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Enhancing ComplexQuestion Answering over Knowledge
Graphs through Evidence Pattern Retrieval
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ABSTRACT
Information retrieval (IR) methods for KGQA consist of two stages:

subgraph extraction and answer reasoning. We argue current sub-

graph extraction methods underestimate the importance of struc-

tural dependencies among evidence facts. We propose Evidence

Pattern Retrieval (EPR) to explicitly model the structural dependen-

cies during subgraph extraction. We implement EPR by indexing

the atomic adjacency pattern of resource pairs. Given a question,

we perform dense retrieval to obtain atomic patterns formed by

resource pairs. We then enumerate their combinations to construct

candidate evidence patterns. These evidence patterns are scored

using a neural model, and the best one is selected to extract a

subgraph for downstream answer reasoning. Experimental results

demonstrate that the EPR-based approach has significantly im-

proved the F1 scores of IR-KGQA methods by over 10 points on

ComplexWebQuestions and achieves competitive performance on

WebQuestionsSP.
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KEYWORDS
knowledge graph, question answering, information retrieval, evi-
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1 INTRODUCTION
With the rapid progress of large-scale knowledge graphs (KGs),

there is an increasing demand for convenient and precise access

to information stored within these KGs. Question answering over

knowledge graphs (KGQA), i.e., the task of answering factual ques-

tions using knowledge graph facts, has gained significant atten-

tion [21]. The mainstream KGQA approaches can be roughly classi-

fied into semantic parsing (SP) approaches and information retrieval

(IR) approaches. SP approaches parse natural language questions

into executable queries and IR approaches retrieve answers through

neural models. In recent years, KGQA research has focused on
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solving complex questions that require multi-hop reasoning. SP

approaches have made significant progress in solving complex ques-

tions [9, 27, 35, 37]. However, their performance relies on extensive

gold question-query pairs. Without the labor-intensive annotation

of gold queries, these SP approaches may either be untrainable or

exhibit a significant decrease in performance. The development of

in-context learning techniques has promoted the practical meth-

ods for few-shot KGQA. However, current studies [22, 23, 25, 33]

indicate that these methods still lag behind the performance of the

best SP and IR methods. IR approaches avoid labor-intensive query

annotation by collecting the neighboring information of the topic

entities (i.e., entities mentioned by the question). Because the scale

of the entire KG does not support efficient training and retrieval, IR

systems first extract a subgraph from the KG and then only process

the information on this subgraph. Therefore, subgraph extraction

greatly impacts the performance of IR approaches. While there has

been some effort in extracting high-quality subgraphs [18, 28, 38],

the performance of IR approaches still lags far behind that of SP

approaches on complex questions.

We find that current IR studies primarily focus on how to obtain

the answer(s) but pay insufficient attention to non-answer parts

in the extracted subgraph. An entity can be considered an answer

to the input question only if specific facts surrounding it serve as

corresponding evidence. Whether a fact acts as evidence depends

not only on its content but also on how it describes the topic entities

and answers, specifically the structural dependencies among the

relevant facts. Although current studies have considered iteratively

selecting facts with question-related relations during subgraph

extraction [18, 38] or the downstream reasoning [15] stage, their

approaches do not provide an explicit semantic representation of

the structural dependencies. We find that they sometimes include

more noises in the retrieval results which may hurt performance.

As illustrated in Figure 1, the facts about the noisy answer Austria
have very similar relations to the evidence facts, which may cause

ranking errors.

In this paper, we formulate the structural dependencies as evi-
dence pattern and propose evidence pattern retrieval (EPR) to reduce
noises in subgraph extraction. Specifically, evidence pattern models

how necessary resources (topic entities and relations) are connected

to support a knowledge graph node as an answer to the question.

Figure 2 illustrates the corresponding evidence pattern for the ques-

tion in Figure 1. Section 3 will introduce the concept of evidence

pattern in detail. We train a neural model to retrieve possible atomic

patterns for the input question. We obtain candidate EPs by enumer-

ating combinations of atomic patterns and train a scoring model

to select the best EP for subgraph extraction. We incorporate EPR

into existing answer reasoning methods and conduct experiments

on ComplexWebQuestions [30] and WebQuestionsSP [36], the two

most widely used datasets in IR-KGQA evaluations. Experimen-

tal results show that evidence pattern retrieval greatly enhances

1
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Germanyadjoins

CountryNetherlands
type

adjoins

Austria
type

surrounded_by

Stadhuis

Rotterdam

containedby

country
Western
Europe

partially_containedby contains

Frank
Schinkels

birth_place

nationality

Figure 1: Facts about question “What country, contain-
ing Stahuis, does Germany border?”. The evidence facts
are bolded., the node of the correct answer Netherlands is
underlined, and the noisy answer Austria is shaded. Austria
is a noisy answer since it does not contain Stahuis, but the
relations on the paths between them express similar mean-
ings and confuse the answer reasoning model.

the performance of IR methods on ComplexWebQuestions with

competitive performance on WebQuestionsSP.

