
From Epoch to Sample Size: Developing New Data-driven
Priors for Learning Curve Prior-Fitted Networks

Tom J. Viering1 Steven Adriaensen2 Herilalaina Rakotoarison2 Frank Hutter3,2

1
Delft University of Technology, the Netherlands

2
Machine Learning Lab, University of Freiburg, Germany

3
ELLIS Institute Tübingen

Abstract Learning Curve Prior-Fitted Networks (LC-PFNs) perform Bayesian learning curve extrapo-

lation for epoch learning curves. This paper explores designing new priors for LC-PFNs,

focusing on sample-size learning curves that relate training set size to performance. We

use the Learning Curve Database (LCDB), which contains diverse learning curve data for

machine learning models on tabular data, to develop two data-driven priors. The first method

fits MMF4 and WBL4 parametric curve models to the LCDB and uses a Gaussian mixture

model to represent the prior over parametric curve parameters. The second method directly

trains the LCPFNs on the LCDB curves, which we call the Real Data LC-PFN. We set up a

proper meta-learning curve extrapolation benchmark with cross-validation on the LCDB for

a careful evaluation. We show that both proposed priors improve upon the original LC-PFN,

with the Real Data LC-PFN providing best results, improving in 78% of the experiments upon

the old prior for extrapolating learning curves. Our study illustrates how to systematically

design new priors for LC-PFN’s in a metalearning framework, opening up their use for

various curve modeling tasks in machine learning and beyond.

1 Introduction
Learning Curve Prior-Fitted Networks (LC-PFNs) were designed to extrapolate epoch learning

curves that depict performance versus iterations or epochs (Adriaensen et al., 2023). These networks

approximate Bayesian inference by training a transformer on a large set of synthetic curves

generated from the prior, thus learning to predict their continuation and approximate the true

posterior distribution (Müller et al., 2021). Adriaensen et al. (2023) improved on the prior developed

by Domhan et al. (2015) using domain knowledge and hand-crafted tuning.

In this work, we extend the LC-PFN technique to sample-size learning curves that plot perfor-

mance versus training set size. Both types of curves are often referred to as "learning curves" (Viering

and Loog, 2022), but they differ fundamentally: epoch learning curves track the performance of a

single model over time, while sample-wise learning curves compare the performance of multiple

models trained to convergence on varying amounts of data. Extrapolating epoch-wise learning

curves is useful for speeding up hyperparameter tuning using multi-fidelity techniques (Klein

et al., 2022; Wistuba et al., 2022; Kadra et al., 2023; Rakotoarison et al., 2024) and algorithm se-

lection (Ruhkopf et al., 2022). Sample-wise learning curves offer different insights and can also

expedite hyperparameter tuning or model selection, especially for models that do not produce

epoch-wise curves, such as K-Nearest-Neighbor classifiers (Mohr and van Rijn, 2023; Viering and

Loog, 2022). They have also been used to accelerate hyperparameter tuning of algorithms like

Support Vector Machines through Multi-Fidelity Bayesian Optimization (Klein et al., 2017).

Additionally, sample size curves are valuable for estimating the data requirements of machine

learning projects (Viering and Loog, 2022). In real-world applications where data or annotations

are costly, accurately estimating the necessary labeling budget is crucial before starting large-scale

projects. Approximately 51% of machine learning projects in industry face challenges due to

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:t.j.viering@tudelft.nl
mailto:adriaens@cs.uni-freiburg.de
mailto:rakotoah@cs.uni-freiburg.de
mailto:fh@cs.uni-freiburg.de
https://creativecommons.org/licenses/by/4.0/

Figure 1: Left: Example extrapolations of a curve from the LCDB obtained by our two methods,

contrasted to that of the original LC-PFN (more examples in Appendix, Figure 8). Anchor

indicates the training set size. Middle / Right: samples produced by our parametric MMF4

LC-PFN and non-parametric Real Data LC-PFN prior (LCDB samples plus augmentation).

insufficient data (Dimensional Research, 2019). Traditionally, this estimation is done by fitting a

parametric model to a learning curve and extrapolating it to determine the required data amount

(Viering and Loog, 2022). This technique has been applied in various domains, such as machine

translation (Kolachina et al., 2012), DNA microarray data (Mukherjee et al., 2003; Hess and Wei,

2010), and is now gaining interest in the deep learning community, where these curves are often

referred to as "scaling laws" (Hestness et al., 2017; Mahmood et al., 2022).

