

# 000 001 002 003 004 005 FEW-SHOT ADVERSARIAL LOW-RANK FINE-TUNING 006 OF VISION-LANGUAGE MODELS 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028

## ABSTRACT

029 Vision-Language Models (VLMs) such as CLIP have shown remarkable performance  
030 in cross-modal tasks through large-scale contrastive pre-training. To adapt  
031 these large transformer-based models efficiently for downstream tasks, Parameter-  
032 Efficient Fine-Tuning (PEFT) techniques like (Low-Rank Adaptation) LoRA have  
033 emerged as scalable alternatives to full fine-tuning, especially in few-shot scenarios.  
034 However, like traditional deep neural networks, VLMs are highly vulnerable to  
035 adversarial attacks, where imperceptible perturbations can significantly degrade  
036 model performance. Adversarial training remains the most effective strategy for  
037 improving model robustness in PEFT. In this work, we propose AdvCLIP-LoRA,  
038 to our knowledge the first method designed to enhance the adversarial robustness  
039 of CLIP models fine-tuned with LoRA in few-shot settings. Our method formulates  
040 training as a minimax optimization over low-rank adapters and adversarial pertur-  
041 bations, enabling robust adaptation with a small trainable footprint. Across eight  
042 datasets and two backbones (ViT-B/16 and ViT-B/32), AdvCLIP-LoRA achieves  
043 state-of-the-art performance in few-shot classification, adversarial base-to-new gen-  
044 eralization, and cross-dataset transfer, delivering higher adversarial robustness than  
045 prompt tuning baselines without sacrificing much clean accuracy. These findings  
046 highlight AdvCLIP-LoRA as a practical approach for robust adaptation of VLMs  
047 in resource-constrained settings.  
048

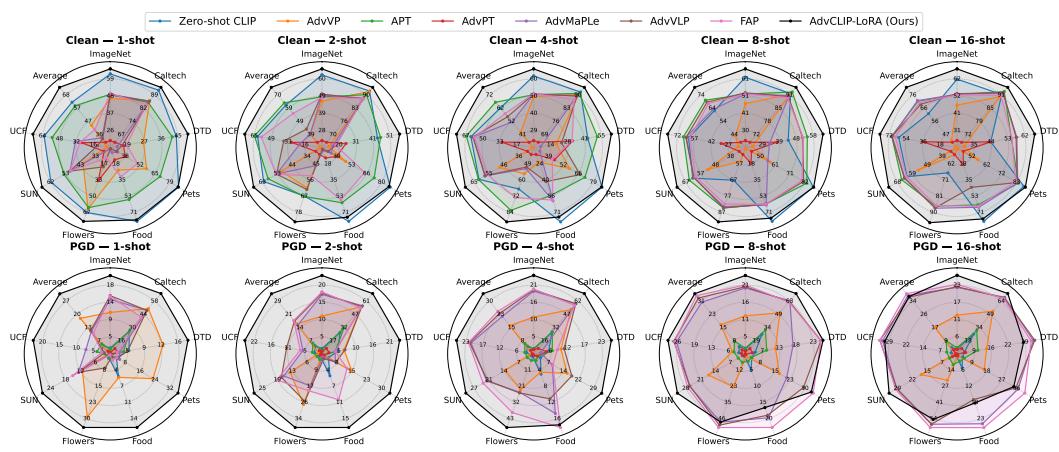
## 049 1 INTRODUCTION

050 Vision-Language Models (VLMs), such as CLIP Radford et al. (2021), have become foundational  
051 in learning cross-modal representations by aligning visual and textual embeddings through large-  
052 scale contrastive pre-training Jia et al. (2021); Li et al. (2022b); Yao et al.. While these models  
053 enable effective zero-shot and few-shot adaptation Zhang et al. (2022); Zhu et al. (2023), their larger  
054 transformer-based variants Vaswani (2017) demonstrate superior performance (e.g., CLIP’s ViT-L/14  
055 surpasses ViT-B/16 by over 6% on ImageNet Deng et al. (2009)). However, these large models  
056 typically contain billions of trainable parameters, making full fine-tuning (FFT) computationally  
057 expensive and inefficient, particularly for task-specific adaptations.

058 To address this, Parameter-Efficient Fine-Tuning (PEFT) methods have gained traction, particularly  
059 in NLP, where techniques like adapters Chen et al. (2022); Karimi Mahabadi et al. (2021); Rebuffi  
060 et al. (2017) and prompt tuning Jia et al. (2022); Li & Liang (2021) reduce overhead, by adding  
061 a small number of trainable parameters or trainable prompt tokens while keeping the rest of the  
062 model frozen. Among PEFT methods, Low-Rank Adaptation (LoRA) Hu et al. (2021) offers an  
063 efficient alternative by fine-tuning only low-rank matrices, enabling single-GPU adaptation of billion-  
064 parameter models Dettmers et al. (2023) while matching full fine-tuning performance Hu et al.  
065 (2021). Recent work by Zanella & Ben Ayed (2024) employed LoRA in the context of few-shot  
066 VLMs, demonstrating improved accuracy across various tasks and models. Unlike few-shot prompt  
067 tuning Bulat & Tzimiropoulos (2023); Chen et al.; Zhu et al. (2023), which involves computationally  
068 intensive optimization of textual prompts, or adapter-based methods Gao et al. (2024); Zhang et al.  
069 (2022) that often demand extensive hyperparameter tuning Silva-Rodriguez et al. (2024), LoRA  
070 provides a more scalable and portable solution for fine-tuning VLMs Zanella & Ben Ayed (2024).

071 Despite their impressive capabilities, VLMs share the susceptibility of traditional deep neural net-  
072 works (DNNs) to adversarial attacks, where imperceptible perturbations can significantly degrade  
073

model performance Szegedy et al. (2013); Zhou et al. (2023). This vulnerability is particularly concerning in the visual domain, where adversarial noise can be more subtle and difficult to detect compared to textual modifications. Extensive research in computer vision has demonstrated that adversarial training remains the most effective approach for developing robust DNNs resistant to adversarial perturbations Madry et al. (2018). When applied to PEFT paradigms, this adversarial training is typically implemented during the fine-tuning phase rather than during initial pre-training. More recently, studies Li et al. (2024); Zhang et al. (2024); Jia et al. (2025) have explored few-shot prompt tuning as a means of adversarial adaptation. For instance, Zhang et al. (2024) trains the clean text embedding with the adversarial image embedding to improve adversarial robustness. APT Li et al. (2024) learns robust text prompts via adversarial training, while FAP Zhou et al. (2023) leverages multimodal prompts and proposes a loss function that balances the connection between natural and adversarial features across modalities.



**Figure 1: Few-shot performance across datasets under clean and adversarial evaluation.** Spider plots show top-1 accuracy (%) for Clean (top row) and PGD-100 (bottom row) on eight datasets at shot counts  $\{1, 2, 4, 8, 16\}$  with ViT-B/32. Each polygon denotes a method (larger area is better).

Despite their effectiveness, adversarial prompt-based methods exhibit two limitations: **(i)** they often attain robustness by sacrificing substantial clean accuracy, especially in the extreme few-shot regime (1–4 shots), where many underperform even zero-shot CLIP (Fig. 1, top); and **(ii)** their robustness typically improves only as the shot count increases, with some methods struggling to gain robustness in the extreme few-shot regime (Fig. 1, bottom). Although LoRA has proven effective for standard fine-tuning, its use for enhancing adversarial robustness in *few-shot VLMs* remains largely unexplored. We address this gap with AdvCLIP-LoRA, which fine-tunes CLIP using LoRA adapters under a minimax objective. As shown in Fig. 1, our simple AdvCLIP-LoRA avoids the above trade-offs, delivering superior robustness *and* higher clean accuracy, consistently outperforming adversarial prompt-tuning baselines on both clean and PGD metrics for the majority of shots.

Before delving into the details, we summarize our main contributions.

- We investigate LoRA for adversarially robust few-shot VLMs, a setting largely dominated by prompt-based strategies, and introduce AdvCLIP-LoRA, which frames adaptation as a minimax optimization problem and solves it efficiently.
- We conduct extensive experiments on eight datasets with ViT-B/16 and ViT-B/32 backbones, covering few-shot classification, adversarial base-to-new generalization, and cross-dataset transfer; AdvCLIP-LoRA significantly improves robustness to strong attacks (e.g., PGD) in most settings with minimal loss in clean accuracy.
- We present comprehensive ablations that analyze design choices and hyperparameters, providing guidance for practical deployment.
- Under standard assumptions from the minimax optimization literature (e.g., smooth objectives and bounded gradients), we establish convergence guarantees for the primal function  $\Phi(\cdot) = \max_{\delta \in \Delta} f(\cdot, \delta)$  to a stationary point, with rates matching classical results.

