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ABSTRACT

We introduce DAMAS (Dynamic Adaptation through Multi-Agent Systems), a
novel framework for decision-making in non-stationary environments character-
ized by varying reward distributions and dynamic constraints. Our framework
integrates a multi-agent system with Multi-Armed Bandit (MAB) algorithms and
Bayesian updates, enabling each agent to specialize in a particular environmen-
tal state. DAMAS continuously estimates the probability of being in each state
using only reward observations, allowing rapid adaptation to changing conditions
without the need for explicit context features. Our evaluation of DAMAS in-
cluded both synthetic environments and real-world web server workloads. Our
results show that DAMAS outperforms state-of-the-art methods, reducing regret
by around 40% and achieving a higher probability of selecting the best action.

1 INTRODUCTION

In today’s technology-driven world, adaptive decision-making systems play a crucial role in various
domains, ranging from industrial automation (Scordino et al., [2020)) to financial trading (Liu et al.,
2022)) and online services (Min-Allah et al., 2021; |De Sanctis et al., |2020), including web servers.
These systems must process data and respond quickly to ensure reliable performance. E.g., con-
sider a web server with client request patterns that vary throughout the day, ranging from 1 — 5ms
to 10 — 15ms. Although normalizing response times to a fixed range (for example, [0, 1]) sim-
plifies decision-making, it becomes ineffective when distributions vary. Real-time workloads in
web servers are dynamic and unpredictable, posing challenges in maintaining optimal performance.
Static configurations often fail to adapt to changing demand patterns, leading to inefficiencies and
service degradation (Araujo & Holmes| [2021).

The exploration-exploitation trade-off is crucial in managing systems. Balancing the exploitation
of known configurations and the exploration of new ones with uncertain outcomes is fundamen-
tal in sequential decision-making and reinforcement learning (Hu & Xu, 2020} |Shi & Xul 2019
Efroni et al., [2020). Bayesian models, which account for uncertainty, often offer reliable solutions
in dynamic environments (Galioto & Gorodetsky, [2020).

Many existing solutions for non-stationary multi-armed bandit problems assume the availability of
contextual information or require engineered features that describe the environment’s state (Zheng
et al.l 2023). However, in real-world applications, such contextual signals are often unavailable,
unreliable, or costly to obtain, limiting the practical utility of these methods (Ghoorchian et al.,
2024).

Hence, it is essential to develop multi-armed bandit algorithms for non-stationary environments.
Many relevant algorithms for non-stationary environments such as Sliding-Window UCB (Garivier
& Moulines, |2008)), Sliding-Window TS (Trovo et al.,|2020)), and the approaches proposed by (Cave-
naghi et al.|(2021)), assume uniform rewards between 0 and 1, or -1 and 1. However, when rewards
fall outside these ranges or when the range itself changes over time, these algorithms struggle to
maintain optimal performance.

Hence, we propose DAMAS (Dynamic Adaptation through Multi-Agent Systems with Multiple Q-
values), a novel framework for adaptation in non-stationary environments in multi-armed bandits.
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Unlike prior approaches, DAMAS operates solely on observed rewards without relying on external
context or engineered features. DAMAS combines the multi-armed bandits (MAB) algorithms with
Bayesian updates, leveraging a multi-agent system consisting of specialized agents for different
workload scenarios. Our approach seamlessly integrates the chosen MAB algorithm’s ability to
balance exploration and exploitation with Bayesian updates for environmental state estimation.

The key contributions of this paper are as follows: (i) We propose DAMAS, a framework for dy-
namic environments that integrates MAB algorithms with Bayesian updates to estimate the current
environment and update the Q-values based on the current uncertainty. (ii) We show that DAMAS
effectively handles varying reward ranges by employing multiple Q-values and specialized agents
for different environmental states. (iii) We introduce Bayesian Optimization for hyper-parameter
adjustment in DAMAS, which accounts for the uncertainty in agent performance across different
environments. We tested DAMAS in synthetic and real-world web server environments, showing a
40% reduction in regret and a high optimal action selection.

2 RELATED WORKS

The challenge of optimal decision-making in dynamically changing environments has been a signifi-
cant focus in the development of adaptive algorithms, particularly in the context of adaptive systems
and multi-armed bandit problems. Studies have demonstrated adaptive decision-making using vari-
ous techniques, such as chaotic semiconductor lasers for dynamically changing reward environments
(Oda et al.} 2022) and distributed consensus algorithms for multi-agent multi-armed bandits in dy-
namic settings (Cheng & Maghsudil 2024). However, existing solutions often face difficulties in
managing the combination of dynamic constraints, fluctuating reward distributions, and the need for
rapid adaptation in various domains (De Curto et al., 2023; Balef & Maghsudil 2023).

Multi-Armed Bandit Algorithms for Non-Stationary Environments: [Kaufmann et al| (2012)
presented the Bayesian Upper Confidence Bound (UCB) algorithm, a variant of UCB1, which uses
Bayesian inference to update beliefs about reward probabilities for action selection. DAMAS instead
uses Bayesian inference to continuously update the probabilities of being in different environmental
states. |Cavenaghi et al.| (2021) proposed a concept drift-aware algorithm for non-stationary multi-
armed bandits, demonstrating improved performance in detecting and adapting to changes. [Trovo
et al.|(2020) introduced a sliding-window Thompson sampling approach for non-stationary settings,
offering a more nuanced adaptation mechanism. Similarly, Jia et al.|(2023) introduced smooth non-
stationary bandits, leveraging continuity assumptions to achieve better regret bounds. (Chen et al.
(2023) address non-stationary MABs by modeling temporal dependencies using an auto-regressive
structure, introducing mechanisms to balance exploration-exploitation and reset outdated informa-
tion, and achieve near-optimal regret bounds in dynamic environments. However, although these
approaches show promise in handling changing environments, they often assume normalized re-
ward ranges (e.g., [0, 1]), which may significantly limit their applicability in real-world scenarios
where reward scales can vary dramatically across different environments.

Moreover, many existing bandit algorithms assume access to contextual information or rely on en-
gineered features to characterize the environment’s state (Zheng et al., [2023)). In practice, how-
ever, such context signals may be noisy, incomplete, or costly to obtain (Bouneffouf et al., 2017}
Ghoorchian et al.| 2024). In contrast, DAMAS operates entirely on observed rewards without re-
quiring any side information or context features, making it a more general solution suitable for any
real-world adaptive systems.

