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Abstract

When acquiring syntax, children consistently001
choose hierarchical rules over competing non-002
hierarchical possibilities. Is this preference003
due to a learning bias for hierarchical struc-004
ture, or due to more general biases that in-005
teract with hierarchical cues in children’s lin-006
guistic input? We explore these possibili-007
ties by training LSTMs and Transformers—008
two types of neural networks without a hi-009
erarchical bias—on data similar in quantity010
and content to children’s linguistic input: text011
from the CHILDES corpus. We then evaluate012
what these models have learned about English013
yes/no questions, a phenomenon for which hi-014
erarchical structure is crucial. We find that,015
though they perform well at capturing the sur-016
face statistics of child-directed speech (as mea-017
sured by perplexity), both model types general-018
ize in a way more consistent with an incorrect019
linear rule than the correct hierarchical rule.020
These results suggest that human-like general-021
ization from text alone requires stronger biases022
than the general sequence-processing biases of023
standard neural network architectures.024

1 Introduction025

Syntax is driven by hierarchical structure, yet we026

typically encounter sentences as linear sequences027

of words. How do children come to recognize the028

hierarchical nature of the languages they acquire?029

Some argue that humans must have a hierarchical030

inductive bias—an innate predisposition for hier-031

archical structure (Chomsky, 1965, 1980). An al-032

ternate view (e.g., Lewis and Elman, 2001) is that033

no such bias is necessary: there may be clear evi-034

dence for hierarchical structure in children’s input,035

so that children would choose hierarchical rules036

even without a hierarchical bias.037

At first blush, recent work in natural language038

processing (NLP) may seem to indicate that no hier-039

archical bias is necessary. Neural networks trained040

on naturally-occurring text perform impressively041

on syntactic evaluations even though they have no 042

explicit syntactic structure built into them (e.g., Gu- 043

lordava et al., 2018; Wilcox et al., 2018; Warstadt 044

et al., 2020). However, these results do not provide 045

strong evidence about the learning biases required 046

to learn language from the data available to hu- 047

mans because these models receive very different 048

training data than humans do. First, NLP models 049

are typically trained on far more data than chil- 050

dren receive, so models have more opportunities to 051

encounter rare syntactic structures (Linzen, 2020). 052

Second, most training sets in NLP are built from 053

online text (e.g., Wikipedia), which differs quali- 054

tatively from the utterances that children typically 055

hear; e.g., sentences in Wikipedia are on average 056

25 words long (Yasseri et al., 2012), compared to 5 057

words for sentences in the North American English 058

subset of the CHILDES corpus of child-directed 059

speech (MacWhinney, 2000). 060

In this work, to evaluate if neural networks with- 061

out a hierarchical bias generalize like children do, 062

we train models on text1 comparable to the sen- 063

tences in children’s linguistic input: English data 064

from CHILDES. We then analyze what they have 065

learned about the relationship between declarative 066

sentences, such as (1a), and their corresponding 067

yes/no questions, such as (1b): 068

(1) a. Those are your checkers. 069

b. Are those your checkers? 070

Crucially, nearly all naturally-occurring yes/no 071

questions are consistent with two rules: one based 072

on hierarchical structure (2), and one based on lin- 073

ear order (3):2,3 074

(2) HIERARCHICALQ: The auxiliary at the start 075

1Section 7.3 discusses other input types (e.g., visual input).
2In past work these rules have been framed as transforma-

tions named MOVE-FIRST and MOVE-MAIN (McCoy et al.,
2020). We instead follow Berwick et al. (2011) and frame the
child’s knowledge as a relationship between sentences.

3Though these two rules are the most prominent in prior
literature, other rules are possible; see Section 5.2.
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of a yes/no question corresponds to the main076

auxiliary of the corresponding declarative.077

(3) LINEARQ: The auxiliary at the start of a078

yes/no question corresponds to the first auxil-079

iary of the corresponding declarative.080

Despite the scarcity of evidence disambiguating081

these rules, children reliably favor HIERARCHI-082

CALQ (Crain and Nakayama, 1987), albeit with083

occasional errors consistent with LINEARQ (Am-084

bridge et al., 2008). Yes/no questions thus are a085

prime candidate for an aspect of English syntax086

for which human-like generalization requires a hi-087

erarchical bias. We evaluate yes/no question per-088

formance in LSTMs and Transformers, two neural-089

network architectures that have no inherent hierar-090

chical inductive bias (McCoy et al., 2020; Petty and091

Frank, 2021). These architectures employ different092

computational mechanisms, so consistent results093

across both would indicate that our results are not094

due to idiosyncrasies of one particular architecture.095

To investigate if models generalize more con-096

sistently with the hierarchical or linear rule, we097

evaluate them on cases where the rules make dif-098

ferent predictions, such as (4): under HIERARCHI-099

CALQ, the question that corresponds to (4a) is (4b),100

whereas under LINEARQ it is (4c).101

(4) a. The boy who has talked can read.102

b. Can the boy who has talked read?103

c. *Has the boy who talked can read?104

We find that across several ways of framing the105

learning task, models fail to learn HIERARCHI-106

CALQ. Instead, they generalize in ways that de-107

pend on linear order and on the identities of spe-108

cific words. These results suggest that children’s109

training data, if taken to be words alone, may not110

contain enough hierarchical cues to encourage hier-111

archical generalization in a learner without a hierar-112

chical bias. Thus, explaining human acquisition of113

syntax may require postulating that humans have114

stronger inductive biases than those of LSTMs and115

Transformers, or that information other than word116

sequences plays a crucial role.4117

2 Background118

Though HIERARCHICALQ and LINEARQ often119

make the same predictions, the evidence in chil-120

dren’s input may still favor HIERARCHICALQ.121

4To facilitate further research, we have uploaded our
datasets and trained models at [LINK ANONYMIZED].