108 

## 2 PRELIMINARIES AND RELATED WORK

109 

### 2.1 FEW-SHOT FINE-TUNING FOR VLMs

110 In vision-language classification tasks, predictions are made by leveraging the pretrained alignment  
 111 between visual and textual modalities. Given a label set of  $K$  classes, one first constructs natural  
 112 language descriptions, or prompts Liu et al. (2023a), denoted as  $\{c_k\}_{k=1}^K$ , where each  $c_k$  is a textual  
 113 phrase such as “a photo of a [class name].” These prompts are embedded using a frozen text encoder  
 114  $\theta_t$ , yielding normalized representations  $\mathbf{z}_k^{(T)} = \theta_t(c_k) \in \mathbb{R}^d$ . Similarly, an image  $\mathbf{x}_i$  is embedded  
 115 via a visual encoder  $\theta_v$  to obtain  $\mathbf{z}_i^{(I)} = \theta_v(\mathbf{x}_i) \in \mathbb{R}^d$ , also normalized to unit length. The prediction  
 116 logits are computed as the cosine similarity between each image-text pair. These logits are converted  
 117 into a probability distribution over classes using a softmax with temperature scaling:

$$118 \quad p_{i,k} = \frac{\exp(\cos(\mathbf{z}_i^{(I)}, \mathbf{z}_k^{(T)})/\gamma)}{\sum_{j=1}^K \exp(\cos(\mathbf{z}_i^{(I)}, \mathbf{z}_j^{(T)})/\gamma)}, \quad (1)$$

119 where  $\gamma$  is a softmax-temperature parameter. The predicted label for image  $\mathbf{x}_i$  is the one with the  
 120 highest posterior probability:  $\hat{k} = \arg \max_k p_{i,k}$ . This form of zero-shot prediction directly mirrors  
 121 the contrastive training setup used in large-scale VLM pretraining, such as CLIP Radford et al. (2021),  
 122 and allows models to generalize to novel classification tasks without fine-tuning on the target domain.

123 To further adapt vision-language models to downstream tasks, the few-shot setting assumes access  
 124 to a limited number of labeled examples per target class—typically fewer than 16. Given  $N$  such  
 125 labeled support images per class, we denote the one-hot encoded ground-truth label for image  $\mathbf{x}_i$   
 126 as  $y_{ik}$ , where  $y_{ik} = 1$  if  $\mathbf{x}_i$  belongs to class  $k$ , and 0 otherwise. Classification probabilities  $p_{i,k}$  are  
 127 obtained as in the zero-shot setup, and the model is adapted by minimizing the cross-entropy loss:

$$128 \quad \mathcal{L}_{\text{CE}} = -\frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K y_{ik} \ln p_{i,k}. \quad (2)$$

129 This adaptation can be implemented in several ways. One strategy is to optimize the input prompts  
 130  $\{c_k\}_{k=1}^K$  directly, an approach inspired by prompt tuning techniques Chen et al.. Alternatively, one  
 131 may fine-tune lightweight, task-specific modules such as adapter layers Gao et al. (2024) or low-rank  
 132 parameterizations like LoRA Zanella & Ben Ayed (2024), leaving the backbone encoders frozen.

133 

### 2.2 FINE-TUNING VLMs VIA LORA

134 Low-Rank Adaptation (LoRA) Hu et al. (2021) is a highly promising PEFT method, enabling  
 135 efficient fine-tuning of large models by freezing the entire pre-trained model and introducing low-  
 136 rank, trainable matrices within each layer. In LoRA, given a pre-trained weight matrix  $W_0 \in \mathbb{R}^{d \times k}$ ,  
 137 the weight update is achieved through a low-rank decomposition  $W_0 + \Delta W = W_0 + BA$ , where  
 138 the training occurs on matrices  $A \in \mathbb{R}^{r \times k}$  and  $B \in \mathbb{R}^{d \times r}$ , with  $r \ll \min(d, k)$ . The values in  $A$  are  
 139 initialized via a Gaussian distribution, while  $B$  is initialized as a zero matrix. This setup ensures that  
 140 no low-rank update occurs before training, meaning that the output remains unchanged initially.

141 Although the original LoRA paper applies the low-rank matrices to the attention matrices of  
 142 transformer-based architectures, Zanella & Ben Ayed (2024) extends LoRA to all matrices in the  
 143 vision and text encoders of VLMs. This adaptation leads to improved accuracy over prompt-based  
 144 methods across various CLIP architectures and datasets Zanella & Ben Ayed (2024).

145 

### 2.3 ADVERSARIAL ROBUSTNESS

146 Given an arbitrary classifier  $h : \mathcal{X} \rightarrow \mathcal{Y}$ , where an input  $x \in \mathcal{X}$  is associated with its true label  $y \in \mathcal{Y}$ ,  
 147 an adversary attempts to find an imperceptible perturbation  $\delta$ , which shares the same dimensionality  
 148 as  $x$ . This perturbation must satisfy the condition that  $x + \delta \in \mathcal{X}$ , and more critically,  $h(x + \delta) \neq y$ ,  
 149 thereby misclassifying the original input. To ensure that this perturbation remains imperceptible, the  
 150 adversarial perturbation  $\delta$  is usually constrained within some bounded set  $\Delta \subseteq \mathbb{R}^n$ .

151 The adversarial attack on a classifier  $h$ , constrained by bounded set  $\Delta$ , is formulated as follows:

$$152 \quad \hat{x} = x + \arg \max_{\delta \in \Delta} \mathcal{L}(h(x + \delta), y), \quad (3)$$

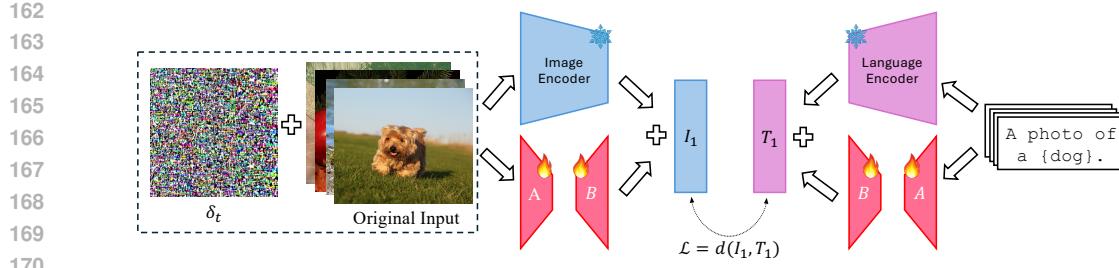


Figure 2:  $\text{🔥}$ : Trainable Parameters,  $\text{⭐}$ : Frozen Parameters. Illustration of AdvCLIP-LoRA algorithm. During iteration  $t$ , the perturbation  $\delta_t$  is updated and applied to the input image batch. Subsequently, the low-rank matrices  $A$  and  $B$  are optimized, while the rest of the model remains frozen.

---

**Algorithm 1** AdvCLIP-LoRA

---

**Require:** Training samples  $\mathcal{X}$ , batch-size  $M$ , learning rates  $\eta_w, \eta_\delta$

- 1:  $A_0 \sim \mathcal{N}(0, \sigma^2)$ ,  $B_0 = 0$ .
- 2:  $\delta \leftarrow 0$
- 3: **for** epoch = 1 ...  $T$  **do**
- 4:   **for** minibatch  $M \subset \mathcal{X}$  **do**
- 5:     **for**  $j = 1 \dots \tau$  **do**
- 6:        $\delta_t = \mathcal{P}_\Delta \left( \delta_{t-1} + \eta_\delta \left( \frac{1}{M} \sum_{i=1}^M \nabla_\delta F(W_{t-1}, \delta_{t-1}; \xi_i) \right) \right)$
- 7:     **end for**
- 8:        $A_t = A_{t-1} - \eta_w \left( \frac{1}{M} \sum_{i=1}^M \nabla_A F(W_{t-1}, \delta_t; \xi_i) \right)$    ▷ Update the low-rank matrix  $A$
- 9:        $B_t = B_{t-1} - \eta_w \left( \frac{1}{M} \sum_{i=1}^M \nabla_B F(W_{t-1}, \delta_t; \xi_i) \right)$    ▷ Update the low-rank matrix  $B$
- 10:   **end for**
- 11: **end for**

---

where  $\mathcal{L}$  is the training loss function. This formulation represents an optimization problem where the perturbation  $\delta$  is chosen such that the classifier's output is maximally disrupted while staying within a bounded set. Methods like Projected Gradient Descent (PGD) Madry et al. (2018) are commonly employed to solve this optimization problem. Given the vulnerability of deep learning models to these perturbations Szegedy et al. (2013), it becomes crucial to defend against such adversarial attacks.

One of the most effective strategies for defending against adversarial attacks is adversarial training, as proposed by Madry et al. (2018). When  $h_W$  denotes a classifier parameterized by  $W$ , adversarial training seeks to solve the following minimax optimization problem:

$$\min_W \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[ \max_{\delta \in \Delta} \mathcal{L}(h_W(x + \delta), y) \right], \quad (4)$$

where  $\mathcal{D}$  represents the underlying data distribution. This approach effectively trains the classifier to be robust against adversarial perturbations by simultaneously minimizing the classifier's loss and maximizing perturbation within a bounded set.

