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Abstract
Metaphors are a common communication tool001
used in our day-to-day life. The detection002
and generation of metaphors in textual form003
have been studied extensively but metaphors in004
other forms have been under-explored. Recent005
studies have shown that Vision-Language (VL)006
models cannot understand visual metaphors in007
memes and adverts. As no studies have been008
done on understanding metaphors in videos,009
we introduce a new VL task of describing010
the metaphors present in the videos in our011
work. To facilitate this novel task, we con-012
struct and release two datasets- a manually013
created dataset with 741 videos and 1142014
human-written captions and a synthetic dataset015
of 90886 MSCOCO images with synthetically016
generated metaphor captions. We propose a017
novel video metaphor captioning system: GIT-018
LLaVA, which uses a frozen video caption-019
ing model augmented by a Large Language020
Model (LLM) to generate captions. We build021
our model on top of the LLaVA model with022
the GIT model as the encoder and map its de-023
coder to the LLM (Vicuna) using a lightweight024
mapping network. We show that this allows the025
video captioning model to develop the ability026
to understand video metaphors. We publish our027
datasets and benchmark results for our new task028
to enable further research.029

1 Introduction030

Metaphors are the most commonly used form of fig-031

urative language in literature (Kreuz and Roberts,032

1993). Metaphors are a tool to colour the imagina-033

tion of the reader by introducing unknown concepts034

in comparison to familiar concepts, thereby allow-035

ing them to be understood easily and powerfully.036

This trope is used in various creative fields like037

advertisements (Hussain et al., 2017) to convey038

information more effectively that includes modal-039

ities like text, images, and audio. Figure 1 shows040

an example of using an image to creatively con-041

vey an idea. Metaphors are also used in video042

Figure 1: An example of a creative advertisement that
uses visual metaphors. The sugar-free nature of lollipop
is highlighted by showing ants avoiding them.

advertisements. Figure 2 shows a few examples of 043

how metaphors are used in video advertisements to 044

bring emphasis to the product being advertised. 045

Figurative languages in textual form have been 046

well-studied in literature (Abulaish et al., 2020). 047

With the advent of powerful AI assistants like Chat- 048

GPT and BARD and tools that are built on top 049

of them, it is possible to interact with these AI 050

systems through images and audio. Hence it be- 051

comes important to build and test models to work 052

with complex language phenomena like metaphors 053

in multiple modalities. Recent works on Visual 054

metaphors (Yosef et al., 2023), (Chakrabarty et al., 055

2023) focus on understanding metaphors present in 056

images and generating images from prompts with 057

metaphors. They show that it is challenging to deal 058

with metaphors presented visually. 059

Recently, chat assistants that can answer ques- 060

tions related to videos have shown good promise on 061

standard video datasets (Zhang et al. 2023; Li et al. 062

2023b; Maaz et al. 2023). However, they strug- 063

gle to understand videos that contain metaphors. 064

To this effect, we build and release a novel video 065
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Video Explanation: The egg is so strong that is unbreakable with a hammer. The reason is that it was laid by a hen that was fed food from a Fevicol (a glue) box.

Video Metaphor Caption: The adhesion of glue is as strong as an unbreakable egg

Video Explanation: The advertisement happens in a world where humans are used as light towers. The chewing gum makes teeth so white that humans can be used as a light source.

Video Metaphor Caption: The gum makes the teeth as white as a light source

Figure 2: Examples of metaphors used in videos to convey ideas creatively along with their explanation

