
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRO: ENABLING PRECISE AND ROBUST TEXT WATER-
MARK FOR OPEN-SOURCE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text watermarking for large language models (LLMs) is important for model own-
ers to verify the origin and protect the intellectual property of AI-generated text.
While watermarking methods for closed-source LLMs’ text generation are relatively
mature, watermarking open-source LLMs’ text generation remains challenging.
Closed-source model developers typically embed text watermarks during decoding;
however, this approach is ineffective for the text generation of open-source models,
where developers have no control over how decoding occurs. As a result, owners
of open-source LLMs still lack practical methods to verify whether a given piece
of AI-generated text originated from their models. The primary challenge lies in
embedding watermarks directly into model weights without compromising detec-
tion accuracy. One possible solution is first to create a text generation watermark in
the closed-source setting, then distill that watermark information into the publicly
released model’s weights. However, this approach faces two critical challenges: (i)
Reduced detectability due to inconsistency between the watermark patterns learned
by the model and the predefined patterns used during detection. This inconsistency
arises because existing closed-source watermark patterns are difficult for models
to learn effectively. (ii) Vulnerability to modifications by downstream users, such
as fine-tuning or model merging, which may weaken or completely remove the
embedded watermark. To address these challenges, we propose PRO, a precise
and robust text watermarking method for open-source LLMs. First, we introduce a
trainable watermark policy model, which is jointly optimized with the LLM during
training. This co-optimization helps generate watermark patterns that are easier
for the model to learn, significantly reducing inconsistencies between generated
patterns and predefined detection criteria. Additionally, we incorporate a regu-
larization term into the watermarking loss, which simulates various perturbations
(e.g., fine-tuning, model merging) and penalizes any degradation in watermark
detectability under these modifications. This approach ensures that the embedded
watermark remains resilient even after downstream model alterations. Our evalua-
tion on mainstream open-source LLMs (e.g., LLaMA-3.2, LLaMA-3, and Phi-2)
demonstrates that our approach significantly outperforms prior methods in terms
of both watermark detectability and robustness against model modifications. The
code is publicly available at https://anonymous.4open.science/r/PRO.

1 INTRODUCTION

With the rapid advancement of LLMs and their widespread deployment, researchers and regulators
have raised growing concerns regarding their potential misuse in generating harmful content (Bom-
masani et al., 2021; Union, 2021). To address this issue, text watermarking has emerged as a
promising technique that embeds a watermark signal during text generation to facilitate the detection
of LLM-generated content. Mainstream approaches (Kuditipudi et al., 2023; Kirchenbauer et al.,
2023a; Hu et al., 2023) leverage a watermark scheme fw to generate watermark logits that bias the
decoding process. During detection, the statistical distribution of tokens in the text is analyzed using
fw to determine if it has been watermarked. As illustrated in Figure 1 (a), these decoding-based
methods assume a closed-source LLM setting, where the LLM owner controls the entire inference
pipeline, including the integration of fw into the decoding process.

1

https://anonymous.4open.science/r/PRO-DE2A/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Standard Decoding

deploy and modify

Watermark Decoding
with 𝑓w

(a) Text Watermarking for closed-source LLMs

𝑓w(𝑥)
embed Embeds watermark capability in weights,

then open-source the model

LLM Owner
Watermark Detection

with 𝑓w

LLM Owner

LLM User
Watermark Detection

with 𝑓w
(b) Text Watermarking for open-source LLMs

LLM Owner

LLM Owner

Figure 1: Text watermarking for (a) closed-source and (b) open-source LLMs. Closed-source
watermarking relies on watermark decoding, while open-source watermarking requires embedding
the watermark into the model weights so that standard decoding still produces watermarked text.

As open-source LLMs rapidly improve, the performance gap between open-source and closed-source
LLMs is narrowing. Notably, some open-source LLMs such as DeepSeek (Liu et al., 2024b) and
LLaMA-4 (Meta, 2024) are now matching or even surpassing closed-source LLMs like OpenAI’s
GPT-4 and Claude 3.5 on specific benchmarks (Guo et al., 2024). This underscores an urgent
need for effective text watermarking for open-source LLMs. However, decoding-based methods
are fundamentally unsuitable in the open-source setting, where LLM users will have full access to
the inference pipeline to remove the watermark decoding. As illustrated in Figure 1 (b), a viable
alternative involves embedding watermarking capability directly into the LLM’s weights, enabling
the LLM to generate watermarked texts naturally without relying on watermark decoding. In this
context, two key challenges arise: (i) the detectability of watermarks in generated text, and (ii) the
robustness against users’ modifications on LLM’s weights.

To integrate watermarking mechanisms directly into LLM weights, Christ et al. (2024) proposed
shifting the addition of watermark logits from the decoding phase to a direct modification of the bias
terms in the final projection layer. However, since prominent open-source LLMs typically omit bias
terms in this layer, this requires architectural modifications that users could easily detect and remove.
An alternative and promising direction, which avoids such architectural alterations, is to train the
LLM on watermarked text (Gu et al., 2023; Sander et al., 2024). The objective here is for the LLM to
natively learn the statistical patterns of the watermark, thereby generating watermarked logits as an
inherent part of its output.

0.5 0.6 0.7 0.8 0.9 1.0
3.5

4.0

4.5

5.0

0.0 0.2 0.4 0.6 0.8 1.0
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rp

le
xi

ty

AUC

Learning-based Decoding-based

PRO AU
C

Merge Ratio

 Gu et al. Gloaguen et al.

Figure 2: (Left) learning-based and decoding-based
KGW watermarks under varying watermark hy-
perparameters n and δ. (Right) existing learning-
based watermarks’ AUC after merging with the
unwatermarked LLM.

Despite its promise, existing learning-based wa-
termarking faces critical challenges in learn-
ability and robustness. First, unlike decoding-
based watermarking, where the watermark logits
are manually injected during the decoding pro-
cess, learning-based methods require the LLM
to learn to generate watermarked text directly.
Its detectability is therefore highly contingent on
the learnability of watermark signals, typically
requiring a large watermark logits magnitude δ
during training. However, training on highly dis-
torted text impairs the LLM’s generation quality.
As shown in Figure 2 (left), learning-based wa-
termark (␣) trained with δ = 1 only achieves
0.84 AUC, while achieving 0.99 AUC with δ = 2 results in significant degradation of generation
quality, i.e., Perplexity (PPL) increases from 4.1 to 5.0. This contrasts with decoding-based methods
(○) that achieve both high quality (PPL < 4.5) and strong detectability (AUC > 0.9) simultaneously.
Additionally, current learning-based methods are limited to small n-gram lengths (n ≤ 1) (Gu et al.,
2023; Sander et al., 2024; Zhao et al., 2025), as larger n values significantly increase the complexity of
watermark patterns for LLMs to learn, thereby diminishing watermark learnability. Even with δ = 2,
the LLMs fail to learn 2-gram KGW watermarks (AUC = 0.54). However, practical applications
require higher n-gram (e.g., 3- or 4-grams) for robustness against reverse engineering (Kirchenbauer
et al., 2023a; Zhao et al., 2025). Furthermore, the open-source setting allows users to modify LLMs
through techniques like fine-tuning or model merging, which can inadvertently or intentionally
remove learned watermarks. As shown in Figure 2 (right), merging a watermarked LLM with an

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

unwatermarked one at a 0.5 ratio reduces the watermark detection AUC to 0.79. In contrast, the
proposed PRO improves robustness, achieving an AUC of 0.87, as reported in Table1 in Section 4.

In this paper, we propose PRO (Precise and Robust Open-source LLM Watermark). Our journey
begins by analyzing the aforementioned issues of existing watermarks for open-source LLMs.

First, current open-source LLM watermarking methods (Gu et al., 2023; Sander et al., 2024) distill
predefined watermark patterns into model weights and use the same patterns for detection. This
creates a Generation-Detection Inconsistency: the LLM often learns a deviated version of the
watermark, while detection assumes the original pattern. This inconsistency stems from simply
adopting watermarking methods like KGW (Kirchenbauer et al., 2023a) that were originally built
for closed-source LLMs and were not intentionally designed to be learnable. These methods use
predefined mapping functions to generate watermark logits. From the LLM’s perspective, these
mappings often appear arbitrary, forcing the LLM to memorize fragmented associations between
prefixes and watermark logits rather than internalizing a coherent pattern of watermark logits. This
challenge becomes catastrophic for large n-gram watermarks, where the complexity of mapping
functions renders learning difficult. To resolve this, PRO introduces a trainable watermark policy
that dynamically optimizes the watermark mapping function through joint training with the LLM.
This co-adaptation ensures the policy generates watermark patterns that can be effectively learned by
LLMs. Crucially, during detection, PRO employs the optimized policy instead of the predefined one,
ensuring alignment with the watermark patterns the LLM has actually learned.