### 3 PROPOSED ALGORITHM

#### 3.1 ADVERSARIAL FINE-TUNING OF CLIP VIA LORA

Assume that the LoRA matrices  $A$  and  $B$  are initialized with a Gaussian distribution and zero matrices, respectively, and are applied to all weight matrices in the vision and text encoders of a CLIP model. Following the approach introduced in Section 2.3, we aim to improve the adversarial robustness of the LoRA-based CLIP model by introducing a perturbation  $\delta$  to input images and solving a minimax optimization problem. Focusing on the dependence of the training loss function on the low-rank matrices  $A$  and  $B$  and the perturbation  $\delta$ , we formulate the following minimax optimization problem:

$$\min_{A,B} \max_{\delta \in \Delta} f(W := W_0 + BA, \delta), \quad (5)$$

216 where  $\Delta$  is a bounded set of admissible perturbations, and  $f : \mathbb{R}^{d \times k+n} \rightarrow \mathbb{R}$  is a non-convex loss  
 217 function expressible in the stochastic form  $\mathbb{E}_{\xi \sim \mathcal{D}}[F(W_0 + BA, \delta; \xi)]$ . Here, the expectation is taken  
 218 over sampled batches  $\xi \sim \mathcal{D}$ , where  $\mathcal{D}$  represents the underlying data distribution.  
 219

### 220 3.2 ADVCLIP-LORA ALGORITHM

222 In this section, we present the proposed AdvCLIP-LoRA algorithm, which solves the minimax  
 223 problem (Eq. 5) to enhance the adversarial robustness of a CLIP model fine-tuned with LoRA. The  
 224 AdvCLIP-LoRA algorithm proceeds for  $T$  iterations. At each iteration  $t$ :

225 1) Select  $M$  samples  $\{\xi_i\}_{i=1}^M$  from the dataset.

226 2) Update the perturbation  $\delta$  for  $\tau$  iterations via:

$$228 \quad \delta_t = \mathcal{P}_\Delta(\delta_{t-1} + \frac{\eta_\delta}{M} \sum_{i=1}^M \nabla_\delta F(W_{t-1}, \delta_{t-1}; \xi_i)), \quad (6)$$

231 where  $\eta_\delta$  is the learning rate for  $\delta$ ,  $\Delta$  is a bounded perturbation set, and  $\mathcal{P}_\Delta$  projects onto  $\Delta$ . The set  
 232  $\Delta$  may be any convex, bounded subset of  $\mathbb{R}^n$ ; in our experiments we take  $\Delta = \{\delta : \|\delta\|_\infty \leq \epsilon\}$ , i.e.,  
 233 an  $\ell_\infty$ -ball of radius  $\epsilon$ .

234 3) Update the LoRA matrices  $A$  and  $B$  using the current  $\delta_t$  to obtain  $A_t$  and  $B_t$  (lines 8 and 9 of  
 235 Alg. 1), where  $\eta_w$  is the learning rate for  $A$  and  $B$ . The steps of the AdvCLIP-LoRA algorithm are  
 236 illustrated in Fig. 2. Moreover, the AdvCLIP-LoRA pipeline can be found in Alg. 1.  
 237

## 238 4 CONVERGENCE ANALYSIS

240 In this section, we present a thorough convergence analysis of the proposed AdvCLIP-LoRA algo-  
 241 rithm. The complete proofs can be found in Appendix C.

243 Consider the minimax problem (Eq. 5), which is equivalent to minimizing the function  $\Phi(\cdot) =$   
 244  $\max_{\delta \in \Delta} f(\cdot, \delta)$ . In the context of nonconvex-strongly-concave minimax problems, where  $f(W, \cdot)$  is  
 245 strongly-concave for each  $W$ , the maximization problem  $\max_{\delta \in \Delta} f(W, \delta)$  can be solved efficiently,  
 246 yielding useful insights into  $\Phi$ . However, finding the global minimum of  $\Phi$  remains NP-hard in  
 247 general due to its nonconvex nature. To address this challenge, we define local surrogates for the  
 248 global minimum of  $\Phi$ . One commonly used surrogate in nonconvex optimization is the notion of  
 249 *stationarity*, which is suitable when  $\Phi$  is differentiable. A point  $W$  is an  $\epsilon$ -stationary point ( $\epsilon \geq 0$ ) of  
 250 a differentiable function  $\Phi$  if  $\|\nabla \Phi(W)\| \leq \epsilon$ .

251 Let us proceed with a few assumptions. Note that  $\|\cdot\|_F$  denotes the Frobenius norm.

252 **Assumption 4.1** *We assume that the stochastic gradients are unbiased and bounded, that is,*

$$254 \quad \mathbb{E}_\xi [\nabla F(W, \delta; \xi)] = \nabla f(W, \delta), \quad \mathbb{E}_\xi [\|\nabla F(W, \delta; \xi)\|_F^2] \leq G^2, \quad (7)$$

256 for all  $W \in \mathbb{R}^{d \times k}$ , where  $\xi$  represents a randomly sampled subset of training data and  $\mathbb{E}_\xi[\cdot]$  denotes  
 257 the expectation over  $\xi \sim \mathcal{D}$ .

259 **Assumption 4.2** *The objective function and constraint set  $(f : \mathbb{R}^{d \times k+n} \rightarrow \mathbb{R}, \Delta \subseteq \mathbb{R}^n)$  satisfy (i)  
 260  $\Delta$  is a convex and bounded set with a diameter  $D \geq 0$ . (ii)  $f$  has  $\ell$ -Lipchits gradients and is  
 261  $\mu$ -strongly concave in  $\delta$ . That is, for both  $* \in \{W, \delta\}$*

$$262 \quad \|\nabla_* f(W, \delta) - \nabla_* f(W', \delta')\|_F^2 \leq \ell^2 \left( \|W - W'\|_F^2 + \|\delta - \delta'\|_F^2 \right). \quad (8)$$

264 Let  $\kappa = \ell/\mu$  denote the condition number and define

$$266 \quad \Phi(\cdot) = \max_{\delta \in \Delta} f(\cdot, \delta), \quad \delta^*(\cdot) = \operatorname{argmax}_{\delta \in \Delta} f(\cdot, \delta). \quad (9)$$

268 The following theorem characterizes the convergence rate of the proposed AdvCLIP-LoRA in Alg. 1  
 269 to find a stationary solution for  $\Phi(W)$ .