Bayesian Optimization for Adaptive Learning: Bayesian optimization has emerged as a power-
ful method of adaptive learning, particularly in scenarios where uncertainty plays an important role
(Cheng et al.}[2022). This approach leverages probabilistic models to guide the optimization process,
making it suitable for applications where the cost of function evaluations is high and data is scarce
(Wet et al.;, 20215 |Hong et al., [2024). The study of |Li| (2023) introduces a suite of uncertainty quan-
tification methods for Bayesian deep learning, demonstrating the application of Bayesian principles
to achieve robust and adaptive models. In|Wei et al.|(2021), the authors introduce Collaborative and
Adaptive Bayesian Optimization (CABO), which combines Bayesian probabilistic optimization and
integration. The proposed method focuses on handling mixed uncertainties in computational me-
chanics using an active learning method. [Krishnamoorthy & Paulson|(2023) proposed a multi-agent
Bayesian optimization framework that uses the alternating direction method of multipliers (ADMM)
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to solve black-box optimization problems over a multi-agent network. This approach addresses the
coupling between subsystems without data sharing. DAMAS builds upon these Bayesian ideas for
the continuous adaptation of exploration parameters and updating all agents simultaneously based
on environmental probabilities.

Bayesian Methods for Adaptive Systems: Bayesian estimation plays a crucial role in predicting
and adapting to changes in workload in adaptive systems. Using probabilistic models, Bayesian
methods provide a robust framework to manage uncertainties and improve system performance
(Galioto & Gorodetskyl 2020} |[do Carmo Alves et al., 2024)). This adaptive capability is essential in
environments where conditions can change rapidly and unpredictably. Xu et al.| (2021)) introduced
a Bayesian inference framework to estimate the topology and state of a power distribution system.
This adaptive method uses limited measurements to efficiently recover the system’s Bayesian poste-
rior distributions, enhancing the system’s robustness and reliability in real-time. applications.

Exploration-Exploitation Trade-offs: In adaptive systems, the ability to dynamically adjust be-
tween exploration and exploitation is vital to maintaining optimal performance under changing
conditions. [Efroni et al| (2020) studied exploration-exploitation in constrained MDPs, providing
theoretical insights into optimal strategies. |Hu & Xu| (2020) proposed an adaptive exploration strat-
egy using multi-attribute decision-making for reinforcement learning. However, these works did not
specifically address the challenges of adaptive systems with varying ranges.

3 METHODOLOGY

Problem Formulation:The dynamic environment can be modeled as a system that faces changing
conditions (e.g., a web server that experiences varying workloads), represented by a set of environ-
ments E = {ey, e, €3, ..., e, }. Bach environment e¢; € E is characterized by a set of means 1;(a)
and standard deviations o;(a) for the rewards associated with different actions @ € A, where A
is the set of possible actions. The current environment transitions between these different environ-
ments in E periodically, and the transition dynamics are unknown to the agents. Importantly, the p;
and o; of each environment can be defined in any arbitrary way across time, actions, or both. This
generality allows our framework to capture the different types of non-stationary bandit problems,
including: (i) abrupt changes, (ii) gradual changes (Komiyama et al.,[2024), (iii) recurring/seasonal
changes (Keerthika & Saravanan, 2020), and (iv) random changes (Cavenaghi et al., 2021)).

To address the dynamic environment, we propose a multi-agent system consisting of a set of agents
® = {41, P2, P3, ..., Hn }, where each ¢; corresponds to the environment e;. Each agent ¢ € ® is
responsible for selecting actions and updating its Q-values (Q(¢, a) based on the observed rewards r
and environmental probabilities P(e;).

In this context, we adapt Q-value-based Multi-Armed Bandit (MAB) algorithms for our multi-
agent setting to select actions. For example, we adapt the upper confidence bound (UCB1) al-

gorithm to work with multiple agents. The adapted version of the UCBI equation is: a* =

argmax (Q(gb, a)+c ?\]1&%(3 ) , where a* is the selected action, Q(¢, a) is the estimated Q-value

for action a by agent ¢, t is the total number of trials, N (¢, a) is the number of times action « has
been selected by agent ¢, and the exploration constant ¢ controls the degree of exploration.

As shown in Algorithm [I] each agent ¢ is an instance of the chosen multi-armed bandit algorithm
(e.g., UCB1), with separate Q-values Q(¢,a). From the perspective of our multi-agent system,
we initialize the probability of being in each environment e; with an initial prior distribution, i.e.,
P(ei) = ﬁ Ve; € E.

At each time step ¢, all agents select their preferred actions based on their respective algorithms.
The final action a; is then sampled based on the probabilities of the current environment P(e;) :=
P(e;|rt). The sampled environment determines which agent’s perspective is used for action selec-
tion. However, note that Q-value updates are performed for all agents, regardless of which agent
determined the action taken by the system. That is, the system takes the action chosen by the agent
¢, which is sampled with probability P(e;).

Q-value Updates: After observing the reward r; for action a;, we update for each agent ¢ € ®:

S(¢,ar) < S(@,ar)+ Pleg) 11, N(¢, ar) < N(¢,a1)+ Pleg), Q(¢, ar) + 752 This update
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method allows for incremental adjustments to the Q-values based on the observed rewards and the
probability of being in each environment. By weighting both the reward and the count increment by
P(egp), we are estimating the expected Q-value and the expected number of trials.

Environment Probability Updates: The probabilities of being in each environment e; are updated
using Bayesian updates. Given the observed reward r; and the current Q-values Q(¢, a;) of the
agents, we calculate the likelihood of observing r; in each environment e; using Gaussian probability
density functions: P(r¢|e;) = N (r4; fii(ar), 5i(at)?) , where ay is the action taken by the system
corresponding to the sampled environment, [i and & represent the estimated mean and standard
deviation. Note that action a; is not necessarily the action preferred by agent ¢; at iteration ¢,
but corresponds to the action chosen by one of the agents through the sampling process explained
previously.

These likelihoods are then combined with the current environment probabilities P(e;) (which serve
as priors for this update) using Bayes’ theorem to obtain the posterior probabilities of being in each
environment at iteration ¢, given the observed reward r;: P(e; | r¢) o< P(ry | €;) - P(e;)

Then the posterior probabilities are normalized to ensure that they sum to 1 as: P(e;|r:) =
P(eilrs)
3 Plejlre)”

The updated probabilities P(e;|r;) become the new priors for the next iteration, for each environ-
ment. These steps are repeated iteratively, at each iteration, the Q-values of the agents, the probabil-
ity estimates of the environment and the estimates /i and ¢ are refined.

Before the main process, each agent undergoes a pre-training phase to initialize its knowledge and
decision-making capabilities. This process is crucial for establishing a baseline understanding of
different workload scenarios. In this phase, each agent ¢ is trained on a static environment for
each e;. This pre-training allows the agents to initialize their likelihood functions P(r;|e;) and gain
experience in their respective scenarios. Here, agents establish initial estimates /i;(a) and 7;(a) for
the reward distributions of each action in each environment. Moreover, while pre-training focuses on
specific environments, the DAMAS framework is designed to handle a mixture of environments and
scenarios not explicitly covered in the pre-training phase. During actual execution, the system may
encounter environments that differ from those in the initial set E, or even face a different number of
environments than initially anticipated. In these cases, DAMAS leverages its probability estimation
mechanism to approximate the current environment as a mixture of pre-learned environments.