metaphor captioning model built on top of the066

LLaVA (Liu et al., 2023) model that is trained067

to understand metaphors in videos along with the068

datasets used to train the model.069

Our contributions are070

1. A novel Vision-Language model (GIT video071

model followed by Vicuna LLM) pretrained072

and fine-tuned for video metaphor understand-073

ing, a task hitherto unattempted (Section: 4).074

2. Release of two datasets:075

(a) A benchmark dataset with 741 videos076

comprising 1142 manually written cap-077

tions (Section: 3).078

(b) A synthetic dataset consisting of 90, 886079

images from the MSCOCO dataset with080

synthetically generated metaphor cap-081

tions, built for pretraining (Section: 3.3).082

3. Benchmark results for the task of “Video083

metaphor captioning” (Table: 2).084

4. A new metric- Average Concept Similarity085

(ACS) for evaluating the quality of metaphors086

generated by the model (Section: 6).087

1.1 Problem Statement088

Input: Video089

Output: Caption describing the metaphor.090

Video metaphor captioning is the task of describ-091

ing the metaphor in the video. Given a video ‘v’,092

the model generates a single line description of the093

following format: ‘Primary concept’ is as ‘prop- 094

erty’ as ‘secondary concept’. The model should 095

hence identify the object being compared, the ob- 096

ject it is being compared to, the property that links 097

both, and put them all together as a caption. 098

1.2 Motivation 099

Vision and Language (VL) models have shown 100

great performance in standard Image-Text and 101

Video-Text tasks (Gan et al., 2022). They how- 102

ever still struggle with tasks that require deeper 103

understanding like metaphors in images (Akula 104

et al., 2022). While concurrent works focus on un- 105

derstanding visual metaphors in images, no such 106

work has been done on understanding metaphors 107

in videos. 108

Understanding and describing metaphors present 109

in the video is a very challenging task, as estab- 110

lished in our work. Hence it could be used as 111

a benchmark to test larger models on their video 112

understanding capabilities in the future. Our frame- 113

work of using a video captioning model for obtain- 114

ing video representation can be adapted to other 115

low-resource domain-specific tasks in the future. 116

1.3 Background 117

Lakoff (1993) describes metaphor as a mapping 118

between a source and target domain through shared 119

properties. For example, consider the sentence 120

“The development has hit a wall”. Here, hitting a 121

wall denotes that the development has been halted. 122

The target domain is halting and the source domain 123
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is wall and the property of wall is used to describe124