The most straightforward evidence would be ut- 122

terances that directly disambiguate the rules, such 123

as (4b). Pullum and Scholz (2002) show that disam- 124

biguating examples appear in the Wall Street Jour- 125

nal, in literature, and arguably in child-directed 126

speech, but direct evidence may still be too rare to 127

robustly support HIERARCHICALQ (Legate and 128

Yang, 2002). Nonetheless, children might con- 129

clude that yes/no questions obey HIERARCHI- 130

CALQ rather than LINEARQ based on indirect 131

evidence—evidence that other syntactic phenom- 132

ena are hierarchical (Mulligan et al., 2021). 133

To test if the cues favoring HIERARCHICALQ 134

render a hierarchical bias unnecessary, we study 135

how well non-hierarchically-biased models acquire 136

English yes/no questions. Several prior papers have 137

used this approach, but their training data differed 138

from children’s input in important ways: some used 139

synthetic datasets (Lewis and Elman, 2001; Frank 140

and Mathis, 2007; Clark and Eyraud, 2007; McCoy 141

et al., 2020), others used massive Internet corpora 142

(Lin et al., 2019; Warstadt and Bowman, 2020), 143

and those that used child-directed speech simpli- 144

fied the data by replacing each word with its part 145

of speech (Perfors et al., 2011; Bod et al., 2012). 146

We used training data closer to children’s input, 147

namely sentences from CHILDES with word iden- 148

tities preserved, rather than being converted to parts 149

of speech. Two other recent works have also trained 150

neural networks on CHILDES data (Pannitto and 151

Herbelot, 2020; Huebner et al., 2021), but neither 152

investigated yes/no questions. 153

3 Overview of Experimental Setup 154

We evaluated models on yes/no questions in two 155

ways. First, we used relative acceptability judg- 156

ments (Experiment 1): We trained neural networks 157

on the task of language modeling (predicting the 158

next word at every point in the sentence) and evalu- 159

ated whether they assigned a higher probability to 160

sentences consistent with LINEARQ or HIERAR- 161

CHICALQ. Our second approach was based on text 162

generation (Experiment 2): We trained networks 163

to take in a declarative sentence and output the 164

corresponding question, and tested whether they 165

generalized in a way more consistent with LIN- 166

EARQ or HIERARCHICALQ. Under both framings, 167

we trained models on data from CHILDES and 168

evaluated them on targeted datasets constructed to 169

differentiate LINEARQ and HIERARCHICALQ. 170

The size of the dataset that we extracted from 171
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CHILDES was plausibly within the range from172

which children can acquire HIERARCHICALQ.173

Crain and Nakayama (1987) found that children174

between ages 3 and 5 behaved much more con-175

sistently with HIERARCHICALQ than LINEARQ.176

By age 3, American children from families with a177

lower socioeconomic status receive approximately178

10 million words of input (Hart and Risley, 1995),179

similar to the 8.5 million words of our training set.180

Thus, it is reasonable to suppose that a learner that181

generalizes as children do would favor HIERAR-182

CHICALQ after being trained on our training set.183

4 Experiment 1: Relative Acceptability184

4.1 Dataset185

To train models on data as similar as possible to186

the sentences children receive, we extracted data187

from CHILDES (MacWhinney, 2000). We used188

the North American English portion. We wished189

to replicate children’s input, so we excluded the190

children’s own utterances, leaving a 9.6-million-191

word corpus. We allocated 90% of the data to192

training, 5% to validation, and 5% to testing. We193

replaced words that appeared two or fewer times in194

the training set with <unk>, giving a replacement195

rate of 0.3%. See Appendix A for more details.196

4.2 Task: Next-Word Prediction197

We trained models on next-word prediction, also198

known as language modeling. We chose this task199

for two reasons. First, it is clear empirically that200

next-word prediction can teach neural networks a201

substantial amount about syntax (e.g., Hu et al.,202

2020). Second, it is plausible that humans per-203

form some version of next-word prediction during204

sentence processing (Altmann and Kamide, 1999;205

Hale, 2001; Levy, 2008; Kutas et al., 2011) and206

that such prediction may play a role in acquisition207

(Elman, 1991). Thus, while next-word prediction208

is certainly not the only goal of human language209

learners, we view this task as a reasonable first step210

in emulating human language acquisition.211

4.3 Architectures212

We used LSTMs (Hochreiter and Schmidhuber,213

1997) and Transformers (Vaswani et al., 2017). We214

chose these models for two reasons. First, they215

have been the most successful architectures in NLP.216

Thus, we have reason to believe that, of the types217

of low-bias models invented, these two are the ones218

most likely to discover linguistic regularities in219

our CHILDES training data. Second, the two ar- 220

chitectures process sequences very differently (via 221

recurrence vs. via attention). Thus, if both gener- 222

alize similarly, we would have evidence that what 223

was learned is strongly evidenced in the data, rather 224

than due to a quirk of one particular architecture. 225

For our LSTMs, we used 2 layers, a hidden and 226

embedding size of 800, a batch size of 20, a dropout 227

rate of 0.4, and a learning rate of 10. For our Trans- 228

formers, the corresponding values were 4, 800, 10, 229

0.2, and 5, and we used 4 attention heads. We chose 230

these values based on a hyperparameter search de- 231

scribed in Appendix B. All following results are av- 232

eraged across 10 runs with different random seeds. 233

4.4 Results: Language Model Quality 234

Before testing models on questions, we used per- 235

plexity to evaluate how well they captured the basic 236

structure of their training domain. For a baseline, 237

we used a 5-gram model with Kneser-Ney smooth- 238

ing (Kneser and Ney, 1995) trained with KenLM 239

(Heafield, 2011). The test set perplexity for the 240

5-gram baseline was 24.37, while the average test 241

set perplexity for the LSTMs and Transformers 242

was 20.05 and 19.69, respectively. For perplexity, 243

lower is better. Thus, both neural network types 244

outperformed the strong baseline of a smoothed 245

5-gram model, showing that they performed well 246

at capturing the basic statistics of their training do- 247

main.5 We now test whether these models have 248

also successfully learned yes/no questions. 249

4.5 Yes/No Questions 250

Evaluation Dataset: Forced-Choice Acceptabil- 251

ity Judgments As a first way to test whether our 252

models have learned HIERARCHICALQ, we eval- 253

uate whether they assign higher probabilities to 254

sentences consistent with HIERARCHICALQ than 255

to minimally different sentences that are ungram- 256

matical. For this purpose, we create an evaluation 257

dataset containing groups of 6 questions, each cre- 258

ated by starting with a declarative sentence, such 259

as (5), and then deleting the first, main, or neither 260

auxiliary, and inserting the first or main auxiliary 261

at the front of the sentence.6 For instance, in (6b), 262

the first auxiliary has been preposed, and the main 263

auxiliary has been deleted. 264

5For an intuitive illustration of our model quality, see the
sample text generated by them in Appendix H.

6It would be possible to also use a ‘prepose other’ category,
where an auxiliary not in the input is inserted (McCoy et al.,
2018). We excluded this category because using it would raise
complications about which ‘other’ auxiliary to choose.
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(5) The dog who has seen a boy did try.265

