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Abstract001

Large language models (LLMs) can rewrite002
the N -best hypotheses from a speech-to-text003
model, often fixing recognition or translation004
errors that traditional rescoring cannot. Yet005
research on generative error correction (GER)006
has been focusing on monolingual automatic007
speech recognition (ASR), leaving its multi-008
lingual and multitask potential underexplored.009
We introduce CoVoGER, a benchmark for GER010
that covers both ASR and speech-to-text trans-011
lation (ST) across 15 languages and 28 lan-012
guage pairs. CoVoGER is constructed by de-013
coding Common Voice 20.0 and CoVoST-2014
with Whisper of three model sizes and Seam-015
lessM4T of two model sizes, providing 5-best016
lists obtained via a mixture of beam search and017
temperature sampling. We evaluated various018
instruction-tuned LLMs, including commercial019
models in zero-shot mode and open-sourced020
models with LoRA fine-tuning, and found that021
the mixture decoding strategy yields the best022
GER performance in most settings. CoVoGER023
will be released to promote research on reliable024
language-universal speech-to-text GER.025

1 Introduction026

Automatic speech recognition (ASR) and speech-027

to-text translation (ST) systems (Zue, 1985; Ney,028

1999) are increasingly deployed in real-world ap-029

plications, from voice assistants and captioning ser-030

vices to cross-lingual communication tools. How-031

ever, even state-of-the-art models can produce tran-032

scription errors, especially under noisy conditions033

or with accented speech. These errors often lead034

to miscommunication, which leads to a growing035

need for methods to correct such ASR/ST errors036

on the fly. Recent advances in large language mod-037

els (LLMs) (Radford et al., 2019; Brown et al.,038

2020; Touvron et al., 2023; Bai et al., 2023) offer039

a promising new pathway to tackle this challenge:040

leveraging LLMs to revise or repair the initial out-041

put of speech-to-text systems, thereby enhancing042

绳金塔始建于唐朝。 Shengji Tower was built in the Tang Dynasty.
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Figure 1: Example of a multilingual multitask GER
system.

both the accuracy and the cognitive readability of 043

the transcribed content. 044

Generative error correction (GER) (Chen et al., 045

2023a; Yang et al., 2023) has emerged as a new 046

paradigm to leverage LLMs for refining speech out- 047

puts. Unlike traditional rescoring (Xu et al., 2022; 048

Udagawa et al., 2022; Chen et al., 2023b), which 049

merely re-rank the existing hypotheses in an N- 050

best list, GER approaches utilize LLM to generate 051

an improved final transcription. This approach en- 052

ables the LLM to aggregate evidence from multiple 053

hypotheses and leverage its linguistic knowledge 054

and contextual reasoning to correct errors, mark- 055

ing a transition toward active, generative correction 056

within a multi-pass voice-agentic1 system (i.e., an 057

ASR/ST agent followed by an LLM agent). 058

However, most GER studies concentrate exclu- 059

sively on English (Yang et al., 2023; Hu et al., 060

2024a; Ghosh et al., 2024). Non-English (Uda- 061

gawa et al., 2024; Robatian et al., 2025) and multi- 062

lingual (Hu et al., 2024b) variants are emerging, but 063

coverage remains fragmentary and lacks a unified 064

evaluation framework. Furthermore, most studies 065

address ASR and ST tasks in isolation, overlooking 066

their well-known synergies. It therefore remains an 067

open question whether GER can benefit from joint 068

training across both speech-to-text tasks. 069

1We refer to the recent chained voice agents setup: https:
//platform.openai.com/docs/guides/voice-agents.
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Meanwhile, the first-pass decoding setup re-070