Second, to enhance robustness against user’s weight modifications, Gloaguen et al. (2025) proposed
embedding watermarks into “stable” parameters identified by observing value changes after fine-
tuning on natural text. However, as shown in Figure 2 (right), this approach offers only marginal
robustness against fine-tuning, since parameter stability is inherently dataset-dependent, and modifica-
tions like model merging or fine-tuning on other datasets can still erase watermarks. To address this,
we propose the concept of forgotten perturbation: perturbations to weights that maximally degrade
watermark detectability. To attenuate its negative impact, PRO iteratively generates perturbations
using anti-watermarked text (adversarially crafted to erase watermarks), simulating powerful forgotten
perturbation. During training, the LLM learns to withstand the forgotten perturbation by minimizing
its disruptive effects while maintaining watermark detectability. By unifying perturbation resistance
with watermark training in a single optimization framework, PRO achieves robustness against diverse
user modifications.

We evaluate PRO on three mainstream open-source LLMs, including LLaMA3-8B, LLaMA3.2-3B
and Phi2-2.7B. We embed watermarks and assess their robustness under common user modifications,
such as quantization, pruning, fine-tuning, and model merging. Results reveal that PRO can achieve
high detectability, low quality degradation and large n-gram lengths (i.e., n ≥ 5), as shown in
Figure 2 (left). These results represent substantial improvements over state-of-the-art open-source
watermarking (Gu et al., 2023; Gloaguen et al., 2025) and can even match the performance of
closed-source counterpart. Additionally, watermarks embedded by PRO are more robust against user
modifications. PRO consistently preserves high detectability (AUC ≥ 0.80) under aggressive model
modifications, including high-ratio merging and long-step fine-tuning, marking the first precise and
robust text watermark for open-source LLMs.

2 RELATED WORK AND THREAT MODEL

2.1 TEXT WATERMARKS FOR CLOSED-SOURCE LLMS

To ensure traceability of content generated by LLMs, watermarking techniques have been proposed
to embed identifiable statistical signals into model outputs. Among these, decoding-based water-
marking (Kirchenbauer et al., 2023a; Christ et al., 2024; Zhao et al., 2023; Kirchenbauer et al.,
2023b) is a widely adopted approach. The watermark decoding function fw(πθ(x), ξ) leverages a
secret key ξ to transform the original next-token distribution πθ(· |x) into a modified distribution that
embeds a detectable watermark signal in the generated text. This enables post-hoc detection via a
test function fd(x, ξ), which computes a p-value indicating the presence of a watermark. However,
decoding-based watermarking relies on customized decoding algorithms and is not applicable in
open-model settings where users control the decoding process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 TEXT WATERMARKS FOR OPEN-SOURCE LLMS

Current watermarking schemes for open-source language models can be broadly categorized into two
types: Input Prompt-dependent and Input Prompt-independent. The former requires access to the
input prompt for detection, while the latter can detect watermarks using only the output text. Notably,
our PRO falls into the category without requiring the input prompt.

2.2.1 INPUT PROMPT-DEPENDENT

Several recent works propose open-source watermarking techniques that require input prompt for
detection. Xu et al. (2024) jointly train a detector and an LLM to embed detectable signals into the
output, requiring both the prompt and output for detection. Block et al. (2025) perturb model weights
with Gaussian noise and detect watermarks via gradient-based statistical tests, which also rely on
the input prompt. Both methods require access to the input prompt during detection, limiting their
applicability in real-world scenarios.

2.2.2 INPUT PROMPT-INDEPENDENT

We further divide input prompt-independent watermarking methods into two classes: learning-based
watermarks and structural-editing watermarks.

Learning-based Watermark. Gu et al. (2023) shows that decoding-based watermarks can be em-
bedded into model weights by distilling the watermark from a teacher LLM πo. Then, the same
watermark scheme can be used to detect the watermark in the student LLM πθ. The teacher generates
watermarked data Dwm, which the student fine-tunes using the cross-entropy loss:

Lsampling(πθ) = Ex∼Dwm

 |x|∑
t=1

− log πθ(xt|x<t)

 (1)

Alternatively, by exploiting the logits, the student can be fine-tuned to mimic the teacher LLM’s
next-token distribution using the KL-divergence loss:

Llogit(πθ) = Ex∼D

 |x|∑
t=1

KL(fw(πo(· | x<t), ξw) ∥ πθ(· | x<t))

 (2)

Structural-editing Watermarks. Christ et al. (2024) embed watermarks by adding small, token-
specific Gaussian perturbations to the output-layer bias vector of the model. To detect whether a text
sequence is watermarked, the LLM owner aggregates the bias perturbations of each output token. As
most open-source LLMs disable output-layer biases by default1, implementing this method requires
explicitly enabling the bias term, which introduces an architectural modification. Such changes
remain identifiable and can be easily removed by analyzing and modifying the architecture of the
model.

2.3 THREAT MODEL

We consider a threat model where an open-source LLM is publicly released to users, who have full
access to the model’s weights and architecture. Users may modify the model through fine-tuning,
model merging, quantization, or pruning. The LLM owner embeds a watermark into the released
model’s weights and retains a private detection mechanism, which may be made available via a
detection API. Detection is performed solely on the generated text, without access to the user’s input
prompt or control over the decoding process.

3 METHODS

3.1 OVERVIEW

Learning-based watermarking aims to train LLMs to generate watermarked text natively, without
modifying the decoding scheme. Specifically, given an original LLM πo and a watermarked decoding

1For example, the output layers of LLaMA, Qwen, and Mistral models in the Hugging Face Transformers
library are defined with bias=False.

4

https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen3/modeling_qwen3.py
https://github.com/huggingface/transformers/blob/main/src/transformers/models/mistral3/modeling_mistral3.py

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

function fw, the combination acts as a teacher model. The objective is to train a student LLM πθ

with standard decoding such that its next-token distribution πθ(x) approximates the teacher’s output,
fw(πo(x), ξ), for any input x. Our goal is to build a precise and robust learning-based watermark for
open-source LLMs that (i) maintains high detection accuracy without degrading generation quality,
and (ii) remains robust against general user modifications such as fine-tuning. We first discuss the
core challenges in achieving these goals and then present how our proposed PRO addresses them.

Watermark Model 𝑓𝑤

Logits 𝑙𝑤

Logits 𝑙𝑠Student LLM 𝜋𝜃

Co-Adaptive Watermark Policy

Search Forgotten

Perturbation Δ𝜋

Forgotten Perturbation-aware Learning

Frozen Initial
LLM 𝜋𝑜

Minimize effect of Δ𝜋

Watermark Teacher

𝜋𝜃 + Δ𝜋

Maximum
Similarity

Figure 3: Overview of our proposed method. CAWP (upper) jointly trains a watermark model with
the student LLM to generate learning-friendly watermark logits. FPL (bottom) improves robustness
by searching and minimizing the effect of forgotten perturbations that may erase the watermark.

3.2 CO-ADAPTIVE WATERMARK POLICY (CAWP)

Watermark detection for open-source LLMs involves two steps: (1) the LLM user generates text via
the watermarked LLM, and (2) the LLM owner uses the predefined watermark pattern to detect the
text. In this case, an important consideration is the consistency between the watermark pattern learned
by the LLM and the predefined one used during detection. To assess this consistency, we fine-tune
a LLaMA3-8B on text generated by a decoding-based watermarked LLaMA3-8B (i.e., watermark
teacher), thereby obtaining a learning-based watermarked LLaMA3-8B (i.e., watermark student).
We then measure and compare the green token ratios across them in Figure 4. The results reveal a
significant green ratio drift in the student relative to the teacher, which reduces the AUC from 0.99
to 0.84, indicating that the student LLM fails to fully internalize the watermarking pattern of the
watermark teacher. To mitigate the inconsistency, we identify two primary optimization directions.
The first is to design a learning-friendly watermark pattern, thereby enhancing its inherent learnability
for the student LLM. The second is to adapt the detection mechanism itself, using a pattern that aligns
more closely with the watermark distribution actually learned by the student LLM, rather than strictly
adhering to the original predefined pattern.

0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y

Green Token Ratio

 Unwatermarked Student Teacher
AUC=0.5

AUC=0.84 AUC=0.99

Figure 4: Green token ratios for
unwatermarked, watermark student,
and watermark teacher (KGW with
green ratio = 0.25, n = 1, δ = 1).