Our study focuses on extrapolating learning curves for traditional machine learning models

using a large database of learning curves from 20 classification models on 246 OpenML datasets,

called the Learning Curve Database (LCDB) (Mohr et al., 2022). To apply LC-PFNs to these sample-

wise curves, it is crucial to develop an accurate prior. Mohr et al. (2022) conducted the largest

study on learning curve extrapolation, finding that most curves are well-modeled by the parametric

models MMF4 and WBL4. However, Mohr et al. (2022) also noted that some curves exhibit unusual

behaviors, such as peaks and non-monotonicity, where model performance decreases with more

data (see also the surprising curves in Figure 1, left). These behaviors are challenging to model with

parametric approaches, raising the question of how to develop a prior for these learning curves.

Next to systematically developing two new datadriven priors for the LC-PFN, our study shows how

to build a metalearning experiment to evaluate metalearned curve extrapolators on the LCDB.

2 Methods
We propose two data-driven approaches to develop priors for LC-PFNs, see Figure 1 for an overview

(middle, right). The first approach models the curves using parametric forms and develops a data-

driven prior over these parametric curves through density estimation. This approach maintains the

Bayesian interpretation, and allows us to generate arbitrary amounts of training data, but may not

capture all curve behaviors accurately because of the parametric assumption. The second approach,

Real Data LC-PFN, involves training the LC-PFN model from scratch on real learning curve data

from the LCDB. This method can learn intricate details missed by the parametric approach, such

as multiple maxima, at the risk of overfitting the LCDB. One could argue that in training on real

data, effectively using the data distribution as prior, we lose the Bayesian interpretation. However,

we would like to argue that our augmented real data prior can be viewed as encoding the prior

belief that curves will look similar to curves seen thus far. In what follows, we provide high-level

descriptions of each approach; further details can be found in Appendix A.

2.1 Method 1: Parametric MMF4 and WBL4 LC-PFN
We perform curve fitting using the same procedure as Mohr et al. (2022) for all individual learning

curves of the LCDB using the parametric forms MMF4 and WBL4. The parameter values of

2

the fit and an estimate of the Gaussian noise (assumed to be homogeneous for a single curve,

obtained after fitting using maximum likelihood) found from all individual curves form a new

dataset which is modeled using density estimation. Before modeling the curve parameters, we

transform the curve parameters using a quantile transform per dimension, so that the resulting

data is normally distributed afterward to ensure proper scaling. We then model the density with a

mixture of Gaussians with a full covariance matrix and we tune the number of mixtures on the

validation set using the Negative Log Likelihood of the curve parameters per fold. We sample

curve parameters and noise levels from the final tuned Gaussian Mixture Model (GMM), invert the

quantile transformation to get the parameters for the parametric forms, and use them to generate

new curves which are used to train the LC-PFN.

2.2 Method 2: Training LC-PFNs Directly on Real Data (Real Data LC-PFN)

We largely follow the experimental protocol of Adriaensen et al. (2023) to train on accuracy learning

curves from the LCDB, with a few adjustments. We sample the curve length for the batch and

then fill the batch with curves of the appropriate length, sampled uniformly from the LCDB. We

select a cut-off point uniformly at random for each curve that is evaluated or trained on, where

the points before the cut-off are observed points, and the points after the cut-off are extrapolation

targets. These latter points are used for training the LCPFN with the Cross Entropy loss. As the

training sets are relatively small, roughly 45.000 curves, compared to the 10M different synthetic

curves used in the original LC-PFN and parametric LC-PFN, some degree of overfitting is likely.