mains underexplored. GER performance hinges071

on the quality of the N -best lists, which depend on072

both generation methods and upstream models. Yet073

most prior work relies solely on beam search with a074

single first-pass model to produce these lists (Chen075

et al., 2023a; Hu et al., 2024b), while alternatives076

like temperature sampling and a systematic analy-077

sis of decoding choices are largely absent.078

To address these research gaps in speech-to-text079

research, we make the following contributions:080

• We propose CoVoGER, the first benchmark081

for GER that spans multiple languages and082

multiple speech-to-text tasks (ASR and ST).083

• A systematic investigation of first-pass de-084

coding setups has been introduced, which in-085

cludes decoding strategies and model sizes.086

Our result uncover the impact on GER perfor-087

mance and motivate a new approach blending088

beam search with temperature sampling.089

• We conduct extensive experiments with var-090

ious LLMs in both zero-shot and parameter-091

efficient fine-tuning (PEFT) settings for the092

benchmark to highlight potential trade-offs.093

• Public release of the reproducible CoVoGER094

benchmark and dataset will foster further095

research and development of multilingual096

speech-to-text GER methods.097

2 Related Work098

Yang et al. (2023) first introduced this genera-099

tive modeling idea in GER-based ASR directly100

rewriting an N -best list rather than selecting a sin-101

gle hypothesis, which also instruction-prompted102

LLMs and demonstrated that minimal fine-tuning103

closes most of the gap to oracle WER. Chen et al.104

(2023a) later formalized HYPORADISE, showing105

that prompting GPT-style models with N=5 hy-106

potheses can significantly reduce English WER by107

discovering up to N=20 beam size.108

Recent multilingual work by Li et al. (2024)109

tackles over 100 languages through fine-tuning a110

single LLM. Their model corrects grammar and111

spelling and even hallucinates missing words via112

cross-script transfer. However, the input is limited113

to only a single hypothesis, leaving the richer N -114

best setting and its potential diversity untouched.115

The GER paradigm has been initialized to116

speech translation (ST) or agentic setups (Cheng117

et al., 2024). For instance, (Hu et al., 2024b) fo- 118

cuses solely on multilingual ST. To our knowl- 119

edge, no existing dataset simultaneously covers 120

both ASR and ST across multiple languages. CoV- 121

oGER bridges this gap by supporting 15 ASR lan- 122

guages and 28 source–target ST directions, yield- 123

ing 40M N -best lists for a compact multilingual 124

evaluation. 125

Public benchmarks remain fragmented for GER, 126

only focusing on monolingual or single-task set- 127

tings (Chen et al., 2023a; Hu et al., 2024b). To 128

our best knowledge, no existing dataset jointly ad- 129

dresses both ASR and ST in multiple languages. 130

CoVoGER fills the gap by covering 15 languages 131

for ASR and 28 source–target directions for ST, 132

providing a wide testbed for multilingual GER with 133

a total of 40 million N -best lists. 134

For the investigation on generating N -best lists, 135

ProGRes (Tur et al., 2024) prompts an LLM to pro- 136

duce additional transcription hypotheses based on 137

the ASR’s N-best outputs, but leaves the first-pass 138

decoding setups unchanged. As a study close to 139

ours, Ma et al. (2025) varies the size of the ASR 140

model for GER, yet it still relies on the 1-best input, 141

without analysis of different decoding strategies. 142

Although there are studies in the text-generation 143

community (Shen et al., 2022) that investigate de- 144

coding strategies such as beam search and temper- 145

ature sampling, no similar exploration has been 146

conducted for GER. CoVoGER fills this gap by 147

generating 5-best lists using three Whisper model 148

sizes and two SeamlessM4T model sizes, compar- 149

ing beam, sampling, and a mixture of both, and 150

quantifying their impact on GER. 151

3 Generative Error Correction 152

3.1 Task Formulation 153

Given an utterance’s N -best list H = 154

{h1, h2, . . . , hN} produced by a first-pass 155

speech–to–text model (either ASR or ST), GER 156

seeks a mapping f : H→ ŷ such that the generated 157

sequence ŷ = f(h1, . . . , hN ) is closer to the 158

reference transcription/translation y than any 159

hi ∈ H. 160

3.2 Learning the Mapping f 161

During training, we minimize a se- 162

quence–to–sequence loss over the reference 163

data: 164

L = −
|y|∑
t=1

log pϕ(yt | y<t,H), (1) 165
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Figure 2: Overview of the CoVOGER benchmerk. To construct the dataset, speech from multiple languages is
transcribed or translated by several first-pass models with different model sizes. The process can be conducted with
various decoding strategies, including beam search, temperature sampling, or a mixture of both. The resulting ASR
and ST 5-best lists (the figure only shows 3-best for presentation) are used as inputs to train and evaluate GER
models in our benchmark.

where pϕ is the conditional distribution parameter-166

ized by an LLM with parameters ϕ. In practice, we167

adopt token-level targets with the standard cross-168

entropy loss.169

3.3 Low-Rank Adaptation170

To adapt large LLMs without updating all weights,171

we employ the PEFT method Low-Rank Adapta-172

tion (LoRA) (Hu et al., 2022). LoRA freezes the173

pretrained weights and injects rank-r update matri-174

ces A,B into each attention projection:175

WQ ← WQ + αBQAQ,

BQ ∈ Rd×r, AQ ∈ Rr×d.
(2)176

Only A,B (and layer-norm biases) are trained,177

greatly reducing the number of updated parame-178

ters while preserving the forward pass latency of179

the base LLM. The LoRA-augmented model is op-180

timized with the same loss as Eq. (1).181

4 CoVoGER182

In this section, we present CoVoGER, with an183

overview illustrated in Figure 2.184

4.1 Source Speech Datasets185

To construct the COVOGER benchmark, we de-186

code speech from two large-scale public datasets,187

Common Voice 20.02 for ASR and CoVoST-188

2 (Wang et al., 2021) for ST. Tables 1 and 2 sum-189

marize the amount of N -best lists decoded from190

these two datasets.191
2https://commonvoice.mozilla.org/en/datasets

CoVoST-2 A multilingual ST corpus derived 192

from Common Voice. We select 14 non-English 193

source languages and pair each of them bidi- 194

rectionally with English, yielding 28 ST direc- 195

tions3. For each direction, we keep the official 196

train/validation/test splits. 197

Common Voice 20.0 To provide substantially 198

larger ASR training data in the same language 199

set, we extract utterances of the 15 languages (the 200

14 above plus English) from Mozilla Common 201

Voice 20.0. We also adopt the dataset’s original 202

train/validation/test splits. 203

Because some speech segments appear in both 204

datasets, we filter the data to prevent leakage: any 205

utterance in one dataset’s validation or test split is 206

removed from the other dataset’s training split, and 207

any utterance in one’s test split is deleted from the 208

other’s validation split. 209

4.2 First–Pass ASR and ST Models 210

The N -best lists used in COVOGER are generated 211

with two state-of-the-art, publicly available foun- 212

dation models: Whisper (Radford et al., 2023) 213

for ASR and SeamlessM4T (Barrault et al., 2023) 214

for ST. For each model family, we select various 215

model sizes to study how first-pass model perfor- 216

mance and hypothesis diversity influence down- 217

stream GER. As GER may compensate for weaker 218

ASR/ST models, comparing different first-pass 219

3We exclude Mongolian because the first-pass model
(Whisper) exhibits an error rate exceeding 100%, making
N -best generation unreliable.
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Train Validation Test
Ar 28,524 10,405 10,497
Ca 1,172,032 15,148 16,412
Cy 8,000 5,392 5,399
De 583,678 11,061 16,191
En 1,108,326 9,871 16,398
Et 3,128 2,421 2,807
Fa 29,422 10,625 10,629
Id 4,973 3,210 3,690
Ja 14,477 7,766 7,786
Lv 13,870 7,536 7,578
Sl 1,448 1,216 1,328
Sv 7,419 4,744 5,345
Ta 46,095 12,067 12,203
Tr 38,992 11,645 11,660
Zh 25,231 8,478 10,630

Total 3,085,615 121,585 138,553

Table 1: Number of N-best lists decoded from ASR
dataset Common Voice 20.0 with one decoding setup.

Train Validation Test
En-X 14 × 289,392 14 × 15,520 14 × 15,526
Ar-En 1,832 1,587 1,695
Ca–En 95,854 12,730 12,730
Cy–En 937 184 690
De–En 127,824 13,511 13,511
Et–En 1,782 1,576 1,571
Fa–En 51,423 782 3,445
Id–En 928 792 844
Ja–En 1,119 635 684
Lv–En 2,337 1,125 1,629
Sl–En 1,843 509 360
Sv–En 2,157 1,349 1,595
Ta–En 815 273 786
Tr–En 3,494 731 1,629
Zh–En 7,085 4,843 4,898
Total 4,350,918 257,907 263,431

Table 2: Number of N-best lists decoded from ST
dataset CoVoST 2 with one decoding setup. The “En-X”
row aggregates the 14 English→X directions.

model sizes quantifies how much baseline accuracy220

remains necessary after correction. In addition,221

smaller models may yield more diverse hypothe-222

ses, potentially benefiting GER even if their 1-best223

accuracy is lower.224

Whisper A multilingual encoder–decoder model225

trained on 680k hours of web-scale speech. We226

adopt three released models4—SMALL, MEDIUM,227

and LARGE-V1 to decode Common Voice 20.0 (Ta-228

ble 1).229

SeamlessM4T A massively multilingual model230

that unifies ASR, S2T, T2T, and S2S in a single231

architecture. We use the MEDIUM and LARGE mod-232

els5 to decode the 28 CoVoST-2 directions (Ta-233

4https://github.com/openai/whisper
5https://github.com/facebookresearch/seamless_

communication

Task Model Parameters
ASR Whispersmall 244 M
ASR Whispermedium 769 M
ASR Whisperlarge-v3 1.55 B
ST SeamlessM4Tmedium 1.2 B
ST SeamlessM4Tlarge 2.3 B

Table 3: First-pass speech models used to generate N -
best lists for GER.

ble 2). 234

Table 3 summarizes the models and parameter 235

counts used throughout our experiments. 236

4.3 First-Pass Decoding Strategies 237

A first-pass model pθ(y | x) generates an N -best 238

list H = {h1, . . . , hN} that is later fed to the GER 239

model. We examine two complementary decoding 240

schemes, beam search and temperature sampling, 241

and finally combine them to obtain a diverse yet 242

accurate hypothesis set. 243

Beam search. Beam search heuristically approx- 244

imates the maximum a posteriori sequence 245

h⋆ = argmax
y

pθ(y | x)