Unlike prior work that uses rigid, predefined watermark func-
tions, we introduce Co-Adaptive Watermark Policy (CAWP)
as illustrated in Figure 3 (upper). It co-optimizes a trainable
watermark policy model with the student LLM, allowing the
watermark patterns to adapt to the LLM’s learning dynamics
and become more learnable. Crucially, detection leverages the
co-optimized patterns rather than the original predefined ones,
ensuring detection aligns with the watermark signals internal-
ized by the LLM to mitigate generation-detection inconsistency.

The watermark policy consists of a pre-trained Embedding
Model E (e.g., BERT) and a trainable Watermark Mapping
Model M (e.g., an MLP). Given a sequence of preceding to-
kens {xi−n:i−1} at position i, E generates their embeddings
{ei−n:i−1}. These embeddings are then transformed by M into
raw watermark logits over the vocabulary, i.e., M(E(xi−n:i−1)). The final watermark logits are
obtained by scaling with a strength coefficient δ, yielding δ ·M(E(xi−n:i−1)), which are added to
the next-token logits before sampling. Given a dataset of texts D, the training objective is to minimize

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the mean KL divergence between teacher and student next token distributions on all prefixes in D:

Lsim =
1

|D|
∑
x∈D

N−1∑
i=n

KL

[teacher logits︷ ︸︸ ︷
πo

(
· | x≤i

)
+ δ ·M(E(xi−n:i−1))︸ ︷︷ ︸

watermark logits

∥∥∥∥∥
student logits︷ ︸︸ ︷
πθ

(
· | x≤i

)]
(3)

Here, n is the gram length. Both the teacher LLM πo and the embedding model E are frozen; only
the student model πθ and mapping model M are optimized. The student LLM πθ is optimized by
minimizing Lsim, while the mapping model M must also satisfy the following requirements: (i)
Unbiased Token Preference: the watermark logits should not exhibit persistent positive or negative
bias toward specific tokens. (ii) Balanced Watermark Logits: the logits should have zero mean across
the vocabulary, ensuring symmetric perturbation that makes approximately half the tokens more likely
and the other half less likely. (iii) Non-Vanishing Watermark Logits: to avoid degenerate solutions
where the watermark logits vanish, each watermark logit is encouraged to maintain a minimum
absolute magnitude, regularized toward a target value ϵ.

Lnorm =

Unbiased Token Preference︷ ︸︸ ︷∑
i

| 1

|V|
∑
j

M(ei)
(j)|+

Balanced Watermark Logits︷ ︸︸ ︷∑
j

| 1
N

∑
i

M(ei)
(j)|+λ1

Non-Vanishing Watermark Logits︷ ︸︸ ︷∑
i,j

max
(
0, ϵ−

∣∣∣M(ei)
(j)
∣∣∣) (4)

M(ei)
(j) denotes the watermark logit for the j-th token in the vocabulary (of size |V|) corresponding

to the i-th input embedding ei, with N total input samples. The index i sums over all samples, and j
sums over all vocabulary tokens. The final training loss for the watermark mapping model M is the
weighted sum of the similarity loss and the normalization loss, given by:

LM = Lsim + λ2Lnorm (5)

Upon training, the watermarked student LLM πθ is released, and the co-optimized watermark mapping
model M is retained for detection. For a given text, the LLM owner computes the watermark logit at
each position i by first embedding the n-gram prefix with E, then transforming it via the mapping
model M to obtain the watermark logit for the actual next token xi. The detection score is the average
watermark logit across the sequence, given by z = 1/N

∑N
i=1 M

(
E(xi−n:i−1)

)(xi). If z exceeds a
predefined threshold, the text is considered watermarked.

While some prior work also employs neural networks to generate watermark logits, they target
different goals. For example, Liu et al. (2024a) and Ren et al. (2023) design semantic-invariant
watermark models to improve robustness against paraphrasing attacks. In contrast, our CAWP
framework is fundamentally different. Existing approaches are designed for closed-source LLMs and
do not consider the learnability of the watermark by the model itself—their watermark models are
trained independently from the LLM. By contrast, CAWP focuses on generating learning-friendly
watermark logits by jointly optimizing the watermark model with the student LLM being watermarked.
Additionally, such joint training ensures a bidirectional alignment: the watermark pattern used
for detection adapts toward the student LLM’s learned representation, while the student LLM is
simultaneously guided to internalize patterns consistent with detection. This mutual convergence
narrows the gap between the student and teacher distributions in Figure 4.

3.3 FORGOTTEN PERTURBATION-AWARE LEARNING (FPL)

0 300 600 900 1200 1500

0.5
0.6
0.7
0.8
0.9
1.0

AU
C

Steps

 Watermarked Raw Anti-watermarked

Figure 5: AUC during fine-
tuning on raw, watermarked,
and anti-watermarked texts.

The vulnerability of watermarked LLMs to user modifications arises
primarily from forgotten perturbation. Specifically, when a user
modifies a watermarked LLM πθ into π′

θ, the weight drift ∆πθ =
π′
θ − πθ may remove the learned watermark. We term the drift that

erases the watermark as forgotten perturbation, and our goal is to
minimize its effect during the watermark learning stage.

To understand its root cause, we investigate fine-tuning as a repre-
sentative user modification, i.e., πt+1 = πt − η g(πt), where g(πt)
is the gradient on user data driving weight drift. Figure 5 shows that
fine-tuning a watermarked LLaMA3-8B on raw texts (a mixture of
green/red tokens) collapses detectability, whereas fine-tuning on wa-
termarked texts (green-token dominant) preserves it. This indicates

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

that gradients arising from red tokens are the primary cause of forgotten perturbation. To further
validate this, we fine-tune on anti-watermarked texts, generated with inverted watermark logits to
make texts red-token dominant. As shown in Figure 5, fine-tuning on these anti-watermarked texts
results in a substantial drop in detectability. These results confirm that red-token-driven forgotten
perturbations are the dominant factor in watermark forgetting, and mitigating their impact should be
a key objective.

To achieve this, we propose Forgotten Perturbation-aware Learning (FPL), which explicitly reduces
model sensitivity to forgotten perturbation, as illustrated in Figure 3 (bottom). Our objective is to
train a watermarked model that can not only generate watermarked texts but also attenuate the effect
of future perturbations caused by red-token updates. The training objective of the LLM is defined as:

argmin
πθ

Lsim(πθ) + β

(
Lanti(πθ)− Lanti(πθ − α

∇Lanti(πθ)

∥∇Lanti(πθ)∥
)

)
(6)

Here, Lsim is the watermark learning loss over watermarked texts (as defined in Equation 3), and
Lanti is the watermark forgetting loss evaluated on anti-watermarked texts, defined analogous to Lsim
using KL divergence loss. The second term measures the change in forgetting loss before and after
applying a normalized step in the direction of the forgotten perturbation. The regularization weight β
controls the trade-off, and α is the perturbation step size. This formulation encourages the model to
not only learn a strong watermark but also be robust against potential forgetting induced by user-side
modifications.

Although the optimization in Equation 6 involves second-order derivatives, we can solve it using
three forward/backward passes: (1) evaluate Lsim(πθ) on watermarked logits, (2) compute Lanti(πθ)
on anti-watermarked data and perform a backward pass to obtain ∇Lanti(πθ), and (3) simulate one
normalized fine-tuning step along the forgetting gradient and perform another forward pass to compute
Lanti(πθ − αĝ), where ĝ = ∇Lanti/∥∇Lanti∥. The difference between the pre- and post-step losses
reflects the watermarked LLM’s vulnerability to forgotten perturbation, which we aim to minimize.
It is worth noting that Equation 6 is used only for training the LLM πθ, while the watermark mapping
model M is still optimized with the loss in Equation 5. For completeness, the formal convergence
analysis of CAWP is presented in the Appendix D, along with the detailed mathematical derivation of
the second-order derivative term in Equation 6.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We perform experiments on three open-source LLMs: LLaMA3-8B, Phi2-2.7B, and
LLaMA3.2-3B. These models cover a range of model sizes from lightweight to large-scale models.
The watermark mapping model M is a lightweight MLP: a linear projection R1024 → R500, two
ReLU-based residual blocks, and a final projection to the vocabulary dimension with tanh to constrain
logits to [−1, 1].

Implementation Details. In our watermarking pipeline, the semantic embeddings are generated by
compositional-bert-large (Chanchani & Huang, 2023). During training, both the student
LLM πθ and the watermark mapping model M are jointly optimized to maximize learnability and
detection consistency. We set the regularization weights λ1 = λ2 = 1 in the training loss for CAWP.
For the FPL component, we use perturbation step size α = 0.1 and regularization weight β = 5. In
our ablation study, we further analyze the sensitivity of watermark robustness to variations in these
hyperparameters.