To counteract, we consider a variant adopting a simple custom data-augmentation (Shorten and

Khoshgoftaar, 2019) scheme performing a random linear transformation on the original curve only

for training, see Appendix A.3 for more details.

3 Experiments
First we briefly discuss the experimental setup; then, we delve into the results and discussion.

3.1 Experimental Setup

Both approaches are data-driven and therefore prone to overfitting, requiring a careful evaluation.

We use five-fold cross-validation. One fold is used as validation (used for tuning hyperparameters of

the GMM) and another fold is used as test; the remaining 3 folds are used for training. The folds are

over 20 learners and 246 datasets. By cross-validating over learners and datasets, we can evaluate

Unseen Datasets (UD), Unseen Learners (UL), and Unseen Datasets and Unseen Learners (UDUL).

More information regarding the cross validation procedure is given in the Appendix (see also Figure

4). In terms of meta-learning jargon, the folds can be considered ‘meta-train’, ‘meta-validation’ and

‘meta-test’ sets, where these form learning curve datasets to learn from. When rotating folds, we

rotate both learners and datasets at the same time. This way, we can perform 5-fold cross validation

using only 5 iterations over learners and datasets. The evaluation is aggregated over meta-test sets,

leading to 62795 curves for UD, 62852 UL, 21052 curves for UDUL in the test set.

The LCDB contains various learning curves, such as train, validation and test learning curves,

that were obtained by splitting the original classification datasets in train, validation and test

sets (not to be confused with our meta-train, meta-validation and meta-test sets of the learning

curve data). We only use the validation accuracy curves of the LCDB since their performances

are more independent. Because of the different splittings, the curves have 25 realizations, which

we call individual curves. We extrapolate these individual learning curves which is a significantly

harder extrapolation task than previously considered (in previous studies curves are averaged over

multiple training sets to smoothen them (Mohr et al., 2022; Viering and Loog, 2022)). Finally, note

that the LCDB training set sizes 𝑠 are sampled according to 𝑠 = 2
((𝑖+7)/2)

, where 𝑖 = 1, 2, . . . , 35. The

curves generally do not have the same length due to finite data set sizes. We feed the transformers

a set of (𝑖, 𝑦)-values, where 𝑦 is the validation accuracy. For more detail see Appendix A.4.

3

1 2 3 4 5
UL

UD

UDUL

Average Rank

Original LC-PFN
WBL4 LC-PFN
MMF4 LC-PFN
Real Data LC-PFN (no augment)
Real Data LC-PFN

Figure 2: Aggregate results of Rank of the Negative Log Likelihood (NLL) per curve. Scenarios: Unseen

Dataset (UD), Unseen Learner (UL), Unseen Dataset Unseen Learner (UDUL). Lower is better.

3.2 Results and Discussion

First, we give a high-level overview of the results in Figure 2. This figure shows the average rank

across all evaluations in terms of the Negative Log Likelihood (NLL) per curve. We obtain one

value per curve by first averaging the performances over all the unseen target anchors, and then we

perform a second average over the number of observed anchors, to get to a single NLL per curve.

We observe that, as expected, the Original LC-PFN does not perform well, as its prior was

designed for epoch curves. Furthermore, the Real Data LC-PFN without augmentation does not

perform well and significantly overfits the small LCDB data, except for the Unseen Learner scenario.

This overfitting was diagnosed by studying the epoch learning curve of the LC-PFN. This was

expected because of the small amount of data compared to the amount of synthetic data used.

Furthermore, we observe that for Method 1 using the curve generators, MMF4 ranks better than

WBL4, which is in line with earlier findings (Mohr et al., 2022). The best rank is obtained by Method

2, i.e., the Real Data LCPFN that uses data-augmentation. For completeness, we also do a pairwise

comparison of all methods with the original LC-PFN in Table 1, which agrees: the Real Data LC-PFN

improves the most upon the original LC-PFN, in 78%-80% of the cases.

