features from adversarial
noise. A normalization term has been proposed in
the encoded space of the attack-invariant features
to address the bias issue between the seen and
unseen types of attacks. Empirical evaluations
demonstrate that our method could provide better
protection in comparison to previous state-of-the-
art approaches, especially against unseen types of
attacks and adaptive attacks.

1. Introduction
Deep neural networks (DNNs) have been widely utilized in
many fields, such as image processing (LeCun et al., 1998;
He et al., 2016; Zagoruyko & Komodakis, 2016; Simonyan
& Zisserman, 2015; Kaiming et al., 2017) and natural lan-
guage processing (Sutskever et al., 2014). However, DNNs
are found to be vulnerable to adversarial examples which
are crafted by adding imperceptible but adversarial noise on
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Figure 1. A visual illustration of the natural example (x), adversar-
ial example (x̃), latent feature (F(·)) and attack-specific feature
(∆(F , x̃, x) = [F(x̃) - F(x)] × 104). The latent feature is ex-
tracted from the first ReLu layer of the ResNet-110 model (He
et al., 2016). Different types of attacks (i.e., PGD (Madry et al.,
2018), AA (Croce & Hein, 2020) and STA (Xiao et al., 2018)) gen-
erally only modify tiny information and their adversarial examples
sufficiently retain invariant features from the natural examples.

natural examples (Goodfellow et al., 2015; Szegedy et al.,
2014; Jin et al., 2019; Liao et al., 2018; Ma et al., 2018). The
vulnerability of DNNs poses serious risks in many security-
sensitive applications such as face recognition (Xu et al.,
2020) and autonomous driving (Eykholt et al., 2018).

Existing methods show that the adversarial robustness of tar-
get models can be enhanced by exploiting adversarial exam-
ples, e.g., employing the adversarial examples as additional
training data (Goodfellow et al., 2015; Tramèr et al., 2018;
Wu et al., 2020b). However, focusing on the seen types of
adversarial examples in the finite training data would cause
the defense method to overfit the given types of adversar-
ial noise and lack generalization or effectiveness against
unseen types of attacks. Note that there are widespread or
even unprecedented types of attacks in the real world. This
motivates us to design a defense method that could handle
different and unseen types of adversarial examples.

Cognitive science gives us an inspiration to solve this prob-
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lem. Specifically, it shows that we are able to identify human
faces even if the faces show different or even unseen expres-
sions, because our brain is good at extracting invariant facial
features (Mishkin & Ungerleider, 1982; Kanwisher et al.,
1997). Similarly, we human cannot easily distinguish natu-
ral examples and adversarial examples, because we focus
on the invariant features which represent semantic classifi-
cation information and ignore the adversarial noise. Note
that adversarial examples are designed to retain the invariant
features so that we human could not identify the adversarial
examples in advance, e.g., by constraining the adversarial
noise to be small or non-suspicious (Goodfellow et al., 2015;
Gilmer et al., 2018). We name such invariant features as
attack-invariant features (AIF).

In this paper, we propose an adversarial noise removing
network (ARN) to restore the natural data by exploiting AIF,
which is able to defend against unseen types of adversarial
examples. In a high level, we design an autoencoder-based
framework, which divides the adversarial noise removing
into learning AIF and restoring natural examples from AIF.
Specifically, we introduce a pair of encoder and discrimi-
nator in an adversarial feature learning manner for disen-
tangling AIF from adversarial noise. The discriminator
is devoted to distinguish attack-specific information (e.g.,
attack type label) from the encoded AIF space, while the
encoder aims to learn features which are indistinguishable
for the discriminator. By iterative optimization, the attack-
specific information will be removed and the invariant fea-
tures across attacks will be retained.

Note that the adversarial examples used in the training pro-
cedure are often biased because the widespread types of
attacks in the real world are very diverse. For example, as
shown in Figure 1, the autoattack (AA) method based ad-
versarial example (Croce & Hein, 2020) and the projected
gradient descent (PGD) method based adversarial exam-
ple (Madry et al., 2018) are similar; while they are quite
different from the spatial transform attack (STA) based ad-
versarial example (Xiao et al., 2018). If we do not handle
the bias problem, the learned AIF may work well for the
attacks or similar types of attacks used in the training pro-
cedure, but may have poor generalization ability for some
unseen types of attacks whose perturbations are significantly
diverse from those in seen types of attacks (Li et al., 2018;
Makhzani et al., 2015). To address the bias issue, we im-
pose a normalization term in the encoded space of AIF to
match the feature distribution of each type of attack to a
multivariate Gaussian prior distribution (Makhzani et al.,
2015; Kingma & Welling, 2014). By this design, the learned
AIF is expected to generalize well to widespread unseen
types of attacks.