Following pre-training, the main simulation forms the core of our dynamic adaptation process and
iterates over a specified number of time steps 7'. In each time step ¢ € 1,2,...,7T, the multi-agent
system performs the following sequence of operations, (i) agent sampling, (ii) action selection,
(iii) action execution and reward observation, (iv) Q-value updates, (v) environment probability
updates. This iterative process enables the system to continuously learn and adapt to the dynamic
environmental change.

Optimization of ¢ Parameters Using Bayesian Optimization (BO): The optimization of the con-
figuration parameters for each agent’s MAB algorithm is performed using Bayesian optimization.
While this approach can be applied to any parameter of the chosen MAB algorithm, we will use the
exploration parameter ¢ of UCBI as an illustrative example. BO consists of two main components:
(i) a Gaussian Process (GP) model of the objective function f, which captures the underlying reward
dynamics; and (ii) an acquisition function, which guides the selection of the next set of c-values to
evaluate (Shahriari et al., 2015} [Frazier| [2018)).

A Gaussian Process (GP) model is fitted to the observed response times. Let ¢ = {¢1,¢a,...,¢m}
be the set of configuration parameters, and r = {ry, 73, ..., 7, be the corresponding reward. The
GP model assumes that the rewards are drawn from a Gaussian distribution: r ~ N (u, K + 021),
where p is the mean vector, K is the covariance matrix defined by the Radial Basis Function (RBF)
kernel, o2 is the noise variance, and I is the identity matrix. Given a test point c*, the posterior mean
u(c*) and covariance o2(c*) are computed as:

p(e*) = kI(K + o2~ tr, o2(c*) = k(c*,¢*) — kI'(K + 021)"'k,, where k, =
[k(c*,c1), k(c*,ca),. .., k(c*,c,)]T is the covariance vector between the test point and the train-

ing points. The Lower Confidence Bound (LCB) is used as the acquisition function to select the
next configuration parameter, which explores more diverse input space regions than Expected Im-
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provement (EI) (Figure [17|in the Appendix): LCB(c) = pu(c) — ko(c), where k is a parameter
that balances exploration and exploitation. The c-value that minimizes the LCB is selected as
Chew = argmin, LCB(c).

Updating All Agents: To update all agents simultaneously, the posterior mean p(c) is divided by
the total sum of probabilities D |, P(e; | r¢) for the specific environment and then multiplied by the

total number of observations N; for that environment: fpdated(¢) = % x N;.
, Pleilr:

This ensures that the optimization process accounts for the probability and the number of observa-
tions for each environment, which may lead to a more robust and adaptive configuration update.

By incorporating Bayesian optimization and updating all agents simultaneously, the system can
effectively learn and adapt the configuration parameters c to minimize the cost, thus improving the
overall performance of the system in dynamic environments (see Appendix A for DAMAS in action
and a pseudo-code).

4 THEORETICAL ANALYSIS

Convergence of Environment Probabilities: In our paper we assume dynamically changing envi-
ronments. In the following theorem we show that if the agent is in a fixed but unknown environment,
it will converge to the same regret as UCBI.

Theorem 4.1. Let e* be the true environment. If ry ~ P(r¢|e*) and T — oo, the following holds:
P(e*|ry) — 1 and P(ejlry) — 0,Yj # i. The DAMAS framework reduces to a standard UCBI
algorithm in environment e*, achieving regret R(T') = O(logT) as T — oc. (see Appendix C for
the full proof).

Convergence in Dynamically Changing Environments: If the agent operates in a single stationary
environment e; for a sufficiently long time, it will converge to behavior equivalent to the UCB1
algorithm for that environment. When the environment transitions to another environment e; 1, if
the agent remains in this new environment for long enough, it will again converge to UCB1 behavior
for €i+1-

To formalize this, we use the concept of ordinal numbers, which allows us to represent infinite
sequences of infinite phases. This framework models the timeline where the agent successively
adapts to each environment, achieving phase-wise convergence.

Ordinal numbers: extend natural numbers to represent ordered sequences, including infinite ones.
For example: Q@ = {0,1,2,...,w,w + 1,... } represents a timeline where w is a countably infinite
phase, and w + 1 marks the beginning of the next phase. In our setting, each phase w; corresponds
to an infinite number of iterations in environment ¢;.

Setting and Assumptions: (i) Consider a multi-armed bandit system with a finite set of environments
E = {e1,eq,...,er}, with |E| = k, where each e; represents a stationary environment. (ii) The
agent operates in a single environment e* € FE for an infinite number of iterations, denoted w;.
(iii) After w; iterations in e;, the environment transitions to e;41. (iv) This process repeats indefi-
nitely, creating an ordinal timeline ), which is defined as: {2 = w;. The ordinal numbers {2 represent
a hierarchy of infinite iterations. (v) The reward distribution r; ~ P(r¢|e;) remains stationary within
each phase e;.

Theorem 4.2. Let E = {ey, e, ..., e} be the set of environments. Assume the agent stays in each
environment e; for T; — oo = w; iterations. As T — oo, the following holds:

Within each environment e;: P(e;|r;) — 1, and P(e;|ry) — 0, Vj # i. Across all environments E:
The cumulative regret over Q) is still: R(T) = O(logT). (see Appendix D for the full proof).

5 EXPERIMENTAL RESULTS

We evaluate the effectiveness of our proposed DAMAS framework using simulations and a real-
world web server environment. We begin by presenting the results from our simulation experiments
to assess the framework’s performance under various conditions. The framework’s goal is to mini-
mize response times, which are treated as costs, thereby maximizing cumulative reward across mul-
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tiple environments. This analysis investigates the multi-agent system’s decision-making prowess
and adaptability across varying workload scenarios. For each action a in the environment e, the
associated cost (response time) is modeled by a normal distribution N ~ (u,,_, 04, ). The reward is
inversely related to the cost, defined as the negative of the cost (—cost), implying that a lower cost
yields a higher reward for agents. We evaluated DAMAS effectiveness through several metrics:

(i) Probability of Selecting the Best Action (Pyest): Ppest(m) = % Zthl I(a; = at), where af
is the optimal action at time ¢, and I(-) is the indicator function. (ii) Mean Cumulative Sampled
Regret (MCSR): MCSR(7) = + Zle (re(ay) — ri(ar)), where r(a;) is the sampled reward for
the optimal action at time ¢, and 7 (a;) is the sampled reward for the action chosen by the algorithm

«. For simplicity and consistency, we refer to this metric as Mean Regret (MR) throughout the

rest of the paper. (iii) Mean Response Time (MRT) for a given policy m: MRT(7) = = Zthl Tt,

where r, represents the response time observed at time ¢ and 7" is the total number of time steps.