The rest of this paper is organized as follows. The next sec-

tion summarizes related work. The third section formulates the

IR-KGQA task and EPR. The fourth section introduces the imple-

mentation of EPR in detail. The fifth section presents the experi-

mental results with analysis. The last section concludes this paper.

2 RELATEDWORK
2.1 KGQA Benchmarks
The research community has proposed lots of question-answering

datasets [2, 4, 5, 32] over large-scale open-domain knowledge graphs

over the past decades. Recently, researchers have begun to paymore

attention to complex questions that require reasoning on multi-hop

evidence [16, 30]. Some datasets followWebQuestions [2] to collect

questions first and then annotate them. Bao et al. [1] uses question-

answer (QA) pairs collected from WebQuestions [2] together with

manually labeled QA pairs to construct ComplexQuestions. Talmor

and Berant [30] proposes ComplexWebQuestions, where complex

questions are generated by composing simpler questions in We-

bQuestionsSP [36], the cleaned version of WebQuestions that is

rephrased by AMT workers. Some other studies have taken a dif-

ferent approach, generating queries first and then providing corre-

sponding natural language questions for those queries. MetaQA [8]

and LC-QuAD [31] generate questions with several tens of pre-

defined templates. LC-QuAD 2.0 [12] extends the framework of

LC-QuAD via revised templates and crowd-sourcing tasks. Gu et al.

[14] constructs GrailQAwith crowd-powered paraphrasing onman-

ually annotated canonical questions for evaluating KGQA in three

different levels of generalization. Cao et al. [6] introduces KQA Pro

with a compositional programming language KoPL to represent the

reasoning process explicitly.

Germanyadjoins

CountryNetherlands
type

adjoins

Stadhuis

Rotterdam

containedby

country

(a) Evidence facts

Germany

?𝑥1

adjoins

Country?𝑥2
type

adjoins

Stadhuis

?𝑥3

containedby

country

(b) Evidence pattern

Figure 2: The evidence facts (a) of question “What country,
containing Stahuis, does Germany border?” and the corre-
sponding pattern (b).

2.2 Information Retrieval Methods for KGQA
The mainstream solutions of KGQA first find the entities in the

question (i.e., topic entities), and then search for the answers around

these entities [21]. Information retrieval methods for KGQA (IR-

KGQA methods) use neural models to directly score candidate

answers and determine an answer set based on a score threshold.

The earlier IR-KGQA methods mainly focus on simple questions

that only require a 1-hop reasoning [4, 11, 24, 34]. For complex

questions, IR-KGQA methods limit the search space by considering

a subgraph of the entire KG. Saxena et al. [26] models the QA task

via link prediction models. It restricts KG to 2-hops neighbors of

topic entities and prunes the relations according to the training data.

GraftNet [29] heuristically extracts a subgraph with personalized

PageRank scores computed on the neighborhoods of topic entities.

It ranks the extracted nodes via a graph convolutional network

to predict the answers. Recent studies learn to extract question-

specific subgraphs through neural models. PullNet [28] proposes

a framework to iteratively construct question-specific subgraphs.

It trains a GCN to identify subgraph nodes that should be “pulled”

and predict the answers following GraftNet. He et al. [15] enhances

neural state machine with a teacher network for providing inter-

mediate supervision signals. Zhang et al. [38] proposes a trainable

subgraph retriever to reduce the reasoning bias. It expands relation

paths via a sequential decision process. UniKGQA [18] unifies sub-

graph extraction and answer reasoning via a semantic matching

module for matching question-related relations and a propagation

module to propagate the matching information.

The recent advancements in subgraph extraction have high-

lighted the significance of extracting question-related facts. How-

ever, these efforts primarily concentrate on specifying individual

facts or relations, neglecting the crucial structural dependencies

that enable these facts to support the answers.

2.3 Semantic Parsing Methods for KGQA
Semantic parsing methods for KGQA (SP-KGQA methods), distinct

from IR-KGQA methods, represent another major category of main-

stream methods that parse questions into executable queries to ob-

tain the answer(s). Classic SP-KGQA methods depend on syntactic

parsing of questions, which can be challenging when dealing with

2
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heterogeneity between questions and query expressions [21]. Cur-

rent representative SP-KGQA methods utilize pre-trained Seq2Seq

models to generate queries and use retrieved information (e.g.,

question-relevant context or intermediate results) to augment the

input [9, 35, 37] or restrict the decoding space [13, 17, 27]. For ex-

amples, Das et al. [9] proposes the idea of case-based reasoning

to leverage query structures from similar questions, significantly

improving performance on complex questions. Ye et al. [35] uses

heuristically retrieved candidate queries as auxiliary information

to augment the generation. Shu et al. [27] proposes multi-grained

retrieval to restrict the decoding process with relevant KG context.