To restore the original natural examples from AIF, a de-
coder is trained by minimizing the gap between the syn-

thesized examples and the natural examples in the pixel
space. Achieved by jointly optimizing the encoder and
decoder for learning AIF, our ARN could provide more
superior protection against unseen types of attacks com-
pared to previous methods. This will be empirically verified
on pixel-constrained and spatially-constrained attacks in
Section 4.2. Furthermore, additional evaluations on cross-
model defenses and adversarial example detection in Sec-
tion 4.3 further show the effectiveness of ARN. The main
contributions in this paper are as follows:

• Adversarial examples typically have shared invariant
features even if they are crafted by unseen types of
attacks. We propose an adversarial noise removing
network (ARN) to effectively remove adversarial noise
by exploiting attack-invariant features (AIF).

• To handle the bias issue of the adversarial examples
available in the training procedure, we design a nor-
malization term in the encoded AIF space to enhance
its generalization ability to unseen types of attacks.

• Empirical experiments show that our method presents
superior effectiveness against both pixel-constrained
and spatially-constrained attacks. Particularly, the suc-
cess rates of unseen types of attacks and adaptive at-
tacks are reduced in comparison to previous state-of-
the-art approaches.

The rest of this paper is organized as follows. In Section 2,
we briefly review related work on attacks and defenses. In
Section 3, we describe our defense method and present its
implementation. Experimental results against both pixel-
constrained and spatially-constrained attacks are provided
in Section 4. Finally, we conclude this paper in Section 5.

2. Related work
Attacks: The seminal work of Szegedy et al. (2014) first
proposed adversarial examples that can mislead DNNs.
Adversarial examples can be crafted by adding adver-
sarial noise following the direction of adversarial gradi-
ents. Attacks based on this strategy include fast gradi-
ent sign method (FGSM) (Goodfellow et al., 2015), the
strongest first-order information based projected gradient
descent (PGD) method (Madry et al., 2018), the Jacobian-
based saliency map attack (JSMA) method (Papernot et al.,
2016). The autoattack (AA) method (Croce & Hein, 2020)
forms a parameter-free, computationally affordable and user-
independent ensemble of attacks. The adversarial noise
crafted by these attacks is typically bounded by a small
norm-ball ‖ · ‖p ≤ ε, so that their adversarial examples
can be perceptually similar to natural examples. In addi-
tion, optimization-based attacks, such as Carlini and Wag-
ner (CW) method (Carlini & Wagner, 2017b) and decou-
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Figure 2. A visual illustration of our adversarial noise removing network (ARN). Our main idea is to restore natural examples by exploiting
invariant features. ARN is composed of an encoder network and a decoder network. The encoder network learns attack-invariant features
(AIF) via an adversarial feature learning mechanism and a normalization term. The decoder is trained to restore natural examples from
AIF via a pixel similarity metric and an image discriminator.

pling direction and norm (DDN) method (Rony et al., 2019),
minimize the adversarial noise as part of the optimization
objectives. The above attacks directly modify the pixel
values on the whole sample without considering semantics
of objectives, e.g., shape and posture. They are named
as pixel-constrained attacks. In addition, there are also
spatially-constrained attacks which focus on mimicking
non-suspicious vandalism via geometry and spatial trans-
formation or physical modifications. These attacks include
faster wasserstein attack (FWA) (Wu et al., 2020a), spa-
tial transform attack (STA) (Xiao et al., 2018) and robust
physical perturbations (RP2) (Eykholt et al., 2018).

Defenses: Adversarial training (AT) is a widely used strat-
egy for defending against adversarial noise by augmenting
the training data with adversarial examples, such as PGD
based adversarial training method (ATPGD) (Madry et al.,
2018) and defending against occlusion attacks (DOA) (Wu
et al., 2020b) method. In addition, input processing based
methods have also been proposed to defend against attacks.
They aim to pre-process input data for mitigating the ag-
gressiveness of adversarial noise. For example, Jin et al.
(2019) proposed APE-G to back adversarial examples close
to natural examples via a generative adversarial network.
Liao et al. (2018) utilized a high-level representation guided
denoiser (HGD) as a pre-processing step to remove adver-
sarial noise. HGD used the class labels predicted by a target
model to supervise the training of an end-to-end denoiser.
Compared with the above defenses, we design an input
processing based model that remove adversarial noise by
learning attack-invariant features, instead of directly relying
on learning a function which maps seen types of adversarial
examples to the perceptual space of natural examples. In
addition, the method in (Xu et al., 2017) shows that reducing
the color bit depth of an adversarial example could reduce

its attack success rate, but the method may make processed
examples lose some useful natural features. Our method
brings adversarial examples close to the natural examples
without causing human-observable loss. The defense in
(Xie et al., 2019) focuses on denoising the perturbations
in the feature maps on internal layers of the target model
by modifying the target models’ architectures. Differently,
our method aims to disentangle natural features from adver-
sarial noise, and use the natural features to generate clean
examples. Our defense is a pre-processing based defense,
which dose not require the knowledge of the target models
and could provide cross-model protection.