= argmax
y

T∏
t=1

pθ(yt | y<t,x) ,
(3) 246

by expanding the B highest-scoring partial can- 247

didates at each time-step t, and retaining only 248

the top B of their continuations. After termina- 249

tion, we collect the N highest-scoring finished hy- 250

potheses Hbeam = {hbeam
1 , . . . , hbeam

N } ranked by 251

length-normalized log-probability (Freitag and Al- 252

Onaizan, 2017). Although beam search produces 253

high-probability outputs, its top hypotheses often 254

differ only slightly (e.g., by punctuation or function 255

words), leading to low diversity in Hbeam. 256

Temperature sampling. To increase lexical and 257

structural variety, we also draw hypotheses from a 258

tempered categorical distribution 259

pτ (yt | y<t,x) =
pθ(yt | y<t,x)

1/τ∑
w pθ(w | y<t,x)1/τ

, (4) 260

with temperature τ > 0 (Holtzman et al., 2019). 261

Lower τ sharpens the distribution (less random- 262

ness), while higher τ flattens it, yielding more di- 263

verse but potentially less accurate sequences. By 264

independently sampling until an EOS token, we 265

obtain 266

Hsample = {hsample
1 , . . . , h

sample
N }, (5) 267

4
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Figure 3: Average validation performance of beam, sampling, and beam–sampling mixture decoding at various
temperatures.

where diversity arises naturally from stochastic268

choice at each step.269

Beam–sampling mixture. Pure sampling may270

degrade 1-best accuracy, whereas pure beam search271

offers little variety. We therefore construct a mixed272

list273

Hmix={hbeam
1 }∪{hsample

j |j=1, . . . , N−1}, (6)274

retaining the highest-probability beam output for275

reliability and filling the remaining N−1 slots with276

temperature samples for diversity.277

4.4 Optimising Sampling Temperature278

Beam search (§4.3) returns exactly N hypotheses,279

whereas sampling requires choosing a tempera-280

ture τ . We fix the list length to N = 5 for every281

utterance: (i) beam keeps the top–5 sequences,282

(ii) sampling draws 5 independent samples at tem-283

perature τ , and (iii) mix takes the 1-best beam284

hypothesis plus 4 temperature samples.285

Evaluation metrics. Unlike the conventional286

practice of stripping punctuation, we retain all sym-287

bols so that the GER model can learn to correct288

fully-formatted ASR. Consequently, we measure289

Token Error Rate (TER) with a standard Sacre-290

BLEU (Post, 2018) tokenizer for ASR data. To291

assess the upper bound of an N -best list we report:292

(i) oracle TER, the TER of the single hypothesis293

hi ∈ H with lowest TER, and (ii) compositional294

oracle TER (Chen et al., 2023a), which greedily295

composes a new hypothesis by selecting from any296

hi token by token, so as to minimize TER against297

the reference. For ST, we compute oracle BLEU: 298

selecting the best hypothesis per utterance in terms 299

of sentence-level BLEU, and calculating corpus- 300

level BLEU. 301

Temperature optimization. Figure 3 shows val- 302

idation results across different temperatures. ASR 303

scores are the average of all 15 languages, and ST 304

scores are the average of all 28 language pairs. We 305

can observe that: 306

• Model size vs. oracle gap. Larger models 307

unsurprisingly yield lower 1-best TER and 308

higher BLEU, yet the gap to oracle metrics 309

shrinks with size, indicating that smaller mod- 310

els have more to gain from GER. 311

• ASR (TER). The mixture strategy consis- 312

tently beats pure sampling in oracle TER (es- 313

pecially for Whisper-small), while sampling 314

still helps compositional TER. The optimal τ 315

for the compositional oracle is slightly higher 316

than for plain oracle, likely because compo- 317

sitional oracle favors diversity for composi- 318

tional possibilities more than the accuracy of 319

a single hypothesis. Based on overall observa- 320

tion, we therefore set τASR = 0.8. 321

• ST (BLEU). Oracle BLEU curves are less 322

smooth. Unlike ASR, the large SeamlessM4T 323

model benefits more from sampling. We adopt 324

τST = 0.6 for the following experiments. 325
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N-best GER Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Tr Zh AVG
S+Beam – 59.7 28.3 64.6 15.6 19.7 65.5 84.9 28.3 40.0 55.1 41.2 22.8 26.7 35.0 42.0
S+Beam Qwen 63.8 19.0 64.5 11.6 16.5 65.3 77.0 19.7 49.8 55.2 36.7 21.7 22.9 17.0 38.6
S+Sample Qwen 62.4 19.7 67.5 12.2 16.2 67.0 79.7 18.2 52.3 57.8 40.4 23.6 25.3 16.9 39.9
S+Mix Qwen 58.0 19.2 62.9 11.6 15.8 63.7 75.0 18.1 46.1 55.1 40.3 21.7 23.7 16.4 37.7
M+Beam – 50.1 21.1 42.1 10.2 16.2 45.1 56.8 18.8 34.9 37.5 30.2 15.4 20.8 28.5 30.6
M+Beam Qwen 51.8 13.6 43.5 8.4 13.0 46.8 56.0 12.4 37.4 38.3 28.8 14.6 18.2 13.7 28.3
M+Sample Qwen 55.7 14.9 47.8 8.9 13.6 49.4 58.1 14.1 49.3 40.2 29.3 16.4 21.3 14.0 30.9
M+Mix Qwen 54.5 13.5 43.1 8.3 13.1 47.2 55.1 12.9 49.7 38.1 27.9 14.8 18.0 14.0 29.3
L+Beam – 48.4 19.4 38.6 9.5 15.7 41.4 54.1 18.1 33.0 35.1 24.3 14.3 19.7 30.2 28.7
L+Beam Qwen 50.1 12.4 40.1 7.7 12.5 44.6 55.2 12.8 39.7 35.4 22.7 13.7 16.2 12.1 26.8
L+Sample Qwen 59.3 13.5 44.6 8.3 13.3 46.0 54.5 13.2 42.6 38.7 24.5 15.3 18.5 13.4 29.0
L+Mix Qwen 57.1 12.5 41.3 7.8 12.5 44.6 54.0 12.4 44.8 36.4 22.3 14.3 17.1 12.5 27.8

Table 4: TER results of ASR GER with different first-pass decoding setups on test set. GER models are all LoRA
fine-tuned on single task. “S,” “M” and “L” stand for “small,” “medium” and “large.” The “AVG” column presents
the average scores across all the languages.