These methods require fine-tuning Seq2Seq models with gold query

annotations. Yu et al. [37] proposes a joint decoding approach that

can work even in situations with only answer annotations but with

a noticeable drop in performance. Cao et al. [7] leverages the anno-

tation on the rich-resourced scenarios to improve the performance

on scenarios that lack query annotations.

While SP-KGQAmethods perform well on the benchmarks, their

performance heavily relies on gold query annotations. The recent

advancement in in-context learning enables practical few-shot

KGQA methods that only require a limited number of query anno-

tations. However, their strict few-shot performance still lags behind

the current SOTA methods [22, 23, 25].

3 TASK FORMULATION
In this paper, we formalize a knowledge graph (KG) G as a set

of triplet facts to describe entities 𝐸 via their relations 𝑅, i.e., G ⊆
𝐸 × 𝑅 × 𝐸. For a given question 𝑞, the KGQA task is to obtain the

answer(s) 𝐴𝑞 ⊆ 𝐸 according to G. The information retrieval (IR)

KGQA methods maximize the probability Pr(𝑒 ∈ 𝐴𝑞) to distinguish
𝐴𝑞 from other entities. Since exploring the entire KG is compu-

tationally expensive, the majority of practical IR-KGQA methods

operate under the assumption that a question-relevant subgraph

𝑆𝐺∗𝑞 ⊆ G exists, where Pr(𝑒 ∈ 𝐴𝑞 |𝑞,G) = Pr(𝑒 ∈ 𝐴𝑞 |𝑞, 𝑆𝐺∗𝑞). There-
fore, IR-KGQA methods are divided into two stages in practice. The

first stage extracts a question-relevant subgraph to approximate

𝑆𝐺∗𝑞 ⊆ G, and the second stage maximizes the probability of an-

swers. We denote them as subgraph extraction and answer reasoning
respectively. From the probabilistic perspective, subgraph extrac-

tion models a latent distribution Pr𝜙 and maximizes Pr𝜙 (𝑆𝐺∗𝑞), an-
swer reasoning models a distribution Pr𝜓 on the extracted subgraph

to approximate Pr. We formulate them as follows:

𝑆𝐺𝑞 = Ext(G, 𝑞, Pr𝜙 ),
𝐴𝑝𝑟𝑒𝑑 =

{
𝑒 ∈ 𝑆𝐺𝑞 | Pr𝜓 (𝑒 ∈ 𝐴𝑞 |𝑞, 𝑆𝐺𝑞) > 𝜃

}
,

(1)

where Ext denotes a subgraph extractor, 𝐴𝑝𝑟𝑒𝑑 denotes the pre-

dicted answers, 𝜃 is a confidence threshold for determining the

answer set.

This paper focuses on subgraph extraction. We argue that includ-

ing noisy facts in subgraph extraction will affect the consequent

reasoning stage, i.e., the ideal subgraph 𝑆𝐺∗𝑞 for question𝑞 is formed

by a minimal set of evidence facts. Given an appropriate similarity

measure 𝑠𝑖𝑚 over graphs and questions, 𝑆𝐺∗𝑞 should be the most

similar subgraph to question 𝑞, i.e.,

argmax

𝑆𝐺⊂G
Pr𝜙 (𝑆𝐺 |𝑞) = argmax

𝑆𝐺⊂G
𝑠𝑖𝑚(𝑆𝐺,𝑞) . (2)

We assume that the similarity is determined by the adjacency

structure over topic entities. We model it as the evidence pattern
𝑝𝑎𝑡 (𝑆𝐺,𝑞) of 𝑆𝐺 . Specifically, the evidence pattern is a variable

substitution of 𝑆𝐺 , where all entities not appearing in the ques-

tion 𝑞 are replaced by variable symbols, as illustrated in Figure 2.

Therefore, the task of subgraph extraction can be achieved through

evidence pattern retrieval. The extraction target can be formulated

as follows:

argmax

𝑆𝐺⊂G
𝑠𝑖𝑚(𝑝𝑎𝑡 (𝑆𝐺,𝑞), 𝑞). (3)

Specifically, after retrieving the most appropriate evidence pattern

𝑃 , we instantiate 𝑃 by the maximum graph that satisfies 𝑃 , i.e.,

the subgraph with maximum entities. This subgraph of KG will be

provided to the consequent answer reasoning.

4 EVIDENCE PATTERN RETRIEVAL
For a specific knowledge graph G. The retrieval space can be de-

noted as {𝑝𝑎𝑡 (𝑆𝐺) | 𝑆𝐺 ⊆ G}. Given that the space exceeds the

scale of manageable storage, our approach analyzes EP at the gran-

ularity of the atomic adjacency structure among entities and re-

lations, denoted as atomic patterns (APs). Each AP consists of a

pair of adjacent resources and defines their connection structure.