We benchmark our approach DAMAS against other MAB algorithms, including (i) UCB1 (Auer
et al., 2002), (ii) Bayesian UCB (Kaufmann et al., 2012), (iii) Sliding-Window UCB (Garivier &
Moulines, |2008) with windowsize = 100 that captures the most recent actions and rewards ob-
served, and ¢ = 1 which represents the exploration constant, (iv) Discounted UCB (Garivier &
Moulines, 2008) with v = 0.99: discount factor with 0 < v < 1, ¢ = 1, (v) Mean f-dsw TS (with
mean as an aggregation function) (Cavenaghi et al.| 2021) with windowsize = 100 and v = 0.9,
and (vi) Sliding-Window TS (Trovo et al., 2020) with windowsize = 100.

Comparative Analysis: DAMAS Variants vs. Baselines: To assess the effectiveness of different
components within the DAMAS framework, we compare multiple DAMAS-enhanced configura-
tions directly against their original MAB algorithms. The DAMAS variants include: (i) DAMAS-
UCB a multi-agent system that uses UCB1 with fixed hyper-parameters (c), (i) BO-DAMAS-UCB
extends DAMAS-UCB by incorporating Bayesian optimisation to adapt hyper-parameters dynami-
cally, and (iii) DAMAS-SW-UCB, DAMAS-Dis-UCB, DAMAS-SW-TS, and DAMAS-Mean d-sw
TS these configurations apply the DAMAS framework to their underlying algorithms. Moreover,
we include comparisons between the single-agent BO-UCB (which uses Bayesian optimisation to
tune hyper-parameters dynamically) and its multi-agent extension BO-DAMAS-UCB.

Workload Characteristics Across Multiple Environments: In our multi-agent system, we model
three environments to evaluate the DAMAS framework’s adaptability across varying scales of re-
sponse times and volatilities. The first environment simulates a web server, which features mean
response times () from 0.2 to 0.7 seconds and standard deviations (o) from 0.1 to 0.25, with an
optimal action at ;4 = 0.2 and and ¢ = 0.03. The second is a micro workload environment, with p
ranging from 0.02 to 0.09 seconds and o from 0.01 to 0.05, with an optimal action at 1+ = 0.015 and
and 0 = 0.02. The third, representing high-load scenarios, has y ranging from 1.5 to 2.5 seconds
and o from 0.1 to 0.3, with an optimal action at 4 = 1.0 and and ¢ = 0.4.

To thoroughly assess the DAMAS framework, we test it under three dynamic scenarios: (i) abrupt
changes, where the system transitions suddenly between environments; (ii) incremental changes,
where shifts occur gradually over time; (iii) random changes, where environment switches occur
stochastically according to a hazard function with probability 0.001. (iv) and mixed scenarios, where
environments blend according to the parameters « and /3, where 0 < «, 8 < 1. These parameters
control the contribution of each environment to the new mixed scenario. In the mixed scenario,
the new environment’s fimixed aNd Opmixed are calculated as weighted combinations of the original
environments as: fimixed = Qfle, + Bpte, + (1 —a—B) e, and Onixed = @0, +B0¢, +(1—a—)0e,.

Each agent is pre-trained for 100 iterations in a fixed environment and then evaluated on a different
set, exposing them to unseen dynamics.

Baselines study: We will undertake a comprehensive analysis of the DAMAS strategy and its vari-
ant in contrast to several baseline methods. As illustrated in Figure |la for the sudden changes
scenario, BO-DAMAS-UCB consistently shows the lowest mean response time in all the numbers
of actions and high Pp.s as shown in Figure Compared to the baseline methods UCB1 and
B-UCB (Bayesian UCB), BO-DAMAS-UCB demonstrates an approximately 40 — 45% lower Mean
Regret (MR) , as shown in Figure [2a] For the same figure, other MAB algorithms, particularly
DAMAS-Mean d-sw TS and DAMAS-SW-TS, outperform BO-DAMAS-UCB for a low number of
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Figure 1: Comparing best-performing approach across multiple actions for Sudden Change Sce-
nario. UCB1, B-UCB, DAMAS-UCB, BO-UCB, and BO-DAMAS-UCB.
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Figure 2: Comparing best-performing approach across multiple actions for Sudden Change Sce-
nario. UCB1, B-UCB, DAMAS-UCB (multi-agent with Bayesian estimation and a fixed ¢ = 1),
BO-UCB, and BO-DAMAS-UCB.

actions, while BO-DAMAS-UCB showed more stability as the number of actions increased. The
Pyest for BO-DAMAS-UCB showed five times higher than the next best algorithms for a = 160.

For gradual changes, as depicted in Figure 3] BO-DAMAS-UCB consistently outperforms other
MAB algorithms, achieving the highest Py, (around 40 — 50%) for higher action counts (a = 160).
BO-UCB also shows competitive performance as the number of actions increases.

In the same incremental change scenario, as shown in Figure[3] initially the baselines Mean d-sw TS
and SW-TS achieved lower MR for a = 20, but as the number of actions increased BO-DAMAS-
UCB remained consistent and outperformed other baselines, achieving an average ~ 25% lower
MR. Discounted UCB is the worst in these scenarios, particularly in the P,.s;. When applied to
different MAB algorithms, DAMAS shows varying degrees of improvement. The application of
DAMAS to Thompson Sampling particularly DAMAS-Mean d-sw TS, shows improvement over
the original Mean d-sw TS with a high Pyes:.

In the mixed scenario (o = 0.3, 8 = 0.4), BO-DAMAS-UCB maintained a higher performance with
around 50% lower MR compared to the UCB1 and B-UCB methods and DAMAS-UCB across all
actions with 6 times higher in Pyqs; (Figure@ . For other MAB algorithms, as shown in Figure
[d] similar conclusions can be drawn, with BO-DAMAS-UCB consistently outperforming other
algorithms, achieving an average ~ 40% lower MR compared to the next best performer (SW-TS) in
160 actions. As a general remark, most MAB algorithms perform better in this scenario than abrupt
and incremental changes.