halting.125

Metaphors and similes can be simplified to a126

syntax of A is B, where A is being compared to127

B. We use this simple syntax inspired from Akula128

et al. (2022). A is denoted as the primary concept129

and B is referred to as the secondary concept. For130

example, in the sentence “The blanket is as white131

as snow”, the primary concept is the blanket and it132

is compared to the secondary concept snow. The133

property that links them is their colour. Following134

prior work, we use the following template to de-135

scribe the metaphors present in the videos: Primary136

Concept is as property a Secondary Concept137

2 Related Work138

Recently, significant efforts have been made to un-139

derstand metaphors to detect and generate them.140

Many sentence-level and token-level datasets have141

been released to facilitate the same (Birke and142

Sarkar 2006; Steen et al. 2010; Tsvetkov et al.143

2014; Mohammad et al. 2016; Mohler et al. 2016).144

Metaphor Detection is the task of classifying145

if the given sentence/token contains a metaphor or146

not. In recent years, metaphor detection has been147

explored with the aid of large language models.148

Choi et al. (2021) used the contextual embeddings149

from BERT (Devlin et al., 2018) and RoBERTa150

(Liu et al., 2019) with a late interaction mechanism151

to make use of linguistic metaphor identification152

theories. Aghazadeh et al. (2022) probed and an-153

alyzed the metaphorical language encoded in the154

large language models. Su et al. (2020) used a155

combination of global sentence features and POS156

information to perform token-level metaphor detec-157

tion. Badathala et al. (2023) used a multitasking158

approach to detect hyperbole and metaphors to-159

gether.160

Metaphor generation is the task of generat-161

ing metaphorical sentences given a literal sen-162

tence (Abe et al. 2006, Terai and Nakagawa 2010).163

Metaphor generation was initially modelled as164

a template-filling task. Veale (2016) used tem-165

plates to generate metaphoric tweets. Stowe et al.166

(2020) used masked language modelling by mask-167

ing the verbs in the literal sentence and training the168

model to replace it with its metaphoric counterparts.169

Stowe et al. (2021) used FrameNet embeddings to170

generate metaphoric sentences by replacing verbs171

with metaphoric verbs in literal sentences.172

Visual Metaphors: The detection and gener-173

ation of metaphors in textual form have been ex- 174

plored extensively but the use of metaphors in other 175

modalities like images is not explored until very re- 176

cently. Akula et al. (2022) introduced a set of tasks 177

related to understanding visual metaphors. They 178

showed that existing Vision-Language models are 179

not good at understanding visual metaphors. Yosef 180

et al. (2023) introduced a multimodal dataset that 181

contains metaphors, similes, and idioms with cor- 182

responding images for them. Zhang et al. 2021, 183

Hwang and Shwartz 2023, and Xu et al. 2022 ex- 184

plored the uses of metaphors in memes and released 185

datasets for understanding metaphors in memes. 186

Chakrabarty et al. (2023) explored generating vi- 187

sual metaphors from metaphorical input sentences. 188

Video Captioning: Video captioning is the task 189

of generating a single-line natural language descrip- 190

tion of the video. Video-Text models are trained 191

on large-scale paired video and language datasets 192

to align frames to text in the captions. Sun et al. 193

(2019) built on BERT (Devlin et al., 2019) model 194

by learning a joint representation for visual and text 195

tokens for video-text tasks. Lei et al. (2021) pro- 196

posed CLIPBERT that uses sparse sampling to sam- 197

ple short clips from videos to learn visual represen- 198

tation instead of using the whole video and showed 199

remarkable performance. Luo et al. (2020) is a 200

Unified Video and Language pre-training model 201

for both multimodal understanding and generation 202

built by pretraining the model on 5 diverse objec- 203

tives. Zellers et al. (2021) uses spatial and temporal 204

objectives during pretraining on large-scale dataset 205

of videos with transcriptions to align videos to text. 206

The GIT model (Wang et al., 2022) is trained on a 207

large corpus of parallel image-text data. It used a 208

single image encoder and single text decoder and 209

modeled multiple vision-text tasks as a language 210

modeling task. These models however cannot fol- 211

low instructions which makes it difficult to adapt 212

to newer tasks. 213

Video Assistants: Recent success in using 214

frozen LLMs with vision encoders for instruction 215

fine-tuning for Image-Text tasks (Li et al. 2023a; 216

Liu et al. 2023) has inspired the use of instruc- 217

tion fine-tuning for videos. Video-LLaMA (Zhang 218

et al., 2023) use frozen visual and audio encoders 219

and projects them to the embedding space of LLMs 220

using Q-formers as in BLIP-2 (Li et al., 2023a). Li 221

et al. (2023b) use information from image, video, 222

and ASR tools along with video embedding to align 223

video frames to text. Video-ChatGPT (Maaz et al., 224

2023) use CLIP (Radford et al., 2021) as the vi- 225
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sual encoder and Vicuna (Zheng et al., 2023) as226

the LLM and train the model on 100,000 video and227

instruction pairs. Video-LLaVa (Munasinghe et al.,228

2023) uses audio signals by transcribing them into229

text in an LLaVA model-like architecture.230

All these models are trained on large-scale video231

and text data. We propose a new model GIT-LLaVA232

that uses a frozen video foundation model with an233

LLM that can be fine-tuned with a few hundred234

videos to perform video metaphor captioning. Also,235

our work focuses on visual metaphors in videos236

which has not been explored before.237

3 Dataset238

No existing datasets have metaphor details avail-239

able for videos. As advertisements have metaphori-240

cal representations in them to convey additional241

messages to viewers, we choose the Pitt’s Ads242

dataset (Hussain et al., 2017) for constructing our243

dataset. The Pitt’s Ads dataset consists of adver-244

tisement images and videos on a wide range of245

topics. The released dataset contained URLs to246

3, 477 videos out of which only 2063 videos are247

currently available. We annotate these videos with248

metaphor information for our experiments.249

3.1 Annotation Details250

We employed three annotators to generate data for251

our novel task- video metaphor captioning. The252

annotators were given detailed explanations about253

metaphors and visual metaphors with examples.254

They were given two tests with examples consist-255

ing of metaphoric and non-metaphoric videos and256

asked to classify them. The annotators were short-257

listed based on their ability to identify metaphors258

present in the videos. In our final batch of anno-259

tators, two annotators were in the age bracket of260

24-30 years and one above 50 years. All three261

annotators are proficient in English with Masters262

degrees. Each video is annotated by all the three263

annotators.264

The annotators were asked the following ques-265

tions for each video:266

a) Does this video contain a visual metaphor?267

b) Is audio of the video required to understand the268

metaphor?269

c) What part of the video contains the metaphor?270

d) What is the primary concept in this video?271

e) What is the secondary concept in this video?272

f) What is the common property of both concepts?273

Cohen’s Kappa (κ) A B
B 0.651
C 0.886 0.601
Fleiss’ Kappa (K) 0.712

Table 1: IAA calculations with Fleiss’ Kappa and pair-
wise Cohen’s Kappa among the annotators