N-best GER Ar–En Ca–En Cy–En De–En Et–En Fa–En Id–En Ja–En Lv–En Sl–En Sv–En Tr–En Zh–En X–En
M+Beam – 40.28 35.49 48.54 35.61 21.70 23.48 49.39 18.01 21.12 28.69 31.20 27.98 19.46 30.84
M+Beam Qwen 44.33 36.22 45.75 37.06 22.86 24.75 53.52 19.88 26.49 33.55 35.78 30.15 20.23 33.12
M+Sample Qwen 43.96 35.95 46.15 36.47 22.11 24.41 51.81 19.59 26.81 33.01 35.55 29.56 18.50 32.61
M+Mix Qwen 43.86 36.23 46.29 36.56 22.51 24.57 51.82 20.35 26.18 32.79 35.18 29.39 18.40 32.63
L+Beam – 45.25 38.36 55.01 38.88 26.43 25.60 51.26 21.89 26.57 37.50 38.23 31.34 20.82 35.16
L+Beam Qwen 47.16 38.24 45.35 39.20 26.73 25.60 53.12 22.73 31.48 37.88 40.98 32.13 20.94 35.50
L+Sample Qwen 47.08 37.75 46.45 38.40 26.49 25.76 52.98 22.65 30.90 38.89 40.02 30.72 20.44 35.27
L+Mix Qwen 47.63 38.46 50.51 39.02 26.88 25.70 53.79 22.80 31.59 38.87 40.79 31.73 20.80 36.04
N-best GER En–Ar En–Ca En–Cy En–De En–Et En–Fa En–Id En–Ja En–Lv En–Sl En–Sv En–Tr En–Zh En–X AVG
M+Beam – 22.60 39.61 31.82 33.03 25.01 18.46 37.00 24.00 21.07 30.92 39.53 21.40 32.04 28.96 29.90
M+Beam Qwen 22.98 38.83 31.21 33.89 24.03 17.24 37.27 29.25 19.27 29.80 38.66 20.26 43.50 29.71 31.42
M+Sample Qwen 22.38 37.85 29.93 33.37 23.25 16.71 36.80 31.06 18.26 29.29 38.64 19.50 43.51 29.27 30.94
M+Mix Qwen 22.83 37.93 31.05 33.75 23.99 17.17 37.06 31.27 18.91 29.63 39.05 19.72 43.88 29.71 31.17
L+Beam – 25.13 42.09 34.18 36.23 28.90 19.78 39.41 25.59 24.23 35.42 42.93 24.25 35.83 31.84 33.50
L+Beam Qwen 25.18 39.70 32.87 36.01 27.30 18.29 38.70 32.55 21.54 33.72 41.03 22.26 46.67 31.99 33.75
L+Sample Qwen 24.86 40.52 32.71 35.63 26.97 17.71 38.69 32.08 20.55 33.50 41.67 21.84 46.12 31.76 33.52
L+Mix Qwen 25.15 40.65 33.75 36.26 27.86 18.52 39.28 32.37 21.70 34.34 42.03 22.55 46.86 32.41 34.23

Table 5: BLEU results of ST GER with different first-pass decoding setups on test set. GER models are all LoRA
fine-tuned on single task. “M” and “L” stand for “medium” and “large.” Columns “X-En,” “En-X,” and “AVG”
present the average scores across any-to-English, English-to-any, and all the language pairs, respectively.

5 Experimental Setups326

5.1 GER Models327

We evaluate 6 instruction-tuned LLMs for our328

benchmark: Qwen2.5-7B-Instruct (Yang et al.,329

2024) (main model for investigations), Meta-330

Llama-3-8B-Instruct (Grattafiori et al., 2024),331

Mistral-7B-Instruct-v0.1 (Jiang et al., 2023),332

DeepSeek-R1-Distill-Llama-8B (Guo et al.,333

2025), OLMo-7B-Instruct-hf (OLMo et al., 2024)334

and GPT-4o (Hurst et al., 2024) (commercial335

model for testing the performance upper-bound)6.336

5.2 Parameter-Efficient Fine-Tuning337

We use LoRA for PEFT and follow LitGPT’s ref-338

erence configuration7. Training runs for 25, 000339

6GPT-4o cannot be finetuned with LoRA and is evaluated
only in the zero-shot setting.

7Rank r=8, scaling α=16, LoRA dropout 0.05. (https:
//github.com/Lightning-AI/litgpt)

iterations with effective batch size 64. All exper- 340

iments are conducted on one H-100 GPU with a 341

single run. 342

5.3 Evaluation 343

Data splits. Besides the test sets in Tables 1 and 344

2, we create a Val-100 subset by sampling 100 utter- 345

ances per language from the validation set, which 346

is specifically used for comparison with GPT-4o. 347

This yields 1,500 utterances for ASR and 2,800 for 348

ST, small enough for affordable lightweight evalu- 349

ation, yet large enough to reflect full-set trends. 350

Metrics. For ASR, we compute TER8 using 351

SacreBLEU tokenization, which keeps punctua- 352

tion as tokens, crucial for our fully-formatted tran- 353

scripts. ST output quality is measured with Sacre- 354

BLEU. 355

8We calculate TER based on WER implementation of ji-
wer(https://github.com/jitsi/jiwer)
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Figure 5: Comparison of GPT-4o and Qwen models in different first-pass decoding setups on Val-100 set. The
scores are the average across all the language or language pairs. See the full results in Appendix A.

