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Abstract

In this work, we address the problem of long-distance navigation for battery electric ve-
hicles (BEVs), where one or more charging sessions are required to reach the intended
destination. We consider the availability and performance of the charging stations to be
unknown and stochastic, and develop a combinatorial semi-bandit framework for exploring
the road network to learn the parameters of the queue time and charging power distribu-
tions. Within this framework, we first outline a method for transforming the road network
graph into a graph of feasible paths between charging stations to handle the constrained
combinatorial optimization problem in an efficient way. Then, for the feasibility graph, we
use a Bayesian approach to model the stochastic edge weights, utilizing conjugate priors
for the one-parameter exponential and two-parameter gamma distributions, the latter of
which is novel to multi-armed bandit literature. Finally, we apply combinatorial versions of
Thompson Sampling, BayesUCB and Epsilon-greedy to the problem. We demonstrate the
performance of our framework on long-distance navigation problem instances in large-scale
country-sized road networks, with simulation experiments in Norway, Sweden and Finland1.

1 Introduction

In the coming years, it will be crucial for society to shift the transport sector (personal and commercial)
towards electrification, to reach global targets on reduced greenhouse gas emissions. Range anxiety is still
a major obstacle to the widespread adoption of battery electric vehicles (BEVs) for transportation. This
phenomenon can be characterized as the fear that (potential or current) BEV drivers might feel about
exceeding the electric range of their vehicle before reaching either their destination or a charging station,
thus being stranded with an empty battery.

There is another, perhaps less commonly discussed, but potentially more relevant issue called charging
anxiety. Whereas the range of typical electric vehicles, while still shorter than that of combustion engine
vehicles, has been steadily increasing, the act of charging the battery is still, often, a cumbersome task. Even
at locations with fast chargers, various factors may severely impact the total travel time of a particular trip.
At the highest possible charging power, charging a BEV battery from nearly empty to close to maximum
capacity may take more than 30 minutes. However, maximum power might not always be provided, in
practice. Furthermore, queues to charging stations may appear due to the (relatively) long charging times
and few charging locations. Issues like these might diminish public trust in BEVs as viable alternatives to
combustion engine vehicles.

1Our code is available at https://github.com/volvo-cars/eene-nav-bandit-sim
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In this work, we attempt to mitigate any charging anxiety arising due to the aforementioned factors by
developing an online self-learning algorithmic framework for navigation of BEVs, capable of taking such
charging issues into account. We view the task as a sequential decision-making problem under uncertainty and
model it as a combinatorial semi-bandit problem to address the trade-off between exploring charging stations
to learn more information about them and exploiting previously collected knowledge to select charging
stations that are likely to be good. Within this framework, we employ a Bayesian approach, with conjugate
priors novel to bandit literature. To our knowledge, our work is the first study that addresses the challenging
real-world problem of charging station selection in the partial information setting using multi-armed bandit
(MAB) methods. Thereby, our work provides a novel framework to develop and investigate advanced multi-
armed (combinatorial) bandit methods. As mentioned, our work is also one of the few large-scale real-world
applications of multi-armed bandits, specifically in the combinatorial setting. To achieve such scalability, we
transform the road graph into a feasibility graph, where feasible paths between charging stations are pre-
computed to improve run-time efficiency. Such a transformation of the problem instances for the purpose of
computational efficiency is novel to the MAB community.

2 Related work

Several works have studied shortest path algorithms to address the problem of energy efficient navigation,
e.g., Artmeier et al. (2010); Sachenbacher et al. (2011), focusing on minimizing energy consumption, and
Baum et al. (2015), studying how to minimize travel time while ensuring that battery energy is not fully
depleted (utilizing charging stations, if necessary). Sweda et al. (2017) outline a Dynamic Programming
(DP) approach for adaptive routing of electric vehicles, and model charging station availability and queue
/ waiting times, but assume that all distributions are known in advance. A similar work by Guillet et al.
(2022) formulates charging station selection as a stochastic search problem, addressed with a DP-based
approach. BEV navigation problems (including charging station selection) have been modelled as detailed
reinforcement learning problems (Lee et al., 2020; Qian et al., 2020), but often with high computational
demands making them infeasible for long-distance navigation. To our knowledge, this problem has not been
studied in the partial information setting using multi-armed bandits, and our work is the first contribution
of this kind. Prior works on multi-armed bandits for energy-efficient navigation, e.g., Åkerblom et al. (2020;
2023a), are significantly simplified without considering travel time and charging. Dealing with charging, in
particular in a computationally efficient way, requires considerably more sophisticated models and methods,
beyond the existing applications of (combinatorial) multi-armed bandit methods, as will be demonstrated in
this paper.

In general, the multi-armed bandit problem is a versatile way of describing how to utilize limited resources to
balance exploration of an environment to gain new knowledge and usage of previously collected knowledge
to increase long-term reward. Thompson Sampling (Thompson, 1933) is an early algorithm attempting
to address this trade-off, which has recently increased in popularity due to demonstrated experimental
performance (Graepel et al., 2010; Chapelle & Li, 2011) and proven theoretical performance guarantees
(Agrawal & Goyal, 2012; Kaufmann et al., 2012b; Bubeck & Liu, 2013; Russo & Van Roy, 2014).

Another type of method commonly used for sequential decision-making problems is the Upper Confidence
Bound (UCB) (Auer, 2002) algorithm. Like Thompson Sampling, this method has been adapted to many
different settings, including combinatorial optimization problems (Chen et al., 2013). UCB methods have
also been used for MAB problems with sub-exponential rewards (Jia et al., 2021), e.g., for selection of bike
rental companies with exponential service times, but not in combinatorial settings as far as we are aware.