(6) a. Has the dog who seen a boy did try?266

b. Has the dog who has seen a boy try?267

c. Has the dog who has seen a boy did try ?268

d. Did the dog who seen a boy did try?269

e. Did the dog who has seen a boy try?270

f. Did the dog who has seen a boy did try?271

Within each group, we evaluate which question272

the model assigned the highest probability to. If a273

model has correctly learned HIERARCHICALQ, it274

should assign the highest probability to the question275

consistent with this rule, such as (6e).276

Several past papers about yes/no questions have277

used the same general approach (Lewis and El-278

man, 2001; Reali and Christiansen, 2005). How-279

ever, these papers considered only pairs of sen-280

tences, whereas we consider groups of 6 to allow281

for a wider range of possible generalizations that a282

model might have learned.283

To generate the declaratives from which we284

formed groups of 6 questions, we used the context-285

free grammar (CFG) in Appendix F, which has a vo-286

cabulary selected from the most common words in287

CHILDES. Each declarative generated by the CFG288

(e.g., (5)) contains two auxiliary verbs: one before289

the sentence’s main verb and one inside a relative290

clause modifying the subject. One potential prob-291

lem is that some questions are consistent with both292

HIERARCHICALQ and LINEARQ. For instance,293

(7a) can be formed from (7b) with the HIERARCHI-294

CALQ-consistent steps PREPOSE-MAIN,DELETE-295

MAIN, or from (7c) with the LINEARQ-consistent296

steps PREPOSE-FIRST,DELETE-MAIN.297

(7) a. Did the boy who did see the person laugh?298

b. The boy who did see the person did laugh.299

c. The boy who did see the person can laugh.300

To avoid this problem, we required that the aux-301

iliary before the main verb must select for a dif-302

ferent verb inflection than the one in the relative303

clause. For instance in (5), did selects for the verb’s304

bare form, while has selects for the past participle305

form. Thus, the auxiliary at the start of the question306

could only correspond to whichever auxiliary in the307

declarative has the same selectional properties.7308

Results: Relative Question Acceptability For309

each sentence group, we used per-word perplex-310

7A model could succeed on this dataset with a rule that
relates the auxiliary at the start of a question with the last
auxiliary in the declarative form. Since our models fail on this
dataset, this consideration is not relevant here.
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Figure 1: The question types that models prefer when
offered a choice between 6 questions. These 6 ques-
tions are formed by modifying a declarative with a rel-
ative clause on the subject according to ‘prepose’ and
‘delete’ rules. Within each architecture, the proportions
across all 6 question types necessarily sum to 1. Each
bar shows the average across 10 model re-runs, with
single-standard-deviation error bars.

ity to see which of the 6 candidates the models 311

scored most highly.8 For both LSTMs and Trans- 312

formers, the correct category (PREPOSE MAIN, 313

DELETE MAIN) was the second-rarest choice, and 314

the most frequent preference was for PREPOSE 315

FIRST, DELETE MAIN, a category that is only par- 316

tially correct because it references linear order in 317

addition to hierarchical structure. (Figure 1). Thus, 318

neither model displays preferences consistent with 319

the correct, fully-hierarchical generalization. The 320

two model types showed similar scores, which may 321

mean that these results are largely driven by the 322

statistics of the training data that both models share, 323

rather than the models’ differing inductive biases. 324

One of the incorrect categories—PREPOSE 325

MAIN, DELETE NONE, such as (6f)—only re- 326

quires reference to hierarchical structure, so it 327

could be said to capture the hierarchical nature of 328

yes/no questions. Nonetheless, this category was 329

also relatively rare: combining the two fully hier- 330

archical possibilities (PREPOSE MAIN, DELETE 331

MAIN and PREPOSE MAIN, DELETE NONE) ac- 332

counts for only 26% of LSTM preferences and 333

27% of Transformer preferences, meaning that both 334

models over 70% of the time favored a sentence 335

generated at least partially based on linear order. 336

8We also explored evaluation of the models with a more
complex measure called SLOR where we additionally nor-
malized scores by word frequency (Pauls and Klein, 2012).
Both metrics produced qualitatively similar results, so we only
report the simpler metric here. See Appendix C.1.
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5 Experiment 2: Question Formation337

The previous experiment was designed to operate338

entirely in the next-word-prediction paradigm, mo-339

tivated by arguments from past literature about the340

strength and relative ecological validity of next-341

word-prediction as a training objective (see Sec-342

tion 4.2). However, one of this setup’s shortcom-343

ings is that the conclusions are based on the relative344

acceptability of questions alone, whereas HIERAR-345

CHICALQ describes the acceptability of a corre-346

spondence between a declarative and a question.347

In this second experiment, to better capture that348

HIERARCHICALQ is defined over sentence pairs,349

we trained models on a sentence-pair task: trans-350

forming a declarative into a question (McCoy et al.,351

2020). For instance, given the child did learn the352

model must produce did the child learn ?353

We evaluated models in two ways. First, we354

checked if the models’ predictions fully matched355

the correct questions. This full-sentence evaluation356

is demanding, and models might fail this evalua-357

tion for reasons unrelated to our core hypotheses.358

For instance, given the child did learn the model359

might produce did the baby learn, which would be360

marked as incorrect, even though this lexical error361

is not relevant to HIERARCHICALQ.362

As a metric that is less demanding and that also363

more directly targets HIERARCHICALQ, we mea-364

sured if the first word of the output question corre-365

sponded to the first or main auxiliary of the input.366

Critically, LINEARQ and HIERARCHICALQ make367

different predictions for the first word of a question368

so long as the two auxiliaries are distinct: see (4).369

Because this framing lets the model freely generate370

its output (instead of choosing one option from a371

pre-specified set), we allow for the possibility that372

the rule learned by models may not be identical to373

any of our manually-generated hypotheses.374

Solely training models to perform this transfor-375

mation involves the implicit assumption that, when376

children acquire English yes/no questions, the only377

evidence they leverage is English yes/no questions.378

However, other types of sentences may also pro-379

vide useful evidence (Pearl and Mis, 2016): e.g.,380

wh-questions also illustrate subject-auxiliary in-381

version (Pullum and Scholz, 2002), while, more382

generally, many types of sentences could provide383

evidence that the syntax as a whole is hierarchical384

(Perfors et al., 2011). To explore this possibility,385

we compared a condition in which models were386

only trained to perform question formation (the387

QUESTION FORMATION condition) to another in 388

which models were first pre-trained on next-word 389

prediction with the exact same setup as in Experi- 390

ment 1 before being further trained to perform ques- 391

tion formation (the NEXT-WORD PREDICTION + 392

QUESTION FORMATION condition). 393

5.1 Dataset 394

Training Set Our question formation dataset con- 395

sisted of the yes/no questions in the CHILDES 396

Treebank (Pearl and Sprouse, 2013a,b), a parsed 397

subset of CHILDES containing 189,359 sentences. 398

We used these parses to extract all yes/no ques- 399

tions from the CHILDES Treebank and derive their 400

corresponding declarative forms. The resulting 401

declarative was concatenated with the question. An 402

example declarative/question pair is: 403

(8) you can spell your name . can you 404
spell your name ? 405

The training set consisted of 10,870 declara- 406

tive/question pairs, the validation set 1,360 pairs, 407

and the test set 1,358 pairs (we will call this test 408

set the randomly-partitioned test set to distinguish 409

it from two other evaluation sets discussed below). 410

We trained models to perform next-word prediction 411

on such concatenated sentence pairs. The first- 412

word accuracy of the trained model was then com- 413

puted based on the model’s prediction for the word 414

after the period in each test example, while the 415

full-sentence accuracy was computed based on the 416

model’s predictions for all tokens after the period. 417

All the questions in the randomly-partitioned test 418

set were withheld from both the question-formation 419

training set and the next-word-prediction training 420

set. Thus, models had not seen these test examples 421

in their training, even in the NEXT-WORD PRE- 422

DICTION + QUESTION FORMATION condition in 423

which they were trained on both tasks. 424

Evaluation Sets In addition to the randomly- 425

partitioned test set, we used CFGs to generate two 426

targeted evaluation sets. As in Experiment 1, we se- 427

lected the CFGs’ vocabulary from common words 428

in our CHILDES data. In sentences generated from 429

the first CFG, the sentence’s first auxiliary was also 430

its main auxiliary, so LINEARQ and HIERARCHI- 431

CALQ make the same predictions. (8) exemplifies 432

the type of declarative-question pair in this dataset. 433

We call this dataset FIRST-AUX = MAIN-AUX. For 434

sentences generated by the second CFG, the main 435

auxiliary was the second auxiliary in the sentence; 436

thus, these examples disambiguate LINEARQ and 437
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HIERARCHICALQ. Example (9) is a declarative-438