270 Table 1: Few-shot classification under clean and adversarial evaluation (1-, 4-, and 16-shot).  
271

| 272 | 273 | 274 | 275 | 276                           | 277    | 278    | 279   | 280    | 281    | 282     | Shots  | Method  | ImageNet-1K |        | Caltech101 |        | DTD    |         | OxfordPets |        | Food101 |        | Flowers102 |     | SUN397 |     | UCF101 |  | Average |  |
|-----|-----|-----|-----|-------------------------------|--------|--------|-------|--------|--------|---------|--------|---------|-------------|--------|------------|--------|--------|---------|------------|--------|---------|--------|------------|-----|--------|-----|--------|--|---------|--|
|     |     |     |     |                               |        |        |       |        |        |         | Clean  | PGD     | Clean       | PGD    | Clean      | PGD    | Clean  | PGD     | Clean      | PGD    | Clean   | PGD    | Clean      | PGD | Clean  | PGD |        |  |         |  |
| 1   | 4   | 16  | 16  | AdvVP Mao et al.              | 46.60  | 11.07  | 85.73 | 50.33  | 26.97  | 12.93   | 24.43  | 5.23    | 57.60       | 22.73  | 63.10      | 29.70  | 3.37   | 0.40    | 41.20      | 11.10  | 43.62   | 17.94  |            |     |        |     |        |  |         |  |
|     |     |     |     | APT Li et al. (2024)          | 49.30  | 1.30   | 84.77 | 26.90  | 41.67  | 3.83    | 56.57  | 0.83    | 70.23       | 0.60   | 61.97      | 2.10   | 54.50  | 3.87    | 53.53      | 1.23   | 59.07   | 5.08   |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvPT Zhang et al. (2024)     | 20.17  | 0.43   | 62.97 | 7.60   | 16.73  | 2.60    | 13.27  | 0.00    | 37.93       | 0.13   | 33.97      | 0.43   | 27.03  | 0.00    | 27.57      | 0.37   | 29.96   | 1.44   |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvMaLe Khattak et al. (2023) | 49.27  | 14.60  | 85.53 | 48.37  | 13.63  | 2.93    | 5.27   | 0.30    | 30.67       | 4.97   | 1.40       | 0.10   | 32.70  | 7.07    | 49.70      | 12.67  | 33.52   | 11.38  |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvVLP Zhou et al. (2024)     | 50.53  | 17.50  | 85.43 | 48.47  | 15.97  | 4.77    | 1.07   | 0.77    | 29.63       | 3.83   | 19.77      | 6.57   | 11.83  | 1.73    | 49.83      | 12.60  | 33.01   | 12.03  |            |     |        |     |        |  |         |  |
|     |     |     |     | FAP Zhou et al. (2024)        | 49.90  | 15.40  | 83.52 | 41.13  | 18.40  | 2.40    | 31.67  | 1.43    | 49.23       | 3.47   | 10.40      | 0.53   | 28.50  | 2.43    | 49.53      | 14.93  | 40.14   | 10.22  |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvCLIP-LoRA                  | 65.28  | 20.89  | 93.06 | 66.49  | 49.65  | 18.68   | 86.97  | 16.41   | 36.03       | 76.17  | 34.55      | 72.48  | 22.34  | 67.92   | 26.99      | 73.80  | 30.30   |        |            |     |        |     |        |  |         |  |
|     |     |     |     | Relative Improvement          | +29.19 | +19.37 | +8.55 | +32.11 | +19.15 | +44.17  | +39.47 | +163.84 | +23.84      | +58.51 | +20.71     | +16.33 | +32.99 | +103.84 | +26.88     | +80.78 | +24.94  | +46.89 |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvVP Mao et al.              | 49.80  | 11.13  | 90.17 | 52.50  | 18.77  | 9.27    | 22.73  | 4.57    | 57.80       | 16.20  | 55.97      | 23.73  | 1.07   | 0.80    | 48.47      | 13.03  | 43.10   | 16.40  |            |     |        |     |        |  |         |  |
|     |     |     |     | APT Li et al. (2024)          | 50.90  | 1.40   | 90.77 | 26.67  | 51.33  | 6.33    | 54.80  | 1.63    | 71.83       | 2.10   | 82.40      | 4.23   | 66.53  | 3.03    | 62.37      | 2.90   | 66.37   | 6.04   |            |     |        |     |        |  |         |  |
| 4   | 4   | 16  | 16  | AdvMaLe Khattak et al. (2023) | 50.53  | 17.50  | 85.43 | 48.47  | 15.97  | 4.77    | 1.07   | 0.77    | 29.63       | 3.83   | 19.77      | 6.57   | 11.83  | 1.73    | 49.83      | 12.60  | 33.01   | 12.03  |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvVLP Zhou et al. (2024)     | 51.27  | 19.00  | 89.53 | 59.40  | 6.43   | 2.40    | 60.90  | 14.83   | 30.70       | 9.03   | 52.20      | 2.37   | 59.73  | 2.40    | 58.23      | 21.53  | 51.01   | 2.07   |            |     |        |     |        |  |         |  |
|     |     |     |     | FAP Zhou et al. (2024)        | 51.30  | 19.37  | 89.37 | 59.07  | 22.97  | 10.33   | 41.50  | 11.20   | 67.43       | 18.47  | 31.00      | 25.80  | 59.97  | 21.77   | 57.90      | 21.17  | 55.18   | 23.40  |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvCLIP-LoRA                  | 66.34  | 23.78  | 93.96 | 71.03  | 62.41  | 26.36   | 75.80  | 17.69   | 87.03       | 32.98  | 90.70      | 48.72  | 76.18  | 26.22   | 71.09      | 31.11  | 77.94   | 34.74  |            |     |        |     |        |  |         |  |
|     |     |     |     | Relative Improvement          | +28.74 | +21.33 | +3.51 | +19.58 | +21.59 | +155.18 | +27.67 | +23.75  | +9.51       | +4.6   | +10.07     | +7.43  | +14.5  | +1.69   | +13.98     | +11.25 | +17.43  | +41.22 |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvVP Mao et al.              | 46.27  | 12.77  | 90.40 | 52.60  | 29.20  | 13.87   | 1.07   | 0.80    | 56.40       | 16.43  | 56.17      | 22.03  | 0.97   | 0.93    | 54.70      | 17.63  | 41.90   | 17.13  |            |     |        |     |        |  |         |  |
|     |     |     |     | APT Li et al. (2024)          | 52.63  | 2.07   | 92.93 | 30.23  | 54.93  | 10.47   | 62.50  | 2.63    | 83.70       | 4.40   | 86.63      | 8.97   | 69.40  | 4.40    | 65.67      | 3.67   | 71.05   | 8.35   |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvPT Zhang et al. (2024)     | 24.53  | 1.47   | 68.70 | 9.63   | 43.77  | 5.70    | 18.47  | 0.73    | 46.27       | 0.23   | 56.03      | 0.80   | 36.60  | 0.53    | 33.13      | 2.37   | 40.94   | 2.68   |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvMaLe Khattak et al. (2023) | 52.93  | 21.90  | 92.17 | 68.63  | 57.93  | 32.17   | 65.13  | 25.27   | 83.27       | 36.87  | 87.87      | 58.70  | 68.97  | 31.67   | 63.57      | 29.70  | 71.48   | 38.11  |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvVLP Zhou et al. (2024)     | 53.23  | 22.10  | 92.37 | 67.97  | 57.53  | 32.73   | 43.30  | 16.50   | 82.93       | 35.57  | 87.70      | 58.70  | 69.10  | 32.80   | 63.90      | 29.70  | 68.76   | 37.01  |            |     |        |     |        |  |         |  |
|     |     |     |     | FAP Zhou et al. (2024)        | 52.53  | 22.90  | 91.10 | 67.33  | 55.17  | 31.33   | 64.03  | 26.67   | 81.90       | 41.00  | 86.27      | 61.47  | 65.70  | 32.80   | 62.37      | 30.27  | 69.88   | 39.22  |            |     |        |     |        |  |         |  |
|     |     |     |     | AdvCLIP-LoRA                  | 68.38  | 25.86  | 93.74 | 72.98  | 67.67  | 28.37   | 77.81  | 17.76   | 88.44       | 34.29  | 96.47      | 54.69  | 81.87  | 30.74   | 74.23      | 33.52  | 81.23   | 37.28  |            |     |        |     |        |  |         |  |
|     |     |     |     | Relative Improvement          | +28.46 | +12.93 | +2.15 | +6.34  | +16.81 | +13.32  | +19.47 | +33.41  | +5.66       | +16.37 | +9.79      | +11.03 | +17.97 | +6.28   | +13.03     | +10.74 | +13.64  | +4.95  |            |     |        |     |        |  |         |  |

285 **Theorem 4.1** Let Assumptions 4.1 and 4.2 hold. Moreover, assume that the low-rank matrices  
286 remain bounded by constants  $c_A$  and  $c_B$  in each iteration, i.e.,  $\|A_t\|_F \leq c_A$  and  $\|B_t\|_F \leq c_B$ . Then,  
287 there exists iteration  $t \in \{0, \dots, T-1\}$  for which

$$288 \mathbb{E} \|\nabla \Phi(W_t)\|_F^2 \leq \mathcal{O} \left( \frac{4\Delta_\Phi(1/\eta_w) + \kappa\ell^2(c_A^2 + c_B^2)D^2}{\epsilon^2} \right), \quad (10)$$

289 where  $\eta_w = \Theta(\min\{1/\kappa\ell(c_A^4 + c_B^4), 1/\kappa^2\ell(c_A^2 + c_B^2), 1/(G^2 + \kappa\ell c_A^4 c_B^2)^{1/2}\})$ ,  $\eta_\delta = \Theta(1/\ell)$ , and  
290  $\Delta_\Phi = \mathbb{E}\Phi(W_0) - \mathbb{E}\Phi(W_{T+1})$ . Moreover, the mini-batch size  $M$  is bounded by

$$291 \mathcal{O} \left( \frac{G^2 + \kappa(c_A^2 + c_B^2)G^2}{\epsilon^2} \right). \quad (11)$$

292 **Remark 4.1** AdvCLIP-LoRA is guaranteed to reach an  $\epsilon$ -stationary point of  $\Phi(\cdot)$  in  $\mathcal{O}(\epsilon^{-2})$  iterations,  
293 with total stochastic gradient complexity  $\mathcal{O}(\epsilon^{-4})$ , matching classical rates in the minimax  
294 optimization literature Lin et al. (2020).

## 300 5 EMPIRICAL RESULTS

### 301 5.1 EXPERIMENTAL SETUP

304 **Datasets.** To evaluate the proposed method, we follow prior works Zhou et al. (2022); Jia et al. (2025)  
305 and utilize a diverse set of 8 image recognition datasets spanning multiple vision tasks. The datasets  
306 include two generic object recognition datasets: ImageNet-1K Deng et al. (2009) and Caltech101 Fei-  
307 Fei et al. (2004); a texture recognition dataset: DTD Cimpoi et al. (2014); four fine-grained object  
308 recognition datasets: OxfordPets Parkhi et al. (2012), Flowers102 Nilsback & Zisserman (2008), and  
309 Food101 Bossard et al. (2014); a scene recognition dataset: SUN397 Xiao et al. (2010); and an action  
310 recognition dataset: UCF101 Soomro et al. (2012).