3 Model

In this section, we describe how to represent the road network as a graph and how to transform it into
a graph of feasible paths between charging stations to allow for computationally efficient charging station
selection. Furthermore, we outline an approach for probabilistic modelling of the queue time (i.e., the time
spent waiting for an occupied charging station) and the charging power of each charging station. In Appendix
A, we include a summary of the notation used throughout this work.
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3.1 Road network graph

We model the underlying road network using a directed and weighted graph Groad (Vroad, Eroad, τ road). Each
vertex u ∈ Vroad corresponds to either an intersection or some other important location of the road network
(e.g., a charging station). Each directed edge e ∈ Eroad represents a road segment from a location u ∈ Vroad

to another location u′ ∈ Vroad, which we may also indicate by writing e = (u, u′). We further denote
the travel time of each road segment e ∈ Eroad as τ road

e , and the vector of all edge travel times as τ road.
Additionally, each road segment e ∈ Eroad has an associated energy consumption εroad

e , which is the energy
needed by a given vehicle to traverse the complete road segment. A convention we follow throughout the
paper is to indicate vectors with bold symbols, with individual elements indexed by edge or vertex subscripts.
Furthermore, we let Vcharge ⊆ Vroad be the set of locations which contain charging stations. Each charging
location u ∈ Vcharge is associated with a maximum charging power ϱmax

u which the charging station is able to
provide. We also assume that there is a corresponding value for the minimum charging power ϱmin

u available
at each station. With the exception of the actual charging power ϱcharge

u ∈
[
ϱmin

u , ϱmax
u

]
⊆ R+ and the queue

time τqueue
u ∈ R+, both of which we consider stochastic and unknown, all other parameters mentioned in

this work (except the charging time, which directly depends on ϱcharge
u ) are assumed to be fixed and known

by the learning agent.

A connected sequence p of edges (or vertices, equivalently) is called a path through the graph. Given a source
vertex usrc ∈ Vroad and a target vertex utrg ∈ Vroad (both assumed to be fixed and known), we denote the
set of all paths starting in usrc and ending in utrg as Proad

(usrc,utrg). Assuming that we aim to find a path which
minimizes the total travel time, we let, for each edge e ∈ Eroad, the edge weight be τ road

e . Then, the shortest
path problem, given usrc, utrg and Groad is defined as

p∗ = arg min
p∈Proad

(usrc,utrg)

(∑
e∈p

τ road
e

)
, (1)

which may be addressed by one of several classical methods, e.g., Dijkstra’s algorithm (Dijkstra, 1959), the
Bellman-Ford algorithm (Shimbel, 1954; Ford Jr, 1956; Bellman, 1958) or the A* algorithm (Hart et al.,
1968). The A* algorithm, in particular, can be described as a best-first search method (see e.g., Dechter &
Pearl 1985), where a provided heuristic function is used to guide the algorithm towards promising solutions.
An admissible heuristic function should be able to provide an underestimate of the total weight of any path
between a pair of given vertices. For a road network graph with travel time edge weights, such as Groad, we
can use a function which calculates a travel time value based on the maximum allowed speed in the road
network and the beeline distance between the two vertices. When a good heuristic function is used, the
A* algorithm is computationally more efficient than Dijkstra’s algorithm, while still guaranteeing that the
optimal path is found.

3.2 Construction of feasibility graph

The model described in the previous section is sufficient for many applications. Since fossil fuel stations
are ubiquitous in most road networks, and since the time required for refueling is typically negligible, the
model can be used for navigation of combustion engine vehicles without significant modifications. For BEVs,
however, charging can take more than 30 minutes, and multiple charging sessions may be required for longer
trips. These factors, combined with the relative sparsity of the charging infrastructure, means that charging
should not be disregarded in the navigation problem.

The time spent on charging depends on the amount of energy needed and the charging power provided.
Furthermore, queues may occur if all charging stations at a particular location are occupied at the same
time. The resource-constrained shortest path problem (RCSPP) (Joksch, 1966) is a variant of the shortest
path problem where each edge is associated with one or more resources, in addition to the weight. The
problem, which is known to be NP-complete (Handler & Zang, 1980) for even a single resource per edge,
is to find the shortest path (w.r.t. the weights) such that the accumulated resources for the path do not
exceed specified constraints. The single-resource version of RCSPP is a special case of our problem (with
consumed energy as the resource and battery capacity as the constraint), where it is also possible to replenish
(recharge) the resource at a subset of the vertices, making it necessary to approximate the problem.
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In this work, for simplicity, we assume that each charging session has to fully charge the battery. We also
assume that the paths between charging stations should be chosen to minimize travel time, even if there
are alternative paths with less energy consumption. For clarity, throughout this work when the battery is
stated to be either empty or fully charged, the battery state of charge is actually 10% or 80%, respectively,
for safety and durability reasons.