We now delve into a more detailed comparison with the 3 best approaches in Figure 3 for

the most challenging scenario of the Unseen Learner Unseen Dataset (see the Appendix for the

other scenario’s). This evaluation is inspired by Kielhöfer et al. (2024) and Mohr et al. (2022). The

empirical CDF over all evaluations (left plot) illustrates that the MMF4 and Real Data LC-PFN

indeed seem to substantially improve over the original LC-PFN (the CDF is dominated). On the

other hand, the Real Data LC-PFN and the MMF4 LC-PFN seem to perform similarly, especially,

their CDF’s cross for low NLL. To study the effect of the cut-off and prediction horizon, we rank

these 3 methods for each (anchor observed, anchor target) pair (middle plot). Longer LCDB curves

are rarer (see the right plot), thus, not all (observed, target) pairs weigh equally in the CDF.

The Real Data LC-PFN seems to work best in the majority of the cases; this is in line with

expectations because the data augmentation addresses the overfitting issues and the MMF4-model

has a strong parametric bias, which does not account for some of the strange learning curves in the

LCDB. That it learns non-trivial patterns such as non-monotonicity can be observed in Figure 8

(Appendix). Returning to Figure 3, the Real Data LC-PFN does not work well for the largest anchor

targets, we believe because these curves are rarer in the LCDB, which may lead to overfitting.

For zero points observed, clearly original LC-PFN should not perform well, because it was not

developed for training set size curves. However, it is a bit unclear to us why the original LC-PFN

outperforms the MMF4 and Real Data LC-PFN baselines for 1 observed anchor. One conjecture is

that this setting may be more prone to overfitting and requires stronger regularization. The results

of the other scenarios are qualitatively similar (see Figures 6 and 7 in Appendix), except that the

4

Real Data LC-PFN has less issues with longer curves in Unseen Learner and Unseen Data scenarios,

further justifying that it may be slightly overfitted to learners and / or datasets.

MMF4 LC-PFN WBL4 LC-PFN Real Data LC-PFN (no augment) Real Data LC-PFN
UL 70.99% 68.08% 72.68% 80.54%

UD 70.67% 67.85% 49.69% 78.50%

UDUL 71.56% 68.05% 48.88% 78.58%

Table 1: Percentage of cases the model is better than Original LC-PFN (Adriaensen et al., 2023)

Figure 3: More detailed results for the scenario Unseen Dataset Unseen Learner (UDUL). Left: empirical

CDF over all evaluations, showing that the MMF4 LC-PFN and Real Data LC-PFN outperform

the Original LC-PFN. Middle: shows which algorithm wins the majority of the evaluations

for a specific anchor observed and anchor target. Right: amount of curves under evaluation.

4 Future Work and Limitations

We have observed that the LC-PFN models trained on real data do not seem to converge to zero

training loss. This may indicate suboptimal tuning. Therefore we want to include finetuning and

early stopping on the validation in the future. Now, only the parametric LC-PFNs use the validation

set for tuning hyperparameters, thus the comparison is in favor of the parametric LC-PFNs, yet

the Real Data LC-PFN works best. Real and synthetic data could also be mixed. We believe the

parametric prior could still be useful even though its performance is suboptimal, for example for

interpretability. To that end a more simplified prior could be desirable — it is not clear whether

it is necessary for such a complex parametric prior (tuning results in +-200 Gaussian mixtures).

One difficulty is that for most curve parameters it is unclear what is a valid range (leading us to

the quantile approach) and that the curve parameters seem to be dependent. Finally, it remains

surprising to us that the Real Data LC-PFN performs well even without augmentation for the

scenario Unseen Learner; suggesting that overfitting to datasets may in fact be also useful.

5 Broader Impact Statement

Extrapolating learning curves is useful for estimating the amount of data needed and can lead

to improvements in multi-fidelity hyperparameter optimization algorithms. The first will likely

have a positive impact on society due to less failed machine learning projects and ventures, and

additionally may lead to cost savings for data collection. More efficient hyperparameter tuning is

generally desireable in the context of green-machine learning: by making these algorithms more

efficient, less compute-heavy tuning needs to be performed, leading to potential energy savings.