Specifically, AP includes the directed connection of entity-relation

pairs (denoted as ER-APs) and relation-relation pairs (denoted as

RR-APs). As illustrated in Figure 3, the EP of a question can be cov-

ered by corresponding APs. We achieve EPR through the indexing

and retrieval of atomic patterns, encompassing all conceivable EP

instances.

adjoins
−−−−−−−→ Germany

adjoins
←−−−−−−− ⃝

adjoins
−−−−−−−→

type
−−−−→ Country

adjoins
−−−−−−−→ ⃝

type
−−−−→

adjoins
−−−−−−−→ ⃝

country
←−−−−−−−

type
←−−−− ⃝

country
←−−−−−−−

containedby
←−−−−−−−−−−− Stadhuis

country
←−−−−−−− ⃝

containedby
←−−−−−−−−−−−

Figure 3: Atomic patterns appeared on the evidence pattern
in Figure 2.

For an input question, we use a fine-tuned bi-encoder model to

retrieve candidate APs and enumerate the possible EPs with an it-

erative pattern expansion algorithm. If there are multiple candidate

EPs, we score them via a ranking model to select the best EP.

4.1 Atomic Pattern Retrieval
For an input question, the space of possible ER-APs is restricted

by the topic entities, but the space of possible RR-APs includes all

adjacent relation pairs in KG. Therefore, we have to build a fast

index for retrieving candidate RR-APs.

We follow the dense retrieval fashion [20] to build Faiss [19]

indexes of RR-APs in the given KG. We encode the input question

and the RR-APs via two independent BERT [10] models. Given a

question 𝑞 and an RR-AP 𝑝 , we compute the dot similarity of the

3
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embeddings of corresponding [CLS] tokens, i.e.,

𝑉𝑞 = BertCLS1 (𝑞),
𝑉𝑝 = BertCLS2 (𝑝),

sim(𝑝, 𝑞) = (𝑉𝑞)𝑇 ·𝑉𝑝 ,
(4)

where BertCLS denotes the representation of corresponding [CLS].
Specifically, we serialize each RR-AP via the corresponding relation

labels and a link tag for denoting how the relations are connected.

Table 1 illustrated how to serialize RR-APs of different structures.

Table 1: Serialization of RR-APs.

RR-APs Serialization
rel1←−−−− ⃝ rel2−−−−→ [CLS] rel1 SS rel2 [SEP]
rel1←−−−− ⃝ rel2←−−−− [CLS] rel1 SO rel2 [SEP]
rel1−−−−→ ⃝ rel2−−−−→ [CLS] rel1 OS rel2 [SEP]
rel1−−−−→ ⃝ rel2←−−−− [CLS] rel1 OO rel2 [SEP]

The dense encoders are trained with the cross-entropy loss on

the output logits. We use heuristically constructed pseudo EPs to

avoid manual annotation. For each question in the training set, we

randomly select one of its answers, and subsequently collect 1 or

2 hops paths between the topic entities and the selected answer

to construct a pseudo-EP.
1
. The RR-APs on the pseudo-EP(s) are

considered positive samples. The negative samples are generated in

two ways. Half of the negative samples are generated by randomly

replacing one relation or the tag of a positive sample, and the others

are randomly sampled over the entire KG.

In the test process, we use the dense encoders to retrieve 𝐾

most relevant RR-APs and collect all the ER-APs of topic entities as

candidate APs.

Algorithm 1 The construction of candidate EPs

1: function Enumerate(𝜏,𝐴𝑃𝐸𝑅, 𝐴𝑃𝑅𝑅 )

2: 𝐶 ← ∅
3: for 𝑝 ∈ 𝐴𝑃𝐸𝑅 do
4: 𝐴𝑃 ′

𝐸𝑅
← 𝐴𝑃𝐸𝑅 \ {𝑞 ∈ 𝐴𝑃𝐸𝑅 | 𝑞.𝑒𝑛𝑡 = 𝑝.𝑒𝑛𝑡}

5: 𝐶 ← 𝐶 ∪ IterExpand(𝑝, 𝜏, 𝐴𝑃 ′
𝐸𝑅
, 𝐴𝑃𝑅𝑅)

6: return 𝐶

4.2 Candidate Evidence Pattern Construction
After retrieving the APs, we enumerate all possible EPs with Al-

gorithm 1. The algorithm starts from an ER-AP and iteratively

expands the under-construction EP by Algorithm 2 IterExapnd.

IterExapnd uses a threshold 𝜏 to control the maximum size of

EPs. The value of 𝜏 varies with different datasets. Since APs have

already recorded the atomic adjacency, the algorithm only needs to

check whether the adjacency recorded by an AP is consistent with

the current EP. An atomic expansion happens on a variable node.

The variable will be replaced by a topic entity (for expansion with

1
CVT connections over entities in Freebase are treated as 1-hop during the collection

process. Therefore, the maximum length of relation paths is 4, rather than 2.