With the aforementioned two assumptions, it is possible to transform the road graph into a feasibility graph,
where feasible paths between charging stations are pre-computed to improve run-time efficiency. We denote
this directed and weighted graph Gfeasible (V feasible, E feasible, τ feasible). In order to construct the feasibility
graph, we start by letting V feasible = Vcharge be the set of charging stations. Then, for any given path
p through Groad, let τ road

p =
∑

e∈p τ road
e be the travel time of the path and εroad

p =
∑

e∈p εroad
e be the

total energy consumption of the path. We create a new set of edges Epath =
{

(u, u′) ∈ V feasible × V feasible},
where each edge (u, u′) ∈ Epath corresponds to the shortest path p∗

(u,u′) = arg minp∈Proad
(u,u′)

τ road
p between the

charging stations (computed as in Eq. 1), where we denote τpath
(u,u′) = τ road

p∗
(u,u′)

and εpath
(u,u′) = εroad

p∗
(u,u′)

. Finally,
given a maximum battery capacity εmax and minimum battery capacity εmin, we define the set of feasible
edges as the set of shortest paths between charging stations where the battery capacity exceeds the energy
consumption, i.e.,

E feasible =
{

e ∈ Epath | εpath
e ≤ εmax − εmin} . (2)

Moreover, we define a vector of travel times for the edges of the feasibility graph, τ feasible. For each edge
(u, u′) ∈ E feasible, we let

τ feasible
(u,u′) = τpath

(u,u′) + τqueue
u′ + τ charge

(u,u′) , (3)

where the charging time τ charge
(u,u′) = εpath

(u,u′)/ϱcharge
u′ depends on both the energy consumed on the edge (u, u′)

and the provided charging power at u′, while we assume that the queue time τqueue
u′ only depends on u′.

Note that εpath
(u,u′) = τ charge

(u,u′) · ϱ
charge
u′ since we assume that the energy we need to charge at u′ is the same as

the energy consumed while traversing the preceding path (u, u′).

We emphasize that even though we assume each charging session fully charges the battery, the construction
of the feasibility graph (and the entire online learning framework presented in this work) can be extended
in a straightforward way to allow for partial charging. If the battery energy available at the start of each
path is discretized into a finite number of energy levels, vertices can be added for these to each charging
station, where edges between them represent partial charging choices. Then, feasibility graph layers may
be constructed for each of the energy levels, without increasing the number of unknown parameters that an
agent needs to estimate. See, e.g., Sweda et al. (2017), for another approach using discretized charging levels
for partial charging, applied to a setting with fixed and known parameters.

3.3 Probabilistic queue and charging times

As stated earlier, we consider both the queue time and the charging power of each charging station to be
stochastic and unknown, only to be revealed after the station has been visited. The charging power can
easily be measured using internal signals of the vehicle, while the queue time can be inferred from the time
spent in close proximity to the charging station (e.g., using a GPS sensor or an odometer) before charging.
In contrast, we assume that we are given the travel time and energy consumption of each road segment in
the road network graph (and, in practice, that they are fixed and known by the agent). We further assume
that the queue time and charging power are independently distributed, both with respect to each other, as
well as between different charging stations. In reality, they exhibit a complex interdependence, where low
charging power might cause queues to appear, and the simultaneous charging of many vehicles may cause
the available power to decrease.

3.3.1 Queue time model

The queuing behavior at a particular charging location may be complex, depending on the characteristics
of the location. A charging location has few or many charging stations, where each may have multiple
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connectors. The stations may also differ in the maximum charging power provided, as well as the price of
charging. These, and other factors, impact the preferences of drivers towards different stations, especially if
many of the stations at the same location are occupied simultaneously.

Rather than modelling the queues in detail, we take inspiration from a simple model of queuing theory, the
M/M/1 queue (Kendall, 1953), and assume that the queue time τqueue

u of each charging station u ∈ V feasible

is exponentially distributed according to an unknown rate parameter λqueue
u . The likelihood function of the

queue time model can then be defined as

P (τqueue
u |λqueue

u ) = Exp(λqueue
u ). (4)

We also take a Bayesian view and assume that the rate parameter is drawn from a known prior distribution.
Even when both the parameter value and the prior distribution are unknown, we may, in practice, utilize
partial information available (e.g., occupancy information for some charging stations) to assign prior beliefs
for the parameters using this approach (enabling more efficient exploration of the charging stations). In
principle, any suitable (positive support) distribution can be used as prior, but for this likelihood and
parameter, the gamma distribution is a conjugate prior (meaning that the posterior distribution given
observations is also a gamma distribution, and thereby the posterior parameters can be efficiently computed).
The prior is then given by

P
(
λqueue

u |αqueue
u,0 , βqueue

u,0
)

= Gamma
(
αqueue

u,0 , βqueue
u,0

)
. (5)

Given a sequence of observed queue times y1, . . . , yt, the parameters αqueue
u,t and βqueue

u,t of the gamma posterior
distribution are given by αqueue

u,t = αqueue
u,0 + t and βqueue

u,t = βqueue
u,0 +

∑t
i=1 yi. Similarly, incremental updates

of the parameters can be performed using αqueue
u,t = αqueue

u,t−1 + 1 and βqueue
u,t = βqueue

u,t−1 + yt.

3.3.2 Charging power model

Ideally, which is also often the case, any given charging station u ∈ V feasible should be able to provide the
specified maximum charging power ϱmax

u . Occasionally, however, some charging stations provide less power.
Reasons for this may include, e.g., intermittent high load in the surrounding electric grid, limitations of the
charging station, etc. Moreover, in this work, we assume that the vehicle is able to fully utilize the charging
power provided by the charging station. Again, we note that some of this information may be available to
the agent a priori and can potentially be used to assign prior beliefs to the parameters.