311 **Baselines.** To rigorously evaluate the proposed method, we benchmark it against a representative set  
312 of adversarial prompt-learning baselines. We consider two categories: (i) methods using hand-crafted  
313 text supervision, such as zero-shot CLIP Radford et al. (2021) and AdvVP Mao et al.; and (ii) methods  
314 with learnable text prompts. In the single-modality textual setting, we compare against APT Li et al.  
315 (2024), which learns robust text prompts without modifying model parameters, and AdvPT Zhang  
316 et al. (2024), which first employs the image encoder to generate adversarial examples and then aligns  
317 them with learnable text prompts. For multimodal adversarial prompt learning, we follow Zhou et al.  
318 (2024) and include AdvVLP, AdvMaLe Khattak et al. (2023), and FAP Zhou et al. (2024).

319 **Implementation Details.** We conduct experiments with CLIP backbones ViT-B/16 and ViT-B/32  
320 and report averages over three random seeds. The base optimizer uses a learning rate of  $2 \times 10^{-4}$   
321 with a cosine decay schedule. Learning the perturbation  $\delta$  is challenging early in training due to  
322 small gradients; to mitigate this, we employ a larger, adaptive rate  $\eta_\delta = 0.05/\|\delta_t\|_2$ , which scales  
323 inversely with the current perturbation magnitude. This choice amplifies early updates and serves  
324 as implicit data augmentation by injecting noise.  $\eta_\delta$  then decays during training and is fixed at 0.05

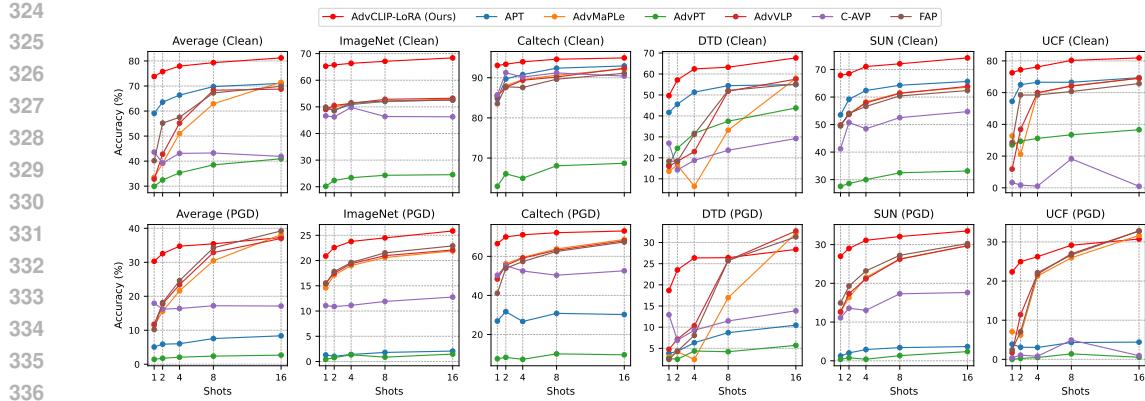


Figure 3: **Effect of shot count on clean and adversarial performance.** Clean and PGD accuracy versus number of shots  $\{1, 2, 4, 8, 16\}$  on representative datasets and the eight-dataset average.

from iteration 300 onward. The total number of training iterations is  $500 \times N/K$ . We use a batch size of 16 for ImageNet-1K and 32 for all other datasets.

For LoRA, the class-conditional prompt is “a photo of a  $k$ th class name,”  $k = 1, \dots, K$ , to demonstrate AdvCLIP-LoRA’s applicability without elaborate manual prompt engineering. LoRA modules are inserted at all layers of both encoders with rank 2 and dropout  $p = 0.25$ . Attacks are generated within an  $\ell_\infty$ -ball using a 2-step PGD procedure with budget  $\epsilon = 1/255$  and step size  $\alpha = 1/255$ , following Mao et al.; robustness is evaluated with a 100-step PGD attack. All experiments are run on NVIDIA A6000 and V100 GPUs.

## 5.2 PERFORMANCE EVALUATION

**Adversarial Few-Shot Learning.** We assess performance under scarce supervision by fine-tuning with  $\{1, 2, 4, 8, 16\}$  shots per class. Table 1 reports results for the 1-, 4-, and 16-shot settings across eight datasets; results for the remaining shot counts are provided in the Appendix. We also report the *relative improvement* of AdvCLIP-LoRA over the strongest non-ours baseline for each setting. Overall, AdvCLIP-LoRA consistently delivers higher clean accuracy with substantial margins. Under PGD evaluation, the advantage is pronounced at 1–4 shots, remains favorable at 8 shots, and narrows at 16 shots, where performance is slightly trailing the best baseline (FAP). Fig. 3 visualizes clean and PGD accuracy as a function of shots for representative datasets and the eight-dataset average, *highlighting that while some prompt-based baselines improve as shots increase, others fail to improve*, whereas AdvCLIP-LoRA is already strong from the 1-shot regime.

**Adversarial Base-to-New Generalization.** We present a more challenging adversarial base-to-new generalization setting in which each dataset is partitioned into base and new subclasses. Models are fine-tuned with 16 shots per base class and then evaluated on both base and new classes under clean and PGD-100 conditions. As the number of categories is typically modest relative to the per-class sample count, this setting requires learning intrinsic, dataset-level structure and robust representations from limited supervision that transfer to a large test pool. Table 2 presents results together with *relative improvement*. AdvCLIP-LoRA attains consistently superior clean and adversarial accuracy on both base and new splits; moreover, the gains are larger on the new classes, highlighting stronger robustness and generalization to previously unseen categories.

**Adversarial Cross-Dataset Evaluation.** We assess zero-shot transfer robustness via cross-dataset generalization. A CLIP backbone is first adversarially fine-tuned on ImageNet-1K with 16 shots per class, then evaluated without further fine-tuning on seven downstream datasets under Clean and PGD-100 conditions. Table 3 reports the results and the *relative improvement* of AdvCLIP-LoRA over the strongest non-ours baseline (excluding zero-shot CLIP). As expected, zero-shot CLIP attains strong clean accuracy but offers minimal adversarial resistance. Adversarially adapted models typically sacrifice some clean accuracy for robustness; AdvCLIP-LoRA shows the smallest drop in clean

378 **Table 2: Adversarial base-to-new generalization (16-shot).** Top-1 accuracy (%) on base and new  
379 classes under clean and PGD-100 evaluation across eight datasets.  
380