Algorithm 2 The iterative expansion of under-construction EPs

1: function IterExpand(𝑃, 𝜏, 𝐴𝑃𝐸𝑅, 𝐴𝑃𝑅𝑅 )

2: 𝐶 ← ∅
3: if IsValidPat(𝑃) then
4: 𝐶 ← 𝐶 ∪ {𝑃}
5: if |𝑃 | = 𝜏 then
6: return 𝐶
7: for 𝑝 ∈ {𝑝 ∈ 𝐴𝑃𝐸𝑅 | Expandable(𝑃, 𝑝)} do
8: 𝑃 ′ ← Expand(𝑃, 𝑝)
9: 𝐴𝑃 ′

𝐸𝑅
← 𝐴𝑃𝐸𝑅 \ {𝑞 ∈ 𝐴𝑃𝐸𝑅 | 𝑞.𝑒𝑛𝑡 = 𝑝.𝑒𝑛𝑡}

10: 𝐶′ ← IterExpand(𝑃 ′, 𝜏, 𝐴𝑃 ′
𝐸𝑅
, 𝐴𝑃𝑅𝑅)

11: 𝐶 ← 𝐶 ∪𝐶′
12: for 𝑝 ∈ {𝑝 ∈ 𝐴𝑃𝑅𝑅 | Expandable(𝑃, 𝑝))} do
13: 𝑃 ′ ← Expand(𝑃, 𝑝)
14: 𝐶′ ← IterExpand(𝑃 ′, 𝜏, 𝐴𝑃𝐸𝑅, 𝐴𝑃𝑅𝑅)
15: 𝐶 ← 𝐶 ∪𝐶′
16: return 𝐶

Germany

?𝑥1

adjoins

?𝑥3?𝑥2
type

adjoins

Expand ER-AP

type
←−−− Country

Germany

?𝑥1

adjoins

Country?𝑥2
type

adjoins

Expand RR-AP

adjoins
−−−−−−→ ⃝

country
←−−−−−−

Germany

?𝑥1

adjoins

?𝑥3?𝑥2
type

adjoins

?𝑥4

country

Figure 4: Expand an under-constructed EP with an ER-AP
(the left side) or an RR-AP (the right side).

ER-AP) or extended with a relation (for expansion with RR-AP), as

illustrated in Figure 4.

Specifically, the algorithm assumes that each topic entity can

only be expanded once (line 4 of Algorithm 1 and line 9 of Algo-

rithm 2), but the use of RR-APs is not limited. After expansion,

the EPs that can provide answers will be considered as candidates

(line 3 of Algorithm 2). There are two critical predictive functions,

IsValidPat and Expandable, with the following criteria for their

checks:

IsValidPat checks whether the pattern could correspond to the

meaning of the question. It requires the pattern to include all topic

entities and also demands the existence of knowledge graph nodes

that satisfy the variables in the pattern. To ensure the simplicity of

the pattern and avoid introducing meaningless relations, we do not
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accept an arbitrary expansion of relation paths. Specifically, only

two types of structures are considered valid:

• All endpoints of the pattern (i.e., nodes with a degree of

1) are topic entities. In this case, the evidence pattern is a

minimal structure that can connect all the topic entities.

• There is only one variable endpoint. We allow this excep-

tion in case the correct pattern is a simple triplet or all

topic entities describe the query target through a common

intermediate.

Expandable assesses whether a pattern 𝑃 can be expanded with

atomic pattern 𝑝 . The Expand process will try to expand 𝑃 with 𝑝 to

obtain a new EP 𝑃 ′. Expandable return true if only it is possible to

construct an expanded 𝑃 ′ where all corresponding atomic patterns

appear in 𝐴𝑃𝐸𝑅, 𝐴𝑃𝑅𝑅 . Taking the expansions in Figure 4 as an

example, the expansion with “

adjoins
−−−−−−−→ ⃝

country
←−−−−−−−” requires the

existence of “

type
←−−−− ⃝

country
←−−−−−−−”.

4.3 Evidence Pattern Ranking
The enumeration will generate multiple candidate EPs, and we

model the probability Pr𝜙 over candidate EPs via a BERT-implemented

cross-encoder. The model design is similar to the query ranking

models of the mainstream semantic parsing methods [14, 35]. For a

question 𝑞 and a candidate EP 𝑃 , the process can be formulated as

follows:

𝑠𝑖𝑚(𝑃, 𝑞) = Linear(BertCLS( [𝑞; 𝑃])) . (5)

We serialize the candidates as sequences of triplets, where resources

are denoted by their Freebase labels (including domains of relations).

We concatenate the serialization of EP and the corresponding ques-

tion as the input of the cross-encoder. Sample input for the EP

illustrated in Figure 2 is demonstrated as follows:

[CLS] what . . . border ? [SEP] ?u . . . adjoins ?v ; . . .

?w . . . containedby stadhuis ; ?u . . . type country ; [SEP]

The model is trained with the cross-entropy loss on the output

logits during the training process. we take the candidate EPs that

cover the most answers as positive examples, and the others as

negative examples.