question pair from this evaluation set.439

(9) a boy who is playing can try . can a440
boy who is playing try ?441

We call this dataset FIRST-AUX 6= MAIN-AUX.442

See Appendix F for the CFGs used. We sampled443

10,000 declarative sentences from these grammars444

and transformed them into questions according to445

HIERARCHICALQ to create our evaluation sets.446

5.2 Results447

Randomly-Partitioned Test Set The LSTMs448

and Transformers in the QUESTION FORMA-449

TION condition performed well on the randomly-450

partitioned test set, with a full-question accuracy451

of 0.68± 0.014 and 0.87 ± 0.005 (averaged across452

10 reruns with margins indicating one standard de-453

viation). The models in the NEXT-WORD PRE-454

DICTION + QUESTION FORMATION condition per-455

formed similarly well, with a full-question accu-456

racy of 0.66 ± 0.008 for the LSTMs and 0.93 ±457

0.004 for the Transformers. For both model types,458

the first-word accuracy for the question was nearly459

1.00 across re-runs. We suspect that Transform-460

ers have a stronger full-question accuracy because461

producing the question requires copying all words462

from the declarative (but in a different order). Copy-463

ing is likely easy for Transformers because they can464

attend to specific words in the prior context, while465

our LSTMs must compress the entire context into a466

fixed-size vector, which may degrade the individual467

word representations. Because both model types468

achieved near-perfect performance on the crucial469

first-word accuracy metric, we conclude that our470

models have successfully learned how to handle471

the types of declarative/question pairs that we ex-472

tracted from the CHILDES Treebank.473

Targeted Evaluation Sets On our two targeted474

evaluation sets, models almost never produced the475

complete question correctly. Turning to the more476

lenient measure of first-word accuracy, for exam-477

ples on which LINEARQ and HIERARCHICALQ478

predict the same first output word (FIRST-AUX =479

MAIN-AUX), the Transformer trained only on ques-480

tion formation performed strongly, while the Trans-481

former trained on both tasks, and both LSTMs,482

performed reasonably well (Figure 2; note mod-483

els could choose any word in their vocabulary to484

begin the output, so chance performance is near485

0.00). For the crucial cases that disambiguate the486

two rules (FIRST-AUX 6= MAIN-AUX), both mod-487
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Figure 2: Proportion of model-produced questions that
were consistent with the linear rule LINEARQ and/or
the hierarchical rule HIERARCHICALQ. In the FIRST-
AUX = MAIN-AUX dataset, the first auxiliary is the
main auxiliary, so both LINEARQ and HIERARCHI-
CALQ produce the correct question string. The FIRST-
AUX 6= MAIN-AUX dataset disambiguates the two
rules. Each bar shows the average across 10 model re-
runs, with error bars showing one standard deviation.

els in both conditions performed more consistently 488

with LINEARQ than HIERARCHICALQ. Training 489

on next-word prediction before question formation 490

had inconsistent effects: it modestly increased the 491

likelihood of hierarchical generalization in LSTMs, 492

yet it decreased that likelihood in Transformers. 493

Lexical Specificity In Appendix G, we further 494

break down the FIRST-AUX 6= MAIN-AUX results 495

based the auxiliaries’ identity. The generalization 496

pattern varied considerably across auxiliary pairs. 497

For some auxiliary pairs, the auxiliary chosen to 498

begin the question was usually neither auxiliary 499

in the input (Figure 3, left facet). For other pairs, 500

models usually chose the first auxiliary, regardless 501

of lexical identity (Figure 3, middle facet). Finally, 502

for some pairs, the auxiliary chosen was usually 503

the same one, regardless of whether it was the first 504

or main auxiliary (Figure 3, right facet). 505

Generalization based on lexical identity is rarely 506

considered in past discussions of English yes/no 507

question acquisition. Of the papers on this phe- 508

nomenon (see Clark and Lappin (2010), Lasnik 509

and Lidz (2017), and Pearl (2021) for overviews), 510

the only one to our knowledge that discusses lexi- 511

cal specificity is Frank and Mathis (2007), which 512

studied models trained on synthetic data. Our re- 513

sults highlight the importance of testing for a broad 514
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Figure 3: Lexical specificity in model behavior. Each
facet considers only the evaluation examples contain-
ing the two auxiliaries in the facet heading; e.g., the
can and do facet includes, for example, the inputs the
children who can play do learn and the children who
do play can learn. The bars show the proportion of
model predictions for the first word of the output that
are consistent with four potential movement rules, aver-
aged across 10 model re-runs and with error bars show-
ing one standard deviation above and below the mean.
This plot only shows an illustrative subset of auxiliary
pairs for one model type (Transformers in the NEXT-
WORD PREDICTION + QUESTION FORMATION con-
dition); see Appendix G for the full results.

range of generalizations: Lexically-specific hy-515

potheses appear attractive for our low-bias learners,516

so an account of what biases can yield human-like517

learning should rule out these lexically-specific hy-518

potheses along with linear ones.519

6 Evaluating on Other Phenomena520

We have found that our models consistently failed521

to learn HIERARCHICALQ. Does this failure re-522

sult from a general failure to learn syntax? If so,523

this could indicate that our training setup is flawed,524

since Huebner et al. (2021) showed that Transform-525

ers can score well on certain syntactic evaluations526

after being trained on CHILDES data (though they527

did not evaluate models on yes/no questions).528

To test this possibility, we evaluated our models529

on the Zorro dataset (Huebner et al., 2021), which530

is based on BLiMP (Warstadt et al., 2020). Zorro531

contains 24 evaluations, each of which targets one532

syntactic phenomenon (e.g., subject-verb agree-533

ment) and involves sentence pairs for which one534

sentence is grammatical, and the other is minimally535

different but ungrammatical (e.g., by violating sub-536

ject verb agreement). We evaluated models as we537

did in Section 4.5: a model gets a sentence pair cor-538

rect if it has a lower perplexity for the grammatical539

sentence than for the ungrammatical sentence.540

See Appendix D for full results. For each syntac- 541

tic phenomenon, most model re-runs scored above 542

0.9, though at least one scored near the chance level 543

of 0.5. For each re-run of each architecture there 544

is at least one phenomenon for which the model 545

scores over 0.97, and many models score 1.00 on 546

some phenomena. Thus, our models’ failure on 547

yes/no questions cannot be explained by a general 548

failure to learn syntax, since all models score well 549

on at least some syntactic evaluations. 550

7 Discussion 551

We have found that, when trained on child-directed 552

speech, two types of standard neural networks per- 553

formed reasonably well at capturing the statistical 554

properties of the dataset, yet their handling of En- 555

glish yes/no questions was more consistent with 556

a linear rule LINEARQ than the correct hierarchi- 557

cal rule HIERARCHICALQ. These results support 558

the hypothesis that a learner requires a hierarchical 559

bias to consistently learn hierarchical rules when 560

learning from the linguistic data children receive. 561

7.1 Takeaways for LSTMs and Transformers 562

When trained on massive corpora, LSTMs and 563

Transformers perform impressively on some syn- 564

tactic evaluations. Based on such results, it is tempt- 565

ing to conclude that the general-purpose biases of 566

these architectures suffice to yield human-like syn- 567

tax acquisition. Our results caution against this 568

interpretation: When we trained the same architec- 569

tures on data more similar to children’s input, they 570

failed to learn the structure of English yes/no ques- 571

tions. Thus, at least when learning from text alone, 572

LSTMs and Transformers do not display human- 573

like language learning—they do not generalize as 574

humans do from the data that humans receive. 575

7.2 Takeaways for the Poverty of the 576

Stimulus Debate 577

Below we specify four possible positions in the 578

poverty-of-the-stimulus debate about the adequacy 579

of children’s input for inducing hierarchical rules in 580

low-bias learners, arranged from assuming the most 581

limited to the most expansive innate component: 582

(10) Any inductive biases: Any learner trained on 583

CHILDES will generalize like humans do. 584

(11) Any inductive biases that enable in- 585

distribution learning: Any learner that cap- 586

tures the statistical patterns of the training dis- 587

tribution will generalize to HIERARCHICALQ. 588
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(12) Some non-hierarchical inductive biases:589