While a Gaussian model could be sufficient for the anomalous cases described here, it would have to be
truncated or rectified to represent the sharp peak in density at ϱmax

u for a charging station functioning
as intended. Then, conjugacy properties may not be used for efficient posterior parameter updates. An
alternative, which we describe here, is to use a gamma distribution to model the charging power. In practice,
we still rectify the charging power distribution below ϱmin

u in Section 4 to prevent negative or zero charging
power, but this should have a relatively minor impact on the results since the density of the charging power
distribution is often concentrated close to ϱmax

u with the prior distributions that we consider. We define the
likelihood function as

P
(
ϱmax

u − ϱcharge
u |αcharge

u , βcharge
u

)
= Gamma

(
αcharge

u , βcharge
u

)
. (6)

A conjugate prior distribution for both parameters of the gamma likelihood was derived by Damsleth (1975)
and further analyzed by Miller (1980), which Damsleth (1975) refers to as the Gamcon-II prior. The joint
prior distribution over αcharge

u and βcharge
u has a set of parameters πcharge

u,0 > 0, γcharge
u,0 > 0 and ξcharge

u,0 > 0,

where ξ
charge
u,0

√
πcharge

u,0 < 1. Decomposed, the conjugate prior over βcharge
u conditional on αcharge

u is also a
gamma distribution, defined as

P
(

βcharge
u |αcharge

u , γcharge
u,0 , ξcharge

u,0

)
= Gamma

(
ξcharge

u,0 · αcharge
u , γcharge

u,0

)
. (7)
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Whereas the prior distribution over βcharge
u has a convenient form for both sampling and moment computa-

tion, only the unnormalized probability density function for the marginal conjugate prior distribution over
αcharge

u is available. It is defined as

P
(

αcharge
u |πcharge

u,0 , γcharge
u,0 , ξcharge

u,0

)
∝ exp

(
αcharge

u ln πcharge
u,0 − ξcharge

u,0 αcharge
u ln γcharge

u,0

−ξcharge
u,0 ln Γ

(
αcharge

u

)
+ ln Γ

(
ξcharge

u,0 αcharge
u

))
,

(8)

where Γ (·) is the well-known gamma function. The joint unnormalized prior distribution over αcharge
u and

βcharge
u is then the product of Eq. 7 and Eq. 8. With an observed charging power zt, the incremental

updates for the parameters of the joint posterior are given by πcharge
u,t = πcharge

u,t−1 · (ϱmax
u − zt), γcharge

u,t =
γcharge

u,t−1 + (ϱmax
u − zt) and ξcharge

u,t = ξcharge
u,t−1 + 1. Despite lacking a normalization constant, Eq. 8 can be

used to efficiently find the mode of the posterior, since it is log-concave on the (positive real) domain. An
unnormalized density function can also be used in adaptive rejection sampling methods to efficiently generate
exact samples from the posterior distribution.

4 CMAB formulation

We formulate the problem of selecting paths and charging stations through the road network as a sequential
decision-making problem under uncertainty. Specifically, we see it as a combinatorial semi-bandit (CMAB)
problem (Cesa-Bianchi & Lugosi, 2012; Gai et al., 2012), a variant of the classical multi-armed bandit (MAB)
problem. For a finite horizon T , and each iteration t ∈ [T ], the agent has to select and execute an action. In
the CMAB setting, this action consists of a subset of objects from a ground set. Often, there are constraints
on which subsets are allowed to be selected by the agent. The environment gives feedback for each of the
objects selected (called semi-bandit feedback), the set of which determines the reward received by the agent
for taking the action.

In our setting, the ground set corresponds to the set of edges in the feasibility graph, i.e., E feasible. For a
source vertex usrc ∈ V feasible and a target vertex utrg ∈ V feasible, fixed for a particular problem instance, the
set of allowed actions corresponds to the set of paths P feasible

(usrc,utrg) from the source to the target in the feasibility
graph. In each iteration t ∈ [T ], the agent selects and travels a path pt ∈ P feasible

(usrc,utrg), and receives the path
travel time τpath

(u,u′), queue time τqueue
u′ and charging time τ charge

(u,u′) as feedback for each edge (u, u′) ∈ pt. Since
the shortest path problem is a minimization problem, we say that an action has a loss instead of a reward,
where the loss of the traveled path is

Lt(pt) =
∑

(u,u′)∈pt

τ feasible
(u,u′) , (9)

where τ feasible
(u,u′) = τpath

(u,u′) + τqueue
u′ + τ charge

(u,u′) . Let θ be an arbitrary vector of model parameters for the entire
feasibility graph, where for each vertex u ∈ V feasible we let θu =

(
λqueue

u , αcharge
u , βcharge

u

)
. Then, we define

the expected loss function of a path p as

fθ(p) =
∑

(u,u′)∈p

(
τpath

(u,u′) + 1
λqueue

u′
+ gαcharge

u′ ,βcharge
u′

(u, u′)
)

, (10)

where

gαcharge
u′ ,βcharge

u′
(u, u′) = E

[
εpath

(u,u′)/max
(

ϱmin
u′ , ϱcharge

u′

) ∣∣ αcharge
u′ , βcharge

u′

]
(11)

is the expected charging time, given the parameters αcharge
u′ and βcharge

u′ . Here, the charging power in the
denominator is rectified below the minimum charging power ϱmin

u′ . Throughout this work, gαcharge
u′ ,βcharge

u′
(u, u′)
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Algorithm 1 CMAB charging station selection
Input: αqueue

u,0 , βqueue
u,0 , πcharge

u,0 , γcharge
u,0 , ξcharge

u,0

1: for t = 1, . . . , T do
2: for u ∈ V feasible do
3: Compute τ̂queue

u , α̂charge
u and β̂charge

u using
specified CMAB method and current poste-
rior parameters αqueue

u,t−1, βqueue
u,t−1, πcharge

u,t−1 , γcharge
u,t−1

and ξcharge
u,t−1

4: end for
5: for (u, u′) ∈ E feasible do
6: τ̂ feasible

(u,u′) ← τpath
(u,u′) + τ̂queue

u′ +
ĝα̂charge

u ,β̂charge
u

(u, u′)
7: end for
8: pt ← arg minp∈Pfeasible

(usrc,utrg)