3. Adversarial noise removing network
3.1. Preliminaries

In this paper, we aim to design a defense which could pro-
vide robust protection against widespread unseen types of
attacks. The basic intuition behind our defense is to effec-
tively exploit the invariant features. To this end, we propose
the adversarial noise removing network (ARN) which elimi-
nates adversarial noise by learning attack-invariant features
(AIF). As shown in Figure 2, our ARN divides the remove of
adversarial noise into two steps. The first step is to learn AIF
from input examples via an encoder network E. The second
one is to restore natural examples from AIF via a decoder
network G. The encoder network E is trained by exploiting
an attack discriminator DA and a normalization term, while
the decoder network G is trained to minimize the gap be-
tween synthetic examples and natural examples via utilizing
a pixel similarity metric and an image discriminator DI .

Our defense model can be expressed as G(E(X̃), where
E(·) represents the process of learning AIF from input ad-
versarial examples X̃ . We use X̃k = [x̃k1 , x̃k2 , . . . , x̃kN ]

>
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to denote adversarial data for the k-th type of attack, where
kN is the number of adversarial examples crafted by the
k-th type of attack. The natural data are denoted by
X = [x1, x2, . . . , xN ]

>, where N is the number of the
natural examples.

3.2. Learning Attack-invariant Features

We propose a hybrid objective function to train our ARN to
learn AIF. The objective function consists of two terms that
we explain below:

Adversarial feature learning: To remove attack-specific
information by disentangling invariant features from adver-
sarial noise, we distinguish the different types of adversarial
noise in the resulting encoded feature space. More precisely,
we introduce an attack discriminator DA to form an adver-
sarial feature learning mechanism with the encoder network
E. Given a set of K seen types of adversarial examples
X̃ = {X̃1, X̃2, · · · , X̃K}, DA takes the encoded features
E(X̃) as inputs and predicts attack types. The attack type
of adversarial examples crafted by the k-th attack is embod-
ied as the attack-specific label Y pk =

[
ypk1 , y

p
k2
, . . . , ypkN

]>
,

where ypkn = [ξ1, ξ2, . . . , ξK ]
> is a one-hot vector and ξi

equals one when i = k and zero otherwise. Based on the
predictions about attack-specific labels, DA could reflect
whether the encoded features contain attack-specific infor-
mation. The objective function of DA is derived as follows:

LDA
= − 1

K

K∑
k=1

Y pk · log(σ(DA(E(X̃k)))), (1)

where σ denotes the softmax layer.

In contrast, E aims to remove the attack-specific informa-
tion and make the learned encoded features indistinguish-
able for DA. That is to say, as the adversary of DA, E
is devoted to confuse DA from correctly predicting the
attack-specific label and pushes its prediction close to the

attack-confused label Y pζ =
[
ypζ1 , y

p
ζ2
, . . . , ypζN

]>
, where

ypζn = [1/K, 1/K, . . . , 1/K]
> is aK-dimensional constant

vector. As a result, the objective of E is as follows:

Latt = − 1

K

K∑
k=1

Y pζ · log(σ(DA(E(X̃k)))). (2)

Normalization term: Since the widespread types of attacks
in the real world are very diverse, the adversarial examples
used in the training procedure are often biased. Although
the above adversarial feature learning mechanism could ef-
fectively defend against an unseen type of attack that is
similar to seen types of attacks, this bias issue may lead a
risk that the learned AIF has poor generalization ability for

some unseen types of attacks whose perturbations are sig-
nificantly different from those in seen types of attacks. For
example, as shown in Figure 1, adversarial noise crafted by
pixel-constrained PGD and AA looks similar, while adver-
sarial noise crafted by spatially-constrained STA presents
significant difference from them.