6 Results and Analysis356

6.1 First-Pass Decoding Setups357

Tables 4 and 5 compare different first-pass setups358

using Qwen with LoRA. For ASR, mixture decod-359

ing is unable to beat pure beam search on the larger360

Whisper models, mirroring the diminished tempera-361

ture benefit observed in Figure 3. For ST, the trend362

reverses: mixture decoding’s advantage improves363

as the size of SeamlessM4T grows. One hypothe-364

sis is that the accuracy of ASR is high enough for365

N -best diversity to hurt the performance, but not366

for ST.367

6.2 Comparison with GPT-4o368

We conduct a comparison of GPT-4o with zero-369

shot and LoRA finetuning results of open-sourced370

models (represented by Qwen2.5-7B) on Val-100.371

Figures 4 and 5 (ASR) present the performance372

comparison across different languages and different 373

first-pass decoding setups, respectively. 374

GPT-4o delivers the best performance across 375

both tasks, surpassing Qwen with LoRA. Unlike 376

for Qwen with LoRA, Beam–sampling mixture de- 377

coding consistently outperforms pure beam search 378

for GPT-4o. This confirms that controlled diversity 379

helps the LLM discover better corrections, in line 380

with prior observations. 381

In the zero-shot setting, Qwen exhibits poor TER 382

on ASR but achieves reasonable BLEU on ST. We 383

hypothesize that ASR’s stricter correctness con- 384

straints make its outputs more vulnerable to over- 385

correction, whereas ST tolerates more variation. 386

Crucially, LoRA fine-tuning significantly improves 387

both ASR and ST, especially ASR, validating the 388

effectiveness of our training data. For both ASR 389

and ST, Qwen performs poorly in generating cer- 390
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GER Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Tr Zh AVG
Qwen 62.1 13.8 41.0 8.2 13.3 44.6 72.8 12.5 40.6 37.9 22.3 14.2 17.4 12.9 29.6
Llama 69.3 19.6 44.4 8.9 13.9 52.2 62.9 14.2 67.1 39.5 23.7 14.8 21.9 24.8 34.1
Mistral 66.0 14.6 42.5 8.9 13.6 44.5 80.8 15.6 55.3 37.4 23.5 14.6 21.7 21.2 32.9
Deepseek 56.9 13.2 41.8 8.4 13.6 44.9 54.1 13.2 42.6 36.7 22.4 14.0 18.0 15.7 28.3
OLMo 53.9 18.2 41.9 9.3 14.7 43.7 59.6 14.2 36.9 36.5 25.0 15.0 19.1 24.6 29.5
GER Ar–En Ca–En Cy–En De–En Et–En Fa–En Id–En Ja–En Lv–En Sl–En Sv–En Tr–En Zh–En X–En
Qwen 47.66 38.46 50.32 39.13 27.02 26.40 54.12 23.40 31.77 38.51 41.12 32.00 21.36 36.25
Llama 47.93 37.98 50.67 38.67 26.86 26.01 53.84 22.81 31.08 40.55 40.50 31.10 19.82 35.99
Mistral 47.75 38.14 49.14 38.46 26.52 25.98 53.74 22.21 31.17 39.22 40.95 32.01 20.46 35.83
Deepseek 48.27 38.06 52.76 38.41 26.33 25.70 53.38 21.91 31.39 38.72 40.77 30.94 19.17 35.83
OLMo 46.72 37.78 52.31 38.07 25.91 25.56 52.55 20.75 31.12 38.34 42.29 31.27 20.24 35.61
GER En–Ar En–Ca En–Cy En–De En–Et En–Fa En–Id En–Ja En–Lv En–Sl En–Sv En–Tr En–Zh En–X AVG
Qwen 25.08 40.18 33.28 36.05 27.64 18.59 39.07 33.51 21.69 34.11 42.09 22.42 46.69 32.34 34.18
Llama 21.65 41.26 30.46 35.46 25.29 19.46 37.89 28.56 19.40 32.51 41.53 21.44 40.67 30.43 33.21
Mistral 10.78 40.73 32.86 34.61 27.45 4.09 35.40 24.38 21.45 32.51 40.97 19.80 39.45 28.04 31.94
Deepseek 24.01 39.92 32.77 35.08 26.71 20.71 38.56 30.82 20.36 33.57 41.85 22.20 44.06 31.59 33.79
OLMo 24.50 41.46 34.30 35.78 28.13 19.80 38.76 30.13 23.98 34.95 42.29 23.01 42.60 32.28 33.95

Table 6: GER model comparison on the test set with all the models being LoRA fine-tuned on multiple tasks (ASR
and ST). The upper part presents TER for ASR, with the “AVG” column presenting the average scores across all the
languages. The middle and lower parts present BLEU for ST, with columns “X-En,” “En-X,” and “AVG” presenting
the average scores across any-to-English, English-to-any, and all the language pairs, respectively.

tain languages (Ta)9, reflecting that open-source391

models still lack language coverage compared to392

commercial models like GPT-4o.393

6.3 Multi-task Training and Benchmarking394

For multi-task training, we select the mixture de-395

coding with large first-pass models for both ASR396

and ST, and combine the ASR and ST data to397

create the new training set. The choice is based398

on the fact that GPT-4o performs best with these399

setups (Figure 5). Although Table 4 reveals that400

mixture decoding fails to outperform beam decod-401

ing with larger ASR models for Qwen with LoRA,402

we argure that it is because Qwen cannot fully ex-403

ploit this extra diversity like GPT-4o. We therefore404

adopt the highest-potential first-pass setup to favor405

stronger LLMs.406

Results in Table 6 shows that DeepSeek-7B407

attains the lowest average TER for ASR, while408

Qwen2.5-7B achieves the best average BLEU for409

ST. These two strong models also yield sufficient410

performance on the other task, both ranking 3rd.411

OLMo-7B shows a balanced capability, ranking412

2nd on both tasks. Llama-3-8B and Mistral-7B413

are the weaker models, with the poorest perfor-414

mance on ASR and ST (mainly for En-X), respec-415

tively.416

Qwen’s performance drops slightly compared417

with single-task LoRA (“L+Mix” rows in Tables 4418

9As most open-sourced models’ capabilities for Tamil are
extremely poor, we exclude “ta”, “ta-en”, and “en-ta” from
the evaluation on the test set. (Tables 4, 5, and 6)

and 5). We attribute this to negative transfer: 419

gradients from the ST objective encourage se- 420

mantic paraphrasing, occasionally conflicting with 421

the stricter accuracy required by ASR. Therefore, 422

achieving universal speech-to-text GER models 423

will require additional effort. 424

When comparing with the 1-best results (GER 425

“-”) in Tables 4 and 5, we can observe that only a 426

few GER models outperform 1-best baselines (1 427

for ASR, 3 for ST). Aside from multi-task nega- 428

tive transfer, another possible cause is that halluci- 429

nations occur for LoRA finetuned models, which 430

hurts their performance (Details in Appendix B). 431

7 Conclusion 432

We present CoVoGER, the first benchmark to unify 433

multilingual, multitask GER for speech. By decod- 434

ing Common Voice 20.0 and CoVoST 2 with multi- 435

ple sizes of Whisper and SeamlessM4T, we gener- 436

ate and release N -best lists for 33 languages across 437

ASR and ST—complete with oracle statistics and 438

evaluation scripts. Our experiments demonstrate 439

that (i) blending beam search with temperature sam- 440

pling produces the most GER-friendly hypotheses, 441

(ii) GPT-4o establishes a strong zero-shot upper 442

bound across all languages, and (iii) joint ASR–ST 443

GER fine-tuning reveals a trade-off between the 444

two tasks, underscoring the need for future work to 445

reconcile their objectives. CoVoGER thus provides 446

an open test bed for investigating how LLMs can 447

bridge the gap between first-pass speech models 448

and human-level accuracy. 449
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Limitations450

• Imbalanced language sizes. CoVoGER inherits451

the distribution of Common Voice and CoVoST-452

2, with training utterances for different languages453

ranging from millions to thousands. We did454

not study how this imbalance affects GER train-455

ing. Future work should explore per-language456

reweighting or curriculum sampling to mitigate457

this bias.458

• Coverage of first-pass decoding strategy. We459

explore only beam search, temperature sampling,460

and their mixture. There are other decoding461

strategies, such as diverse beam (Vijayakumar462

et al., 2016) or nucleus sampling (Holtzman et al.,463

2019), that could be investigated as well.464

• Multi-task negative transfer with LoRA. Our465

experiments on multi-task training show negative466

transfer between ASR and ST, which could be467

due to LoRA suffering measurable catastrophic468

forgetting. Strategies such as task-balanced469

sampling (Ruder, 2017), adapter routing (Pfeif-470

fer et al., 2020), or multi-objective optimisa-471

tion (Sener and Koltun, 2018) are necessary for472

addressing this issue.473

Ethical Considerations474

This study exclusively uses publicly available475

datasets (Common Voice and CoVoST-2) for ASR476

and ST GER benchmarking, ensuring compliance477

with ethical and privacy standards. Our work does478

not involve any private or sensitive data collection.479

In addition, we confirm that the dataset and mod-480

els used in our study were obtained and utilized in481

full compliance with their respective licenses and482

intended use guidelines.483
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A Val-100 Results669