Some general-purpose learners will generalize590

as humans do, but others will not.591

(13) Only a hierarchical inductive bias: No592

general-purpose learners will generalize as593

humans do: hierarchical biases are necessary.594

Position (10) is clearly false: many learners can-595

not learn certain aspects of syntax, no matter their596

training data (e.g., bigram models cannot capture597

long-distance dependencies). Our work shows that598

position (11) is also false: Though our models per-599

formed well on the in-distribution test sets of Exper-600

iments 1 and 2, they did not generalize in human-601

like ways. This leaves positions (12) and (13),602

which our existing results cannot differentiate. It is603

possible that only learners with hierarchical induc-604

tive biases can demonstrate human-like language605

learning (position (13)), but also that some learners606

without this bias can succeed (position (12))—just607

not the learners we tested. For further discussion608

of how computational modeling can bear on learn-609

ability arguments, see Wilcox et al. (2021).610

One potential solution supporting position (12)611

would be that learners leverage the hierarchical612

structure of some syntactic phenomenon to help613

conclude that other, impoverished phenomena are614

hierarchical (Perfors et al., 2011; Mulligan et al.,615

2021). However, our results from Experiment 2616

show that giving learners access to a wider range617

of phenomena does not automatically improve hi-618

erarchical generalization: Models’ performance on619

question formation was not substantially improved620

(and in some cases was even harmed) when they621

were trained not just on question formation but also622

on next-word prediction on the entire CHILDES623

corpus. Thus, although training on text that con-624

tains many linguistic phenomena can give mod-625

els a hierarchical inductive bias when the training626

is done over large Internet corpora (Warstadt and627

Bowman, 2020; Mueller et al., 2022), our results628

provide evidence that this conclusion does not ex-629

tend to models trained on child-directed speech.630

7.3 Comparison of Our Training Data to631

Children’s Input632

Our training set was both qualitatively and quanti-633

tatively closer to children’s input than the massive634

Internet corpora standardly used to train models in635

NLP (Linzen, 2020). This difference is important:636

Lin et al. (2019), Warstadt and Bowman (2020),637

and Mueller et al. (2022) all found evidence that638

models trained on large Internet corpora performed 639

well on yes/no questions evaluations, whereas our 640

models trained on CHILDES performed poorly— 641

though we cannot be certain the differences in re- 642

sults are solely due to differences in the training 643

data, since these prior papers used different model 644

architectures, training tasks, and evaluation setups. 645

Though our training data are more similar to 646

children’s input than massive Internet corpora are, 647

differences remain. Our experiments omit several 648

aspects of a child’s experience that might help them 649

acquire syntax, such as prosody (Morgan and De- 650

muth, 1996), visual information (Shi et al., 2019), 651

and meaning (Fitz and Chang, 2017; Abend et al., 652

2017), all of which might correlate with syntactic 653

structure and thus provide additional cues to the 654

correct hierarchical generalization. On the other 655

hand, our dataset might present an easier learning 656

scenario than children are faced with, because chil- 657

dren must learn to segment the speech stream into 658

words (Lakhotia et al., 2021), while our models do 659

not need to learn this. Further, although real-world 660

grounding could provide access to syntactically- 661

relevant information, learners might struggle to 662

leverage this information because of difficulties in 663

determining what is being discussed in the physical 664

world (Gleitman et al., 2005). 665

8 Conclusion 666

In this work, we trained two types of neural net- 667

works (LSTMs and Transformers) on sentences of 668

the types available to children and then analyzed 669

what they had learned about English yes/no ques- 670

tions. Across several evaluation paradigms, these 671

models failed to generalize in human-like ways: 672

Humans display hierarchical generalization, while 673

the models’ generalization was instead based on 674

linear order and individual words’ identities. Our 675

results support the hypothesis that human-like lin- 676

guistic generalization requires biases stronger than 677

those of LSTMs and Transformers. Future work 678

should investigate what inductive biases enable suc- 679

cessful generalization. One approach would be to 680

test architectures with built-in hierarchical struc- 681

ture; past work has shown that such architectures 682

have a hierarchical bias (McCoy et al., 2020) and 683

generalize better on the hierarchical phenomenon 684

of subject-verb agreement (Kuncoro et al., 2018; 685

Lepori et al., 2020), so they may also generalize 686

better on English yes/no questions. 687
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Ethics Statement688

Use of human data: While we did not collect689

any new human data ourselves, many of our anal-690

yses involved the use of prior datasets within the691

CHILDES database. All of these datasets were692

collected in accordance with IRB policies at the693

institutions of the data collectors, and all followed694

standard practices in obtaining informed consent695

and deidentifying data.9696

Risks and limitations: The main risk of our pro-697

posed analyses is that future work using the same698

analyses might draw overly strong conclusions699

based on increased model performance, leading700

to overestimates of model strength. Such overesti-701

mates are an issue because they can lead users to702

place more trust in a model than is warranted.703

To clarify, we view strong performance on our704

evaluation datasets as necessary but not sufficient to705

demonstrate human-like learning. Thus, if models706

perform poorly on our datasets (as the models we707

evaluated did), then we have strong reason to con-708

clude that models are not learning in human-like709

ways. If future models perform better, such results710

would be consistent with human-like learning but711

would not conclusively establish that models learn712

as humans do, as they might instead be using some713

shallow heuristic that is not controlled for in our714

datasets. In other words, a criterion that is neces-715

sary but not sufficient facilitates strong conclusions716

about failure but does not facilitate strong conclu-717

sions about success. If future papers are faced with718

models that are more successful, such papers would719

ideally supplement results based on our datasets720

with analyses of models’ internal strategies in order721

to more conclusively establish that what they have722

learned is not a spurious heuristic.723
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The train, test, and validation split kept each docu- 960