Under randomly changing environments (Figure [5), BO-DAMAS-UCB and its variant achieve the
lowest mean regret across most action sizes, maintaining values around 0.16 at a = 160, compared
to over 0.35 for B-UCB and UCBI1. Similarly, in Figures [5c|and [5d, BO-DAMAS-UCB remains
consistently, outperforming all competitors in both regret and optimality, particularly as the number
of actions increases.
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Figure 3: Performance comparison for Incremental Change scenario across varying action counts:
(a,b) Baseline MAB vs. proposed approaches showing average regret and best action probabil-
ity; (c,d) Extended comparison across multi-agent and single MAB algorithms. BO-DAMAS-UCB
demonstrates better adaptation with increasing action space complexity.
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Figure 4: Comparing approaches across multiple actions for Mixed Scenario (o« = 0.3 and 8 = 0.4):
(a,b) Ablation study showing BO-DAMAS-UCB outperforming other methods; (c,d) Comparison
across MAB algorithms demonstrating BO-DAMAS-UCB’s lower response times. Left plots show
average performance/regret; right plots show best action probability.

Scalability for the Number of Environments: To further evaluate the scalability of DAMAS,
we conducted additional experiments varying the number of underlying environments, |E|,
in the non-stationary bandit setting. =~ We generated synthetic environments with |E| €
{3,6,9,12,15,18, 21,24}, where each environment e; defines distinct reward distributions for each
of the a = 80 actions. The environment changes abruptly every 1000 time steps.

Figure [6| evaluates the scalability of DAMAS-based approaches as the number of underlying envi-
ronments increases in a non-stationary bandit setting with a fixed action space of 80 actions (arms).
In the environment scaling analysis (Figures [6a] and [6b), BO-DAMAS-UCB consistently outper-
forms all other algorithms. At |E| = 24, it achieves around 40% lower MR than SW-TS and Mean
d-sw TS. Interestingly, DAMAS-SW-UCB showed a lower MR around 25% than SW-UCB. In the
fixed setting of 9 environments in steps 9000 (Figures [6c|and [6d), BO-DAMAS-UCB maintains the
lowest MR and the highest Ppeg;.

Real-world web server: For real-world web server environments (Porter et al., 2016) with diverse
request types—including large image files unsuitable for caching or compression, text files amenable
to compression, and cacheable image files, featuring sudden changes between distinct workload
scenarios, each lasting 100 time steps. DAMAS-UCB and BO-DAMAS-UCB consistently maintain
the lowest average response times in all workload scenarios (Figure[7). (see Appendix B for more
details on specific request patterns and file distributions).

In conclusion, the effectiveness of DAMAS, particularly BO-DAMAS-UCB, arises from integrating
a multi-agent approach and adaptive hyper-parameter learning. This combination enables the system
to specialize in different environmental states while also scaling efficiently. Moreover, DAMAS not
only outperforms existing approaches, but also generally improves base algorithms when integrated
with them, though the degree of improvement varies depending on the base algorithm and environ-
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Figure 5: Performance comparison for Random Change scenario across varying action counts: (a,b)
Baseline MAB vs. proposed approaches showing average regret and best action probability; (c,d)
Extended comparison across multi-agent and single MAB algorithms.
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Figure 6: Comparing approaches across varying environments and over time: (a,b) Scaling behavior
as number of environments increases from 3 to 24, showing BO-DAMAS-UCB maintains lowest
mean regret (a) and highest probability of selecting the best action (b) across all environment counts;
(c,d) Detailed analysis for a fixed setting of 9 environments showing algorithm performance over
9000 steps, with BO-DAMAS-UCB achieving better regret minimization (c) and maintaining higher
best action selection probability (d).

mental conditions. Regarding computational efficiency and overhead, DAMAS maintains practical
efficiency; for full details, see Appendix A.
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Figure 7: Average response time of Multi-Agent Approaches and baseline agent under three real
workloads.

6 CONCLUSION

We introduced DAMAS, a novel framework for decision-making in non-stationary environments.
It addresses the challenge of balancing exploration and exploitation in adaptive systems through a
multi-agent approach integrated with MAB algorithms and Bayesian updates. Innovations include
specialized agents for different environmental states, Bayesian optimization to tune parameters, and
the ability to manage varying reward distributions. Experimental results in synthetic and real-world
environments demonstrated DAMAS’s ability to handle varying environmental change scenarios.
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REPRODUCIBILITY STATEMENT

The complete implementation code of DAMAS, all baseline algorithms, dataset generation scripts,
and experimental pipelines are provided in the Supplementary Materials.
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A ADDITIONAL EXPERIMENTS AND EXPLANATIONS

Example: DAMAS in action - From Pre-training to Dynamic Adaptation: Before DAMAS
begins operating in a dynamic environment, each agent undergoes a pre-training with fixed charac-
teristics. After this phase, DAMAS is deployed in a dynamic environment where workloads fluc-
tuate between €jou, Emicro, and epign. Initially, we set equal probabilities for each e: P(e;) =
P(e2) = P(e3) ~ 0.33. At each time step, DAMAS first samples an agent according to the cur-
rent environment probabilities. The selected agent then chooses an action a;, which is executed
in the environment. After executing a;, a reward r; is observed. Now, DAMAS updates its be-
lief about the current e. Calculate the probability of observing this r; after taking an action a;
in each e using Equation equation Given our pre-training knowledge, and assuming that we
observed a reward r; = 0.4, we compute the likelihoods and observe the following for each e;:
P(ry | e1) = 0.3, P(r¢ | e2) = 0.1, and P(r; | e3) = 0.01. Using Bayes’ theorem, we compute
the unnormalized posteriors: P(e; | r¢) = 0.3-0.33 = 0.099, P(es | ) = 0.1-0.33 = 0.033,
and P(e3 | ;) = 0.01-0.33 = 0.0033. To obtain the final probabilities, a normalization step is per-

formed using the formula: P(e; | r;) = % For ey, this yields P(ey | ) = g% ~ 0.73.
g el :

This iterative process enables DAMAS to continually refine its understanding of the current state of
the environment.

Performance Analysis: When applied to a real web server with 38 different configurations, the
results in Figure [§| provide valuable insight into the practical performance of BO-DAMAS-UCB.
Figure [8b] shows the accuracy of the algorithm in identifying the current workload environment.
The first two workloads showed high accuracy (around 99%), followed by temporary drops dur-
ing transitions, indicating that the system may struggle to identify the correct environment due to
the similarity in response time. Furthermore, as shown in Figure [0 the DAMAS-based approaches
consistently demonstrate improved responsiveness in three dynamic environments compared to the
standard UCBI1 algorithm. In the first environment (Figure Oa), BO-DAMAS-UCB achieved sig-
nificantly lower response times—around 1.5 to 2.5 seconds—while UCB1 exhibits higher variance
and a slower convergence to stability. During the transition to the second environment (Figure
[Ob), response times increase across all methods due to workload changes, but BO-DAMAS-UCB
adapts more rapidly, maintaining a lead over DAMAS-UCB and a noticeable advantage over UCB1
throughout. In the final environment (Figure [9c), DAMAS-based methods continue to outperform,
with BO-DAMAS-UCB maintaining the lowest response times (3.6—4.0 seconds).
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Figures [I0] and [TT] compare DAMAS-based approaches with their single-agent counterparts under
real-system workloads. In Figure [0} DAMAS-Mean dsw-TS exhibits higher mean regret and re-
sponse time than the single-agent Mean dsw-TS. Similarly, in Figure [T DAMAS-SW-TS shows a
modest advantage in regret over SW-TS, particularly in later steps.