∑
(u,u′)∈p τ̂ feasible

(u,u′)

9: for each travelled edge (u, u′) ∈ pt do
10: Observe feedback τqueue

u′ and τ charge
(u,u′)

11: αqueue
u′,t ← αqueue

u′,t−1 + 1
12: βqueue

u′,t ← βqueue
u′,t−1 + τqueue

u′

13: ϱcharge
u′ ←

εpath
(u,u′)

τcharge
(u,u′)

14: πcharge
u′,t ← πcharge

u′,t−1 ·
(

ϱmax
u′ − ϱcharge

u′

)
15: γcharge

u′,t ← γcharge
u′,t−1 +

(
ϱmax

u′ − ϱcharge
u′

)
16: ξcharge

u′,t ← ξcharge
u′,t−1 + 1

17: end for
18: end for

is approximated as ĝαcharge
u′ ,βcharge

u′
(u, u′) using Monte Carlo estimation, by averaging over charging time values

computed with samples from the charging power model defined in Eq. 6.

MAB algorithms are usually evaluated using the notion of regret until a horizon T , which is defined as the
sum over all iterations t ∈ [T ] of the difference in expected loss of the best action p∗ (defined as in Eq. 1,
but for the feasibility graph) and the action pt selected by the algorithm, such that

Regret(T ) =
∑

t∈[T ]

(fθ∗(pt)− fθ∗(p∗)) , (12)

where θ∗ is the true underlying parameter vector (in which the parameters of the queue time and charging
power distributions are assumed to be drawn from their respective prior distributions). The objective is to
find a policy that minimizes the expected regret, where a sub-linear growth with respect to T is generally
desired.

5 CMAB methods

We adapt three CMAB algorithms for our problem setting: Epsilon-greedy, Thompson Sampling and
BayesUCB. For all three algorithms, a shortest path algorithm is used to find the shortest path through
the feasibility graph. This is usually called an oracle in CMAB literature. While Dijkstra’s algorithm is a
commonly used oracle for CMABs with shortest path problems (see e.g., Gai et al. 2012; Liu & Zhao 2012;
Zou et al. 2014; Åkerblom et al. 2020), we may use the more efficient A* algorithm since the feasibility
graph admits a suitable heuristic function. Since the vector of path travel times τ path is fixed and known,
the direct (beeline) distance between each pair of charging stations can be divided by the maximum allowed
speed in the road network (e.g., 120 km/h) to get a value which is guaranteed to underestimate the travel
time between those stations. We do not explicitly consider the queue time or charging time in the heuristic
function, but clearly, both are non-negative and implicitly underestimated by zero.

All three algorithms follow the same general structure, as outlined in Algorithm 1, which closely corre-
sponds to the CMAB description in Section 4, while also including explicit posterior parameter updates
and other details. The primary bottleneck in the computational efficiency of Algorithm 1 is the short-
est path computation on the feasibility graph, with a run-time complexity for each iteration t ∈ [T ] of
O
(
|E feasible|+ |V feasible| log |V feasible|

)
if Dijkstra’s algorithm is used.
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5.1 Epsilon-greedy

In each iteration t ∈ [T ], the Epsilon-greedy MAB algorithm selects actions either greedily, according to
current parameter estimates of the loss distributions, or uniformly at random. It selects uniform exploration
with a small probability ϵt (decreasing with t) and greedy otherwise.

In line 3 of Algorithm 1, we retrieve τ̂queue
u , α̂charge

u and β̂charge
u through MAP estimation, i.e., by finding the

mode of each posterior distribution. This can be done analytically for the gamma prior / posterior in Eq.
5, such that τ̂queue

u ← βqueue
u,t−1/(αqueue

u,t−1 − 1), where we assume that αqueue
u,t−1 > 1. For α̂charge

u and β̂charge
u , the

Gamcon-II prior / posterior over αcharge
u in Eq. 8 has no analytical formula for the mode, but it can be found

numerically. With the mode α̂charge
u , we can calculate β̂charge

u ← (ξcharge
u,t−1 · α̂charge

u − 1)/γcharge
u,t−1 .

In greedy iterations, the calculated estimates are used directly in line 8 to find a path to travel. In ex-
ploration iterations, however, line 8 is changed to provide random exploration of the feasibility graph.
Chen et al. (2013) (supplementary material) introduced a CMAB version of Epsilon-greedy, which we
adapt here. First, a vertex urand ∈ V feasible is selected uniformly at random. Then, we find the paths
p

(1)
t ← arg minp∈Pfeasible

(usrc,urand)

∑
(u,u′)∈p τ̂ feasible

(u,u′) and p
(2)
t ← arg minp∈Pfeasible

(urand,utrg)

∑
(u,u′)∈p τ̂ feasible

(u,u′) , which we
concatenate to get pt.

5.2 Thompson Sampling

Thompson Sampling (Thompson, 1933) is one of the oldest MAB algorithms, which has recently been adapted
to CMAB problems (Wang & Chen, 2018), including shortest path problems with stochastic edge weights for
various applications (Wang & Chen, 2018; Åkerblom et al., 2020; 2023b). Like Epsilon-greedy, it performs
randomized exploration, but it does so in every iteration and in a more guided way. It utilizes the knowledge
encoded in the prior and posterior distributions, by sampling paths according to the probability that they
are optimal (given the prior beliefs and the observations from the environment).