5

Acknowledgements. Frank Hutter acknowledges the financial support of the Hector Foundation.

Steven Adriaensen, Herilalaina Rakotoarison, and Frank Hutter acknowledge funding by the

European Union (via ERC Consolidator Grant Deep Learning 2.0, grant no. 101045765). Tom

Viering, Steven Adriaensen, Herilalaina Rakotoarison, and Frank Hutter acknowledge funding by

TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No

952215. This work wouldn’t have happened without a research visit by Tom Viering made possible

by the TAILOR Collaboration Exchange Fund. Views and opinions expressed are however those

of the author(s) only and do not necessarily reflect those of the European Union or the European

Research Council. Neither the European Union nor the granting authority can be held responsible

for them.

References

Adriaensen, S., Rakotoarison, H., Müller, S., and Hutter, F. (2023). Efficient bayesian learning

curve extrapolation using prior-data fitted networks. In Thirty-seventh Conference on Neural
Information Processing Systems.

Dimensional Research (2019). Artificial Intelligence and Machine Learning Projects are Obstructed

by Data Issues: Global Survey of Data Scientists, AI Experts, and Stakeholders. Technical report,

Dimensional Research.

Domhan, T., Springenberg, J. T., and Hutter, F. (2015). Speeding up automatic hyperparameter

optimization of deep neural networks by extrapolation of learning curves. In Twenty-fourth
international joint conference on artificial intelligence.

Hess, K. R. and Wei, C. (2010). Learning curves in classification with microarray data. In Seminars
in oncology, volume 37, pages 65–68. Elsevier.

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M. M. A.,

Yang, Y., and Zhou, Y. (2017). Deep learning scaling is predictable, empirically. arXiv preprint
arXiv:1712.00409.

Kadra, A., Janowski, M., Wistuba, M., and Grabocka, J. (2023). Scaling laws for hyperparameter

optimization. Advances in Neural Information Processing Systems, 36.

Kielhöfer, L., Mohr, F., and van Rijn, J. N. (2024). Learning curve extrapolation methods across

extrapolation settings. In International Symposium on Intelligent Data Analysis, pages 145–157.
Springer.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2017). Fast bayesian optimization of

machine learning hyperparameters on large datasets. In Artificial intelligence and statistics, pages
528–536. PMLR.

Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F. (2022). Learning curve prediction with

bayesian neural networks. In International conference on learning representations.

Kolachina, P., Cancedda, N., Dymetman, M., and Venkatapathy, S. (2012). Prediction of learning

curves in machine translation. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 22–30.

6

Mahmood, R., Lucas, J., Acuna, D., Li, D., Philion, J., Alvarez, J. M., Yu, Z., Fidler, S., and Law,

M. T. (2022). How much more data do i need? estimating requirements for downstream tasks.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
275–284.

Mohr, F. and van Rijn, J. N. (2023). Fast and informative model selection using learning curve

cross-validation. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Mohr, F., Viering, T. J., Loog, M., and van Rijn, J. N. (2022). Lcdb 1.0: An extensive learning curves

database for classification tasks. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 3–19. Springer.

Mukherjee, S., Tamayo, P., Rogers, S., Rifkin, R., Engle, A., Campbell, C., Golub, T. R., and Mesirov,

J. P. (2003). Estimating dataset size requirements for classifying dna microarray data. Journal of
computational biology, 10(2):119–142.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. (2021). Transformers can do

bayesian inference. In International Conference on Learning Representations.

Rakotoarison, H., Adriaensen, S., Mallik, N., Garibov, S., Bergman, E., and Hutter, F. (2024). In-

context freeze-thaw bayesian optimization for hyperparameter optimization. arXiv preprint
arXiv:2404.16795.

Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F., and Lindauer, M. (2022). Masif: Meta-

learned algorithm selection using implicit fidelity information. Transactions on Machine Learning
Research.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning.

Journal of big data, 6(1):1–48.

Viering, T. and Loog, M. (2022). The shape of learning curves: a review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(6):7799–7819.