| Clean Acc (%)                | ImageNet-1K |        | Caltech101 |        | DTD    |        | OxfordPets |        | Food101 |       | Flowers102 |         | SUN397 |        | UCF101 |        | Average |        |
|------------------------------|-------------|--------|------------|--------|--------|--------|------------|--------|---------|-------|------------|---------|--------|--------|--------|--------|---------|--------|
|                              | Base        | New    | Base       | New    | Base   | New    | Base       | New    | Base    | New   | Base       | New     | Base   | New    | Base   | New    | Base    | New    |
| AdvVP Mao et al.             | 49.87       | 44.80  | 92.83      | 88.83  | 23.27  | 13.23  | 32.57      | 32.30  | 2.27    | 2.20  | 50.43      | 45.23   | 60.20  | 62.20  | 1.77   | 2.47   | 31.68   | 30.39  |
| APT Li et al. (2024)         | 24.73       | 25.43  | 67.63      | 43.83  | 14.17  | 19.43  | 9.47       | 2.73   | 2.97    | 8.10  | 2.07       | 3.47    | 13.10  | 11.17  | 14.73  | 17.37  | 18.21   | 13.99  |
| AdvPT Zhang et al. (2024)    | 26.53       | 69.03  | 72.27      | 62.33  | 52.70  | 46.77  | 51.43      | 51.17  | 25.07   | 53.70 | 70.23      | 46.70   | 41.40  | 59.17  | 43.47  | 43.60  | 43.87   | 44.94  |
| AdvVLP Khatatk et al. (2023) | 58.40       | 48.83  | 94.40      | 83.27  | 43.40  | 21.27  | 38.97      | 39.67  | 71.37   | 68.93 | 88.90      | 49.90   | 70.23  | 63.57  | 72.77  | 49.83  | 60.38   | 46.18  |
| AdvMPLA Zhou et al. (2024)   | 58.47       | 48.67  | 94.87      | 84.47  | 48.63  | 22.87  | 60.67      | 57.90  | 71.40   | 69.90 | 56.53      | 30.00   | 70.57  | 63.27  | 72.80  | 50.70  | 58.95   | 46.92  |
| FAP Zhou et al. (2024)       | 58.10       | 47.83  | 94.07      | 76.53  | 69.17  | 35.17  | 87.37      | 72.13  | 72.37   | 68.20 | 89.30      | 45.67   | 68.47  | 61.47  | 70.37  | 47.10  | 70.52   | 49.58  |
| AdvCLIP-LoRA (Ours)          | 72.21       | 56.72  | 97.48      | 91.05  | 87.94  | 52.90  | 91.24      | 79.61  | 96.01   | 54.82 | 79.05      | 70.48   | 82.57  | 62.30  | 84.91  | 69.45  |         |        |
| <i>Relative Improvement</i>  | +23.5       | +16.16 | +2.75      | +7.79  | +14.12 | +13.11 | +4.48      | +21.66 | +12.96  | +7.51 | +17.39     | +12.02  | +11.4  | +13.42 | +22.88 | +20.41 | +40.08  |        |
| PGD-100 Acc (%)              | ImageNet-1K |        | Caltech101 |        | DTD    |        | OxfordPets |        | Food101 |       | Flowers102 |         | SUN397 |        | UCF101 |        | Average |        |
|                              | Base        | New    | Base       | New    | Base   | New    | Base       | New    | Base    | New   | Base       | New     | Base   | New    | Base   | New    | Base    | New    |
| AdvVP Mao et al.             | 12.27       | 12.27  | 57.17      | 49.13  | 10.03  | 7.20   | 12.27      | 13.37  | 1.27    | 1.00  | 24.63      | 15.77   | 18.50  | 21.10  | 1.73   | 1.43   | 14.43   | 13.36  |
| APT Li et al. (2024)         | 9.83        | 5.90   | 15.97      | 9.97   | 8.87   | 3.60   | 0.33       | 0.00   | 0.47    | 1.93  | 0.13       | 0.67    | 2.23   | 2.03   | 5.33   | 3.80   | 3.07    |        |
| AdvPT Zhang et al. (2024)    | 0.50        | 14.77  | 13.60      | 15.17  | 7.13   | 6.83   | 1.27       | 8.53   | 1.63    | 10.97 | 1.17       | 9.93    | 3.77   | 12.83  | 0.63   | 6.60   | 3.50    | 8.84   |
| AdvVLP Khatatk et al. (2023) | 25.33       | 21.03  | 73.90      | 56.70  | 21.50  | 9.97   | 16.80      | 17.50  | 27.90   | 24.50 | 62.80      | 21.07   | 33.87  | 29.83  | 36.37  | 20.13  | 30.69   | 20.25  |
| AdvMPLA Zhou et al. (2024)   | 24.93       | 20.50  | 76.23      | 57.67  | 27.57  | 12.37  | 31.80      | 28.90  | 28.43   | 24.60 | 36.70      | 11.63   | 34.10  | 29.40  | 36.77  | 18.00  | 32.37   | 21.61  |
| FAP Zhou et al. (2024)       | 25.83       | 21.57  | 74.20      | 50.00  | 41.63  | 19.77  | 34.13      | 26.07  | 27.57   | 24.20 | 65.50      | 18.10   | 34.63  | 30.77  | 36.63  | 18.30  | 38.05   | 21.86  |
| AdvCLIP-LoRA (Ours)          | 25.58       | 22.40  | 79.15      | 65.61  | 41.90  | 31.16  | 45.19      | 49.38  | 23.54   | 23.50 | 57.26      | 29.43   | 39.80  | 37.02  | 32.52  | 19.15  | 43.12   | 34.71  |
| <i>Relative Improvement</i>  | -0.97       | +9.27  | +3.83      | +13.77 | +0.65  | +57.61 | +32.41     | +70.87 | -17.2   | -2.89 | -12.58     | +153.05 | +16.72 | +20.31 | -11.56 | +4.64  | +13.32  | +58.78 |

391 **Table 3: Cross-dataset generalization (zero-shot transfer).** Models are adversarially fine-tuned on  
392 ImageNet-1K with 16 shots, then evaluated *without* further adaptation on seven downstream datasets.  
393

| Method                               | ImageNet-1K |        | Caltech101 |       | DTD   |        | OxfordPets |       | Food101 |        | Flowers102 |        | SUN397 |        | UCF101 |        | Average |       |
|--------------------------------------|-------------|--------|------------|-------|-------|--------|------------|-------|---------|--------|------------|--------|--------|--------|--------|--------|---------|-------|
|                                      | Clean       | PGD    | Clean      | PGD   | Clean | PGD    | Clean      | PGD   | Clean   | PGD    | Clean      | PGD    | Clean  | PGD    | Clean  | PGD    | Clean   | PGD   |
| Zero-shot CLIP Bedford et al. (2021) | 62.10       | 1.57   | 91.50      | 26.23 | 43.70 | 5.07   | 87.40      | 3.27  | 80.50   | 5.03   | 66.90      | 1.72   | 62.10  | 1.29   | 62.00  | 2.47   | 69.53   | 5.92  |
| AdvVP Mao et al.                     | 44.87       | 11.67  | 85.47      | 48.07 | 30.23 | 12.93  | 74.20      | 19.03 | 56.53   | 9.70   | 49.17      | 12.20  | 41.97  | 12.77  | 44.60  | 10.47  | 52.63   | 17.60 |
| APT Li et al. (2024)                 | 12.23       | 0.90   | 53.57      | 1.70  | 11.93 | 3.47   | 13.97      | 1.10  | 7.30    | 0.10   | 13.73      | 0.67   | 14.73  | 2.37   | 18.30  | 0.33   | 18.22   | 2.08  |
| AdvPT Zhang et al. (2024)            | 23.50       | 0.33   | 63.70      | 3.47  | 19.47 | 3.30   | 43.10      | 0.87  | 12.23   | 0.00   | 28.57      | 0.60   | 26.33  | 0.40   | 25.77  | 0.27   | 30.33   | 1.16  |
| AdvVLP Zhou et al. (2024)            | 53.23       | 22.10  | 87.33      | 62.97 | 33.43 | 18.60  | 78.80      | 40.83 | 55.80   | 17.83  | 49.77      | 25.23  | 51.50  | 22.10  | 57.83  | 28.92  |         |       |
| AdvMPLA Khatatk et al. (2023)        | 52.93       | 21.90  | 88.23      | 64.90 | 30.87 | 17.50  | 77.87      | 42.83 | 56.67   | 18.53  | 52.90      | 28.73  | 52.53  | 21.90  | 50.97  | 23.20  | 57.87   | 29.94 |
| FAP Zhou et al. (2024)               | 52.53       | 22.90  | 87.80      | 65.43 | 30.93 | 16.93  | 78.20      | 43.77 | 55.83   | 19.60  | 51.20      | 27.23  | 52.47  | 22.40  | 51.73  | 27.77  | 57.59   | 30.25 |
| AdvCLIP-LoRA (Ours)                  | 66.90       | 26.51  | 89.57      | 69.05 | 34.40 | 21.63  | 82.34      | 42.11 | 73.27   | 17.39  | 48.80      | 24.12  | 58.01  | 27.84  | 58.50  | 20.57  | 63.97   | 31.15 |
| <i>Relative Improvement</i>          | +25.68      | +15.76 | +1.52      | +5.53 | +2.9  | +16.29 | +4.49      | -3.79 | +29.29  | -11.28 | -7.75      | -16.05 | +9.87  | +24.29 | +13.09 | -13.46 | +10.54  | +2.08 |

400 accuracy (5.56% below zero-shot CLIP) while achieving state-of-the-art robustness, yielding the best  
401 overall trade-off.

402 **Comparison with the Non-Robust Counterpart.** We compare AdvCLIP-LoRA with its non-  
403 robust variant, CLIP-LoRA, using the ViT-B/16 backbone in the 16-shot setting. As shown in  
404 Fig. 4 (top-left), for moderately small values of  $\tau$ , AdvCLIP-LoRA attains clean accuracy only  
405 marginally below CLIP-LoRA while achieving substantial gains in PGD accuracy, yielding a favorable  
406 robustness–accuracy trade-off. In practice, careful tuning of  $\tau$  yields strong robustness gains at  
407 minimal nominal performance cost; we analyze this trade-off in more depth later. We provide an  
408 extensive comparison of CLIP-LoRA and AdvCLIP-LoRA on ViT-B/16 and ViT-B/32 across different  
409 shot counts in Appendix B.2.

### 5.3 ABLATION STUDY

410 **LoRA Rank.** Fig. 4 (bottom-left) plots clean and PGD-100 accuracy on ImageNet-1K as a function  
411 of the LoRA rank  $r$  for  $\{1, 2, 4, 8, 16\}$  shots. Increasing the rank to a moderate value (e.g.,  $r = 16$ )  
412 improves both clean and robust performance of AdvCLIP-LoRA across all shot counts, with the  
413 gains most pronounced in the 1-shot regime where data are scarce. To keep the number of trainable  
414 parameters low, we adopt  $r = 2$  in the main experiments; despite its small footprint, this setting  
415 provides strong performance and a favorable robustness–accuracy trade-off, outperforming prompt  
416 tuning baselines.