Tables 7 and 8 present results evaluated on Val-100670

set, with different first-pass decoding setups and671

GER models. We created Figures 4 and 5 based on672

these results.673

B Hallucination Analysis674

We define hallucination in two cases:675

• Empty-reference insertion: The first line676

catches any output when the reference is677

empty.678

• Extreme mismatch: the number of word-level679

edit operations exceeds the number of refer-680

ence characters (Character Error Rate (CER)681

> 1.0 for ASR task, Translation Error Rate682

(TERtrn) > 1.0 for ST task).683

So, the hallucination rate is the percentage of684

sentence pairs where either the reference is empty685

but the system still outputs tokens, or the sentence-686

level CER or TERtrn exceeds 1.0. With this defini-687

tion, we conducted an analysis on the Qwen model688

outputs in Table 6.689

To prevent hallucination on ASR tasks, the690

model is strong in well-represented Latin languages691

and acceptable in Chinese, but it needs a targeted692

adaptation for scripts that diverge in segmentation693

or writing direction, as shown in Table 9.694

For translation tasks (as shown in Table 10),695

in terms of language resource levels, the pattern696

is much like in ASR; by the writing system, the697

riskiest directions are from English into non-Latin698

scripts or highly agglutinative languages, while699

translating into English from languages with sim-700

pler morphology and scripts is relatively safe.701

In summary, at the sentence level, hallucinations702

are quite alarming: they either never occur or wreck703

the entire sentence. Throughout the test set, the704

reduction of hallucinations can achieve a minimum705

overall increase in absolute precision of 1%. For706

low-resource languages, the improvement is even707

greater, typically greater than 10%.708
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Whisper Decoding GER Ar Ca Cy De En Et Fa Id Ja Lv Sl Sv Ta Tr Zh AVG
Small Beam – 48.2 28.4 57.4 11.2 16.4 67.8 107.6 28.9 37.1 46.6 40.5 17.8 62.0 24.9 34.4 42.0
Small Beam (Oracle) 53.4 24.2 58.9 12.9 15.6 61.6 76.7 21.2 35.1 50.5 34.1 18.6 61.8 20.3 29.8 38.3
Small Beam (Compositional) 49.7 19.7 46.3 10.2 12.3 51.4 56.8 18.3 26.7 41.6 29.2 15.1 53.3 17.2 27.6 31.7
Small Beam GPT-4o 43.2 25.9 48.3 9.2 14.5 56.9 61.8 21.9 28.9 35.7 30.4 15.6 57.6 20.1 29.6 33.3
Small Beam Qwen (z-shot) 45.1 28.9 52.7 11.1 15.5 69.4 129.4 36.5 32.2 46.3 37.5 18.7 158.2 25.0 29.5 49.1
Small Beam Qwen (LoRA) 50.3 16.7 54.4 8.0 13.0 68.3 65.8 18.0 37.0 66.8 36.1 18.1 85.5 21.3 14.6 38.3
Small Sampling (Oracle) 54.0 26.2 63.4 13.3 16.2 64.4 72.2 24.3 35.2 54.9 38.7 20.5 64.5 23.5 29.4 40.0
Small Sampling (Compositional) 47.4 17.5 41.7 9.5 11.0 45.9 52.5 17.2 22.7 36.3 26.7 13.7 46.7 17.1 22.6 28.6
Small Sampling GPT-4o 43.4 25.7 46.5 10.1 17.5 50.9 94.4 25.9 28.7 34.2 34.0 15.2 54.9 20.3 29.4 35.4
Small Sampling Qwen (z-shot) 50.9 33.0 107.7 12.9 19.9 98.5 230.8 41.9 56.5 69.6 78.0 19.5 101.8 29.5 38.5 65.9
Small Sampling Qwen (LoRA) 54.8 17.8 58.2 9.0 14.5 69.9 71.7 18.3 35.0 48.3 40.4 19.8 88.1 23.0 15.4 38.9
Small Mix (Oracle) 51.4 23.7 55.9 12.0 15.0 59.8 67.5 22.1 33.3 49.5 34.8 18.4 59.7 21.0 28.2 36.8
Small Mix (Compositional) 46.5 16.9 38.6 9.2 10.9 44.2 50.1 16.9 22.8 34.8 25.8 13.3 45.1 16.4 23.0 27.6
Small Mix GPT-4o 42.6 23.8 41.3 8.7 15.3 48.1 66.8 22.7 28.4 32.1 28.2 13.9 55.0 19.1 31.5 31.8
Small Mix Qwen (z-shot) 49.1 32.4 71.4 11.8 19.4 74.2 125.0 36.6 43.9 49.5 38.6 19.3 91.6 29.8 27.8 48.0
Small Mix Qwen (LoRA) 48.7 16.2 53.4 8.7 13.4 68.5 121.3 16.9 42.6 48.5 38.0 18.7 81.2 21.5 13.3 40.7
Medium Beam – 48.2 20.3 32.6 9.9 16.7 48.2 53.6 16.2 25.7 32.2 28.8 13.3 54.4 16.6 27.5 29.6
Medium Beam (Oracle) 42.9 17.5 37.4 8.0 12.6 41.8 49.7 15.2 29.0 32.8 23.2 11.4 52.7 15.4 23.2 27.4
Medium Beam (Compositional) 40.9 14.3 30.5 6.9 10.1 34.4 39.7 11.2 21.9 27.2 19.3 9.2 46.0 13.2 21.2 23.1
Medium Beam GPT-4o 45.4 18.8 29.3 7.9 15.6 38.4 46.2 14.2 22.8 25.7 20.2 11.5 50.7 13.7 23.9 25.6
Medium Beam Qwen (z-shot) 46.2 25.7 34.8 10.1 15.8 51.4 54.8 15.2 28.7 35.0 26.2 13.3 90.4 16.9 24.3 32.6
Medium Beam Qwen (LoRA) 43.9 12.8 33.8 6.8 12.4 51.7 49.6 12.3 24.4 33.7 23.9 12.2 54.9 14.8 11.4 26.6
Medium Sampling (Oracle) 43.8 18.7 42.4 8.5 13.2 44.3 50.6 15.2 28.9 35.6 25.9 12.7 55.0 17.4 22.9 29.0
Medium Sampling (Compositional) 39.4 13.0 27.1 6.4 9.2 29.8 35.7 10.9 19.1 23.0 18.1 8.7 38.7 13.1 18.0 20.7
Medium Sampling GPT-4o 45.2 21.0 28.9 7.3 13.9 33.9 51.8 16.9 22.5 22.7 20.9 12.7 47.0 14.1 23.5 25.5
Medium Sampling Qwen (z-shot) 47.9 26.4 53.7 8.9 68.4 14.9 87.8 23.7 31.0 37.2 28.6 24.2 97.2 25.9 26.1 40.1
Medium Sampling Qwen (LoRA) 48.9 13.1 36.8 6.9 11.9 54.6 54.0 12.9 26.0 32.5 26.8 14.3 47.7 17.0 12.6 27.7
Medium Mix (Oracle) 42.3 17.4 37.2 8.0 12.4 40.8 47.3 14.2 27.9 32.6 23.3 11.9 52.3 16.1 22.2 27.1
Medium Mix (Compositional) 39.1 12.9 25.6 6.4 9.3 29.3 34.9 10.9 19.2 22.8 17.5 8.8 38.9 12.8 18.5 20.5
Medium Mix GPT-4o 43.6 18.3 28.2 7.7 13.6 32.8 46.9 13.6 22.2 23.2 18.5 12.6 49.3 13.8 23.5 24.5
Medium Mix Qwen (z-shot) 48.6 22.4 40.7 10.2 52.5 60.9 15.8 20.0 29.8 32.8 27.6 22.2 97.4 18.7 24.1 34.9
Medium Mix Qwen (LoRA) 42.6 12.2 34.1 7.4 12.4 51.7 50.3 11.4 48.7 31.0 23.6 12.3 47.0 14.8 11.2 26.0
Large Beam – 42.2 20.3 28.7 8.2 14.0 44.2 47.4 17.3 24.5 30.3 25.3 12.3 47.5 15.8 24.4 26.8
Large Beam (Oracle) 41.4 16.1 33.7 7.3 12.1 37.9 46.3 13.3 28.1 29.7 19.0 10.3 47.7 14.4 24.7 25.5
Large Beam (Compositional) 39.6 12.9 27.6 6.3 9.7 31.2 35.9 11.3 20.8 24.0 15.9 8.2 41.1 12.4 23.0 21.3
Large Beam GPT-4o 42.2 19.0 26.0 6.7 12.8 34.9 43.7 13.6 23.1 24.5 19.6 10.8 44.5 15.0 20.0 23.8
Large Beam Qwen (z-shot) 42.6 50.6 31.2 9.1 13.9 48.5 54.0 15.0 24.6 33.2 25.3 13.0 84.8 17.2 21.5 30.3
Large Beam Qwen (LoRA) 44.4 12.7 30.9 6.7 11.0 46.7 47.5 10.9 32.4 30.2 24.4 13.2 98.7 16.0 9.4 24.0
Large Sampling (Oracle) 41.8 16.9 38.1 7.5 12.4 39.9 47.3 14.5 27.4 32.3 21.8 11.5 50.9 15.6 24.1 26.8
Large Sampling (Compositional) 37.7 11.9 24.8 5.9 8.7 26.9 32.8 11.1 18.1 20.8 15.5 7.9 35.2 11.9 19.9 19.3
Large Sampling GPT-4o 42.7 21.4 26.0 6.9 12.8 28.3 56.3 14.3 23.6 25.4 28.6 10.9 45.6 14.5 24.9 24.1
Large Sampling Qwen (z-shot) 41.9 35.3 37.3 9.3 14.4 52.9 87.6 19.5 34.7 43.9 35.7 13.6 94.1 19.4 24.4 37.6
Large Sampling Qwen (LoRA) 46.6 14.8 35.8 7.5 11.1 53.2 45.7 13.2 26.0 35.1 23.3 11.5 150.4 14.5 10.3 33.3
Large Mix (Oracle) 40.3 15.8 33.7 7.2 11.8 36.7 44.2 13.9 26.7 29.6 19.5 10.9 47.4 14.8 23.5 25.1
Large Mix (Compositional) 37.3 11.8 23.5 5.9 8.8 26.5 31.9 11.1 18.3 20.6 14.8 8.1 35.0 11.9 20.3 19.0
Large Mix GPT-4o 43.9 19.1 24.3 7.3 12.8 28.1 47.7 14.6 22.5 22.5 19.9 11.2 44.4 14.7 22.9 23.7
Large Mix Qwen (z-shot) 42.7 31.5 32.8 9.2 13.5 50.3 72.3 17.9 33.8 37.6 28.2 13.2 95.2 18.3 23.3 34.6
Large Mix Qwen (LoRA) 47.6 12.8 31.5 6.6 10.7 45.8 46.7 11.3 32.0 31.4 22.3 11.3 76.9 14.5 9.8 27.4