These results suggest that in this real-system setting, the multi-agent DAMAS variants may be dis-
advantaged by inaccurate environment inference as shown in Figure[12]

Figure [T3] presents a comprehensive comparison of mean response times for varying numbers of
actions under four dynamic environment scenarios: sudden change, incremental change, random
change, and mixed change. Across all settings, BO-DAMAS-UCB consistently demonstrates the
lowest or near-lowest response times. Similarly, as shown in Figure T4, BO-DAMAS-UCB in most
scenarios achieves the lowest mean response times, demonstrating strong adaptability and scalability
as the number of actions increases.

Figure [[5] evaluates the performance of proposed and baseline MAB algorithms under an extreme
random change setting, where the environment may switch at every time step (hazard probability =
1.0). Across both regret figures (Figures[I5a)and[T5c), BO-DAMAS-UCB achieves the lowest mean
regret across all action counts, demonstrating strong adaptability and resilience to frequent environ-
mental changes. Importantly, in this experiment with three distinct environments, the probability of
encountering the same environment is about 30%. As a result DAMAS leverages frequent belief
updates and environment-weighted agents to quickly adapt and recover, using only reward feedback
without needing contextual information.

As illustrated in Figure [T6] we observe low response times of most number of environments, with
BO-DAMAS-UCB and its variant (DAMAS-UCB) outperforming other MAB algorithms. These
results highlight the scalability of the DAMAS framework in adapting to increasing environment
complexity while maintaining efficient decision-making performance.
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Figure 8: Average response time and probability of identifying the actual environment.
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proach, particularly during workload transition periods.
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Figure 10: Mean Regret and Average response time for DAMAS-Mean d-sw TS and Mean d-sw TS
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Figure 11: Mean Regret and Average response time for DAMAS-SW TS and single SW TS for
actual real-system workloads.

Computational Efficiency and Overhead: We conducted a 5-run benchmark comparing
DAMAS to representative baselines over 6,000-step simulations across varying action counts. De-
spite its Bayesian multi-agent design, DAMAS maintains practical efficiency, averaging 39.3x
slower than stationary UCBI, but notably remains /-3x faster than Sliding-Window UCB for
moderate-to-large action spaces (A > 60). Discounted UCB performs close to UCB1 (0.83x%),
but lacks DAMAS’s adaptability. Full timing breakdowns are shown in the tables[T]and [2]

Actions DAMAS Sliding-Win Discounted UCBI1

20 9.545 4.710 0.180 0.219
40 8.980 8.110 0.181 0.211
60 8.662 11.571 0.185 0.210
80 8.651 14.595 0.190 0.224
100 8.750 18.378 0.215 0.268
120 9.090 21.903 0.181 0.221
140 8.609 23.676 0.199 0.229
160 8.611 26.588 0.181 0.233

Table 1: Raw wall-clock timings (seconds per one 6000-step run)
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Figure 13: Performance comparison for different environmental change scenarios across varying
action counts: Baseline MAB vs. proposed approaches showing average response time.

B EXPERIMENT DETAILS

Environmental characteristics and workload patterns (Table [3) are based on the following levels:
content type, which represents the format of the data requested; response size, which indicates the
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Figure 14: Performance comparison for different environmental change scenarios across varying
action counts for multi-agent and single MAB algorithms, showing average response time.

Actions DAMAS/UCB1 Slide/UCB1 Disc/UCBI1
20 43 x 21 x 0.82 x
40 43 x 38 x 0.86 x
60 41 x 55 x 0.88 x
80 39 x 65 x 0.85 x
100 33 x 69 x 0.80 x
120 41 x 99 x 0.82 x
140 38 x 103 x 0.87 x
160 37 x 114 x 0.78 x

Table 2: Overhead factors (vs. UCB1)

amount of data returned in the response; and request entropy, which represents the variability or
randomness in the requests. The entropy of the request is categorized as low (repetitive requests) or
high (diverse requests). These characteristics are further detailed in Table[d] which provides specific
information on the variety and patterns of requests for each content type.

Real-world web server: The workload pattern in this experiment represents real-world web server
response behaviors under different caching and compression configurations. (e.g., MRU, LRU, LFU,
Round-Robin, and File System-based approaches) and compression mechanisms (GZIP with ZLIB
and GZ algorithms, both separate and combined with caching methods). as shown in Figures [T8] [T9]

and
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Figure 15: Performance comparison for Random Change scenario across varying action counts:
(a,b) Baseline MAB vs. proposed approaches showing average regret and best action probability;
(c,d) Extended comparison across multi-agent and single MAB algorithms. With hazard probability
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Figure 16: Average response time of Multi-Agent Approaches and baseline agent under three real
workloads.

Web Server Terminology:

A web server listens for HTTP requests and sends back responses; the work (CPU, I/O) changes
with what is requested.
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Figure 17: Comparative Analysis of Acquisition Functions: Subfigures (a)-(b) demonstrate the Ex-
pected Improvement (EI) acquisition function, indicating the model’s preference for regions with
anticipated improvements. Subfigures (c)-(d) depict the Lower Confidence Bound (LCB) acquisi-
tion function, which explores more diverse input space regions, balancing the exploitation of known
areas against the exploration of regions with higher uncertainty. The contrast between EI and LCB
illustrates their differing strategies in navigating the search space.
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Algorithm 1 DAMAS

Input: Number of iterations 7', set of environments E, set of actions A, MAB algorithm M AB
Initialize:

Create agents ® = {¢1, ¢2, ..., P}, one for each e

Initialize Q-values Q(¢,a) = 0forall¢p € ®,a € A

Initialize environment probabilities P(e;) = ﬁ foralle, € E

Pre-train each agent on its static e;
fort =1toT do
Sample environment e; based on current P(e;)
{Select action a; using MAB for agent ¢, corresponding to e;:}
ay = MAB(Q(¢ta ')7 N(¢t7 )7t)
Execute action a; and observe reward 7;
{Update Q-values for all agents: }
for each ¢; € ® do
S(¢i, Clt) — S((ﬁ“ at) + P(ei) X Tt
N (i, ar) < N(¢s,ar) + Plei)
Q(¢Za at) — S((bh at)/N(¢i7 a/t)
end for
{Update environment probabilities using Bayesian update:}
for each e; € E do
P(re|e;) = N(re; pilar), oi(ar)?)
P(e;|ry) o< P(r¢le;) x P(ei|ri—1)

end for
Normalize P(e;|r)
end for
Table 3: Content Types, Sizes, and Request Entropy Characteristics

Content Type | Size Request Entropy Example
HTML 5 KB (small) Low: Repeated requests for the same HTML file
MP4 (Video) 300 KB (medium) | Low: Occasional requests for similar video
JPG (Image) 4 MB (high) High: Varied image requests with randomness

For a given piece of content the server can choose among pre-built configurations, e.g.,

e Compress-then-send (smaller packets, extra CPU),

* Cache-and-reuse (fast if the same item is requested again).