417 **Attack Budget  $\epsilon$ .** Fig. 4 (top-right) shows the effect of the PGD budget  $\epsilon$  on the average robust  
418 accuracy over five datasets using ViT-B/16. As expected, larger  $\epsilon$  degrades robustness. Increasing the  
419 number of inner maximization steps  $\tau$  consistently improves performance across budgets, yielding  
420 higher PGD accuracy for different  $\epsilon$ . Per-dataset and per-shot curves are provided in Fig. 6 (Appendix).

421 **Number of Inner Maximization Iterations  $\tau$ .** Figure 4 (bottom-right) shows clean and PGD-100  
422 accuracy, averaged over eight datasets, as a function of the inner maximization steps  $\tau$  in Alg. 1.  
423 Increasing  $\tau$  tightens the approximation to the inner maximization in the minimax objective (Eq. 5),  
424 yielding steadily higher robustness; the largest gains occur between  $\tau = 2$  and  $\tau = 15$ . This  
425 improvement comes at the cost of longer training and a modest drop in clean accuracy. For a fair  
426 comparison with baselines, we use  $\tau = 2$  in the main tables; however, the curves indicate that  $\tau \approx 15$   
427 offers a strong robustness–efficiency trade-off, while for larger  $\tau$  (beyond  $\sim 15$ ) changes in both clean  
428 and robust accuracy are minimal. We provide per-dataset and per-shot curves in Fig. 6 (Appendix).

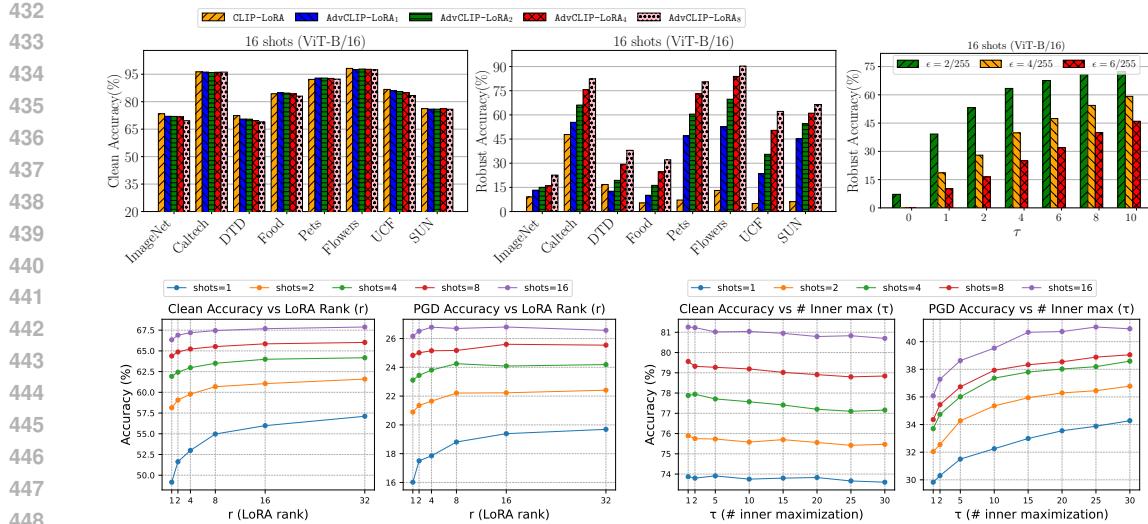


Figure 4: **Top-left:** comparison to the non-robust CLIP-LoRA. **Ablations for AdvCLIP-LoRA.** **Top-right:** effect of the PGD budget  $\epsilon$ . **Bottom-left:** effect of LoRA rank  $r$ . **Bottom-right:** effect of inner maximization steps  $\tau$ .

and PGD accuracy become less pronounced, particularly for the larger shots. In practice,  $\tau \in [10, 15]$  is a reasonable default, with smaller  $\tau$  remaining competitive under tight compute budgets.

**Ablation on LoRA Design Choices.** We study how different adapter configurations affect robustness and accuracy. In our default setup, LoRA is applied to both vision and text encoders, across all layers, and to attention projections. We vary one factor at a time and report averages over four datasets (clean, PGD-100, and harmonic mean) in Table 4. We observe that **(1)** restricting adapters to the vision encoder degrades performance, indicating the benefit of adapting both modalities, **(2)** placing adapters only at specific depths (e.g., up, bottom, mid, or half-stacks) underperforms using adapters in all layers, suggesting that distributed adaptation is more effective, **(3)** among per-matrix targets, applying LoRA to the value projections ( $W_v$ ) is the strongest single choice and nearly matches the full AdvCLIP-LoRA, while  $W_q$  alone is weaker. Overall, the full configuration yields the best harmonic mean, reinforcing the importance of multi-modal, all-layer adaptation with appropriately chosen attention targets.

## 6 CONCLUSION

We introduced AdvCLIP-LoRA, a parameter-efficient adversarial fine-tuning method for CLIP that optimizes a minimax objective over low-rank adapters and an adversarial perturbation. Across eight datasets and two backbones (ViT-B/16 and ViT-B/32), the method achieves state-of-the-art results in few-shot classification, adversarial base-to-new generalization, and cross-dataset transfer, consistently improving PGD robustness while largely preserving clean accuracy. In contrast to adversarial prompt-tuning baselines, AdvCLIP-LoRA avoids large losses in clean accuracy and delivers strong robustness from the start. Ablations on adapter placement, LoRA rank, the attack budget  $\epsilon$ , and the number of inner maximization steps  $\tau$  provide pragmatic guidance: adapting both encoders across all layers is beneficial, rank as small as  $r = 2$  remains competitive, and  $\tau$  around 15 offers a favorable robustness–efficiency trade-off. Finally, under standard assumptions, we establish convergence of the primal objective to a stationary point, giving a theoretical foundation for the proposed training procedure.

Table 4: Average Clean, PGD-100, and harmonic mean (HM) for LoRA variants.

| Method       | Clean        | PGD-100      | HM           |
|--------------|--------------|--------------|--------------|
| AdvCLIP-LoRA | <b>81.25</b> | <b>34.76</b> | <b>48.69</b> |
| Vision       | 78.71        | 30.74        | 44.21        |
| $W_q$        | 80.65        | 30.62        | 44.39        |
| $W_v$        | 80.95        | 34.73        | 48.61        |
| $W_q W_v$    | 80.95        | 34.65        | 48.53        |
| up           | 81.21        | 29.32        | 43.08        |
| bottom       | 80.09        | 33.02        | 46.76        |
| half-up      | 81.37        | 30.72        | 44.60        |
| half-bottom  | 79.80        | 32.70        | 46.39        |
| mid          | 80.45        | 30.98        | 44.73        |

486 REFERENCES  
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,  
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.  
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-  
492 nents with random forests. In *Computer vision–ECCV 2014: 13th European conference, zurich,*  
493 *Switzerland, September 6–12, 2014, proceedings, part VI 13*, pp. 446–461. Springer, 2014.

494 Adrian Bulat and Georgios Tzimiropoulos. Lasp: Text-to-text optimization for language-aware soft  
495 prompting of vision & language models. In *Proceedings of the IEEE/CVF conference on computer*  
496 *vision and pattern recognition*, pp. 23232–23241, 2023.

497 Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang. Plot:  
498 Prompt learning with optimal transport for vision-language models. In *The Eleventh International*  
499 *Conference on Learning Representations*.

500 Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.  
501 Adaptformer: Adapting vision transformers for scalable visual recognition. *Advances in Neural*  
502 *Information Processing Systems*, 35:16664–16678, 2022.

503 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-  
504 ing textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern*  
505 *recognition*, pp. 3606–3613, 2014.

506 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale  
507 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,  
508 pp. 248–255. Ieee, 2009.

509 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning  
510 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

511 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training  
512 examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference*  
513 *on computer vision and pattern recognition workshop*, pp. 178–178. IEEE, 2004.

514 Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale adver-  
515 sarial training for vision-and-language representation learning. *Advances in Neural Information*  
516 *Processing Systems*, 33:6616–6628, 2020.

517 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and  
518 Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International Journal*  
519 *of Computer Vision*, 132(2):581–595, 2024.

520 Xiaoshuai Hao and Wanqian Zhang. Uncertainty-aware alignment network for cross-domain video-  
521 text retrieval. *Advances in Neural Information Processing Systems*, 36:38284–38296, 2023.

522 Xiaoshuai Hao, Wanqian Zhang, Dayan Wu, Fei Zhu, and Bo Li. Dual alignment unsupervised domain  
523 adaptation for video-text retrieval. In *Proceedings of the IEEE/CVF conference on computer vision*  
524 *and pattern recognition*, pp. 18962–18972, 2023.

525 Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards  
526 a unified view of parameter-efficient transfer learning. In *International Conference on Learning*  
527 *Representations*.

528 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,  
529 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for  
530 nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

531 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
532 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*  
533 *arXiv:2106.09685*, 2021.

540 Yuheng Ji, Yue Liu, Zhicheng Zhang, Zhao Zhang, Yuting Zhao, Gang Zhou, Xingwei Zhang,  
 541 Xinwang Liu, and Xiaolong Zheng. Advlora: Adversarial low-rank adaptation of vision-language  
 542 models. *CoRR*, 2024.