g) Give a one-line description of the form 274

“primary_concept” is as “property” as “sec- 275

ondary_concept”. 276

h) A free-form description of the video. 277

Questions a and b are Yes/No questions. The 278

annotators write the time of occurrence of the 279

metaphor in the video for question c. Question 280

g follows the format used for annotation in the 281

MetaCLUE dataset (Akula et al., 2022) for visual 282

metaphor in images. 283

3.2 Dataset Statistics and Annotation 284

Validation 285

Interpretation of metaphors present in videos is 286

very subjective and each annotator can understand 287

it differently. We observed multiple valid hypothe- 288

ses for classifying a video as a metaphor or not. 289

We report the Inter Annotator Agreements between 290

our annotators in Table 1. The agreement between 291

annotators is substantial as both Fleiss’ Kappa and 292

pairwise Cohen’s Kappa are above 0.6 for all cases. 293

We employed an additional annotator who is a 294

Masters student and proficient in English to vali- 295

date the captions written by the three annotators. 296

We also used the GPT-3.5-turbo model (Ouyang 297

et al., 2022) to check for grammar and typos in the 298

captions written by our annotators. The grammar- 299

corrected caption is then verified by the final anno- 300

tator before being added to the final dataset. 301

A video can contain 1 to 3 captions. Our final 302

dataset- the Video Metaphor Captioning (VMC) 303

dataset consists of 741 metaphoric videos with 304

1142 captions. The train, val, and test split contain 305

590, 70, and 81 videos each with 895, 112, and 306

135 captions respectively. 307

3.3 Synthetic Dataset Preparation 308

In addition to the manually annotated dataset, we 309

create and release a synthetically generated dataset 310

for pretraining our model. The manual annotation 311

of videos with metaphor details is both a time con- 312

suming and costly process. In our video metaphor 313

4



Image
Encoder

Image
Encoder

Image
Encoder

Text
DecoderText

DecoderText
Decoder

Mapping
Network

(MLP)

Vicuna
(LLM)

the gum is as source

CLS the gum is as

GIT
Model

Mapping 
Network

Vicuna

Pretraining

Caption

GIT

Synthetic
Video

Temporal
EmbeddingVideo Input

Figure 3: An overview of our Video Metaphor Captioning system, GIT-LLaVA. The text encoder representation of
GIT is mapped to the embedding space of Vicuna to generate metaphor captions.