In Algorithm 1, only line 3 needs to be adapted to this method. Here, the expected queue time τ̂queue
u and

charging power parameters α̂charge
u and β̂charge

u are calculated using parameters sampled from the current
posterior distributions. For the queue time prior distribution in Eq. 5, sampling the rate parameter λ̂queue

u

from the gamma distribution is straightforward, which gives an expected queue time of τ̂queue
u ← 1/λ̂queue

u .
Similar to the mode calculations in Section 5.1, sampling α̂charge

u from the Gamcon-II prior and posterior
distributions is not as convenient. However, we can utilize adaptive rejection sampling (ARS) (Gilks &
Wild, 1992) to generate exact posterior samples, since it only requires a (log-concave, but not necessarily
normalized) probability density function, like Eq. 8. In this work, we specifically use an extension called
transformed density rejection (TDR) (Hörmann, 1995). Once a sample of α̂charge

u is obtained, the conditional
gamma prior distribution in Eq. 7 can be used to sample β̂charge

u .

5.3 BayesUCB

MAB algorithms based on upper confidence bounds (UCB) (Auer, 2002) use high probability overestimates
of actions’ expected rewards to explore the environment. By doing this, UCB methods follow the principle
of optimism in the face of uncertainty to select promising actions. UCB methods have been shown to have
good performance in many different problem settings, and have been adapted to CMAB settings (Chen et al.,
2013), including shortest path problems.

We adapt a Bayesian version of UCB called BayesUCB (Kaufmann et al., 2012a; Kaufmann, 2018) to this
setting so that we can utilize the prior distributions for exploration. Again, like for Thompson Sampling, we
only have to modify line 3 of Algorithm 1 to implement this method. BayesUCB uses (lower, in this case)
quantiles of the posterior distributions over expected action losses as optimistic estimates. Given a probability
distribution χ and a probability ν, the quantile function Q (ν, χ) is defined such that Prx∼χ {x ≤ Q (ν, χ)} =
ν. For the queue time τ̂queue

u , a high rate parameter λ̂queue
u results in a low expected travel time τ̂queue

u ←
1/λ̂queue

u . Hence, an upper quantile of Eq. 5 should be sought, i.e.,

8
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λ̂queue
u ← Q

(
1− 1/t, P

(
λqueue

u |αqueue
u,t−1, βqueue

u,t−1
))

, (13)

where we use the probability value (1 − 1/t) suggested by Kaufmann et al. (2012a). Since the Gamcon-II
prior and posterior distributions do not admit a convenient way of computing quantile values, we settle on
using the mode of Eq. 8 to obtain α̂charge

u . However, we utilize the mode α̂charge
u to compute an upper

confidence bound for βcharge
u using Eq. 7, such that

β̂charge
u ← Q

(
1− 1/t, P

(
βcharge

u |α̂charge
u , γcharge

u,t−1 , ξcharge
u,t−1

))
. (14)

Then, as before, we can calculate an optimistic (low) estimate of the mean charging time.

6 Experiments

To evaluate the feasibility graph construction procedure described in Section 3 and the CMAB methods out-
lined in Section 5, we perform realistic experiments in country-sized road networks. We define three different
problem instances, characterized by their origins and destinations, across the northern European countries
of Sweden, Norway and Finland. We utilize open datasets for the road network map data (OpenStreetMap
contributors, 2022) and the charging station data (Open Charge Map, 2022) of each country.

6.1 Energy consumption and travel time

For the vehicle energy consumption, we use a simplified vehicle longitudinal dynamics model based on
Guzzella et al. (2007), where we only consider the maximum speed of each road segment in the road network,
i.e., disregard accelerations, decelerations and altitude changes. The vehicle parameters that we use are
(arbitrarily) for a medium duty truck, similar to the one used by Åkerblom et al. (2020). For an edge
e ∈ Eroad, the model is defined as

εroad
e = mgCrdroad

e + 0.5CdAρdroad
e (vroad

e )2

3600η
, (15)

where m is the vehicle mass (13700 kg), g is the gravitational acceleration (9.81 m/s2), Cr is the rolling
resistance coefficient (0.0064, assumed to be the same for the entire road network), droad

e is the length of the
road segment (m), Cd is the air drag coefficient of the vehicle (0.7), A is the frontal surface area of the truck
(8 m2), ρ is the air density (1.2 kg/m3, assumed to be the same everywhere), vroad

e is the maximum speed
of the road segment (m/s), and η is the battery-to-wheel energy conversion efficiency (assumed to perfect,
i.e., 1). The battery capacity (2.5 · 108Ws ≈ 69.4kWh) of the vehicle is assigned to be very low, so that it is
required to charge often. The travel time of the edge is assumed to be τ road

e = droad
e /vroad

e .

6.2 Experimental setup

First, each of the country road network graphs is transformed into a feasibility graph according to the
procedure described in Section 3. For simplicity, we remove all charging stations with lower specified power
than 10 kW, since slower charging stations should be less relevant for long-distance travel. Furthermore, we
assume that each charging location has a single charging station (by removing all except the one with the
highest specified charging power, as well as any duplicates). Table 1 shows the number of vertices and edges
in the initial road graph Groad (Vroad, Eroad) and constructed feasibility graph Gfeasible (V feasible, E feasible) of
each problem instance. Figures 1a, 1c and 1e visualize all edges of the road network graphs of Sweden,
Norway and Finland, respectively, as well as examples of the explored paths and charging stations visited
when Thompson Sampling is applied to the problem. Figures 1b, 1d and 1f show the corresponding feasibility
graphs for each of the networks. In the feasibility graphs, we can see that some parts of the road networks
are unreachable from the rest of the road network, given the specified battery capacity of 69.4 kWh.