Baseline Watermarking Methods. Our experiments include three baseline watermarking methods,
all implemented via KL-based distillation from a decoding-based teacher model. The first is Gu
et al.-KGW. Following the setup in (Gu et al., 2023), we distill KGW with a fixed γ = 0.25 and
evaluate three configurations of (k, δ): (1, 2), (0, 1), and (1, 1). The second baseline is Gu et al.-KTH,
which distills the exponential decoding watermarking scheme proposed in (Kuditipudi et al., 2023).
The third is Gloaguen et al.-KGW, which builds on KGW by embedding watermarks into “stable”
parameters identified via contrastive task vector analysis before and after fine-tuning on raw data.
The details of training configurations and device usage can be found in Appendix H.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Metrics. We evaluate open-source watermarking methods along three dimensions: detectability,
text quality, and robustness. For detectability, we follow (Gu et al., 2023), where each watermarked
model generates 5,000 samples by prompting with 50-token prefixes from the C4 dataset (Dodge
et al., 2021) and generating 200-token continuations. Standard sampling with temperature 1 is used
during generation to ensure consistency across methods. Detection is performed by comparing
these generations against 5,000 non-watermarked texts using the corresponding watermark detection
algorithm, and we report the Area Under the ROC Curve (AUC). Text quality is measured via median
perplexity (PPL), using a LLaMA-2-13B model. To assess robustness, we apply four types of model
modifications that simulate real-world user behavior, modification settings are in Appendix H.3.

4.2 RESULTS

4.2.1 COMPARISON WITH EXISTING WORKS

Detectability and Quality Analysis. To demonstrate PRO’s effectiveness, we compare it against
existing text watermarking methods for open-source LLMs, including (Gu et al., 2023) and (Gloaguen
et al., 2025). To assess the tradeoff between detectability and generation quality, we vary the
watermark hyperparameters (δ and n-gram for KGW, s for KTH, δ for PRO) and measure perplexity
and detection AUC. The hyperparameter configuration can be found in the Appendix H.1. As shown
in Figure 6, existing open-source watermarks exhibit quality degradation, while PRO shows the
lowest effect on the quality of text. PRO bridges this gap: by co-optimizing a dynamic watermark
policy with the watermarked LLM, it discovers learning-friendly watermark patterns that LLMs can
internalize under low-distortion conditions. This achieves an AUC of 0.99 while reducing perplexity
by 20.5% compared to the best baseline across all tested LLMs. ROC curves are shown in Figure 7.

4.0 4.5 5.0 5.5 6.0 6.5

0.8

0.9

1.0

12 13 14 15 16 17 18

0.8

0.9

1.0

12 13 14 15 16 17 18

0.8

0.9

1.0

AU
C

Perplexity

 Gu et al. (with KGW) Gu et al. (with KTH) Gloaguen et al. (with KGW) PRO

(a) LLaMA3-8B

AU
C

Perplexity
(b) LLaMA3.2-3B

AU
C

Perplexity
(c) Phi2-2.7b

Figure 6: Effectiveness comparison of different open-source LLMs text watermarks, in terms of
detection AUC and median PPL on three LLMs. A better watermark detectability and generation
quality is indicated by higher AUC and lower PPL, as shown by lines closer to the upper left corner.

Robustness against Model Modifications. We evaluate the robustness of PRO under common
model modification scenarios, including quantization, pruning, model merging, and fine-tuning. As
shown in Table 1, existing watermarking methods generally perform reliably under quantization and
pruning, where the parameters shifts to the model are limited and the impact on learned weights is
relatively small. However, under model merging and fine-tuning, which induce more substantial and
less predictable changes in LLM weights, the performance of existing methods degrades noticeably.
For example, when merging a watermarked LLM with the original one at an interpolation ratio of
t = 0.5, the AUC of (Gu et al., 2023) with KGW decreases to 0.773, while PRO retains a higher
AUC of 0.876. For fine-tuning, after 1500 fine-tuning steps on the OpenMathInstruct dataset, the
AUC of the (Gu et al., 2023) with KTH drops to 0.524, whereas PRO maintains 0.808. Consistent
improvement is also shown on OpenCodeInstruct dataset. These results indicate that PRO exhibits
improved resilience to more aggressive forms of model modifications. We attribute this improvement
to the incorporation of FPL, which explicitly simulates and counteracts watermark forgetting via
forgotten perturbations during training.

Computational Efficiency. Our method maintains comparable computational cost to prior water-
marking approaches. CAWP introduces only a lightweight MLP watermark model (1.16M parameters,
0.0388% of a 3B LLM), which is negligible relative to the base model. FPL requires two additional
forward/backward passes per iteration, but this overhead is offset by faster convergence: PRO reaches
AUC 0.997 within 2000 steps, whereas KGW requires 5000 steps for a maximum AUC of 0.991.
As a result, the overall wall-clock training time remains comparable to that of the baselines (see
Appendix E for detailed analysis).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: AUC, TPR at 5 % FPR and PPL of different watermark methods of LLaMA-3-8B under
model modifications. Colors indicate AUC: green for ≥ 0.8, red for < 0.7, yellow otherwise.

Category Method Config
Gu et al. (2023)-KTH Gu et al. (2023)-KGW Gloaguen et al. (2025)-KGW PRO

AUC TPR@5 PPL AUC TPR@5 PPL AUC TPR@5 PPL AUC TPR@5 PPL

Unaltered 0.951 0.779 5.0 0.991 0.956 4.9 0.990 0.943 6.2 0.997 0.990 4.2

Quantization
8 bits GPTQ 0.928 0.657 5.2 0.985 0.921 5.0 0.991 0.945 6.3 0.992 0.969 4.3

INT8 0.934 0.694 5.1 0.980 0.907 5.0 0.990 0.941 6.4 0.984 0.931 4.4

4 bits HQQ 0.882 0.535 6.1 0.992 0.954 5.5 0.983 0.911 7.9 0.995 0.981 4.8
GPTQ 0.915 0.635 5.5 0.982 0.910 5.1 0.988 0.935 7.3 0.987 0.942 5.1

Pruning
Wanda ρ = 0.2 0.941 0.728 8.6 0.992 0.959 7.5 0.995 0.974 9.9 0.997 0.988 7.0

ρ = 0.5 0.921 0.639 8.4 0.973 0.860 6.9 0.987 0.934 8.9 0.990 0.957 6.2

SparseGPT ρ = 0.2 0.955 0.783 7.7 0.990 0.948 8.1 0.990 0.952 9.0 0.995 0.983 7.1
ρ = 0.5 0.951 0.755 8.1 0.981 0.906 7.8 0.986 0.928 9.6 0.993 0.971 8.0

Merging SLERP

t = 0.1 0.811 0.360 5.2 0.953 0.762 4.3 0.964 0.817 6.1 0.983 0.922 4.2
t = 0.3 0.714 0.212 5.1 0.924 0.651 4.0 0.916 0.618 5.3 0.962 0.828 4.1
t = 0.5 0.563 0.094 4.8 0.773 0.304 3.8 0.799 0.338 4.6 0.876 0.569 4.0
t = 0.7 0.520 0.064 4.3 0.648 0.153 3.7 0.685 0.187 4.2 0.774 0.308 3.9
t = 0.9 0.513 0.057 4.1 0.558 0.114 3.6 0.588 0.106 4.0 0.68 0.165 3.8

Finetuning

OpenMath
Instruct

s = 300 0.715 0.211 5.1 0.852 0.478 4.1 0.847 0.450 5.5 0.928 0.703 4.1
s = 600 0.669 0.166 4.9 0.811 0.383 3.7 0.834 0.408 5.2 0.871 0.509 3.9
s = 900 0.572 0.091 4.8 0.758 0.298 3.6 0.783 0.313 5.2 0.847 0.462 3.7
s = 1200 0.532 0.089 4.7 0.731 0.250 3.5 0.739 0.249 5.0 0.818 0.403 3.6
s = 1500 0.524 0.022 4.5 0.721 0.231 3.5 0.718 0.222 5.1 0.808 0.368 3.6

OpenCode
Instruct

s = 300 0.768 0.274 7.3 0.924 0.634 6.9 0.926 0.653 7.4 0.929 0.707 7.0
s = 600 0.722 0.224 5.7 0.868 0.453 4.9 0.874 0.477 7.0 0.886 0.558 5.4
s = 900 0.679 0.163 4.8 0.805 0.323 5.0 0.813 0.344 6.8 0.856 0.477 5.1
s = 1200 0.612 0.112 4.7 0.781 0.290 4.3 0.796 0.307 6.3 0.833 0.404 4.8
s = 1500 0.533 0.071 4.6 0.754 0.259 4.2 0.782 0.304 5.9 0.821 0.391 4.0

4.2.2 ABLATION STUDY

To understand the contributions of each component proposed, we conduct an ablation study by
varying the perturbation step size α and the regularization weight β in Equation 6. When both are
set to zero, the model essentially reduces to using CAWP alone. In this case, robustness improves
slightly over the baseline (Merge AUC = 0.82 after merging), indicating CAWP alone can already
enhance watermark robustness. Introducing FPL via non-zero β brings further gains in robustness
(AUC = 0.87 at α = 0.1, β = 5), though with a mild increase in perplexity. However, larger values
of α or β lead to degraded or unstable results, highlighting the importance of careful hyperparameter
tuning to balance robustness and generation quality.
Table 2: Ablation on perturbation step size α and regularization weight β. We report AUC and PPL
of unaltered model and AUC after merging (t = 0.5) to indicate robustness.