5 EVALUATION
5.1 Experimental Settings
5.1.1 Datasets. We evaluate ourmethod on twowidely used bench-

marks over Freebase [3], Complex WebQuestions 1.1 (denoted as

CWQ) and WebquestionSP (denoted as WebQSP). The statistics

about them are presented in Table 2. The split of validation and

training data of WebQSP follows Zhang et al. [38]. We use the

latest dump of Freebase
2
. We build a Faiss index with 2,366,590

relation-relation atomic patterns.

5.1.2 Compared Methods. We compared with seven two-staged IR-

KGQAmethods [15, 18, 24, 26, 28, 29, 38] and an in-context learning

method KD-COT [33]. The two-staged IR-KGQA methods propose

five subgraph extraction methods and six answering reasoning

methods. The subgraph extraction methods are listed as follows:

2
https://developers.google.com/freebase

Table 2: Statistics of the number of questions.

Dataset #Train #Val. #Test

CWQ 27,639 3,519 3,531

WebQSP 2,848 250 1,639

• Saxena et al. [26] proposes a relation-pruning strategy to ex-

tract subgraphs connected by allowed relations. We denote

it as R-Prune.
• PPR denotes the heuristic idea proposed by Sun et al. [29].

They extract a subgraph with personalized PageRank scores

computed on the neighborhoods of topic entities.

• PullNet [28] iteratively constructs question-specific sub-

graph by “pull” operations on KG and text corpus.

• SR denotes the subgraph retriver proposed by Zhang et al.

[38]. It expands relation paths via a sequential decision

process.

• UniKGQA [18] unifies subgraph extraction and answer

reasoning by computing and propagating matching infor-

mation between questions and relations.

The answer reasoning methods are listed as follows:

• Miller et al. [24] proposes a key-value memory network to

store KG facts, which implicitly models 1-hop neighboring

graphs of topic entities. We denoted it as KV-Mem.

• EmbedKGQA [26] formulates answer reasoning as a link

prediction task.

• GCN denotes the idea to identify answers via graph convo-
lutional network [29].

• NSM denotes neural state machine for KGQA [15]. It itera-

tively generates instruction vectors and updates the entity

distribution to predict the final answer(s).

• UniKGQA [18] uses the same architecture for subgraph

extraction and answer reasoning.

• KD-COT [33] is an in-context learning method. It proposes

the knowledge driven chain-of-thought reasoning process to
iteratively retrieve KG.

We use NSM as the answer reasoner to implement our KGQA sys-

tem.

In addition to the above IR-KGQA methods, we also provide the

results of three recent semantic parsing methods for reference, in-

cluding two fine-tuning methods DecAF [37] and Program Trans-
fer [7] and a few-shot methodKB-Coder [25].We report the results

of these methods results because they can run with and without

full annotation of gold queries.

5.1.3 Implementation Details. We implemented EPR with Python

3.7 and PyTorch 1.9. The results are obtained on a server with

Intel Xeon Gold 5222 CPUs and NVIDIA RTX 3090 GPUs
3
. We

use bert-base-uncased as the neural model for atomic pattern

retrieval and evidence pattern ranking. The hyper-parameters are

presented in Table 3.

The size threshold 𝜏 of evidence patterns is decided by the sizes

of collected pseudo EPs. Specifically, the thresholds for CWQ and

WebQSP are set to 5 and 3 respectively.We grid-search the threshold

3
The implementation will be open-sourced upon acceptance for publication.

5
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Figure 5: The performance and execution time of EPR+NSM with various numbers of APs on CWQ (a) and WebQSP (b).

Table 3: Hyper-parameters for the models.

Parameters AP retrieval EP ranking

Vector dimension 768 768

Batch size 16 2

Epochs 5 10

Initial learning rate 2e-5 1e-5

𝐾 for the maximum number of retrieved RR-APs from 20 to 200

with a step of 10. Larger 𝐾 may increase the running time while

improving the answer cover rates.

5.1.4 Evaluation Metrics. We report Hits@1 (denoted as H@1), F1

score, and answer cover rate (denoted as C.R.) of compared methods.

Hits@1 directly evaluates whether the top-1 predicted answer is

correct. Because some questions have multiple answers, we also use

the F1 score to evaluate the system outputs. The predicted answers

of our system are truncated according to the default threshold of

the answer reasoner. The computation of C.R. follows Zhang et al.

[38], which is the proportion of questions for which the extracted

subgraph contains at least one answer. Specifically, C.R. can be

regarded as the H@1 with an oracle answer reasoner. It reflects

the performance of subgraph extraction and helps to identify the

performance of each module separately.

5.2 Main Results
Table 4 reports the main results of compared methods. Due to

space limitations, the table only includes our implementation with

the top 100 retrieved RR-APs. The comprehensive set of results of

our implementation is illustrated in Figure 5 and is discussed in

Section 5.3.