captioning pipeline, we map the text decoder out-314

put of the video captioning model to the embedding315

space of the LLMs. Thus, to train the mapping net-316

work it is sufficient if the video captioning model317

(GIT) can generate a valid caption and a ground318

truth metaphor caption is present, such that the319

mapping network can learn the transformation. We320

simulate this process by feeding images to the GIT321

model and training it with synthetically generated322

metaphor captions.323

We use images and captions from the popu-324

lar MSCOCO dataset (Lin et al., 2014). We325

prompt GPT-3.5-turbo model with the following326

prompt: “Convert the following image caption to a327

metaphoric image caption in the following format328

<primary concept> is as <property> as <secondary329

concept>. Input: mscoco_caption”. For example,330

we convert the image caption ‘A bicycle replica331

with a clock as the front wheel’ to ‘A timepiece is as332

cyclical as a bicycle’s revolution’. The generated333

captions were then cleaned to remove captions that334

did not follow the template in the prompt. The final335

pretraining dataset consists of 90886 images and336

corresponding synthetically generated metaphoric337

captions which were used to pretrain the model.338

4 Our Model339

We model video metaphor captioning as a sequence340

to sequence task. The video representation is ob-341

tained through a pretrained video captioning model342

and prefixed with an instruction sequence to a 343

Large Language Model (LLM). The LLM gener- 344

ates the caption as a sequence of tokens conditioned 345

on the video input and the instruction. 346

We sample ‘k’ frames from the input video ‘V’, 347

where k depends on the input restrictions of the 348

video captioning model. 349

Vinput = [f1, f2, ..., fk] (1) 350

where f denotes each frame sampled from the video. 351

The sampled frames are fed to the video captioning 352

model (C) whose decoder output is used as the rep- 353

resentation for the video (HV ). We train a simple 354

Multilayer Perceptron (MLP) network to map the 355

video representation(HR) to the embedding space 356

of the LLM, similar to the LLaVA model (Liu et al., 357

2023). We also use task-specific instruction (Xinst) 358

as input and the model is trained to generate the 359

answer as output (Xans). 360

HV = C(Vinput) (2) 361
362

HR = W.HV (3) 363
364

Xans =
n∑

i=1

logPθ(Xi|Xinst, HR) (4) 365

where ‘W’ denotes the weights of the MLP network 366

and θ represents the parameters of the LLM, Xi 367

denotes the current token predicted. The LLM is 368

trained with this language modeling objective. 369
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We use the LLaVA-13B-V1.5 (Liu et al., 2023)370