α 0 0.1 1 2 5

AUC 0.99 0.99 0.98 0.97 0.95
PPL 4.18 4.22 4.30 4.70 5.00
Merge AUC 0.82 0.87 0.86 0.83 0.79

(a) Effect of perturbation step size α.

β 0 1 5 10

AUC 0.99 1.00 0.99 0.95
PPL 4.18 4.21 4.22 4.52
Merge AUC 0.82 0.85 0.87 0.84

(b) Effect of regularization weight β.

4.2.3 OTHER EXPERIMENTS

We provide additional results in the Appendix, including convergence analysis, computational
efficiency, robustness under model modifications, and evaluations on extra datasets and models. We
also report TPRs at multiple FPRs, robustness to paraphrasing, and comparisons with classifier-based
detectors. These supplemental experiments further demonstrate that PRO generalizes well across
models, datasets, and evaluation settings.

5 CONCLUSION

We identify the key challenges in watermarking open-source LLMs, the low learnability of predefined
watermark patterns and their vulnerability to model modifications. To address these issues, we
propose PRO, a precise and robust framework that jointly trains a learnable watermark policy with
the LLM and incorporates perturbation-aware optimization to enhance robustness. PRO improves
watermark detectability and resilience while maintaining generation quality, providing a practical
solution for open-source LLM text watermark.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Wasi Uddin Ahmad, Aleksander Ficek, Mehrzad Samadi, Jocelyn Huang, Vahid Noroozi, Somshubra
Majumdar, and Boris Ginsburg. Opencodeinstruct: A large-scale instruction tuning dataset for
code llms. arXiv preprint arXiv:2504.04030, 2025.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Adam Block, Ayush Sekhari, and Alexander Rakhlin. Gaussmark: A practical approach for structural
watermarking of language models. arXiv preprint arXiv:2501.13941, 2025.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Sachin J Chanchani and Ruihong Huang. Composition-contrastive learning for sentence embeddings.
arXiv preprint arXiv:2307.07380, 2023.

Miranda Christ, Sam Gunn, Tal Malkin, and Mariana Raykova. Provably robust watermarks for
open-source language models. arXiv preprint arXiv:2410.18861, 2024.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus. arXiv preprint arXiv:2104.08758, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Thibaud Gloaguen, Nikola Jovanović, Robin Staab, and Martin Vechev. Towards watermarking of
open-source llms. arXiv preprint arXiv:2502.10525, 2025.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pp. 477–485, 2024.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. arXiv preprint arXiv:2312.04469, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased
watermark for large language models. arXiv preprint arXiv:2310.10669, 2023.

10

https://mobiusml.github.io/hqq_blog/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of watermarks
for large language models. arXiv preprint arXiv:2306.04634, 2023b.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural
Information Processing Systems, 36:27469–27500, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark
for large language models. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=6p8lpe4MNf.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Meta. Llama-4. https://ai.meta.com/blog/llama-4-multimodal-intelligence/,
2024.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A
robust semantics-based watermark for large language model against paraphrasing. arXiv preprint
arXiv:2311.08721, 2023.

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon. Watermarking
makes language models radioactive. Advances in Neural Information Processing Systems, 37:
21079–21113, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. Advances in Neural Information
Processing Systems, 37:34737–34774, 2024.

E Union. Proposal for a regulation of the european parliament and of the council laying down
harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union
legislative acts. COM/2021/206final, 2021.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Xiaojun Xu, Yuanshun Yao, and Yang Liu. Learning to watermark llm-generated text via reinforce-
ment learning. arXiv preprint arXiv:2403.10553, 2024.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024.

11

https://openreview.net/forum?id=6p8lpe4MNf
https://ai.meta.com/blog/llama-4-multimodal-intelligence/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

Zhengyue Zhao, Xiaogeng Liu, Somesh Jha, Patrick McDaniel, Bo Li, and Chaowei Xiao. Can
watermarks be used to detect llm ip infringement for free? In The Thirteenth International
Conference on Learning Representations, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A The Use of Large Language Models (LLMs) 14

B Ethics Statement 14

C Reproducibility Statement 14

D Theoretical Analysis 14

D.1 Convergence Analysis of CAWP . 14

D.2 Computational Overhead of FPL . 15

E Computational Efficiency Analysis 16

F Watermarking for Closed-source LLMs 16

F.1 KGW . 16

F.2 KTH . 17

G Model Modification 17

G.1 Quantization . 17

G.2 Pruning . 18

G.3 Model merging . 18

G.4 Fine-tuning . 18

H Experiments Configuration. 19

H.1 Baseline Setting . 19

H.2 Training Configurations . 19

H.3 Model Modification Settings . 19

I Additional Experiments 20

I.1 Visualization of ROC Curves . 20

I.2 More Dataset and Models . 20

I.3 Detection Performance under Different FPRs . 20

I.4 Robustness against Paraphrasing attack . 21

I.5 Robustness against Model Modifications across Downstream Tasks 21

I.6 Compared with Classifier-based LLM text Detectors 21

I.7 Different Embedding Model and Watermark Mapping Model 22

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used ChatGPT and Grammarly to check and correct any typos and grammatical errors.

B ETHICS STATEMENT

This work focuses on developing robust watermarking techniques for open-source large language
models to support provenance verification and responsible AI use. Our study does not involve human
or animal subjects, nor does it require collection of personal or sensitive data. All experiments are
conducted on publicly available pretrained models and benchmark datasets. We believe our method
enhances transparency and accountability in AI deployment, and we are not aware of any ethical
concerns or potential harms arising from this research.

C REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. The code is publicly available
at https://anonymous.4open.science/r/PRO, together with a README file that includes instructions
for installation, configuration, and execution of experiments.

D THEORETICAL ANALYSIS

D.1 CONVERGENCE ANALYSIS OF CAWP

We anchor our proof in established convergence guarantees for distillation-based LLM training,
where a student LLM πθ converges to a fixed teacher πo under KL divergence minimization. The
core innovation of CAWP is introducing a trainable watermark policy Mϕ that perturbs the teacher
distribution. We prove convergence by analyzing this perturbation.

D.1.1 BASELINE DISTILLATION CONVERGENCE (FIXED POLICY M)

For a fixed watermark policy Mfix, the loss reduces to standard distillation:

Lfix(θ) = KL (πo + δMfix ∥ πθ) . (7)

Under Lipschitz continuity and bounded gradients, gradient descent on θ converges:

lim
t→∞

∥∇θLfix∥ = 0. (8)

This serves as the baseline we extend.

D.1.2 CAWP’S JOINT OPTIMIZATION

CAWP introduces a trainable policy Mϕ, leading to the joint loss:

Lsim(θ, ϕ) = KL (πo + δMϕ ∥ πθ)︸ ︷︷ ︸
Distillation loss

+λ2 Lnorm(ϕ)︸ ︷︷ ︸
Regularizer

. (9)

We analyze the effect of Mϕ on convergence. Specifically, Lsim(θ, ϕ) satisfies the following assump-
tions:

• Smoothness: ∇KL(· ∥ πθ) is Lθ-Lipschitz in θ, and ∇Mϕ is Lϕ-Lipschitz in ϕ. LLMs and
MLPs with smooth activations (e.g., GELU, Tanh) satisfy this.

• Boundedness: ∥Mϕ∥ ≤ BM and ∥∇ϕMϕ∥ ≤ GM , since outputs are bounded by the last
Tanh layer and gradients are bounded via clipping.

14

https://anonymous.4open.science/r/PRO-DE2A/README.md

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Convexity: Lnorm is convex in ϕ, as ℓ1 penalties in Eq. (4) enforce convexity.