Table 7: TER scores on Val-100 for ASR. The “AVG” column presents the average scores across all the languages.
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Seamless Decoding GER Ar–En Ca–En Cy–En De–En Et–En Fa–En Id–En Ja–En Lv–En Sl–En Sv–En Ta-En Tr–En Zh–En X–En
Medium Beam - 33.69 35.24 41.48 27.64 34.24 36.03 56.66 17.69 5.84 25.40 21.41 4.18 27.46 22.49 27.82
Medium Beam (Oracle) 46.03 44.17 52.81 33.38 40.32 52.05 76.85 25.19 9.48 36.72 33.93 8.61 36.73 27.23 37.39
Medium Beam GPT-4o 34.87 34.01 43.93 29.22 33.74 37.08 59.19 18.70 6.61 25.33 25.46 5.32 28.48 22.00 28.85
Medium Beam Qwen (z-shot) 34.57 34.64 39.08 29.33 33.45 34.07 57.15 18.83 5.84 25.27 24.76 5.33 28.07 22.80 28.08
Medium Beam Qwen (LoRA) 35.87 34.68 41.50 30.03 33.39 39.05 59.95 20.23 6.29 28.33 28.21 5.72 30.29 21.37 29.64
Medium Sampling (Oracle) 40.91 43.96 47.94 32.99 39.51 44.04 67.89 22.90 9.06 32.73 28.45 8.51 34.93 26.35 34.30
Medium Sampling GPT-4o 33.03 33.97 44.65 29.10 33.33 34.04 56.58 18.33 6.73 27.72 21.55 5.12 30.05 19.37 28.11
Medium Sampling Qwen (z-shot) 29.90 34.18 39.11 28.20 32.12 33.35 55.12 15.68 4.67 25.07 18.75 3.08 27.25 18.98 26.10
Medium Sampling Qwen (LoRA) 34.22 33.15 31.70 31.12 32.01 36.28 58.73 16.21 6.97 28.02 25.02 5.34 31.45 20.45 27.90
Medium Mix (Oracle) 41.79 43.84 47.19 32.44 40.10 45.37 68.03 23.28 8.94 33.18 28.99 8.63 35.02 27.06 34.56
Medium Mix GPT-4o 35.15 33.78 45.30 28.41 31.29 36.97 58.82 18.63 7.47 28.85 22.13 4.60 30.77 21.20 28.81
Medium Mix Qwen (z-shot) 34.13 34.85 38.63 27.86 31.08 35.39 55.57 15.56 5.23 26.07 21.11 3.38 29.76 21.79 27.17
Medium Mix Qwen (LoRA) 34.27 35.34 35.86 31.19 32.64 37.02 58.19 18.21 7.45 27.98 26.91 4.99 32.79 18.71 28.68
Large Beam - 38.70 36.12 50.01 31.83 40.94 42.11 61.35 21.90 23.61 33.87 31.92 6.34 30.72 21.95 33.67
Large Beam (Oracle) 51.14 46.33 61.81 37.64 47.58 50.33 76.55 31.36 31.03 43.58 40.67 8.99 41.59 25.59 42.44
Large Beam GPT-4o 37.10 35.55 49.79 32.01 38.28 37.56 57.53 21.82 22.88 30.79 31.07 7.14 30.89 20.27 32.33
Large Beam Qwen (z-shot) 37.50 35.29 50.15 31.59 39.51 39.89 56.33 22.22 21.71 30.42 31.21 5.11 31.25 20.08 32.30
Large Beam Qwen (LoRA) 38.64 36.19 47.66 33.05 38.06 42.80 57.15 23.91 26.25 33.60 31.78 6.81 32.39 20.56 33.49
Large Sampling (Oracle) 48.31 43.39 53.63 37.52 46.12 46.33 70.77 27.50 27.65 40.64 37.42 8.89 35.93 26.73 39.34
Large Sampling GPT-4o 40.63 33.82 49.56 30.40 35.90 39.16 59.56 20.47 24.43 30.84 33.15 6.13 30.86 20.91 32.56
Large Sampling Qwen (z-shot) 35.48 34.58 48.50 28.61 36.51 35.52 55.98 17.62 19.37 29.27 27.10 2.84 28.54 18.56 29.89
Large Sampling Qwen (LoRA) 24.07 34.94 33.30 29.12 35.70 43.02 61.41 18.81 28.44 33.48 34.70 5.78 32.25 23.05 31.29
Large Mix (Oracle) 47.34 44.22 52.95 37.23 46.50 47.22 70.27 27.47 26.99 40.88 37.29 9.09 37.09 26.47 39.36
Large Mix GPT-4o 41.01 34.53 49.71 33.04 37.64 40.60 58.96 22.59 23.12 32.77 31.46 6.90 29.73 21.24 33.09
Large Mix Qwen (z-shot) 35.55 35.57 48.61 31.53 37.35 40.09 59.80 17.81 19.85 31.09 29.39 4.53 29.35 21.97 31.61
Large Mix Qwen (LoRA) 37.52 35.83 33.21 30.38 37.46 41.54 62.46 21.40 26.18 34.44 34.26 5.40 31.60 22.25 32.42
Seamless Decoding GER En–Ar En–Ca En–Cy En–De En–Et En–Fa En–Id En–Ja En–Lv En–Sl En–Sv En-Ta En–Tr En–Zh En–X AVG
Medium Beam - 26.47 35.44 28.65 23.51 18.31 12.20 29.81 30.41 14.26 36.19 32.26 16.80 20.48 30.77 25.40 26.61
Medium Beam (Oracle) 35.40 44.67 34.41 30.71 25.26 17.40 40.19 37.02 18.10 45.98 41.37 26.99 27.02 37.62 33.01 35.20
Medium Beam GPT-4o 28.07 36.78 30.49 24.29 21.35 13.81 30.82 33.58 14.77 37.97 33.86 16.62 21.85 34.36 27.04 27.94