Wistuba, M., Kadra, A., and Grabocka, J. (2022). Supervising the multi-fidelity race of hyperparam-

eter configurations. Advances in Neural Information Processing Systems, 35:13470–13484.

7

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [No]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] The code and the used splits will be released

later, but we will release them to ensure that benchmarking on the LCDB will be done

properly in future metalearning studies for curve extrapolators.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] We used 5-fold CV.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [No] No, however, we always report the number of curves under evaluation, which

we believe is quite large ensuring significance of the results.

(e) Did you report the statistical significance of your results? [No] No, see above.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] Yes, we have

used the LCDB (Mohr et al., 2022).

(g) Did you compare performance over time and describe how you selected the maximum

duration? [No] No, since all methods used the same amount of training time for the LC-PFN

models and they were all trained with the same number of examples.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [No]

(i) Did you run ablation studies to assess the impact of different components of your ap-

proach? [Yes] We ablated the data augmentation and we ablated the parametric curve

model, furthermore, we compared two approaches towards developing datadriven priors.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [No] No, we will release this later.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [No] No, we will release this later.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [No] No, we will release this later.

8

https://2022.automl.cc/ethics-accessibility/

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No] No, we will release this later.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [No] No, we will release this later.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] Yes, we cited the LC-PFN prior work and the

LCDB.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [No] Not applicable.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] Not applicable.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [No]

Not applicable.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [No] No, we will release them later.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [No] Not applicable.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [No] Not applicable.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [No] Not applicable.

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [No] Not applicable.

(b) Did you include complete proofs of all theoretical results? [No] Not applicable.

9

Figure 4: Cross Validation procedure for cross validating over the LCDB for generating meta-train

(green), meta-validation (orange) and meta-test sets (blue). Gray sets are unused in our

experiments. Left: first iteration of the cross validation, right: second interation of the cross

validation, out of the 5 cross-validation iterations.

A Further Details about Methods and Experimental Setup

A.1 Cross Validation procedure and Background on LCDB

The Learning Curve Database by Mohr et al. (2022) is a database that consists of learning curves

of 20 traditional machine learning algorithms (such as SVM, QDA, LDA, ...) on 246 datasets. The

curves are generated by bootstrap-sampling multiple training, validation and test sets. These sets

are used to build the learning curve: samples are discarded from the training set and performance

is measured on the validation set. The training set sizes are sampled according to an exponential

schedule, the training set sizes are also referred to as anchors.

The total classification dataset is split first in a temporary and test set, and the temporary set is

splitted in train and validation sets. This splitting is governed by two random seeds: the outer seed

controls the test split, and the inner seed controls the validation seed. Multiple inner and outer

seeds are used, resulting in multiple (strongly correlated) learning curves for a pair of (learner,

dataset)-combination.

Since the curves are strongly correlated, we should not randomly split the whole LCDB randomly

in train, validation and test sets — because in that case we risk overly optimistic performance

estimates, as very similar curves will occur in the train and test set (because they might correspond

to the same learner and dataset but differ only by inner or outer seed). Instead, we use group cross-

validation, where the groups are given by datasets and learners, to obtain more fair performance

estimates. To avoid a combinatorial explosion, we use two cross-validations, one with respect to

the learner, and one with respect to the dataset, and we rotate the folds simultaneously.

The process is illustrated in Figure 4. For clarity let us describe the procedure in words as well.

Assume we have three learners: A, B, and C, and 3 datasets: 1, 2, 3. We are going to perform the

procedure with a 3-fold cross validation over learners and datasets. In the first iteration, we will

put (A,1) in the training set, and (B,1), (C,1) will end up in the validation and test sets respectively,

which will be the unseen learner (UL) partition, since the dataset 1 was observed by the training

set. (A,2) and (A,3) will end up in the validation and test sets respectively, and will be in the unseen

dataset partition, since the learner A has been seen during training. (B,2) and (C,3) will end up

in the unseen learner unseen dataset (UDUL) partition. This would be the first cross validation

iteration. In the next iteration, all the indices are increased by one modulo 3, e.g. 1 turns into 2, 2

into 3, 3 into 1, and similarly for A,B,C. Some combinations remain unused, since it was not clear to

10

us whether to assign them to validation or test-sets, in hindsight its clear that one has to uniquely

break the tie, this could potentially enlarge the validation and test sets further for the partition

UDUL.