To address the bias issue, inspired by previous studies
(Makhzani et al., 2015; Larsen et al., 2016; Kingma &
Welling, 2014), we introduce a normalization term in the
encoded space of AIF to decrease the undesirable risk.
Specifically, the feature distribution of each type of attack
Pk(E(X̃k)) is matched to a multivariate Gaussian prior
distribution N (0, I) through utilizing the Jensen-Shannon
Divergence (JSD). The normalization could make the en-
coded features of different types of adversarial examples
have similar distributions, which is beneficial for robustly
restoring natural examples in Section 3.3. The JSD measure
is the average of Kullback-Leibler divergences between each
distribution and the average distribution P̄ , which is formu-
lated as JSD (P1, · · · , PK) = 1

K

∑K
k=1KL

(
Pk‖P̄

)
. In

our method, the distribution of each encoded feature is ex-
pected to be similar to the uniform prior distribution. We
replace P̄ by N (0, I). The objective function of this nor-
malization term is derived as:

Lnor = JSD (P1, · · · , PK) =
1

K

K∑
k=1

KL (Pk‖N ) . (3)

3.3. Restoring Natural Examples

A hybrid objective function is also used to restore natural
examples from AIF. The object consists of following two
terms:

Pixel similarity metric: Adversarial noise could be viewed
as the delicately crafted special noise. The widely used
metric for image denoising or reconstruction would be able
to achieve satisfactory results for generating examples close
to natural examples (Jin et al., 2019). Therefore, we apply
the mean square error (MSE) metric in the pixel space:

Lmse =

K∑
k=1

‖G(E(X̃k))−X‖22, (4)

where ‖ · ‖2 is the L2 norm.

Adversarial learning in pixel space: As noted in (Zhao
et al., 2017), the decoder network based on MSE tends to
synthesize blurry textures, which would lead to incorrect
classification in the target model. To overcome the limita-
tion, we introduce an image discriminator DI to form an
adversarial mechanism in the pixel space with the decoder
network G. DI is trained to identify natural examples X
as true data and identify synthesized examples as false data.
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Figure 3. A visual illustration of the performance of our model against various attacks. (top: adversarial examples; bottom: restored
examples). Subscripts “N” and “T” respectively indicate that the corresponding attacks are non-target and target attacks. PGDN is the
seen type of attack while other attacks are regarded as unseen types of attacks.

We define the objective function of DI as:

LDI
=

K∑
k=1

[log(DI(G(E(X̃k))))+log(1−DI(X))]. (5)

The adversarial objective function of G is calculated as:

Ladv = −
K∑
k=1

log(DI(G(E(X̃k)))). (6)

3.4. Implementation

In order to make the encoded features invariant to different
types of attacks and retain sufficient semantic classification
information, we learn AIF by jointly optimizing the encoder
network E and the decoder network G. The overall objec-
tive function for E is the combination of attack-invariant
loss, normalization term loss and MSE loss:

LE = Lmse + λ1Latt + λ2Lnor, (7)

where λ1 and λ2 are positive parameters to trade off each
component. The overall objective function for G is given
as:

LG = Lmse + θLadv , (8)

where θ is a trade-off parameter. Details of λ1, λ2, and θ
are given in Section 4.1.

The overall procedure is summarized in Algorithm 1. Given
natural examples X and adversarial examples X̃ , we first
sample a mini-batch Xd and X̃d from X and X̃ respectively.
Then, we forward-pass X̃ through E to obtain encoded
features E(X̃) and calculate LDA

(Eq. 1), Latt (Eq. 2) and
Lnor (Eq. 3). Next, we forward-pass E(X̃) through G

Algorithm 1 ARN: Adversarial Noise Removing Network

Input: Natural examples X and adversarial examples X̃ .
repeat

1: Sample a mini-batch Xd and X̃d from X and X̃ res-
pectively.

2: Forward-pass X̃d through E to obtain encoded fea-
turesE(X̃d) and calculate LDA

(Eq. 1), Latt (Eq. 2)
and Lnor (Eq. 3).

3: Forward-pass E(X̃d) through G to restore natural
examples and calculate Lmse (Eq. 4), Ladv (Eq. 6)
and LDI

(Eq. 5).
4: Back-pass and update E, G to minimize LE (Eq. 7)

and LG (Eq. 8).
5: Update DA and DI to minimize LDA

(Eq. 1) and
LDI

(Eq. 5).
until E and G converge.

and calculate Lmse (Eq. 4), Ladv (Eq. 5) and LDI
(Eq. 5).

Finally, we take a gradient step to update E, G, DA and DI

to minimize LE (Eq. 7), LG (Eq. 8), LDA
(Eq. 1) and LDI

(Eq. 5). The above operations are repeated until E and G
converge.

4. Experiments
In this section, we first introduce the datasets used in this
paper (Section 4.1). We next show and analyze the exper-
imental results of defending against pixel-constrained and
spatially-constrained attacks on visual classification tasks,
especially against adaptive attacks (Section 4.2). Finally, we
conduct additional evaluations on the cross-model defense,
ablation study and adversarial detection to further show the
effectiveness of our ARN (Section 4.3). The code is avail-
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Table 1. Classification error rates (percentage) against adversarial examples crafted by pixel-constrained attacks on MNIST and CIFAR-10
(lower is better). ‘ε′’ means the raised perturbation budget ε of corresponding attack, it is set to 0.4 for MNIST and 0.05 for CIFAR-10.
‘7× 7’ denotes the size of sticker used by DOA. For each attack we show the most successful defense with bold and the second result
with underline.