These choices are functionally equivalent (the client still gets the file) but differ in response-time
latency and resource cost.

Which option is best depends on the request mix: compressing JPEG images is wasted effort, while
compressing HTML or JSON pays off; caching helps if many clients request the same file, hurts if
every request is unique.

Our bandit formulation treats each configuration as an action and each distinct traffic pattern (e.g.,
“image-heavy burst”, “static-CSS flood”, “API JSON stream”) as a latent environment.

“Normalising response times” in prior work means forcing these latencies—often tens vs. hundreds
of ms—into a common 0-1 scale, which can distort decisions when the scales differ by orders of
magnitude. “Known configurations” simply refers to the finite menu of server tunings listed above;
the server can switch among them at will.

DAMAS learns, from raw latency rewards alone, which configuration works best for the current
request, so that our learning approach to effectively recall the best action when common request
sequences recur in future.
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Table 4: Workload Characteristics

Content Type | Variety Pattern
HTML Limited: 11 unique files out of 16 total requests | Consistent: Repeated accesses to certain files
MP4 (300 KB) | Limited: 21 unique files out of 40 total requests | Consistent: Noticeable pattern of repeated accesses
JPG High: 40 unique files out of 40 total requests Random: No discernible pattern in request order
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Figure 18: Mean response time for different web server configurations, showing the impact of vari-
ous caching and compression strategies (HTML).

C PROOF OF THEOREM 1

Proof. Given the true environment e*, the observed reward r; is sampled from P(r;|e*). This im-
plies that the likelihood (CDF) P(r+|e*) is more likely to be larger than that of any other environment
€j:

P(P(rile”) > P(rilej)) > P(P(ri|e®) < P(rile;)), Vj# .
This inequality holds because r; ~ P(r:|e*), making P(r:|e*) more likely to explain the observed
reward than P(r|e;).

Recursive update of posterior difference: Define the difference between the posterior probabilities
of e* and any other environment e;:

Ay = P(e*|ry) — P(ej|ry), where P(ejlry) > 0.

The posterior probabilities are updated using Bayes’ theorem:

L Plrle) Pe)
Plalr) = 5= plfen) - Plen)’

Thus, A; evolves recursively as:
P(ri|e*) — P(re|ey)

A =A; + .
T S P(rder) - Pler)

Since P(r¢|e*) > P(r|e;) with high probability, A, tends to grow over time.

Convergence result: As ¢ — oo, the cumulative effect of these updates ensures that the posterior
probability for e* converges to 1, while the probabilities for all other environments converge to 0:

P(e*ry) = 1, P(ejlry) =0, Vj#i.

This confirms that the agent correctly identifies and converges to the true environment in the long
run.

21



Under review as a conference paper at ICLR 2026

—FS
— T L GZIP (GZ) & FS
%] 80 GZIP (GZ) & LFU
e GZIP (ZLIB) & RR
- s GZIP (ZLIB) & MRU
(0] GZIP (ZLIB) & Generic
s MRU
~§ 60 GZIP (ZLIB)
= m— GZIP (GZ) & MRU
Q m— RR
g LFU
o 40 GZIP (GZ) & RR
o LRU
%] we GZIP (GZ) & Generic
I} 62IP (G2)
[ GZIP (GZ) & LRU
C 20 GZIP (ZLIB) & LFU
8 s GZIP (ZLIB) & LRU
GZIP (ZLIB) & FS
= = -
0 —_—— e EE | e s e e o e Em —— — EEEE | e e mm o o Em — s —
0 5 10 15 20 25 30 35
Actions

Figure 19: Mean response time for different web server configurations, showing the impact of vari-
ous caching and compression strategies (MP4).
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Figure 20: Mean response time for different web server configurations, showing the impact of vari-
ous caching and compression strategies (JPG).

Concerning reduction to UCB1: Once P(e*|r;) — 1, the environment is effectively identified, and
the system behaves as if it is operating in a stationary environment e*. The Q-values are updated as:

o a0 = iy re - Pe|ry) - Iar = ai]
et ) Sy Plerlre) - Ilay = aj]

where I[.] is the indicator function, 1 if the action taken is a;, and O otherwise.

Let Ty be an iteration where P(e*|r;) — 1 for all ¢ > Ty. We can re-write the Q-value update
equation as:

a+ ZtT:TO re - Ifla; = a)
B+, o = ail

where @ = Z?ﬁl P(e;|r) - 7, cumulative weighted reward before convergence, and 8 =

Q(e*7 ai) =

)

221 P(e;|r¢), cumulative weighted probability before convergence.
As T — o0, the influence of o and 8 diminishes, and:
Yieg, 7t - Iar = ag]
T
Zt:To Ia: = a;]

which is equivalent to the standard UCB1 update.

Qle*,a;) —

?
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Concerning regret bound: In the fixed environment e*, the regret of UCB1 is well-known to be:
R(T) = O(logT),

therefore our regret is also:
R(T) = O(logT).

D PROOF OF THEOREM 2

Proof. Phase 1: Within a Single Environment: The agent starts in environment e; and uses
Bayesian inference to maintain posterior probabilities:
P(rile;) - P(e;
P(ej|rt): ( tl J) (]) )
> Prele) - Plex)
Initially, P(e;|r;) is uniform across all e; € E. At each step t, the agent observes r; ~ P(r¢|e;).
Since the rewards come from P(r;|e;), the posterior P(e;|r;) increases:

P(e;lry) > 1 and  P(ejlry) — 0, V5 # 4.

As P(e;|ry) — 1, the estimation becomes effectively stationary. The agent updates the Q-values as:
T;
_ 2z - o = ail
= 7. ,
Zt:To I[at = ai]

which is equivalent to the UCB1 update rule in a stationary environment e;. As T; — w;, the regret
is bounded as:

Q(a;)

R(T) = O(log T).