For each vertex u ∈ V feasible and the queue time prior distribution defined in Eq. 5, we assign the prior
parameters as αqueue

u,0 = 2 and βqueue
u,0 = 2400, and for the charging power prior distribution in Eq. 7 and Eq.

9
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(a) Road graph: Sweden. (b) Feasibility graph: Sweden.

(c) Road graph: Norway. (d) Feasibility graph: Norway.

(e) Road graph: Finland. (f) Feasibility graph: Finland.

Figure 1: Road and feasibility graphs for each of the problem instances in blue, with Thompson Sampling
exploration of paths in red and charging stations in green, where the opacity indicates degree of exploration
for both.
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Instance |Vroad| |Eroad| |V feasible| |E feasible|
Sweden 6.8 · 105 1.5 · 106 1.7 · 103 1.6 · 105

Norway 3.6 · 105 7.6 · 105 1.1 · 103 8.5 · 104

Finland 4.3 · 105 9.5 · 105 5.5 · 102 7.0 · 104

Table 1: Sizes of the road and feasibility graphs for all problem instances.

8, we set the parameters so that πcharge
u,0 = exp (13.5), γcharge

u,0 = 300 and ξcharge
u,0 = 3. Furthermore, we scale

the samples and expected values of the gamma distribution in Eq. 6 by 300 to achieve a sufficiently high
charging power variance. For the rectification of the charging power below ϱmin

u , we assume ϱmin
u = ϱmax

u /2.
We choose N = 1000, and can then estimate the expected charging time using Monte Carlo sampling, such
that

ĝαcharge
u′ ,βcharge

u′
(u, u′) = 1

N

N∑
k=1

εpath
(u,u′)

max (ϱmin
u , ϱmax

u − 300zk) , (16)

where zk ∼ Gamma
(

αcharge
u′ , βcharge

u′

)
.

For Epsilon-Greedy, we let ϵt = 1/
√

t. Moreover, for Thompson Sampling, we experience that TDR occa-
sionally fails to produce samples when the posterior distribution over αcharge

u gets too concentrated, typically
after a few hundred observations. When this happens, we switch to the mode of the distribution for the
specific charging station u, while continuing posterior sampling for all other charging stations. Besides
Epsilon-Greedy (E-GR), Thompson Sampling (TS) and BayesUCB (B-UCB), we also include a pure greedy
method (GR) in the experiments (i.e., Epsilon-Greedy with ϵt = 0), as a baseline.

6.3 Results

We run all experiments with a horizon T = 1000. We include the following problem instances: Sweden
(Gothenburg to Stockholm), Norway (Oslo to Trondheim) and Finland (Helsinki to Vaasa). For all pairs of
problem instances and CMAB methods, we run the same experiment 10 times, with different random seeds.
The regret results are summarized in Table 2, as well as through regret plots with standard error regions in
Figures 2a, 2b and 2c.

Method Sweden Norway Finland
GR 1.8 · 106(±1.3 · 106) 6.2 · 105(±8.6 · 105) 1.8 · 106(±1.7 · 106)
E-GR 4.4 · 106(±5.4 · 105) 3.2 · 106(±1.1 · 106) 2.3 · 106(±9.2 · 105)
TS 4.0 · 105(±2.7 · 105) 2.2 · 105(±2.2 · 105) 4.4 · 105(±1.9 · 105)
B-UCB 7.6 · 105(±2.4 · 105) 2.7 · 105(±1.3 · 105) 5.2 · 105(±3.3 · 105)

Table 2: Final average (± standard deviation) of regret at iteration T = 1000 for all problem instances.

In Table 3, we report the average and standard deviation of the per-iteration run-time (in seconds) of each
method and problem instance. The CMAB methods are implemented with Python using the SciPy library,
for implementations of statistical functions, including the Transformed Density Rejection method (Hörmann,
1995), and the NetworkX library (Hagberg et al., 2008), for the implementation of the A* algorithm. All
run-time measurements were performed on a single core of a laptop with an Intel(R) Core(TM) i7-10850H
CPU (2.70 GHz) and 32.00 GB RAM.

In general, the Epsilon-Greedy method incurs the highest final regret of all the methods, for all problem
instances. This can be explained by the uniformly random selection of charging stations, which means that
the method takes very long detours, sometimes to the other side of the country. Following close behind is
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(a) Cumulative regret: Sweden.
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(b) Cumulative regret: Norway.
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(c) Cumulative regret: Finland.

Figure 2: Plots of cumulative regret averaged over 10 runs (with standard error regions), as a function of
the iteration t, for each of the problem instances, and the CMAB methods Greedy (GR), Epsilon-Greedy
(E-GR), Thompson Sampling (TS) and BayesUCB (B-UCB).

Method Sweden Norway Finland
GR 2.04(±0.18) 2.61(±0.27) 3.09(±0.37)
E-GR 2.80(±0.51) 2.83(±0.79) 3.38(±0.77)
TS 2.79(±0.78) 2.92(±0.62) 2.93(±0.36)
B-UCB 3.47(±0.32) 2.97(±0.37) 3.46(±0.42)

Table 3: Average (over 1000 iterations) per-iteration run-time (s) (± standard deviation) of each CMAB
method, for different problem instances.

the Greedy method, which quickly converges to sub-optimal paths. This becomes even more apparent in the
regret plots, which show the regret (averaged over 10 runs) as a function of the iteration t. For each of the
problem instances, the Greedy method exhibits a linear increase in regret, while the other methods (even
Epsilon-greedy) continuously find better paths. For all problem instances, Thompson Sampling performs
slightly better than BayesUCB, which may be due to the more optimistic exploration of BayesUCB resulting
in a wider spread of explored paths (and consequently, occasionally more regret incurred).