Given these assumptions, alternating gradient descent on θ and ϕ converges to a stationary point,
where Mϕ learns watermark mappings that perturb πo without degrading the LLM’s performance.

D.1.3 ALTERNATING GRADIENT DESCENT DYNAMICS

In CAWP, optimization alternates between updating θ (distilling to the perturbed teacher) and ϕ
(adapting the watermark policy):

θt+1 = θt − ηθ∇θLsim(θ
t, ϕt), (10)

ϕt+1 = ϕt − ηϕ∇ϕLsim(θ
t+1, ϕt). (11)

The distillation term encourages πθ to match the perturbed distribution, while Lnorm(ϕ) (e.g., ℓ1
on policy outputs) prevents Mϕ from over-perturbing, ensuring watermark detectability without
degrading text quality.

Under the smoothness assumption, the loss is L-smooth overall (L = Lθ + δLϕBM). Hence,

Lsim(θ
t+1, ϕt+1) ≤ Lsim(θ

t, ϕt)−

(
ηθ
2
∥∇θLsim∥2 +

ηϕ
2
∥∇ϕLsim∥2

)

+
Lη2θ
2

∥∇θLsim∥2 +
Lη2ϕ
2

∥∇ϕLsim∥2.

(12)

Choosing ηθ, ηϕ ≤ 1/L ensures monotonic decrease:

Lsim(θ
t+1, ϕt+1) ≤ Lsim(θ

t, ϕt)− c
(
∥∇θLsim∥2 + ∥∇ϕLsim∥2

)
, c > 0. (13)

D.1.4 CONVERGENCE TO STATIONARY POINT

Summing the descent inequality over T iterations gives:

T−1∑
t=0

(
∥∇θLsim(θ

t, ϕt)∥2 + ∥∇ϕLsim(θ
t, ϕt)∥2

)
≤ Lsim(θ

0, ϕ0)− L∗
sim

cT
, (14)

where L∗
sim is the infimum of the loss. As T → ∞, the gradients vanish:

lim
t→∞

∥∇θLsim∥ = 0, lim
t→∞

∥∇ϕLsim∥ = 0. (15)

The boundedness of Mϕ and its gradients ensures that the perturbation δMϕ remains controlled,
preventing divergence. Moreover, the µ-strong convexity of Lnorm implies that, for fixed θ, the
subproblem in ϕ is strongly convex, guaranteeing convergence to a unique minimizer ϕ∗(θ) that
balances watermark strength and regularization.

D.2 COMPUTATIONAL OVERHEAD OF FPL

In this section, we provide additional details on the computational overhead of the proposed Forgotten
Perturbation-aware Learning (FPL). Although the optimization objective in Equation 6 involves
second-order derivatives, we show that it can be solved efficiently without computing exact Hessian
information.

argmin
πθ

Lsim(πθ) + β

(
Lanti(πθ)− Lanti

(
πθ − α

∇Lanti(πθ)

∥∇Lanti(πθ)∥

))
(16)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where Lanti(·) denotes the forgetting loss on anti-watermarked texts. Intuitively, the second term
measures the decrease of Lanti after one normalized fine-tuning step along the forgetting gradient.
By minimizing this gap, the model not only learns a strong watermark but also remains robust to
potential forgetting induced by user-side modifications.

To solve this perturbation minimization problem, we consider an iterative gradient method (e.g.,
SGD). By the chain rule, the update rule is:

πt+1
θ = πt

θ−η

(
∇Lsim(π

t
θ)+β

(
∇Lanti(π

t
θ)−∇Lanti

(
πt
θ − α

∇Lanti(π
t
θ)

∥∇Lanti(π
t
θ)∥

)
∇
(
πt
θ − α

∇Lanti(π
t
θ)

∥∇Lanti(πt
θ)∥

)
︸ ︷︷ ︸

second-order term

))

(17)

where η is the learning rate. The last factor involves a second-order term (i.e., Hessian information),
which is expensive to compute. Following prior work (Finn et al., 2017; Rajeswaran et al., 2019), we
approximate this second-order term as a constant. The update rule then simplifies to:

πt+1
θ = πt

θ − η
(
∇Lsim(π

t
θ) + β

(
∇Lanti(π

t
θ)−∇Lanti

(
πt
θ − α

∇Lanti(π
t
θ)

∥∇Lanti(πt
θ)∥

)))
(18)

With this approximation, FPL requires only three forward/backward passes per optimization step:

1. A forward pass to compute Lsim(πθ) on watermarked text.

2. A forward and backward pass to compute ∇Lanti(πθ) on anti-watermarked text.

3. A forward pass to evaluate Lanti(πθ − αĝ), where ĝ is the normalized forgetting gradient.

Thus, the overhead introduced by FPL is minimal. Moreover, CAWP accelerates convergence during
training, making the overall computational cost comparable to baseline methods.

E COMPUTATIONAL EFFICIENCY ANALYSIS

To address concerns about computational efficiency, we provide a detailed comparison with prior
watermarking methods. Our proposed techniques do not incur significant overhead and, in fact,
accelerate convergence.

CAWP. The first component, CAWP, introduces only a lightweight trainable MLP as the watermark
mapping model M , which contains 1.16M parameters—just 0.0388% of a 3B-parameter LLM. This
addition is negligible compared to the base LLM and does not substantially increase computational
cost.

FPL. The second component, FPL, involves two additional forward and backward passes per iteration.
However, by using a learning-friendly watermark, our method reduces the number of training steps
needed to achieve high performance. For example, PRO reaches an AUC of 0.997 within 2000 steps,
while KGW requires 5000 steps to reach a maximum AUC of 0.991.

Wall-clock Training Time. In practice, the total wall-clock training time remains comparable across
methods. For 8B-parameter models trained on 4×A100 80GB GPUs, all methods (KGW, KTH, PRO)
complete training in about 6 hours. Thus, despite the slightly higher per-iteration cost, PRO achieves
better performance with no additional end-to-end training time.

F WATERMARKING FOR CLOSED-SOURCE LLMS

F.1 KGW

Formally, the KGW(Kirchenbauer et al., 2023a) decoding-based watermarking strategy is defined as:

fKGW
w (p, x, ξ; k, γ, δ) = softmax

(
log(p) + δ · fKGW

hash (xlen(x)−k+1, . . . , xlen(x); ξ, γ, |V|)
)

(19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Here, fKGW
hash is a pseudorandom hash function parameterized by the key ξ, which hashes the previous

k tokens in the sequence and returns g ∈ {0, 1}|V|, containing γ · |V| ones and (1− γ) · |V| zeros,
encoding the green list. For k > 1, we use the Additive-LeftHash scheme to hash multiple tokens
by summing their token IDs. When k = 0, fKGW

hash returns a fixed green list g, independent of the
previous tokens(Zhao et al., 2023).

The KGW watermark detection function is given by:

fKGW
d (x, ξ; γ) = 1− FB

 len(x)∑
t=k+1

fKGW
hash (xt−k, . . . , xt−1; ξ, γ, |V|)xt

 (20)

where FB is the cumulative distribution function (CDF) of the binomial random variable B ∼
Bin(len(x)− k, γ). This is because the number of green list tokens in non-watermarked text follows
this distribution.

F.2 KTH

Formally, the KTH (Kuditipudi et al., 2023) decoding-based watermarking strategy is defined as:

fKTH
w (p, x, ξ) = onehot

(
argmax

i

(
ξ
(len(x))
i

pi

)
, |V|

)
, (21)

where ξ = (ξ(1), . . . , ξ(m)) is the key consisting of m vectors, each ξ(j) ∈ [0, 1]|V| with entries
sampled uniformly. The one-hot vector deterministically selects the token that maximizes the ratio
between the key vector and the model distribution.

To introduce diversity across generations from the same prompt, the key ξ is randomly shifted by an
offset τ before generation. This results in a shifted key ξ′ = (ξ(1+τ mod m), . . . , ξ(m+τ mod m)) used
in fKTH

w . To systematically explore variability, a hyperparameter s ∈ [1,m] is defined, representing
the number of distinct shifts. The shift values are evenly spaced in [1,m], forming the set τ =
{i · ⌊m/s⌋ | 0 ≤ i < s}. A larger s expands the space of possible outputs and increases generation
diversity.

For watermark detection, we evaluate how well the candidate text x aligns with the key ξ using the
following test statistic:

d(x, ξ) =

len(x)∑
t=1

log(1− ξ(t)xt
), (22)

which measures the cumulative alignment cost between the text and the key. Lower values of d(x, ξ)
indicate stronger watermark evidence. To determine significance, the observed score is compared
against a reference distribution built from non-watermarked text, following the fixed-reference
procedure in. With a reference set of size T , the p-value is lower bounded by 1

T+1 .