ment in the corpora intact to allow for learning of 961

context. Since a document roughly correspond to 962

a single recording session, and the sentence order 963

within each document was not randomized, the net- 964

works could utilize cross sentence context while 965

predicting the next word. 966

Generally, we kept the data as close to the actual 967

input that the child receives as possible. However, 968

in some cases we modified tokenization to match 969

CHILDES Treebank, a syntactically parsed subset 970

of the CHILDES corpora. For instance, contrac- 971

tions were split, e.g. we replaced don’t with do 972

n’t, 973

The ages of the children vary by corpus, ranging 974

from six months to twelve years. Almost 95% 975

(49/52) of the corpora consist of transcriptions with 976

children between one and six years of age. 977

Note that for Experiment 2, we used the same vo- 978

cabulary as we used in Experiment 1, which means 979

that the words that were not present in the Exper- 980

iment 1’s vocabulary were replaced with <unk> 981

tokens. 982

The unprocessed CHILDES datasets were down- 983

loaded in XML format from the online XML ver- 984

sion of the CHILDES database (MacWhinney, 985

2000). A modified NLTK CHILDESCorpusReader 986

was used to parse the XML into plain text for train- 987

ing. 988

The CHILDES dataset is licensed for use un- 989

der a CC BY-NC-SA 3.0 license (https:// 990

talkbank.org/share/rules.html). Un- 991

der the terms of this license, the data can 992

be freely used and adapted, as long as it is 993

not used for commercial purposes and as long 994

as attribution (https://creativecommons. 995

org/licenses/by-nc-sa/3.0/) is pro- 996

vided. Our usage fits these criteria. 997

Though CHILDES contains many corpora of 998

many languages, we use only corpora from the 999
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North American English subset of CHILDES,1000

which contains child-directed speech with many1001

different North American children. See the1002

CHILDES database for more details.1003

By the CHILDES rules for data citation, research1004

that relies on more than 6 of the corpora need only1005

cite the overall database, not each individual cor-1006

pus.1007

All the data on CHILDES must adhere to IRB1008

guidelines, including a requirement for anonymity.1009

The final dataset may be downloaded from1010

[LINK ANONYMIZED]. This dataset is not in-1011

tended for commercial use.1012

CHILDES corpora included Bates, Bernstein,1013

Bliss, Bloom70, Bloom73, Bohannon, Braun-1014

wald, Brent, Brown, Carterette, Clark, Cornell,1015

Demetras1, Demetras2, EllisWeismer, Evans, Feld-1016

man, Garvey, Gathercole, Gelman, Gillam, Glea-1017

son, HSLLD, Haggerty, Hall, Higginson, Kuczaj,1018

MacWhinney, McCune, McMillan, Morisset, NH,1019

Nelson, NewEngland, NewmanRatner, Normal,1020

POLER, Peters, Post, Rollins, Sachs, Sawyer,1021

Snow, Soderstrom, Sprott, Suppes, Tardif, Valian,1022

VanHouten, VanKleeck, Warren, Weist.1023

B Hyperparameter Search and Model1024

Implementation1025

B.1 Hyperparameter search1026

LSTMs For LSTMs we explored the following1027

hyper-parameters via a grid search for a total of1028

144 models.1029

1. layers: 21030

2. hidden and embedding size: 200, 8001031

3. batch size: 20, 801032

4. dropout rate: 0.0, 0.2, 0.4, 0.61033

5. learning rate: 5.0, 10.0, 20.01034

6. random seed: 3 per parameter combination,1035

unique for each LSTM1036

The LSTM model with the lowest perplexity1037

on the validation set after training had 2 layers, a1038

hidden and embedding size of 800, a batch size1039

of 20, a dropout rate of 0.4, and a learning rate of1040

10.10 A LSTM model with these hyperparameters1041

has 37,620,294 parameters.1042

10The hyperparameters we explored for the LSTMs
were those of Gulordava et al. (2018), the code
for which can be found at https://github.com/
facebookresearch/colorlessgreenRNNs

LSTMs prepose first prepose main
delete first 0.01072 0.14408
delete main 0.38672 0.11982
delete none 0.20099 0.13767

Table 1: Analysis of models’ preference for questions
consistent with combinations of ‘prepose’ and ‘delete’
rules. Within each architecture, the proportion prefer-
ences across all 6 question types necessarily sum to 1.

Transformers For the Transformers we per- 1043

formed a hyperparameter sweep over the following 1044

hyper-parameters for a total of 84 models. 1045

1. layers: 2, 4, 8, 16 1046

2. context size: 50, 100, 500 1047

3. hidden and embedding size: 200, 800, 1600 1048

4. heads: 2, 4, 8, 16 1049

5. batch size: 20, 80, 160 1050

6. dropout rate: 0.0, 0.2, 0.4, 0.6 1051

7. learning rate: 0.5, 1.0, 5.0, 10.0, 20.0 1052

8. random seed: 3 per parameter combination 1053

The Transformer model with the lowest perplex- 1054

ities after training had 4 layers, a context size of 1055

500, a hidden size of 800, a batch size of 10, 4 1056

heads, a dropout rate of 0.2, and a learning rate of 1057

5.0. A Transformer model with these parameters 1058

has 42,759,494 parameters. 1059

B.2 Implementation 1060

All models were implemented in PyTorch by build- 1061

ing on code from here and here, and trained us- 1062

ing Nvidia k80 GPUs. The final models may be 1063

downloaded from [LINK ANONYMIZED]. These 1064

models are not intended for commercial use. 1065

C PREPOSE-ONE&DELETE-ONE Full 1066

Results 1067

See Table 1 and Table 2 for these results. 1068

C.1 Results using SLOR 1069

See Table 3 and Table 4 for these results. 1070

D BabyBERTa dataset evaluation 1071

For an illustrative subset of the results on the Zorro 1072

evaluation dataset (discussed in Section 6), see Fig- 1073

ure 4. For the full results, see Figure 5. 1074
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Transformers prepose first prepose main
delete first 0.00662 0.15964
delete main 0.31436 0.06482
delete none 0.24538 0.20918

Table 2: Analysis of models’ preference for questions
consistent with combinations of ‘prepose’ and ‘delete’
rules. Within each architecture, the proportion prefer-
ences across all 6 question types necessarily sum to 1.

LSTMs Prepose First Prepose Main
Delete First 0% 14%
Delete Main 33% 8%
Delete None 26% 18%

Table 3: Analysis of LSTMs’ preference for questions
consistent with combinations of ‘prepose’ and ‘delete’
rules, evaluated using SLOR. Within each architecture,
the proportion preferences across all 6 question types
necessarily sum to 1.

Transformers Prepose First Prepose Main
Delete First 0% 15%
Delete Main 27% 4%
Delete None 29% 24%

Table 4: Analysis of Transformers’ preference for ques-
tions consistent with combinations of ‘prepose’ and
‘delete’ rules, evaluated using SLOR. Within each ar-
chitecture, the proportion preferences across all 6 ques-
tion types necessarily sum to 1.
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Figure 4: The performance of a selected subset of
model re-runs on a selected subset of the Zorro evalua-
tions. Each Zorro evaluation targets a specific syntactic
phenomenon—in the cases shown here, irregular verbs,
subject-verb agreement across relative clauses, and cor-
rect argument ordering.