Our implementation has achieved a new SOTA for IR methods

on the ComplexWebQuestions (CWQ) dataset. Our implementation

shows significant improvements, with a +4.9 increase in H@1 (com-

pared to KD-COT) and a +13.2 increase in F1 score (compared to

Table 4: The evaluation results(%) on CWQ. The best results
of IR methods are in bold, and the second-best results are
underlined. † denotes that the method requires gold query
annotation of all training questions. ∗ denotes few-shotmeth-
ods.

Method CWQ WebQSP

H@1 F1 H@1 F1

Semantic Paring Methods

DecAF w/o Gold Query [37] 50.5 - 74.7 49.8

†
DecAF w/ Gold Query [37] 68.1 - 80.7 77.1

Program Transfer [7] 58.1 58.7 74.6 76.5

∗
KB-Coder [25] - - - 60.5

†∗
KB-Coder + Retrieval [25] - - - 75.2

Information Retrieval Methods

KV-MeM [24] 18.4 15.7 46.6 34.5

R-Prune + EmbedKGQA[26] 32.0 - 66.6 -

PPR + GCN [29] 36.8 32.7 66.4 60.4

PullNet + GCN [28] 45.9 - 68.1 -

PPR + NSM [15] 47.6 42.4 68.5 62.8

SR + GCN [38] 49.0 42.7 66.7 63.1

SR + NSM [38] 50.2 47.1 69.5 64.1

UniKGQA + NSM [18] 49.2 - 69.1 -

UniKGQA + UniKGQA [18] 50.7 48.0 75.1 70.2
∗
KD-COT [33] 55.7 - 68.6 52.5

EPR𝐾=100 + NSM (OURS) 60.6 61.2 71.2 70.2

UniKGQA). On the WebQSP dataset, our implementation exhibits

competitive performance compared to the SOTAmethod UniKGQA.

There is a decrease in H@1 by -3.9 points, but the F1 score remains

similar. Moreover, our implementation surpasses other NSM-based

methods. Specifically, our implementation demonstrates notable
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improvements, with a +1.7 increase in H@1 and a +6.1 increase in

F1 compared to other NSM-based methods.

When considering all methods that do not require complete

gold query annotations in the training data, our implementation

outperforms the current SOTA method, Program Transfer, on the

CWQdataset. The improvements are evident, with a +2.5 increase in

F1. However, the results on the WebQSP dataset are lower, showing

a -6.3 decrease in F1.

The result reported in Figure 5 demonstrated that the ratio of

Hits@1 to answer cover rates (i.e., the performance of NSM) is

relatively stable. The specific results are reported in Table 5. The

average ratios of Hits@1 to C.R. are approximately 76% and 88%

on CWQ and WebQSP, respectively. For reference, SR+NSM with a

coverage rate threshold of 0.8 only achieves Hits@1 scores below

0.4 on CWQ and below 0.65 on WebQSP [38]. Despite the varying

objectives of different subgraph extraction methods making the

ratios not immediately comparable, the significant gap suggests

that EPR may offer advantages for downstream reasoning tasks.

Table 5: The average Hits@1(%), answer cover rates(%) and
their ratio over different threshold𝐾 . The last column reports
the average ratios with the standard deviations in brackets.

Dataset avg. H@1 avg. C.R. avg. H@1/C.R.

CWQ 59.1 77.9 75.9 (6.4e-3)

WebQSP 70.5 80.2 87.9 (1.8e-3)

5.3 Results with Various Number of Retrieved
Atomic Patterns

This section discusses the influence of the number of retrieved

atomic patterns (APs) on the performance and efficiency of our

implementation. We computed the average running time and the

performance scores under different thresholds of APs, as illustrated

in Figure 5. Our further analysis shows that the increase in running

time on CWQ is sorely due to the combinatorial explosion of can-

didate evidence patterns, as illustrated in Figure 6. In conclusion,

the results indicate a notable impact of the number of APs on com-

plex questions (i.e. CWQ), but the difference it brings is not very

significant on relatively simple questions (i.e. WebQSP). Specifi-

cally, on CWQ, the range of answer cover rates is from 62.1% to

82.7%, and the range of time is from 0.31s to 2.68s. On WebQSP, the

range of answer cover rates is from 74.3% to 81.3%, and the range

of time is from 0.33s to 0.40s. For complex questions, increases in

atomic patterns bring efficiency bottlenecks, but the performance

improvement brought by increasing the number is diminishing.

For relatively simple questions, the retrieved atomic patterns do

not have too many combinations, and the increase in the number

threshold has few effects on the system.

5.4 The Impact of Training Data Size on Pattern
Ranking

We conducted an experiment to assess the influence of training data

size on the ranking of candidate evidence patterns. We randomly

split the training data into five equal parts and trained the ranking
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Figure 6: The average running time and number of candidate
evidence patterns.

model with various ratios of data, as reported in Table 6. The results

indicate that the system’s performance is not particularly sensitive

to this. We suppose this is because the retrieval of atomic patterns

already establishes the question-related KG context, and the rank-

ing model primarily focuses on structural information, with less

reliance on data size.