G MODEL MODIFICATION

Open-source LLM are subject to modifications for task adaptation or deployment efficiency. The
most prevalent types of such modifications include quantization, pruning, merging, and fine-tuning.

G.1 QUANTIZATION

Model quantization techniques have emerged as an essential approach for deploying LLMs on
memory-constrained hardware. The central idea is to reduce the precision of model weights and
activations, typically from 16-bit or 32-bit floating-point representations to lower-precision formats
such as 8-bit or 4-bit integers, thereby decreasing both storage and computational costs.

Quantization methods can generally be divided into two categories: zero-shot and optimization-based.
Zero-shot methods apply fixed quantization mappings without model-specific calibration, as seen in
approaches like LLM.INT8() (Dettmers et al., 2022) and NF4 (Dettmers et al., 2023). Optimization-
based methods aim to minimize the error introduced by quantization, typically by optimizing over

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

a calibration dataset. HQQ focuses on minimizing reconstruction error over model weights alone.
More sophisticated methods such as GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024) further
minimize activation-level reconstruction errors, achieving higher fidelity in the quantized model
outputs.

G.2 PRUNING

Model pruning aims to reduce the memory and computational cost of LLMs by removing redundant
parameters. Pruning methods can be categorized into unstructured and structured approaches.
Unstructured pruning removes individual weights independently, allowing fine-grained sparsity
patterns, while structured pruning removes entire groups of weights, such as rows, columns, attention
heads, or layers, leading to more hardware-friendly sparsity. Pruning methods aim to minimize a
reconstruction loss between the outputs of the original dense model f(·;θ) and the pruned model
f(·;θ′) on a calibration dataset D. This can be formulated as:

min
θ′

∑
x∈D

∥f(x;θ)− f(x;θ′)∥2, (23)

where θ′ denotes the pruned parameters, with many weights either set to zero or structurally removed.

Unstructured methods such as WANDA (Sun et al., 2023), SPARSEGPT (Frantar & Alistarh, 2023),
and GBLM (Das et al., 2023) apply weight-level pruning by evaluating importance scores and
removing weights individually. In contrast, structured pruning methods such as SHEARED LLAMA
(Xia et al., 2023) and LLM-PRUNER (Ma et al., 2023) remove entire structural components in the
model jointly (e.g., rows or columns of weight matrices), while still minimizing the reconstruction
error.

G.3 MODEL MERGING

Model merging techniques aim to construct a new model by combining the weights of multiple
pretrained models. Prior work (Yang et al., 2024; Goddard et al., 2024) has demonstrated that such
merging can effectively integrate knowledge from task-specific expert models into a single model,
often preserving or enhancing performance across the combined tasks. A common approach is
based on the concept of task vectors, which assumes that different capabilities in LLMs are encoded
in orthogonal directions in parameter space, allowing them to be combined additively or through
interpolation.

A particularly principled merging method is Spherical Linear Interpolation (SLERP), which interpo-
lates two models along the shortest path on the hypersphere defined by their parameter vectors. Given
two model weight vectors θ1 and θ2, the angle Ω between them, and an interpolation parameter
t ∈ [0, 1], SLERP is defined as:

SLERP(θ1,θ2, t) =
sin[(1− t)Ω]

sinΩ
θ1 +

sin[tΩ]

sinΩ
θ2. (24)

This formulation ensures that the interpolation stays on the unit sphere (assuming normalized weights),
which help preserve model properties and stability during merging. If Ω = 0 (i.e., the vectors are
identical), the interpolation reduces to linear interpolation.

G.4 FINE-TUNING

Model finetuning (Zhang et al., 2023; 2024)is a widely adopted approach for adapting pretrained
language models to specific domains or tasks by continuing training on a smaller, curated dataset. It
is particularly effective when the pretraining data distribution does not fully capture domain-specific
or task-specific knowledge. Finetuning includes Supervised Finetuning (SFT) or Instruction Tuning.
SFT involves training the model on explicit input–output pairs from a target task, while instruction
tuning further generalizes this by training the model to follow natural language instructions, often
across diverse tasks. Instruction tuning enhances a model’s generalization and alignment with human
intent, and is a key step in building instruction-following models capable of open-ended interaction.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: Watermarking hyperparameter configurations for LLaMA-8B.

Method Left Middle Right

Gu et al. (KGW) n = 0, δ = 1 n = 1, δ = 1 n = 1, δ = 2
Gu et al. (KTH) s = 4 s = 2 s = 1
Gloaguen et al. (KGW) n = 0, δ = 1 n = 1, δ = 1 n = 1, δ = 2
PRO δ = 0.3 δ = 0.5 δ = 1

Table 4: Watermarking hyperparameter configurations for LLaMA-3.2-3B.

Method Left Middle Right

Gu et al. (KGW) n = 0, δ = 1 n = 1, δ = 1 n = 1, δ = 2
Gu et al. (KTH) s = 4 s = 2 s = 1
Gloaguen et al. (KGW) n = 0, δ = 1 n = 1, δ = 1 n = 1, δ = 2
PRO δ = 0.5 δ = 1 δ = 1.5

Given a pretrained model with parameters θ and a dataset D = {(xi, yi)}Ni=1, both SFT and
instruction tuning optimize the empirical loss:

min
θ′

1

N

N∑
i=1

L(f(xi;θ
′), yi), (25)

Finetuning can be applied to all parameters or in a parameter-efficient manner using techniques
such as LoRA or adapter layers, which reduce compute and memory costs while maintaining strong
performance.

H EXPERIMENTS CONFIGURATION.

H.1 BASELINE SETTING

Each table lists the hyperparameter configurations for the four open-source watermarking methods.
The columns Left, Middle, and Right indicate the parameter settings used for the leftmost, middle,
and rightmost points on each method’s curve in the plots.

H.2 TRAINING CONFIGURATIONS

All models are fine-tuned on subsets of OpenWebText with different watermark strategies using a
batch size of 64 sequences, sequence length of 512 tokens, a maximum learning rate of 1e-5 with
cosine decay, and a linear warmup over the first 10% of steps. We use the AdamW optimizer with
(β1, β2) = (0.9, 0.999) and no weight decay. For KTH watermark distillation, we follow the same
setup except for using a batch size of 128 and a sequence length of 256 tokens to accommodate
memory constraints. For the Gloaguen et al. (Gloaguen et al., 2025)-KGW baseline, we follow
their configuration. Starting from a model distilled with KGW, we fine-tune it on OpenWebText for
2,500 steps with a batch size of 64, sequence length of 512 tokens, a learning rate of 1e-5, and the
AdamW optimizer. A cosine learning rate schedule is applied with 500 warmup steps. To identify
stable parameters, we compute contrastive task vectors based on parameter change before and after
fine-tuning, and perform a second-stage distillation restricted to these stable weights. Each training
run took approximately 6 hours on 4 NVIDIA A100 80GB GPUs.

H.3 MODEL MODIFICATION SETTINGS

To assess robustness, we apply four types of model modifications that simulate real-world user
behavior: (1) quantization, including INT8 (Dettmers et al., 2022) and GPTQ (Frantar et al., 2022)
at 8-bit precision, GPTQ(Frantar et al., 2022) and HQQ (Badri & Shaji, 2023) at 4-bit; (2) un-
structured pruning using WANDA (Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023)
at 20% and 50% sparsity levels; (3) model merging via SLERP (Goddard et al., 2024), where the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Watermarking hyperparameter configurations for Phi-2-2.7B.

Method Left Middle Right

Gu et al. (KGW) n = 0, δ = 1 n = 1, δ = 1 n = 1, δ = 2
Gu et al. (KTH) s = 4 s = 2 s = 1
Gloaguen et al. (KGW) n = 0, δ = 1 n = 1, δ = 1 n = 1, δ = 2
PRO δ = 0.5 δ = 1 δ = 1.5

watermarked model is interpolated with its non-watermarked base model using mixing ratios from
0.1 to 0.9 following (Gloaguen et al., 2025); and (4) full-parameter fine-tuning on the task-specific
OPENMATHINSTRUCT dataset (Toshniwal et al., 2024) and OPENCODEINSTRUCT dataset (Ahmad
et al., 2025), reflecting the common use case where LLM users fine-tune open-source models on
downstream data to build domain-specific experts. All modifications are implemented following the
original settings of their respective methods.

I ADDITIONAL EXPERIMENTS

I.1 VISUALIZATION OF ROC CURVES

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

False Positive Rate (FPR)

 PRO
 Gu et al. (with KGW)
 Gu et al. (with KTH)

Figure 7: ROC curves for dif-
ferent methods.