E Move-One Dataset Results1075

One approach used in several past papers (e.g.,1076

Lewis and Elman (2001) and Reali and Chris-1077

tiansen (2005)) evaluate models using pairs of sen-1078
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Figure 5: Results on the targeted syntactic evaluations
in Huebner et al. (2021) in percent accuracy. Evalua-
tion names in Figure 4 were shortened.

tences that can be formed by starting with a declar- 1079

ative sentence (e.g., (14)) and moving one of its 1080

auxiliaries to the front of the sentence. The first 1081

sentence in each pair (e.g., (15a) ) follows HIER- 1082

ARCHICALQ, because the main auxiliary is moved, 1083

while the second (e.g., (15b)), follows LINEARQ 1084

because the first auxiliary is moved. 1085

(14) The children who are talking are sleeping. 1086

(15) a. Are the children who are talking sleeping? 1087

b. Are the children who talking are sleeping? 1088

If a model assigns a higher probability to (15a) 1089

than (15b), that is evidence that the models favors 1090

HIERARCHICALQ over LINEARQ. While this pref- 1091

erence is a necessary component of correctly learn- 1092

ing HIERARCHICALQ, it is by no means sufficient: 1093

indeed, Kam et al. (2008) showed that models can 1094

prefer sentences consistent with HIERARCHICALQ 1095

over sentences consistent with LINEARQ due to 1096

shallow n-gram statistics rather than due to knowl- 1097

edge of hierarchical structure. More generally, 1098

there are infinitely many other incorrect hypotheses 1099

besides LINEARQ, and demonstrating successful 1100

learning of HIERARCHICALQ would require ruling 1101

out all of them. Investigating all possibilities is 1102

intractable, but we can at least investigate a few 1103

additional plausible ones. Thus, in the main paper 1104

we depart from prior work by considering a greater 1105

number of candidate sentences than just the pairs 1106

of sentences used in prior work. 1107

To create the MOVE-ONE dataset, we ran- 1108

domly sampled 10,000 declarative sentences from 1109

13



our CFGs for which the first and main auxiliary1110

were identical and then modified them to give1111

10,000 sentence pairs. To create the PREPOSE-1112

ONE&DELETE-ONE dataset, we randomly sam-1113

pled a different 10,000 declarative sentences from1114

our CFGs for which the first and main auxiliary1115

were different and then we modified them to give1116

10,000 6-tuples of sentences. See Appendix F for1117

more details about the CFGs.1118

F Context Free Grammars1119

The context free grammars used to generate the1120

evaluation datasets appear in Figure 7, Figure 6 ,1121

Figure 8, and Figure 9.1122

G Breakdown by lexical identity1123

Here we further break down models’ predictions1124

for the FIRST-AUX 6= MAIN-AUX evaluation set1125

based on the identities of the two auxiliaries in the1126

input sentence. Figure 11 gives the results for the1127

LSTM in the NEXT-WORD PREDICTION + QUES-1128

TION FORMATION condition; Figure 10 for the1129

LSTM in the QUESTION FORMATION condition;1130

Figure 13 for the Transformer in the NEXT-WORD1131

PREDICTION + QUESTION FORMATION condi-1132

tion; and Figure 12 for the for the Transformer in1133

the QUESTION FORMATION condition.1134

H Example generated text1135

Figure 14 gives some example text generated by our1136

models. Models trained on next-word prediction1137

produce their predictions as a probability distribu-1138

tion over the vocabulary. To use such models to1139

generate text, we sample a word from this distribu-1140

tion then use that word as the model’s input for the1141

next time step.1142
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Det_S → {the | some | this }
Det_P → {the | some | those}
N_S → {baby | girl | boy | animal | child | person | horse }
N_P → {babies | girls | boys | animals | children | people | horses }
IV → {play | read | draw | sit | fall | talk | sleep | try | work | walk}
IV_IS → {playing | reading | drawing | sitting | falling | talking | sleeping | trying |

working | walking}
IV_HAS → {played | read | drawn | sat | fallen | talked | slept | tried | worked | walked}
TV → {call | see | find | help | feed | know | pick | visit | watch | reach}
TV_IS → {calling | seeing | finding | helping | feeding | knowing | picking | visiting |

watching | reaching}
TV_HAS → {called | seen | found | helped | fed | known | picked | visited | watched |

reached}
Aux_P → {do | did | can | would | shall}
Aux_S → {does | did | can | would | shall}
Aux_S_BE → {is | was}
Aux_P_BE → {are | were}
Aux_S_HAS→ {has}
Aux_P_HAS→ {have}
Prep → {by | behind }
Rel → {who | that }

Figure 6: Vocabulary used for the PREPOSE-ONE-AND-DELETE-ONE, FIRST-AUX 6= MAIN-AUX, and FIRST-
AUX = MAIN-AUX evaluation datasets
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S → {NP_M_S VP_M_S | NP_M_P VP_M_P}
NP_M_S→ {Det_S N_S | Det_S N_S Prep Det_S N_S | Det_S N_S Prep Det_P N_P}
NP_M_P→ {Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P}
NP_O → {Det_S N_S | Det_P N_P | Det_S N_S Prep Det_S N_S | Det_S N_S Prep

Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P | Det_S
N_S RC_S | Det_P N_P RC_P }

VP_M_S→ {Aux_S IV }
VP_M_S→ {Aux_S TV NP_O}
VP_M_S→ {Aux_S_BE IV_IS}
VP_M_S→ {Aux_S_BE TV_IS NP_O}
VP_M_S→ {Aux_S_HAS IV_HAS}
VP_M_S→ {Aux_S_HAS TV_HAS NP_O}
VP_M_P→ {Aux_P IV}
VP_M_P→ {Aux_P TV NP_O}
VP_M_P→ {Aux_P_BE IV_IS}
VP_M_P→ {Aux_P_BE TV_IS NP_O}
VP_M_P→ {Aux_P_HAS IV_HAS}
VP_M_P→ {Aux_P_HAS TV_HAS NP_O}
RC_S → {Rel Aux_S IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |

Rel Aux_S TV Det_S N_S | Rel Aux_S TV Det_P N_P}
RC_S → {Rel Aux_S_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_S_BE TV_IS Det_S N_S | Rel Aux_S_BE
TV_IS Det_P N_P}

RC_S → {Rel Aux_S_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel
Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_S_HAS TV_HAS Det_S N_S |
Rel Aux_S_HAS TV_HAS Det_P N_P}

RC_P → {Rel Aux_P IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_P TV Det_S N_S | Rel Aux_P TV Det_P N_P}

RC_P → {Rel Aux_P_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P
N_P Aux_P_BE TV_IS | Rel Aux_P_BE TV_IS Det_S N_S | Rel Aux_P_BE
TV_IS Det_P N_P}

RC_P → {Rel Aux_P_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel
Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_P_HAS TV_HAS Det_S N_S |
Rel Aux_P_HAS TV_HAS Det_P N_P}

Figure 7: CFG used to generate FIRST-AUX = MAIN-AUX evaluation dataset
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S → {NP_M_S VP_M_S | NP_M_P VP_M_P}
NP_M_S→ {Det_S N_S | Det_S N_S Prep Det_S N_S | Det_S N_S Prep Det_P N_P}
NP_M_P→ {Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P}
NP_O → {Det_S N_S | Det_P N_P | Det_S N_S Prep Det_S N_S | Det_S N_S Prep

Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P | Det_S
N_S RC_S | Det_P N_P RC_P }