7 Discussion and conclusion

The key benefit of the feasibility graph structure is to reduce the number of unknown parameters that the
learning agent needs to estimate. While the set of base arms in CMAB online shortest path problems often
correspond to the set of edges (see e.g., Åkerblom et al. 2023a), in this case, the total number of charging
stations is orders of magnitude lower than the paths between them (see Table 1). Since the worst-case
expected regret of CMAB methods usually scales with the number of base arms (Chen et al., 2013; Wang &
Chen, 2018), keeping this number low is desirable. Even with the extension for partial charging mentioned
in Section 3.2, the number of base arms would stay the same (ensuring scalability).
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While the assumptions in this work are relatively strong (e.g., the assumption of mutually independent
charging time and queue time with fixed distributions, or the M/M/1 queue assumption), we emphasize that,
in principle, the feasibility graph structure enables more expressive models associated with each charging
station. One such possible extension of this work can be to take accessible real-time information on the
congestion levels of surrounding roads into account (which both the charging time and queue time likely
depend on), by casting the problem as a CMAB version of the contextual MAB problem (Lu et al., 2010).

In conclusion, this work introduces a novel and extensible combinatorial semi-bandit framework for navigation
and charging station selection in road networks where the queue time and charging power of each charging
station are stochastic with unknown distributions, the parameters of which are generated from known prior
distributions. We utilize conjugate prior distributions for the exponential and gamma models to estimate
the loss distributions and induce exploration. Finally, we demonstrate the performance of our framework on
several country-sized road and charging networks.
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A Appendix

Notation Description
Groad Road graph
Vroad Road graph vertices
Eroad Road graph edges
τ road Vector of road graph edge travel times
τ road

e Road graph travel time of edge e
τ road

p Road graph travel time of path p
εroad

e Road graph energy consumption of edge e
εroad

p Road graph energy consumption of path p
Vcharge Charging station vertices
ϱcharge

u Charging station power (actual) of vertex u
ϱmax

u Charging station maximum power of vertex u
ϱmin

u Charging station minimum power of vertex u
u A vertex
u′ A vertex (alternative)
usrc Source vertex
utrg Target vertex
e An edge
p A path
p∗ Shortest path (implicitly between specified source and target vertices)
p∗

(u,u′) Shortest path between vertices u and u′

Proad
(usrc,utrg) Set of paths in road graph between source and target vertices
Gfeasible Feasibility graph
V feasible Feasibility graph vertices
E feasible Feasibility graph edges
Epath Edges corresponding to shortest paths between charging stations in road graph
τpath

(u,u′) Path travel time between vertices u and u′

τ charge
(u,u′) Charging time required for travel between vertices u and u′

τqueue
u Queue time required for charging station at vertex u

τ feasible
e Feasibility graph travel time of edge e

εpath
(u,u′) Path energy consumption between vertices u and u′

εmax Maximum battery capacity of vehicle
εmin Minimum battery capacity of vehicle
λqueue

u Queue time distribution rate parameter of vertex u
αqueue

u,0 Shape prior parameter for queue time rate parameter, of vertex u
βqueue

u,0 Rate prior parameter for queue time rate parameter, of vertex u
αqueue

u,t Shape posterior parameter for queue time rate parameter, at time t and vertex u
βqueue

u,t Rate posterior parameter for queue time rate parameter, at time t and vertex u
αcharge

u Charging power distribution shape parameter of vertex u
βcharge

u Charging power distribution rate parameter of vertex u

πcharge
u,0 First prior parameter for charging power parameters, of vertex u

γcharge
u,0 Second prior parameter for charging power parameters, of vertex u

ξcharge
u,0 Third prior parameter for charging power parameters, of vertex u

πcharge
u,t First posterior parameter for charging power parameters, at time t and vertex u

γcharge
u,t Second posterior parameter for charging power parameters, at time t and vertex u

ξcharge
u,t Third posterior parameter for charging power parameters, at time t and vertex u

Table 4: Summary of the notation used throughout the paper.

Continued on the next page

17



Published in Transactions on Machine Learning Research (11/2023)

Notation Description
t Time step
T Time horizon
pt Path (action) selected by CMAB algorithm at time t
Lt(p) Loss of path p at time t
θ Vector of all parameters of feasibility graph
θ∗ True underlying (unknown) vector of all parameters of feasibility graph
θu Vector of parameters

(
λqueue

u , αcharge
u , βcharge

u

)
of vertex u

fθ(p) Expected loss function, w.r.t. parameter vector θ, applied to path p
gα,β(u, u′) Expected charging time of edge (u, u′), given parameters α and β
ĝα,β(u, u′) Estimated charging time of edge (u, u′), given parameters α and β
Regret(T ) Regret of CMAB algorithm at horizon T
ϵt Exploration probability of the Epsilon-greedy CMAB algorithm
τ̂queue

u Estimate of mean queue time, for vertex u

λ̂queue
u Estimate of queue time rate parameter, for vertex u

α̂charge
u Estimate of charging power shape parameter, for vertex u

β̂charge
u Estimate of charging power rate parameter, for vertex u

Q (ν, χ) Quantile function for distribution χ and probability value ν
m Vehicle mass
g Gravitational acceleration
Cr Rolling resistance coefficient
droad

e Length of the road segment, for edge e
Cd Air drag coefficient
A Frontal surface area of vehicle
vroad

e Maximum speed of the road segment, for edge e
ρ Air density
η Battery-to-wheel energy conversion efficiency

Table 4: Summary of the notation used throughout the paper.
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