One should be careful to note that there are essentially two levels on which splitting in train,

validation and test sets is done. The first splitting is done by the LCDB, this splits datasets, such

as MNIST, into train, validation and test sets to be able to generate learning curves. These curves

form the data for our study. We split the database of curves again in different train, validation and

test sets. Since we are essentially doing the dataset splitting on a higher level, its appropriate to

call these meta-learn, meta-validate and meta-test sets. Note that in the first splitting, the splitting

is done on tabular classification data, while in the second level, the splitting is done on a curve

level. Thus, an entire curve ends up in the meta-train, meta-validation or meta-test set.

A.2 MMF4 and WBL4 LC-PFN Details

The parametric forms for MM4 is𝑦 (𝑥) = (𝑎𝑏+𝑐𝑥𝑑)/(𝑏+𝑥𝑑) .Wemodel 𝑥 as the training set size, and

𝑦 as the validation accuracy (note that they are not log-scaled before fitting). For WBL4 the formula

is 𝑦 (𝑥) = −𝑏𝑒𝑥𝑝 (−𝑎𝑥𝑑) + 𝑐 . We perform Levenberg-Marquadt fitting on the individual curves with

5 random restarts with finite differencing, where the best parameters are kept, following Mohr et al.

(2022). Only the full-length learning curve is fitted with the mean squared error. After fitting, we

take the mean squared residual as estimate for 𝜎 .

The quantile transformer uses 1000 quantiles to estimate the distribution of the parametric

curve parameters per dimension (where the noise is an additional dimension). Samples within

quantiles are lineairly interpolated with the output quantiles of the normal distribution. This

transformation was performed, because for example parameter 𝑏 of the MMF4 formula seems to

have extremely large and unpredictable bounds (10
5
0) and thus cannot be expected to be well

modeled by a Gaussian.

The Gaussian Mixture model thus models 𝑝 (𝑎′, 𝑏′, 𝑐′, 𝑑 ′, 𝜎 ′) in the transformed space. These

are transformed back using the inverse quantile transformation to obtain 𝑎, 𝑏, 𝑐, 𝑑, 𝜎 in the original

space. Afterward, the synthetic curve is generated using the formula of the parametric form of

WBL4 or MMF4, and Gaussian noise with mean zero and standard deviation 𝜎2
is added to each

point on the curve. Finally, before providing the curve to the LC-PFN for training, the 𝑥-values are

renumbered to 𝑖-values, to be consistent with the evaluation.

Next to the Gaussian Mixture model we also experimented with a Kernel Density Estimator

using Gaussian Kernel, but we found that the Guassian Mixture Model generally gave better results

in terms of NLL on the curve parameters in the transformed space on the validation sets, thus we

resorted to the Gaussian Mixture Model. The number of mixtures was tuned via Gridsearch over

10
1
to 10

3
, with equally spaced hyperparameters in log-space, with 100 steps from 1 to 3 (base 10).

The hyperparameter used was different per fold. For each fold, the hyperparameter that resulted in

the best average performance over the 3 scenario’s (UD, UL, UDUL) in terms of the NLL was used

for generating synthetic curves for training the LC-PFN.

Sometimes we observe curves that do not fall in the expected range of [0, 1] for the accuracy
learning curves. When the curve falls in the range [0 − 𝜖, 1 + 𝜖] we clip the curve into the range

[0, 1], otherwise, the curve is rejected and not used for training the PFN. We set 𝜖 = 1

2
.