DEFENSE
ATTACKS

NONE PGDN PGDT CWN DDNN AAN JSMAT PGDNε′ AANε′

LENET

NONE 0.64 100 100 100 100 100 100 100 100
ATPGD 1.19 9.63 8.38 6.42 5.91 12.60 28.59 54.34 60.06
DOA7×7 6.27 65.23 38.84 11.48 10.53 68.49 19.81 86.76 92.51

APE-GPP 1.57 8.76 3.20 2.34 2.15 12.40 36.49 34.86 46.72
APE-GDP 1.73 10.39 5.81 2.93 1.91 15.26 38.04 37.33 49.38
HGDPP 1.36 1.89 1.30 1.67 1.54 2.43 50.62 75.79 90.34
HGDDP 1.18 2.56 1.91 1.79 1.23 3.30 53.73 78.95 93.76
ARNPP 1.16 1.85 1.29 1.45 1.28 2.38 16.75 15.27 26.84
ARNDP 1.11 1.91 1.80 1.53 1.22 2.97 17.81 17.63 29.74

RESNET

NONE 7.67 100 100 100 99.99 100 100 100 100
ATPGD 12.86 51.02 49.68 50.17 49.19 53.66 44.59 59.09 61.65
DOA7×7 9.82 89.03 73.96 24.11 49.29 97.52 23.26 96.83 97.75

APE-GPP 23.08 44.38 39.09 23.18 32.39 60.09 39.10 79.34 87.16
APE-GDP 24.23 45.96 41.50 27.43 24.73 64.82 41.67 83.19 89.92
HGDPP 10.41 39.44 23.03 13.26 16.02 42.34 38.65 57.97 58.41
HGDDP 9.42 41.62 25.30 12.46 10.04 43.45 43.63 58.63 59.86
ARNPP 8.21 38.66 20.43 11.47 14.64 38.94 35.49 49.45 52.64
ARNDP 8.18 40.28 22.87 12.24 10.17 41.27 36.23 52.87 55.91

able at https://github.com/dwDavidxd/ARN.

4.1. Experiment setup

Datasets: We verify the effective of our method on three
popular benchmark datasets, i.e., MNIST (LeCun et al.,
1998), CIFAR-10 (Krizhevsky et al., 2009), and LISA
(Jensen et al., 2016). MNIST and CIFAR-10 both have
10 classes of images, but the former contains 60,000 train-
ing images and 10,000 test images, and the latter contains
50,000 training images and 10,000 test images. To allevi-
ate the problem of imbalance and extremely blurry data in
LISA, we picked 16 best quality signs with 3,509 training
images and 1,148 test images from a subset which con-
tains 47 different U.S. traffic signs (Eykholt et al., 2018;
Wu et al., 2020b). Adversarial examples are crafted by
applying state-of-the-art attacks. These attacks can be di-
vided into two categories: (i) Pixel-constrained attacks,
i.e., non-target L∞ norm PGD (PGDN ), target L∞ norm
PGD (PGDT ), non-target DDN (DDNN ), non-target L2

norm CW (CWN ), non-target AA (AAN ) and target JSMA
(JSMAT ). (ii) Spatially-constrained attacks, i.e., non-target
STA (STAN ), target STA (STAT ), non-target FWA (FWAN )
and non-target RP2 (RPN ).

Training details: For fair comparison, all experiments are
conduced on four NVIDIA RTX 2080 GPUs, and all meth-
ods are implemented by PyTorch. We use the implemen-
tation codes of PGD, DDN, CW, JSMA and STA in the
advertorch toolbox (Ding et al., 2019) and the implementa-
tion codes of RP2, FWA and AA provided by their authors.

We set default perturbation budget ε = 0.3 and ε = 8/255
for MNIST and CIFAR-10 respectively. More details about
the attack approaches can be found in appendix A. Learn-
ing rates for the encoder network, the decoder network, the
attack discriminator and the image discriminator are all set
to 10−4, with the value of λ1 = 10−1, λ2 = 10−2, θ = 10−1

for MNIST, the value of λ1 = 102, λ2 = 101, θ = 102 for
CIFAR-10 and LISA. In addition, we consider the following
deep neural network architectures as the target models:

• MNIST: The LetNet-5 architecture (LeNet) (LeCun
et al., 1998) embedded in the advertorch toolbox is
used for the MNIST digits recognition task.