Phase 2: Transition Between Environments: After T; iterations, the environment transitions from
e; to e;+1. The agent experiences a transition period and begins adapting to e;;;. Initially,
P(e;y1|rs) may be low. As the agent observes rewards r; ~ P(r¢|e;+1), the posterior probabil-
ity P(e;+1|r:) increases, eventually converging:

P(ej41|re) » 1 and P(ej|ry) — 0, V5 #i+ 1.
Phase 3: Ordinal Convergence: Let Q) = {w;,wa, ...,wy} be the agent’s timeline, where each w;
represents a distinct phase corresponding to environment e; € E. Each w; is a countably infinite

phase during which the agent adapts to the current environment e;. Summing the regret across all k
environments gives the total regret:

k

R(T) = O(log 1),

i=1

R(T)=k-O(logT)
By the definition of Big O notation:
O(g(n)) = {f(n): Je,no > O0suchthat 0 < f(n) < c-g(n) ¥n > ng}

There exist constants ¢; and 7T for each environment such that:
Ri(T) <¢;-log(T) forall T > T;

LetC = Z§:1 c; and Ty = T}.. Then:
R(T) < C -log(T) forall T > T

Therefore, R(T) = O(log T') O
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Theorem 2 convergence: The empirical results shown in Figures [21| and [22] provide support for
Theorem 2’s convergence properties in dynamically changing environments. Figure [21|shows that
DAMAS exhibits a growth pattern similar to UCB1, which is known to have O(log T') regret. It
is important to note that in our experimental setup, we reset UCB1 at each environmental change.
Moreover, Figure[22]illustrates the rapid convergence of environment identification accuracy, which
supports the theorem’s claim that P(e;|r;) — 1 within each environment. This empirical evidence
aligns with the theoretical prediction that the agent can effectively identify and adapt to each envi-
ronment e; when given sufficient time (7; — co = w;).

Note that this experimental configuration differs fundamentally from our main evaluations, where
DAMAS is compared with conventional baselines—such as UCB 1—that operate without any access
to change-environment information.
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Figure 21: Comparison of DAMAS and UCBI1 in Dynamically Changing Environments
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Figure 22: The probability of accurately identifying the current environment over time

E ADDITIONAL RELATED WORK

Several algorithms tackles non-stationary bandits via changepoint detection and restarts, such as
GLR-kIUCB (Besson et al.| 2022)) and M-UCB (Cao et al.,|2019), which couple UCB indices with
GLR or window-based detectors to reset statistics after detected changes. Rexp3 (Besbes et al.,
2019) addresses non-stationary rewards by running an Exp3 algorithm over batches and resetting or
reinitializing weights across batches. In all these approaches, adaptation is achieved by forgetting
past experience. By contrast, DAMAS maintains a pool of specialized agents and updates their value
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estimates continuously; changes are handled via Bayesian reweighting of environment probabilities
rather than explicit resets. When an environment reoccurs, DAMAS can immediately exploit the
corresponding agent instead of re-learning from scratch.

Restless bandits extend classical MABs by modeling each arm as a Markov process that evolves
continuously, usually as an MDP or a Markov chain for each arm (Nino-Mora, 2023; |Wang et al.,
2020). However, our non-stationary bandit model is fundamentally different. That is, DAMAS
does not assume Markovian state dynamics at the arm level, and hence we do not consider that
agents can observe arm states and then infer transition functions. Additionally, we do not consider
that agents actions interfere with the environment transitions. In our model, environments change
due to external and unknown reasons, and our focus is on estimating the current environment in a
context-free manner.

F CHALLENGES ON CONTEXTUAL DEPENDENT METHODS

In this work we focus on a reward driven approach, and one might naturally ask how this compares to
methods that also exploit contextual information. Context can indeed be highly informative in many
applications and may improve decision quality. However, in other domains, contextual information
can be noisy or difficult to obtain. In this section, we investigate the impact of noisy context on
contextual bandit methods, highlighting the challenges that arise when the available features are
noisy.

Li et al.| (2010) demonstrated the effectiveness of a contextual multi-armed bandit solution for per-
sonalized news recommendation. Building on this framework, we introduce controlled noise into
the contextual features to examine its impact on the learning policy. As shown in Figure 23] increas-
ing noise levels degrade overall performance, highlighting how noisy or unreliable information can
adversely affect decision-making.
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Figure 23: LinUCB contextual bandit under gradually increasing noise in the feature vectors, show-
ing degraded performance at higher noise levels.
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G ADDITIONAL EXPERIMENTS: REWARDS OVERLAPPING ACROSS
ENVIRONMENTS

In the main paper, we considered several scenarios in which both the underlying environment and
the reward ranges change over time. However, in many practical settings, the environment may
evolve, while the reward ranges across environments remain similar or even highly overlapping.
In this section, we therefore conduct additional experiments that focus on such cases, examining
how our approach and the baselines perform when environments change but their reward ranges are
largely aligned.

These environments are generated at random to provide a more comprehensive assessment. As
illustrated in Figure 24] the random generation process produces dynamic environments with the
same reward range.
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Figure 24: Randomly generated overlapping reward distributions in a same-range workload

BO-DAMAS-UCB as shown in Figure 23] outperforms other methods on both metrics (mean regret
and best action selection), even as the number of actions grows.

As depicted in Figure[26] with highly overlapping reward ranges across environments, BO-DAMAS-
UBC consistently maintains lower regret and higher best-action probability than competing methods
in all environment counts, with a fixed number of agents (4 agents).

As shown in Figure and BO-DAMAS-UCB outperforms all single-agent baselines in this
setting with 4 environments and 3 agents. Across all numbers of actions, BO-DAMAS-UCB attains
lower mean regret and high probability of action selection than GLR-kIUCB, M-UCB, and RExp3.

Moreover, in Figure with 3 environments and only 2 agents (where the third environment is
an interpolation of the first two), BO-DAMAS-UCB again achieves the lowest mean regret across
all numbers of actions and maintains a higher probability of selecting the optimal action than all
baselines.

LLM USAGE:

Editing (e.g., grammar, spelling, word choice, paraphrase), Understanding technical concepts, and
Producing some LaTeX format for the tables.
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Figure 25: Performance of DAMAS and baselines, in environments with overlapping reward distri-
butions. (a, ¢) Average regret across actions; (b, d) Probability of selecting the optimal action.
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Figure 27: Performance of DAMAS and baselines, with 4 environments and 3 agents. (a, c) Average
regret across actions; (b, d) Probability of selecting the optimal action.
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Figure 28: Performance of DAMAS and baselines, with 3 environments and 2 agents, and the
third environment is an interpolation between the first 2 environments. (a, ¢) Average regret across
actions; (b, d) Probability of selecting the optimal action.
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