Note that the training of these parametric LC-PFN’s follows largely the same procedure as

outlined in Section 2.2. We train with 10M synthetic curves. However, when sampling a batch, we

first sample a batch of curves from the LCDB. We only keep the missing values of the batch, and

we replace the actual curve values by synthetic curves as generated by this prior. The additional

data-augmentation described in Section 2.2 is not used, since the curves are all already augmented

by the learned noise.

11

Figure 5: Illustration of the augmentation strategy used in Real Data LC-PFN.

A.3 Data-Augmentation Strategy

Data augmentation is a popular technique for counteracting overfitting in deep learning (Shorten

and Khoshgoftaar, 2019) in the context of little training data. It involves creating and training on

randomly perturbed variants of existing data points. In our experiments, we apply mostly small

random linear transformation on the original curve that are guaranteed to be bounded in [0,1].

An example of the augmentations produced is shown in Figure 5. We realize this by (1) sampling

10 values uniformly at random in [0,1], (ii) for all 45 ordered pairs (𝑎,𝑏), with 𝑎 < 𝑏, we consider

the linear transformation mapping the smallest (𝑦min) and largest (𝑦max) curve value onto 𝑎 and 𝑏,

respectively, i.e.,

𝑦augmented =
𝑏 − 𝑎

𝑦max − 𝑦min

· (𝑦original − 𝑦min) + 𝑎

(iii) From these candidate transformed curves, we pick the one with minimal point-wise aggregated

mean squared difference, biasing towards smaller transformations. Crucially, in our experimental

setup, data augmentations are only performed on the training sets, but not on the test sets, as the

latter may lead to biased performance estimates.

A.4 Dealing with Missing Values and the Original LC-PFN and more minor details

The LCDB contains quite some missing values because some machine learning models do not

complete training successfully; these errors seem to be irrecoverable. In our prior, when determining

the length of the curve, we ignore missing values. For method 2, which trains the LCPFN on real

curves, missing values in the input (observed partial curve) are dropped by removing the (𝑖 ,𝑦)-value

pair, and 𝑖 values with missing𝑦’s are never used as a target for the extrapolation. For the parametric

methods, it would be beneficial for the transformer to also learn to deal with missing values, since

it will observe these at test time. To this end, we sample a curve from the LCDB, and we use the

missingness to also remove values from a synthetic curve as generated by a generators for method

1. The original LC-PFN (Adriaensen et al., 2023) is also fed in the context with missing values

removed, and manages to deal with it despite not being trained with them. However, the original

which was trained for training curves does observe radically different x-values. To soften this

12

domain shift, we feed in the values 𝑖 = 1, . . . , 35 instead of the actual training set sizes 𝑠 , which are

more similar to the epoch numbers it was trained on.

All the LC-PFN models were trained with 10M example curves (either synthetic or real) with

the same hyperparameters as in the original work of Adriaensen et al. (2023). We used 1000 buckets

where for each different model the bucket edges were determined according to the prior.

B More Detailed Results

Figure 6: In this figure we display the method which wins the most for a particular anchor observed

and anchor target. Winning means that it achieved the lowest Negative Log Likelihood (NLL).

Winning the most means that, in the majority of the experiments for a particular (anchor

observed, anchor target) pair, the method achieves the most wins. Meaning of the scenario’s:

(UD) Unseen Dataset, (UL) Unseen Learner, (UDUL) Unseen Dataset Unseen Learner.

Figure 7: In this figure we display the empirical cumulative distribution function of each method for

all scenarios.

13

Figure 8: More Extrapolation Examples. See Figure 1 (left) for more info, legend, etc.

14

	Introduction
	Methods
	Method 1: Parametric MMF4 and WBL4 LC-PFN
	Method 2: Training LC-PFNs Directly on Real Data (Real Data LC-PFN)

	Experiments
	Experimental Setup
	Results and Discussion

	Future Work and Limitations
	Broader Impact Statement
	Further Details about Methods and Experimental Setup
	Cross Validation procedure and Background on LCDB
	MMF4 and WBL4 LC-PFN Details
	Data-Augmentation Strategy
	Dealing with Missing Values and the Original LC-PFN and more minor details

	More Detailed Results