model architecture for our experiments. We use the371

Generative Image Text Transformer model (GIT)372

(Wang et al., 2022) as the video captioning model373

for obtaining the video representation and Vicuna374

(Zheng et al., 2023) as the LLM. In all our exper-375

iments we freeze the weights of the GIT model376

and only finetune the mapping network and the377

LLM. Since we train the mapping network to learn378

the mapping of output states of GIT to the embed-379

ding space of the LLM, the mapping network maps380

GIT’s understanding of the video in the form of381

its representation to the LLM’s embedding space,382

allowing the LLM to directly generate output from383

the video. This also reduces the need to pretrain384

the model on a huge corpus of Video-Text parallel385

data.386

5 Experiments387

5.1 Pretraining388

Our video metaphor captioning system uses a pre-389

trained video captioning model to obtain video rep-390

resentation. The video representation needs to be391

mapped to the embedding space of the LLM for it392

to generate fluent captions. Our dataset for video393

captioning is small and may not be sufficient to394

learn this mapping. Hence, we initially pretrain the395

model on a large synthetic data of images and their396

corresponding metaphor captions.397

The images from the MSCOCO dataset are con-398

verted to video by repeating the images to form399

frames of the video. As only the final decoder state400

representation is being mapped to the LLM embed-401

ding space and the video model is frozen, it does402

not affect the video understanding abilities of our403

system. This synthetic video is then fed as input to404

the video captioning model from which the video405

representations are obtained. The mapping network406

trained on the synthetic data is used in fine-tuning407

stage where video data is used.408

We use the Generative Image-to-Text (GIT)409

model (Wang et al., 2022) as our video captioning410

model for obtaining video representation. We use411

the GIT-large model that is fine-tuned for video cap-412

tioning on the VaTeX dataset (Wang et al., 2019).413

We use the Vicunna-13B model (Zheng et al., 2023)414

as our LLM. We pretrain the model by creating415

videos consisting of 6 frames of the same image416

with a batch size of 4. We pretrain the model for 1417

epoch on the entire pretraining dataset.418

5.2 Video Metaphor Captioning 419

The model is fine-tuned for video metaphor cap- 420

tioning on our manually annotated dataset. The 421

model is fine-tuned for 5 epochs with early stop- 422

ping based on the validation set. 423

Frame Selection: 424

We explore two frame selection strategies for our 425

model. In our analysis of the dataset, it was found 426

that video advertisements typically consist of a 427

three-act structure like movies. The first act in- 428

troduces either the primary or secondary concept, 429

the second act discusses the properties and the third 430

act reveals the metaphor. Hence, we split the video 431

into three equal parts and sampled an equal number 432

of frames from each part. 433

The GIT-Large model only supports video cap- 434

tioning with 6 frames as input. We experiment 435

with sampling 2 frames in temporal order across 436

the three parts. We also perform additional experi- 437

ments where 6 frames are sampled from each part, 438

which we call GIT-LLaVA-Extended. The video 439

representation is obtained by considering each part 440

as a video and the final representation is obtained 441

by summing up the representations for each video 442

part. This leads to better metaphor generation as 443

the model can access more frames in the video. 444

We use a batch size of 4 with an initial learning 445

rate of 2e− 5 with a warmup ratio of 0.03. Cosine 446

Annealing is used as the learning rate scheduler. 447

We use BFloat16 precision while training the model 448

on 4 A100 GPUs. 449

5.3 Baselines 450

We use the GIT (Wang et al., 2022), Video-LLaMA 451

(Zhang et al., 2023), and Valley (Luo et al., 2023) 452

as baselines in our experiments. GIT is chosen 453

as the baseline as it is used as our video encoder. 454

Video-LLaMA and Valley have shown promising 455

performance in following instructions in the video 456

setting. 457

GIT: We finetune the GIT model that is already 458

fine-tuned for video captioning on VaTEx dataset 459

on our VMC dataset. The model is fine-tuned with 460

a batch size of 8 for 50 epochs. 461

Video-LLaMA: We use the 13B pretrained 462

model of video-LLaMA that is pretrained on par- 463

allel video-text data. We then finetune the vision 464

branch of the model on our VMC dataset. 465

Valley: Valley is a video-assistant build on top 466

of the LLaVA model. We use the 13B pretrained 467

model of valley and fine-tune it on our VMC 468
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Model BLEU-1 ↑ Rouge-L ↑ CIDEr ↑ BERT-F1 ↑ ACS ↓
GIT 38.1847 39.9777 32.0064 0.6434 0.3934
Valley 17.6786 18.7736 2.7567 0.5477 0.7910
Video-LLaMA 35.9410 37.1696 47.6783 0.5005 0.3130
GIT-LLaVA (Ours) 42.6690 42.7680 40.9205 0.6534 0.3015
GIT-LLaVA-Extended (Ours) 40.2760 41.9725 26.9294 0.6542 0.2728

Table 2: Experimental results on our VMC dataset in comparison to other models. ACS denotes the Average
Concept Similarity. It represents the average cosine similarity of the concepts compared in the metaphor caption

Model Fluency ↑ Consistency ↑ Creativity ↑
GIT 0.1142 0.0000 0.2714
Valley -0.1285 -0.4428 -0.7000
Video-LLaMA -0.8142 -0.1285 -0.1428
GIT-LLaVA (Ours) 0.3000 0.2000 0.2714
GIT-LLaVA-Extended (Ours) 0.5285 0.3714 0.3000

Table 3: Results of human evaluation of the captions generated by models. Consistency denotes the consistency of
the caption with the video. Creativity denotes the quality of the metaphor generated.

dataset by converting it to the data format of valley.469

6 Evaluation Metrics470

We evaluate the performance of our model using471

a set of automated metrics and human evaluation.472

The n-gram overlap-based metrics- BLEU (Pap-473

ineni et al., 2002), ROUGE (Lin, 2004), and CIDEr474

(Vedantam et al., 2014) are commonly used to com-475

pare the performance of the model in captioning476

tasks. In the case of video metaphor captioning, the477

exact matching of n-grams may not give a clear idea478

of the performance of the model as it is difficult to479

generate the exact metaphor in the reference sen-480

tences. Hence, we also report BERTScore (Zhang481

et al., 2019) that compares the semantic similarity482

of the generated caption and the reference caption.483

In the task of video metaphor captioning, the484

model is trained to generate creative metaphors485

as output. As no existing metric can be used to486

evaluate the creativity of metaphors, we introduce a487

new and intuitive metric called- “Average Concept488

Similarity” (ACS). It is calculated as follows:489

ACS =

∑n
i Cosine(PC, SC)

n
(5)490

where PC and SC denote the primary and sec-491

ondary concepts respectively and Cosine denotes492

the cosine similarity between them. The primary493

and secondary concepts denote the object of com-494

parison and the object it is being compared to re-495

spectively. Sentence Transformers (Reimers and496

Gurevych, 2019) are used to obtain representations497

for PC and SC. For captions which do not contain 498

either of PC or SC, the similarity score is set as 1 499

to penalize the model. Thus the model is evaluated 500

based on how diverse comparison it can make for 501

the object in question. 502

In addition to these automated metrics, we also 503

evaluate and compare the models based on three 504

scores manually given by a set of annotators. We 505

use three metrics for human evaluation- Fluency, 506

Consistency, and Creativity. Fluency denotes how 507

fluent the generated caption is. Consistency de- 508

notes the consistency of the generated caption with 509

the video and creativity denotes the quality of 510

metaphor. 511

7 Results and Analysis 512

Our models- GIT-LLaVA and GIT-LLava- 513

Extended perform significantly better than other 514

traditional video captioning models despite the 515

smaller scale of pretraining data. Table 2 compares 516

the performance of our models with other baselines. 517

It can be seen that the model performs well on 518

both n-gram overlap-based metrics like BLEU-1, 519

ROUGE-L, and CIDEr and the BERTScore metric. 520

This shows that it generates captions that are 521

semantically similar to the ground truth captions. 522

Our model achieves the best score (lowest) on 523

our new metric- ACS. It compares the semantic 524

similarity of the primary and secondary concepts 525

used in the metaphor generated. The lower scores 526

confirm that our models generate creative captions 527

in which the comparisons are made to very creative 528

7



Figure 4: Examples from our manually annotated dataset along with captions predicted by our models.