Table 6: The results (%) obtained by training the ranking
model with various ratios of training data. All results are
obtained with 𝐾 = 100.

Ratio CWQ WebQSP

C.R. H@1 F1 C.R. H@1 F1

20% 77.7 59.1 59.6 75.5 65.9 64.0

40% 79.4 59.8 60.6 78.5 68.3 67.8

60% 79.1 59.8 60.4 79.4 68.5 67.8

80% 78.7 59.5 60.5 81.4 70.3 69.6

Full 79.5 60.6 61.2 81.1 71.2 70.2

5.5 Error Analysis
We conduct an error analysis on a sample of 100 questions with

incorrect answer predictions obtained from our experiments on

CWQ and WebQSP datasets. The analysis revealed various issues

contributing to the incorrect answer predictions. We classify the

main issues into six types and report the statistics in Table 7. No-

tably, 20% of the errors on CWQ and 28% of the errors on WebQSP

stemmed from EPR failing to cover the correct answers. This issue

was primarily linked to the insufficiency of retrieved atomic pat-

terns. A significant proportion of the errors, comprising 54% on

CWQ and 30% on WebQSP, were caused by non-entity descriptions

of the answers. Many of these descriptions involved numerical rea-

soning, such as expressions like “higher than 590”. This issue is

unlikely to be resolved within the current IR-KGQA framework.

Even if we extend evidence patterns to capture numerical patterns,

the current answer reasoning methods encounter challenges in
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handling numerical information. The construction and ranking of

evidence patterns contribute to 10% of the errors on CWQ and 28%

of the errors on WebQSP. Only a small proportion of errors on

CWQ, 8%, were caused by imperfect answer reasoning. This obser-

vation indicates EPR’s effectiveness in reducing the impact of noisy

extraction. Lastly, it is important to note that some of the data has

quality issues. For example, our system predicted EgyptianArabic
as the top answer to the question “What kind of language do Egyp-

tians speak?”, which, while seemingly correct, was not part of the

annotated answer set.

Table 7: The statistics about the main issues of incorrect
answer prediction.

Main issues CWQ WebQSP

Insufficient AP 20% 28%

EP construction errors 6% 8%

EP ranking errors 4% 20%

Non-entity evidence 54% 30%

Answer reasoning errors 8% 0%

Data quality 8% 14%

Besides, our further analysis shows that unseen relation is a

crucial issue for our implementation. About 2.8% (98/3531) of CWQ

test questions and 5% (83/1639) of WebQSP test questions con-

tain relations that never appear on the training questions. Our

implementation experiences a sharp decline on these questions, as

illustrated in table 8.

Table 8: The results (%) on questions with andwithout unseen
relations. All results are obtained with 𝐾 = 100.

Unseen Rel. CWQ WebQSP

C.R. H@1 F1 C.R. H@1 F1

with 36.7 17.4 19.7 49.4 36.1 35.4

w/o 80.7 61.8 62.4 82.8 73.1 72.0

6 CONCLUSION
In this paper, we propose evidence pattern retrieval (EPR), which

aims to improve the subgraph extraction of IR-KGQA methods by

reducing noisy facts. Our main contribution can be summarized as

follows:

• We propose the novel idea of evidence pattern, which refers

to how necessary resources (entities and relations) are con-

nected to support a knowledge graph node as an answer

to a question. It enables the explicit modeling of structural

dependencies during the subgraph extraction process of

IR-KGQA.

• We propose an efficient implementation of EPR. It takes an

evidence pattern as a combinations of the atomic adjacency

patterns of resource pairs. We build a vector index for fast

retrieval of the atomic patterns and propose an expanding

algorithm to construct evidence patterns.

• We evaluate the EPR-based KGQA system with a rich exper-

imental analysis. Our analysis demonstrates the importance

of structural dependencies and EPR’s ability to handle com-

plex questions.

Although EPR significantly enhances IR-KGQA methods in han-

dling complex questions, there are still issues worth further explo-

ration. In this paper, we implement atomic pattern retrieval using

a BERT-based bi-encoder. Experimental results indicate that its per-

formance is suboptimal in cases where the retrieval threshold is

low (e.g., ≤ 40) or where unseen relations are present in questions.

It is necessary to explore solutions that perform better without

significantly compromising retrieval efficiency. Our implementa-

tion on CWQ leads to a combinatorial explosion as the retrieval

threshold increases, and it may require necessary optimizations for

the brute-force enumeration of EP to improve efficiency. Exploring

the combination of EPR and in-context learning to achieve state-of-

the-art performance in a few-shot manner is worth investigating.

Besides, current IR-KGQAmethods lack the ability to model numer-

ical information. The possibility of modeling numerical features as

pattern information to enhance the downstream answer reasoning

methods’ capability is also worth investigating.
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