In Figure 7, we visualize the ROC curves for the proposed PRO
and the state-of-the-art method by Gu et al.. We select watermarked
LLaMA3-8B models with the same level of perplexity (i.e., 4.7).
The results indicate that PRO achieves better watermark detectability
while maintaining the same level of generation quality.

Specifically, the ROC curve of PRO closely follows the top-left
corner, indicating a higher true positive rate (TPR) across nearly all
false positive rate (FPR) thresholds. In contrast, the methods by Gu
et al. show noticeably lower TPRs, particularly at low FPR regions,
which suggests a less reliable distinction between watermarked and
non-watermarked texts under tight detection constraints. This im-
provement is especially evident in the early phase of the curve (e.g.,
FPR < 0.1), where PRO already achieves near-perfect detection performance, while the baseline
methods lag behind. These findings further confirm that PRO not only embeds robust watermark
patterns but also enables more confident detection, even at low error tolerance levels, making it more
suitable for security-critical applications.

I.2 MORE DATASET AND MODELS

We run evaluations on an additional large language model, GPT-J-6B, using the same settings as
in Figure 6 of the main paper. The results in Figure 8 show that the proposed PRO consistently
outperforms other methods in terms of watermark detectability (i.e., AUC) and generation quality
(i.e., Perplexity). Specifically, to achieve an AUC above 0.99, PRO maintains a perplexity of 17.8,
while existing methods require at least a perplexity of 21.5.

I.3 DETECTION PERFORMANCE UNDER DIFFERENT FPRS

We further evaluate detection robustness by measuring the true positive rate (TPR) at different false
positive rate (FPR) levels. This complements the AUC metric and highlights performance in stricter
detection regimes. As shown in Table 6, PRO consistently outperforms prior methods, especially
under very low FPRs (e.g., 0.1%), which are critical for practical deployment.

We run evaluations on an additional dataset of Wikipedia articles, using the same settings as in Figure
6 of the main paper, except for the dataset. We evaluate 5,000 completions of 200 tokens each,
generated from 50-token prompts. As shown in Figure 9, the proposed PRO consistently achieves
better watermark detectability at the same level of generation quality, indicating its generalizability to
downstream users’ prompts.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Comparison of detection performance (TPR at different FPR levels) on LLaMA-3-8B. PRO
demonstrates significantly stronger detection under stringent low-FPR conditions.

Method TPR@0.1% ↑ TPR@1% ↑ TPR@10% ↑
Gu et al. (KTH) 25.8% 53.6% 84.0%
Gu et al. (KGW) 54.2% 82.7% 97.5%
PRO 78.1% 92.3% 99.5%

16 18 20 22 24 26
0.8

0.9

1.0

AU
C

Perplexity

 Gu et al. (with KGW) Gu et al. (with KTH)
 Gloaguen et al. (with KGW) PRO

Figure 8: Results on GPT-J-6B.

4 5 6 7

0.8

0.9

1.0

10 12 14 16

0.8

0.9

1.0

AU
C

Perplexity

 Gu et al. (with KGW) Gu et al. (with KTH)
 Gloaguen et al. (with KGW) PRO

(a) LLaMA3-8B (b) Phi2-2.7B

AU
C

Perplexity

Figure 9: Results on Wikipedia dataset.

I.4 ROBUSTNESS AGAINST PARAPHRASING ATTACK

Table 7: AUC under DIPPER attacks.

Watermark Method DIPPER1 DIPPER2

(Gu et al., 2023)-KTH 0.82 0.79
(Gu et al., 2023)-KGW 0.86 0.84
(Gloaguen et al., 2025)-KGW 0.80 0.74
PRO (Ours) 0.90 0.87

We evaluate the robustness of our watermarking method
under paraphrasing using DIPPER(Krishna et al., 2023), a
controllable paraphraser that rewrites text while preserving
semantics in Table 7. We use two settings: DIPPER-1,
with lexical diversity set to 60 and order diversity 0; and
DIPPER-2, with lexical diversity 60 and order diversity 20.
Our method shows consistent detection performance under
both settings, indicating robustness against paraphrase
attacks.

I.5 ROBUSTNESS AGAINST MODEL MODIFICATIONS ACROSS DOWNSTREAM TASKS

We conducted experiments to evaluate FPL’s effectiveness on more diverse downstream tasks. Specif-
ically, we fine-tuned on the Alpaca dataset to further examine watermark robustness beyond code
and math domains. As shown in Table 8, our method consistently outperforms the best baseline
(Gloaguen et al. with KGW), with PRO’s relative improvements shown in parentheses.

Table 8: Performance of watermarked LLaMA-3-8B under different fine-tuning steps s. The values
in parentheses (prefixed with +) indicate the relative improvement compared to the baseline.

Step s AUC TPR@1% TPR@10%

300 0.91 (+0.02) 54.3% (+2.8%) 72.5% (+6.0%)
600 0.87 (+0.04) 49.4% (+4.0%) 69.9% (+2.9%)
900 0.85 (+0.02) 40.5% (+9.1%) 60.2% (+6.9%)
1200 0.81 (+0.04) 26.8% (+13.0%) 44.7% (+13.6%)
1500 0.79 (+0.05) 16.9% (+16.5%) 33.3% (+21.0%)

I.6 COMPARED WITH CLASSIFIER-BASED LLM TEXT DETECTORS

One distinct advantage of watermarking over classifier-based detectors is its ability to attribute
text to a specific model, rather than just distinguishing LLM and human text. We evaluated PRO
using the open-source classifier SuperAnnotate/ai-detector, which flagged 90.6% of PRO-generated
texts as AI-generated. It also flagged 90% of outputs from non-watermarked and differently
watermarked LLMs(Qwen-4B/8B, GPT-6B, LLaMA3-3B) as LLM-generated. To further analyze

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

this, we fine-tuned a binary RoBERTa classifier on texts from LLaMA3-8B and human texts. While
it detected 60–80% of outputs from other LLMs (Qwen-4B/8B, GPT-6B, LLaMA3-3B) as LLaMA3-
8B-generated. This shows that classifier-based methods primarily learn to distinguish LLM vs. human
text, not between different LLMs In contrast, our PRO watermark enables model-level attribution.
Specifically, we used the watermark policy model trained with LLaMA3-8B (student LLM) to detect
outputs from other LLMs. The false positive rates remained low: 0.8% (Qwen-4B), 1.0% (Qwen-8B),
1.1% (GPT-6B), and 0.6% (LLaMA3-3B). This highlights PRO’s precision in determining whether a
text was generated by a specific model.

I.7 DIFFERENT EMBEDDING MODEL AND WATERMARK MAPPING MODEL

To further validate the generality of our method, we supplemented the experiments with two addi-
tional embedding models: thenlper/gte-large and intfloat/e5-large-v2. Results in
Table 9 show that our method maintains strong detection performance across different embeddings,
consistently achieving near-perfect AUC and high TPR scores.

Table 9: Performance of PRO watermarking with LLaMA-3.2-3B under different embedding models.

Embedding Model AUC TPR@1% TPR@10%

thenlper/gte-large 0.997 95.2% 99.2%
intfloat/e5-large-v2 0.994 94.7% 99.0%

We also compared different architectures for the watermark mapping model M . An MLP yields the
best performance, as it can effectively exploit the full semantic embedding. By contrast, convolutional
neural networks (CNNs) perform significantly worse, since semantic embeddings are single dense
vectors without spatial or sequential structure for convolution to leverage. Thus, we adopt the MLP
design in our framework.

22

	Introduction
	Related Work and Threat Model
	Text watermarks for Closed-source LLMs
	Text watermarks for Open-source LLMs
	Input Prompt-dependent
	Input Prompt-independent

	Threat Model

	Methods
	Overview
	Co-Adaptive Watermark Policy (CAWP)
	Forgotten Perturbation-aware Learning (FPL)

	Experiments
	Experimental settings
	Results
	Comparison with Existing Works
	Ablation Study
	Other Experiments

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Ethics Statement
	Reproducibility Statement
	Theoretical Analysis
	Convergence Analysis of CAWP
	Computational Overhead of FPL

	Computational Efficiency Analysis
	Watermarking for Closed-source LLMs
	KGW
	KTH

	Model Modification
	Quantization
	Pruning
	Model merging
	Fine-tuning

	Experiments Configuration.
	Baseline Setting
	Training Configurations
	Model Modification Settings

	Additional Experiments
	Visualization of ROC Curves
	More Dataset and Models
	Detection Performance under Different FPRs
	Robustness against Paraphrasing attack
	Robustness against Model Modifications across Downstream Tasks
	Compared with Classifier-based LLM text Detectors
	Different Embedding Model and Watermark Mapping Model