concepts that are not related to the primary concept.529

The ACS values can also be low if the generated530

captions are not fluent and unrelated words are531

present in the caption. This was observed in the532

captions generated by Video-LLaMA model. This533

is indicated by lower BERTScore and higher ACS534

values in conjunction. Our models have higher535

BERT-score as well as lower ACS which indicate536

that the models generated metaphors that are more537

relevant to the videos.538

It was observed that the Valley model wasn’t able539

to generate quality metaphors even though it was540

able to generate fluent captions. This is indicated541

by the poor performance on the ACS metric. The542

GIT model scored very highly on BERT-F1 but its543

score was relatively lower on the ACS metric. This544

shows that our model was able to augment the GIT545

model to enable it to generate metaphors.546

Figure 4 shows examples from our dataset with547

captions generated by our models. In the first exam-548

ple, it can be seen that the extended model with ac-549

cess to many frames was able to understand that the550

video was about a game. The GIT-LLaVA model551

generated a metaphor that focuses on the car used552

in the video while missing the bigger picture. In the553

second example, the GIT-LLaVA model describes554

the breeze seen in the video in the metaphor gen-555

erated. The extended model is confused by cars556

appearing in multiple frames leading to describing557

the car in the metaphor generated. The dataset used558

in our experiments is small and these problems559

can be mitigated by training our model on a larger560

dataset. It was also observed that few captions were561

repeated in multiple occurrences when the primary562

concept in the selected frames was similar.563

7.1 Human Evaluation 564

In addition to automated metrics, we also perform 565

human evaluation on 15% of the test set. Table 3 566

shows the results obtained with human evaluation. 567

We use Best-Worst Scaling (Louviere et al., 2015) 568

to compare models. Four Masters’ students who 569

are proficient in English were asked to annotate the 570

captions generated by these five models on three 571

metrics- Fluency, Consistency, and Creativity. The 572

annotators assigned +1 for the best caption, -1 for 573

the worst caption, and 0 for the remaining captions. 574

The mean scores from all annotators are reported 575

in Table 3. The manual evaluation also confirms 576

that our models generate creative captions that are 577

consistent with videos. 578

8 Summary, Conclusion, and Future 579

Work 580

In this work, we proposed a novel Vision-Language 581

(VL) task called video metaphor captioning. We 582

constructed and released two new datasets for the 583

task. We proposed a novel VL model that is built 584

on top of the LLaVA model for video metaphor 585

captioning. We showed that by using a frozen video 586

captioning model (GIT) and a lightweight mapping 587

network with LLM, we were able to augment the 588

video captioning model to describe metaphors in 589

the video. We believe that this approach can be 590

extended to different domain-specific tasks with 591

inadequate video data. Our models generated fluent 592

and creative metaphors and it was validated by 593

automatic and human evaluations. 594

In the future, we plan to adopt stronger models 595

that can also handle audio modality in our video 596

metaphor captioning task. 597

8



9 Limitations598

The scope of our work is only limited to understand-599

ing visual metaphors in videos. The models intro-600

duced in our work- GIT-LLaVA and GIT-LLaVA-601

Extended do not have support for audio and cannot602

understand metaphors introduced through audio.603

The audio signals can be used to better understand604

metaphor information and we intend to do this in605

the future.606

10 Ethical Considerations607

We build our Video Metaphor Captioning (VMC)608

dataset based on the Pitt’s Ads dataset. The original609

dataset has links to YouTube videos. We ensure that610

no personal information is included in the captions611

written by our annotators. We also ensure that612

brand names are replaced with common nouns such613

that no identifiable information is present in our614

dataset. Our model uses Vicuna as the decoder and615

may propagate the biases held by the LLM. We616

urge the research community to use our models617

with necessary caution in downstream tasks for the618

same reason.619
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