• CIFAR-10: The ResNet-110 (ResNet) architecture
(He et al., 2016), the Wide-ResNet (WRN) architecture
(Zagoruyko & Komodakis, 2016) and the VGG-19
(VGG) architecture (Simonyan & Zisserman, 2015) are
utilized for the classification task on CIFAR-10. The
depth and widen factors in WRN are set to 28× 20.

• LISA: We use the LISA-CNN architecture defined in
(Eykholt et al., 2018) for the traffic sign recognition
task according to the previous work (Wu et al., 2020b).
The convolutional neural network contains three con-
volutional layers and one fully connected layer.

4.2. Defense Results

Defending against pixel-constrained attacks: We select
two attacks as seen types of attacks to craft adversarial exam-
ples, and use them together with natural examples as training
data to train defense models. The other attacks are regarded

https://github.com/dwDavidxd/ARN
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Table 2. Classification error rates (percentage) against adversarial
examples crafted by spatially-constrained attacks (lower is better).
‘ε′’ is set to 0.4 for MNIST and 0.05 for CIFAR-10. APi denotes
different adversarial patches crafted by RP2 (Eykholt et al., 2018).
We show the most successful defense with bold and the second
result with underline.

DEFENSE
ATTACKS

NONE STAN STAT FWAN FWANε′

L
E
N
E
T

NONE 0.64 100 100 98.56 99.91
ATPGD 1.19 21.55 31.49 42.41 61.55
DOA7×7 6.27 13.54 19.24 23.29 40.16
APE-GPP 1.57 16.57 21.40 33.95 51.81
APE-GDP 1.73 20.18 25.63 37.50 58.16
HGDPP 1.36 21.32 36.41 50.43 71.12
HGDDP 1.18 25.01 38.47 52.84 75.35
ARNPP 1.16 9.08 13.73 25.79 43.76
ARNDP 1.11 10.14 14.51 28.50 47.63

R
E
S
N
E
T

NONE 7.67 100 100 99.83 99.98
ATPGD 12.86 44.86 44.60 40.32 49.37
DOA7×7 9.82 38.33 28.02 49.69 62.00
APE-GPP 23.08 47.19 36.46 42.79 50.53
APE-GDP 24.23 49.93 37.51 45.26 57.61
HGDPP 10.41 42.89 31.97 37.67 43.41
HGDDP 9.42 49.52 36.06 35.95 42.87
ARNPP 8.21 36.81 23.62 24.17 31.89
ARNDP 8.18 37.74 26.90 27.10 33.06

C
N
N

NONE AP1 AP2 AP3 AP4

NONE 0.86 55.46 62.07 61.21 56.03
ATPGD 3.16 50.29 43.68 56.03 33.62
APE-G 3.43 8.33 5.43 21.56 24.71
DOA9×5 2.59 18.39 6.90 25.86 8.91
DOA7×7 5.17 16.95 11.49 19.83 10.06
ARN 2.31 5.46 3.74 6.90 6.03

as unseen types of attacks to evaluate the generalization
ability of defense models. Considering that the L2 norm dis-
tance between adversarial examples and natural examples
varies greatly across different attacks, which may influence
the performances of models, we construct two different com-
binations of seen types of attacks: (i) the target PGD and the
non-target PGD (“defensePP ”). (ii) the non-target DDN and
the non-target PGD (“defenseDP ”). Figure 3 demonstrates
that our ARN is effective to remove strong adversarial noise.
Quantitative analysis in Table 1 represents that our ARN
achieves better robust performance, especially reducing the
success rate of JSMAT from 50.62% to 16.75% compared
to previous state-of-the-art. Moreover, our ARN shows a
significant improvement in defending against attacks with
greater perturbation budgets (i.e., ε = 0.4 for MNIST and
ε = 0.05 for CIFAR-10).

Defending against spatially-constrained attacks: In ad-
dition to pixel-constrained attacks, some attacks focus on
mimicking non-suspicious vandalism via spatial transfor-
mation and physical modifications (Gilmer et al., 2018; Wu
et al., 2020b). We evaluate the robustness of above de-

fense models against STAT , STAN and FWAN on MNIST
and CIFAR-10. As shown in Table 2, our method achieves
more effective defense and has better robustness. In partic-
ularly, our ARN significantly reduces the success rate of
STAT from 36.41% to 13.73% in comparison to previous
state-of-the-art, which has outstanding performance against
pixel-constrained attacks. In order to further remove the
spatially-constrained adversarial noise, we train our ARN
by using adversarial examples crafted by PGDN and STAN .
The fooling rates of STAN , STAT and FWAN on MNIST
are decreased from 9.08%, 13.73% and 25.79% to 6.52%,
7.94% and 16.32%, while the fooling rates of PGDN and
PGDT are remained at 3.66% and 2.51% respectively. In
addition, for protecting the target model on LISA, defense
models are trained based on two seen types of adversarial
patches (AP) crafted by RP2, i.e., AP1 and AP2. Our ARN
also achieves better performance on defending against un-
seen types of adversarial patches. The restored images are
shown in appendix B.