VP_M_S→ {Aux_S IV }
VP_M_S→ {Aux_S TV NP_O}
VP_M_S→ {Aux_S_BE IV_IS}
VP_M_S→ {Aux_S_BE TV_IS NP_O}
VP_M_S→ {Aux_S_HAS IV_HAS}
VP_M_S→ {Aux_S_HAS TV_HAS NP_O}
VP_M_P→ {Aux_P IV}
VP_M_P→ {Aux_P TV NP_O}
VP_M_P→ {Aux_P_BE IV_IS}
VP_M_P→ {Aux_P_BE TV_IS NP_O}
VP_M_P→ {Aux_P_HAS IV_HAS}
VP_M_P→ {Aux_P_HAS TV_HAS NP_O}
RC_S → {Rel Aux_S IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |

Rel Aux_S TV Det_S N_S | Rel Aux_S TV Det_P N_P}
RC_S → {Rel Aux_S_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_S_BE TV_IS Det_S N_S | Rel Aux_S_BE
TV_IS Det_P N_P}

RC_S → {Rel Aux_S_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel
Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_S_HAS TV_HAS Det_S N_S |
Rel Aux_S_HAS TV_HAS Det_P N_P}

RC_P → {Rel Aux_P IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_P TV Det_S N_S | Rel Aux_P TV Det_P N_P}

RC_P → {Rel Aux_P_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P
N_P Aux_P_BE TV_IS | Rel Aux_P_BE TV_IS Det_S N_S | Rel Aux_P_BE
TV_IS Det_P N_P}

RC_P → {Rel Aux_P_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel
Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_P_HAS TV_HAS Det_S N_S |
Rel Aux_P_HAS TV_HAS Det_P N_P}

Figure 8: CFG used to generate FIRST-AUX 6= MAIN-AUX evaluation dataset
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S → {NP_S RC_S_BARE MAIN-AUX VP_S_PAST}
S → {NP_S RC_S_PAST MAIN-AUX VP_S_BARE}
S → {NP_S RC_S_BARE MAIN-AUX VP_S_PROG}
S → {NP_S RC_S_PROG MAIN-AUX VP_S_BARE}
S → {NP_S RC_S_PAST MAIN-AUX VP_S_PROG}
S → {NP_S RC_S_PROG MAIN-AUX VP_S_PAST}
S → {NP_P RC_P_BARE MAIN-AUX VP_P_PAST}
S → {NP_P RC_P_PAST MAIN-AUX VP_P_BARE}
S → {NP_P RC_P_BARE MAIN-AUX VP_P_PROG}
S → {NP_P RC_P_PROG MAIN-AUX VP_P_BARE}
S → {NP_P RC_P_PAST MAIN-AUX VP_P_PROG}
S → {NP_P RC_P_PROG MAIN-AUX VP_P_PAST}
NP_S → {Det_S N_S}
NP_P → {Det_P N_P}
NP_O → {Det_S N_S | Det_P N_P | Det_S N_S Prep Det_S N_S | Det_S N_S Prep

Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P}
VP_S_BARE → {Aux_S IV }
VP_S_BARE → {Aux_S TV NP_O}
VP_S_PROG → {Aux_S_BE IV_IS}
VP_S_PROG → {Aux_S_BE TV_IS NP_O}
VP_S_PAST → {Aux_S_HAS IV_HAS}
VP_S_PAST → {Aux_S_HAS TV_HAS NP_O}
VP_P_BARE → {Aux_P IV}
VP_P_BARE → {Aux_P TV NP_O}
VP_P_PROG → {Aux_P_BE IV_IS}
VP_P_PROG → {Aux_P_BE TV_IS NP_O}
VP_P_PAST → {Aux_P_HAS IV_HAS}
VP_P_PAST → {Aux_P_HAS TV_HAS NP_O}
RC_S_BARE → {Rel Aux_S IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |

Rel Aux_S TV Det_S N_S | Rel Aux_S TV Det_P N_P}
RC_S_PROG → {Rel Aux_S_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_S_BE TV_IS Det_S N_S | Rel Aux_S_BE
TV_IS Det_P N_P}

RC_S_PAST → {Rel Aux_S_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel
Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_S_HAS TV_HAS Det_S N_S |
Rel Aux_S_HAS TV_HAS Det_P N_P}

RC_P_BARE → {Rel Aux_P IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_P TV Det_S N_S | Rel Aux_P TV Det_P N_P}

RC_P_PROG → {Rel Aux_P_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P
N_P Aux_P_BE TV_IS | Rel Aux_P_BE TV_IS Det_S N_S | Rel Aux_P_BE
TV_IS Det_P N_P}

RC_P_PAST → {Rel Aux_P_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel
Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_P_HAS TV_HAS Det_S N_S |
Rel Aux_P_HAS TV_HAS Det_P N_P}

Figure 9: CFG used to generate PREPOSE-ONE-AND-MOVE-ONE evaluation dataset
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Figure 10: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX 6= MAIN-AUX evalua-
tion set for LSTMs first trained on next-word prediction and then question formation.

Figure 11: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX 6= MAIN-AUX evalua-
tion set for LSTMs trained only on question formation.
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Figure 12: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX 6= MAIN-AUX evalua-
tion set for Transformers first trained on next-word prediction and then question formation.

Figure 13: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX 6= MAIN-AUX evalua-
tion set for Transformers trained only on question formation.
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Text from
CHILDES

do you eat in nursery school too ? oh . it ’s nursery school . xxx . what do you
get to eat ? what else do you get to eat besides a book ? do n’t play with those
books . what else do you have ? what do you have in nursery school ? alright -
you can take it . why do n’t you put the turtle back . well - you ’re not going to
change his water now . tonight . tonight - you change it about ten times a day .
no - you can do it later . forget it now . too bad . too bad . that poor turtle . you
do n’t let him sit there five minutes . that was five minutes ?

LSTM gen-
erated text

do you eat in nursery school too ? oh . it ’s nursery school . no ! tomorrow ’s
Friday . right . yeah - yeah . yeah I know what . I told you that he liked
snipsnap that way . well this is address the grayish kings . ok . what kind of
bird do you want to play with ? what else do you want to do ? your crayons .
got a circle . I ’m going to use these . there . remember ? ok do you want to put
all of these there ? ok let ’s put everything away . what do you want to do ? you
want to play in the box ? it ’s just like a ball because it has a ball on it .

Transformer
generated
text

do you eat in nursery school too ? oh . it ’s nursery school . mm-hm . and it
looks like a little girl . mm-hm . like a little girl . hm , mm-hm . looks like she
’s concerned about baseball this is a picture of a double football player . mm-hm
. um , it has a uniform on it . mm-hm . anything more ? no . ok great . got a hat
on . and a flower and a little flower . remember that ? do you remember that
word ? what do you remember that word ? do you remember what it word says
? it says seven - eight . what ’s that word ? it says eight . look at that word .
three - four - six ... eight - nine ...

Figure 14: Comparison of text generated by the LSTM and Transformer models with a block of text chosen
randomly from the training data. The LSTMs and Transformers were both seeded with the first three sentences
of the text taken from CHILDES, which is the underlined in the two model generated texts. Note that neither of
the model generated text were cherry picked either for quality or to be representative of the models’ usual output:
rather they were the first things they generated when seeded with the above underlined portion.
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