Medium Beam Qwen (z-shot) 24.48 33.36 26.66 24.94 17.39 11.28 29.92 32.51 14.69 33.34 33.45 1.75 17.90 33.32 23.93 26.00
Medium Beam Qwen (LoRA) 26.44 35.48 26.94 24.35 16.72 12.01 31.25 33.23 12.11 35.03 32.97 2.26 20.55 38.44 24.84 27.24
Medium Sampling (Oracle) 32.00 41.45 33.05 28.06 24.99 18.57 34.47 37.70 19.14 43.06 38.28 23.91 24.55 36.19 31.10 32.70
Medium Sampling GPT-4o 26.81 38.69 29.30 25.37 22.11 16.24 29.58 32.89 15.93 36.49 33.51 17.58 20.87 33.93 27.09 27.60
Medium Sampling Qwen (z-shot) 24.21 35.48 26.04 22.77 17.79 13.18 26.73 29.54 13.56 32.26 31.95 2.09 17.65 33.32 23.33 24.72
Medium Sampling Qwen (LoRA) 23.20 34.91 27.81 23.93 17.13 10.62 30.32 33.63 13.58 32.61 33.21 2.52 18.00 37.61 24.22 26.06
Medium Mix (Oracle) 33.33 41.53 33.27 28.48 24.96 18.41 35.38 37.49 18.03 44.14 38.28 23.60 24.31 36.83 31.29 32.93
Medium Mix GPT-4o 26.63 37.25 30.29 24.76 20.45 15.68 31.28 33.25 15.90 38.14 32.55 18.52 20.23 34.94 27.13 27.97
Medium Mix Qwen (z-shot) 25.43 35.56 26.93 24.59 17.16 12.73 28.31 30.42 13.23 34.40 30.41 1.76 20.05 33.06 23.86 25.52
Medium Mix Qwen (LoRA) 24.84 34.71 27.16 24.15 17.14 11.37 29.29 33.84 13.72 31.92 30.73 1.82 19.37 39.88 24.28 26.48
Large Beam - 31.66 37.53 31.09 25.18 22.19 13.84 32.45 30.53 18.95 40.87 37.80 22.22 20.94 35.25 28.61 31.14
Large Beam (Oracle) 40.77 46.13 37.23 33.26 32.02 20.01 44.25 35.99 24.88 50.06 47.15 30.46 29.29 41.71 36.66 39.55
Large Beam GPT-4o 30.55 39.24 32.04 27.00 23.59 14.38 34.07 33.02 18.61 38.80 37.80 21.19 23.04 36.27 29.26 30.80
Large Beam Qwen (z-shot) 28.12 36.64 26.62 26.38 22.26 12.36 31.32 30.81 16.05 36.48 36.41 1.94 19.38 35.99 25.77 29.03
Large Beam Qwen (LoRA) 30.13 37.10 28.14 26.73 21.06 14.64 32.48 35.41 17.45 36.76 34.57 1.19 22.02 43.86 27.25 30.37
Large Sampling (Oracle) 36.96 42.60 34.50 31.36 31.94 18.58 40.56 37.87 23.11 45.83 43.09 25.51 27.05 40.56 34.25 36.80
Large Sampling GPT-4o 27.53 38.11 32.07 26.03 23.44 14.00 33.23 33.99 15.96 39.28 36.98 19.55 20.72 37.35 28.45 30.51
Large Sampling Qwen (z-shot) 27.82 35.93 28.82 25.49 20.19 11.38 32.67 31.62 12.70 36.25 34.53 1.88 20.13 35.12 25.32 27.60
Large Sampling Qwen (LoRA) 29.94 37.43 28.55 26.61 20.09 13.09 31.79 35.88 14.45 37.32 34.25 2.04 20.44 43.61 26.82 29.06
Large Mix (Oracle) 37.84 42.95 35.75 29.91 32.35 19.22 39.94 38.20 23.08 45.96 43.61 26.49 27.19 40.98 34.53 36.95
Large Mix GPT-4o 31.22 39.43 30.39 25.66 25.64 14.97 34.45 34.64 18.58 39.23 36.56 21.42 21.79 36.08 29.29 31.19
Large Mix Qwen (z-shot) 27.08 35.71 27.45 26.19 22.06 11.72 32.21 30.99 16.58 37.29 34.49 1.91 20.68 36.49 25.78 28.70
Large Mix Qwen (LoRA) 29.24 36.14 30.27 26.44 20.37 14.41 32.70 35.29 15.90 36.44 35.24 0.92 21.24 44.82 27.10 29.76

Table 8: BLEU scores on Val-100 for ST. Columns “X-En,” “En-X,” and “AVG” present the average scores across
any-to-English, English-to-any, and all the language pairs, respectively.

de id ca sv en zh sl lv ja cy et ar fa ta
0.4 0.2 0.9 0.2 1.1 0.5 0.2 0.9 3.6 1.2 0.4 4.6 6.7 11.3

Table 9: ASR Sentence-level hallucination rates (%) (percentage of hallucinated sentences) for each language.

SL→EN EN→SL TR→EN EN→TR SV→EN EN→SV LV→EN EN→LV FA→EN EN→FA
0.2 3.9 0.9 8.2 1.2 4.7 1.3 5.6 1.9 8.3

DE→EN EN→DE ID→EN EN→ID EN→ET ET→EN CY→EN EN→CY JA→EN EN→JA
3.8 3.4 3.3 2.4 5.3 5.6 5.2 4.1 11.5 5.0

EN→AR AR→EN ZH→EN EN→ZH TA→EN EN→TA
5.0 5.7 6.2 8.1 38.9 17.2

Table 10: ST Sentence-level hallucination rates (%) for each translation direction.
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