Leaked defenses: We study the following three different
scenarios where defenses are leaked:

(i) An attacker knows the per-processing defense model
and directly uses white-box adaptive attacks (Carlini
& Wagner, 2017a) to break it. In this scenario, the
attacker gains a copy of the trained defense model.
The architecture and model parameters of the pre-
processing model are both leaked to the attacker.

(ii) An attacker trains a similar pre-processing defense
model and then take the combination of the known
pre-processing model and the original target model
as a new target model to craft adversarial examples
via gray-box adaptive attacks. We use APE-GPP and
HGDPP as the known pre-processing models to craft
adversarial examples via different types of attacks.

(iii) An attacker can utilize BPDA (Athalye et al., 2018)
strategy to bypass the pre-processing defense. Specifi-
cally, BPDA is different from the attack strategy which
directly computes the gradient of the defense model
g(·) and the target model f(·). If the knowledge of
g(·) is inaccessible or if g(·) is neither smooth nor dif-
ferentiable, g(·) cannot be backpropagated through to
generate adversarial examples with a white-box attack
that requires gradient signal. BPDA can approximate
∇xf(g(x)) by evaluating ∇xf(x) at the point g(x).
This allows an attacker to compute gradients and there-
fore mount a white-box attack. BPDA is widely used
to bypass pre-processing defenses. It can be used to ex-
plore whether an adversary can precisely approximate
the gradient of the defense model for implementing
white-box attacks. We combine BPDA with PGDN to
evaluate our defense model.

As shown in Table 3 and Table 4, experimental results
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Table 3. Classification error rates (percentage) against white-box
and gray-box adaptive attacks (lower is better) on MNIST. “TAR”
denotes the target attack and “NON-TAR” denotes the non-target
attack. “ITE-τ” means that the maximum number of iterations is
controlled to be τ and “ε-τ” means that the perturbation budget is
set to τ . “L” denotes the original target model.

TARGET ATTACK DEFENSE
ITE-40

LENET (L) ε-0.3 ε-0.5

APE-G+L PGDT APE-G 99.84 100
HGD+L PGDT HGD 62.50 100
ARN+L PGDT ARN 58.52 99.95
APE-G+L PGDT ARN 1.49 3.80
HGD+L PGDT ARN 2.56 10.65

TARGET ATTACK DEFENSE TAR NON-TARLENET (L)

APE-G+L CW APE 99.90 98.07
APE-G+L CW ARN 1.39 1.28
HGD+L DDN HGD 100 100
HGD+L DDN ARN 1.29 1.42

Table 4. Classification error rates (percentage) against BPDA
(lower is better). “P+B” denotes the hybrid attack of PGDN and
BPDA (Athalye et al., 2018). “L” and “R” denote the original
target models on MNIST and CIFAR-10 respectively.

MNIST: LENET (L)
TARGET ATTACK DEFENSE ITE-40 ITE-100

APE-G+L P+B APE-G 72.01 72.75
ARN+L P+B ARN 24.65 24.70

CIFAR-10: RESNET-110 (R)
TARGET ATTACK DEFENSE ITE-40 ITE-100

APE-G+R P+B APE-G 89.06 89.51
ARN+R P+B ARN 60.47 60.75

present that our defense model achieves positive gains in
these challenging settings compared to other pre-processing
defenses. For example, the classification error rates against
BPDA and white-box PGDT are decreased by 66% and
24% on average respectively. This may be due to the attack-
invariant features being more robust against adversarial
noise under the constraints of small perturbation budgets.
The adversarial examples crafted by adaptive attacks and
their restored examples are shown in appendix C.

4.3. Further Evaluations

Cross-model defense results: In order to evaluate the
cross-model defense capability of our ARN, we transfer
the ARNPP model used for ResNet to other classification
models, i.e., WRN and VGG. Results in Table 5 present
that our ARN effectively removes adversarial noise crafted
by various unseen types of attacks against WRN and VGG,
which demonstrates that our ARN could provide generaliz-
able cross-model protection.

Table 5. Classification error rates (percentage) of different target
models with ARN (lower is better) on CIFAR-10. ARN is trained
by using adversarial examples crafted against ResNet, and then is
applied to WRN and VGG.

ATTACK
TARGET MODEL

RESNET WRN VGG
ARN NONE ARN NONE ARN

PGDN 38.66 100 33.38 100 36.15
PGDT 20.43 99.91 23.73 99.66 24.20
CWN 11.47 100 9.92 100 10.39
DDNN 14.64 100 9.20 100 9.57
AAN 38.94 100 36.94 100 37.59
STAN 36.81 100 29.46 100 30.47
STAT 23.62 99.95 22.28 99.96 21.46
FWAN 24.17 94.37 24.23 95.21 23.31

ARN without 𝓛𝒂𝒅𝒗
ARN without 𝓛𝒏𝒐𝒓 ARN without 𝓛𝒂𝒕𝒕

ARN

PGDN AAN PGDNϵ’ STAN
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Figure 4. Ablation study. The figure shows the classification accu-
racy rates (percentage) of ResNet against different attacks (higher
is better) on CIFAR-10. The performance of ARN against unseen
STAN is significantly affected whenLnor is dropped. ARN trained
without Latt has poor robust against unseen types of attacks i.e.,
AAN , PGDNε′ and STAN .

Ablation: Figure 4 shows the ablation study on CIFAR-10.
We respectively remove the pixel adversarial loss Ladv , the
normalization term loss Lnor and the attack-invariant loss
Latt to investigate their impacts on our ARN. We use PGDN
and PGDT as seen types of attacks to train ARN. Removing
Ladv slightly reduces the classification accuracy rates. The
performance of ARN against STAN is significantly affected
when Lnor is dropped. ARN trained without Latt no longer
learns AIF and hence loses its superior generalizable ability
to unseen types of attacks.

Adversarial examples detection: Local intrinsic dimen-
sionality (Lid) method (Ma et al., 2018) could distinguish
between adversarial examples and natural examples by re-
vealing the essential difference between them. In this way,
we can evaluate our ARN from the perspective of detecting
adversarial examples. A binary classifier is first trained to
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distinguish between positive examples (adversarial exam-
ples) and negative examples (natural examples). Then, we
take the clean examples restored by our ARN as positive
examples and input them to the classifier. The classifier
presents low recall rates, i.e., 1.26% for MNIST and 8.48%
for CIFAR-10, which reflects that restored examples are al-
most indistinguishable from natural examples. This demon-
strates that our ARN could effectively remove adversarial
noise.

Discussion on the number of seen types of attacks: In
the above experiments, we choose two attacks as seen types
of attacks to train the pre-processing model. Of course, the
ideal number of seen types of attacks is not fixed. We think
that the ideal number of seen types of attacks is related to
the diversity of unseen types of attacks that may appear in
a practical scenario. Specifically, If the number of unseen
types of attacks is small or all unseen types of attacks are
similar (e.g., CWN and CWT ), using one strong seen types
of attacks (e.g., PGDN ) may be ideal. If the unseen types
of attacks are quite different (i.e., CWN , AAN and FWAN ),
we can use more seen types of attacks (e.g., PGDN and
STAN ) to train our defense model for providing robust
protection. The selected seen types of attacks are expected to
approximately cover the unseen types of attacks. In the real
world, attacks are continuously evolving. The new attacks
may have obvious discrepancies with previous attacks, and
thus pose potential threats to the defense model. We could
update the seen types of attacks and retrain the defense
model to enhance the model’ s adversarial robustness.

5. Conclusion
In this paper, we focus on designing a pre-processing model
for adversarial defense against different unseen types of
attacks. Inspired by cognitive science researches on the
human brain, we propose an adversarial noise removing
network to restore natural examples by exploiting attack-
invariant features. Specifically, we introduce an adversarial
feature learning mechanism to disentangle invariant features
from adversarial noise. A normalization term is proposed
in the encoded space of the invariant features to address
the bias issue between the seen and unseen types of attacks.
By minimizing the gap between the synthesized examples
and natural examples, our method could restore natural
examples from attack-invariant features. Experimental re-
sults demonstrate that our proposed model presents superior
effectiveness against both pixel-constrained and spatially-
constrained attacks, especially for unseen types of attacks
and adaptive attacks. In future, we can extend the work in
the following aspects. First, we can try to leak our defense
model to attacks during the training process for improving
the defense effective against adaptive attacks. Second, we
can use the feedback of a target model (e.g. predictions of

class labels) to train our defense model for further improv-
ing classification accuracy rates. Third, we can combine
the pre-training model with recently proposed robust tar-
get model (Liu & Tao, 2015; Xia et al., 2019; 2020; Wang
et al., 2019; Xia et al., 2021) to explore the robustness of
the combined model against noisy data.
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