543

544 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,  
 545 Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with  
 546 noisy text supervision. In *International conference on machine learning*, pp. 4904–4916. PMLR,  
 547 2021.

548 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and  
 549 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.  
 550 Springer, 2022.

551

552 Xiaojun Jia, Sensen Gao, Simeng Qin, Ke Ma, Xinfeng Li, Yihao Huang, Wei Dong, Yang Liu, and  
 553 Xiaochun Cao. Evolution-based region adversarial prompt learning for robustness enhancement in  
 554 vision-language models. *arXiv preprint arXiv:2503.12874*, 2025.

555 Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank  
 556 hypercomplex adapter layers. *Advances in Neural Information Processing Systems*, 34:1022–1035,  
 557 2021.

558

559 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz  
 560 Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on  
 561 computer vision and pattern recognition*, pp. 19113–19122, 2023.

562 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt  
 563 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language  
 564 Processing*, pp. 3045–3059, 2021.

565

566 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-  
 567 training for unified vision-language understanding and generation. In *International conference on  
 568 machine learning*, pp. 12888–12900. PMLR, 2022a.

569 Lin Li, Haoyan Guan, Jianing Qiu, and Michael Spratling. One prompt word is enough to boost  
 570 adversarial robustness for pre-trained vision-language models. In *2024 IEEE/CVF Conference on  
 571 Computer Vision and Pattern Recognition (CVPR)*, pp. 24408–24419. IEEE Computer Society,  
 572 2024.

573

574 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,  
 575 Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-  
 576 training. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,  
 577 pp. 10965–10975, 2022b.

578

579 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In  
 580 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the  
 581 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*.  
 582 Association for Computational Linguistics, 2021.

583

584 Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax  
 585 problems. In *International conference on machine learning*, pp. 6083–6093. PMLR, 2020.

586

587 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction  
 588 tuning. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.  
 589 26286–26296. IEEE, 2024.

590

591 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.  
 592 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language  
 593 processing. *ACM computing surveys*, 55(9):1–35, 2023a.

594

595 Ziquan Liu, Yi Xu, Xiangyang Ji, and Antoni B Chan. Twins: A fine-tuning framework for improved  
 596 transferability of adversarial robustness and generalization. In *2023 IEEE/CVF Conference on  
 597 Computer Vision and Pattern Recognition (CVPR)*, pp. 16436–16446. IEEE, 2023b.

594 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.  
 595 Towards deep learning models resistant to adversarial attacks. In *International Conference on*  
 596 *Learning Representations*, 2018.

597 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-  
 598 shot adversarial robustness for large-scale models. In *The Eleventh International Conference on*  
 599 *Learning Representations*.

600 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number  
 601 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.  
 602 722–729. IEEE, 2008.

603 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*  
 604 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

605 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 606 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 607 models from natural language supervision. In *International conference on machine learning*, pp.  
 608 8748–8763. PMLR, 2021.

609 Sylvestre-Alvise Rebiffé, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with  
 610 residual adapters. *Advances in neural information processing systems*, 30, 2017.

611 Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and  
 612 Tom Goldstein. Adversarially robust transfer learning. In *International Conference on Learning*  
 613 *Representations*.

614 Julio Silva-Rodriguez, Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. A closer look at the few-shot  
 615 adaptation of large vision-language models. In *Proceedings of the IEEE/CVF Conference on*  
 616 *Computer Vision and Pattern Recognition*, pp. 23681–23690, 2024.

617 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions  
 618 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

619 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,  
 620 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

621 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

622 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:  
 623 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*  
 624 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

625 Xilie Xu, Jingfeng Zhang, and Mohan Kankanhalli. Autolora: A parameter-free automated robust  
 626 fine-tuning framework. *arXiv preprint arXiv:2310.01818*, 2023a.

627 Xilie Xu, Jingfeng Zhang, Feng Liu, Masashi Sugiyama, and Mohan S Kankanhalli. Enhancing  
 628 adversarial contrastive learning via adversarial invariant regularization. *Advances in Neural*  
 629 *Information Processing Systems*, 36:16783–16803, 2023b.

630 Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo  
 631 Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. In  
 632 *International Conference on Learning Representations*.

633 Qiyi Yu, Jieming Lou, Xianyuan Zhan, Qizhang Li, Wangmeng Zuo, Yang Liu, and Jingjing Liu.  
 634 Adversarial contrastive learning via asymmetric infonce. In *European Conference on Computer*  
 635 *Vision*, pp. 53–69. Springer, 2022.

636 Zheng Yuan, Jie Zhang, and Shiguang Shan. Fulllora-at: Efficiently boosting the robustness of  
 637 pretrained vision transformers. *arXiv preprint arXiv:2401.01752*, 2024.

638 Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models.  
 639 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 640 1593–1603, 2024.

648 Jiaming Zhang, Xingjun Ma, Xin Wang, Lingyu Qiu, Jiaqi Wang, Yu-Gang Jiang, and Jitao Sang.  
649 Adversarial prompt tuning for vision-language models. In *ECCV (45)*, 2024.  
650

651 Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and  
652 Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In *European*  
653 *conference on computer vision*, pp. 493–510. Springer, 2022.

654 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong Tian.  
655 Galore: Memory-efficient llm training by gradient low-rank projection. In *Forty-first International*  
656 *Conference on Machine Learning*.

657 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, and Min Lin.  
658 On evaluating adversarial robustness of large vision-language models. In *NeurIPS*, 2023.

660 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-  
661 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.

662 Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, and Tongliang Liu. Few-shot adversarial prompt  
663 learning on vision-language models. *Advances in Neural Information Processing Systems*, 37:  
664 3122–3156, 2024.

666 Ziqi Zhou, Shengshan Hu, Minghui Li, Hangtao Zhang, Yechao Zhang, and Hai Jin. Advclip:  
667 Downstream-agnostic adversarial examples in multimodal contrastive learning. In *Proceedings of*  
668 *the 31st ACM International Conference on Multimedia*, pp. 6311–6320, 2023.

670 Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for  
671 prompt tuning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.  
672 15659–15669, 2023.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A RELATED WORK  
703704 A.1 PARAMETER-EFFICIENT FINE-TUNING ON VLMs  
705

706 Vision-Language Models (VLMs) such as LLaVa Liu et al. (2024) and GPT-4V Achiam et al.  
707 have achieved remarkable performance across various vision-language tasks, including cross-  
708 modal retrieval Hao & Zhang (2023); Hao et al. (2023) and image captioning Li et al. (2022a).  
709 However, these models typically contain billions of trainable parameters, making full fine-tuning  
710 (FFT) computationally expensive and inefficient, particularly for task-specific adaptations. To address  
711 this, Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced, enabling adaptation  
712 with significantly fewer trainable parameters while maintaining performance close to FFT. PEFT  
713 techniques can be broadly categorized into adapter-based Houlsby et al. (2019); He et al., prompt-  
714 based Lester et al. (2021); Zhou et al. (2022), and Low-Rank Adaptation (LoRA)-based Hu et al.  
715 (2021); Zhao et al. approaches. Among these, LoRA stands out for its efficiency, effectiveness, and  
716 adaptability, making it a compelling choice for fine-tuning VLMs. In this work, we specifically focus  
717 on improving the robustness of LoRA against adversarial attacks.  
718

719 A.2 ROBUST FINE-TUNING  
720

721 Robust fine-tuning (RFT) has been introduced as an efficient and cost-effective method for enhancing  
722 adversarial robustness in downstream tasks by adapting pre-trained feature extractors (FEs) through  
723 adversarial training data Shafahi et al.; Madry et al. (2018). The vanilla RFT jointly learns repres-  
724 entations from both natural and adversarial data Shafahi et al.. This approach has been widely  
725 employed in fine-tuning adversarially self-supervised pre-trained models, demonstrating significant  
726 robustness improvements across various tasks Yu et al. (2022); Xu et al. (2023b). Expanding on  
727 this, TWINS Liu et al. (2023b) introduces a dual-network fine-tuning framework that enhances both  
728 generalization and robustness by optimizing two neural networks. More recently, AutoLoRA Xu et al.  
729 (2023a) refines RFT by decoupling the optimization process into two distinct components: using  
730 the LoRA branch for natural objectives while leveraging the FEs for adversarial objectives, thereby  
731 addressing the gradient instability present in TWINS. However, despite their effectiveness, these  
732 methods demand substantial computational resources due to intensive gradient computations and full  
733 model fine-tuning, making them impractical for VLMs.  
734

735 A.3 ADVERSARIAL ADAPTATION ON VLMs  
736

737 It has been shown that VLMs are susceptible to adversarial attacks, where small input perturbations  
738 can cause them to make incorrect predictions with high confidence Zhao et al. (2023). Early  
739 approaches, such as Gan et al. (2020), employed adversarial training techniques to train VLMs from  
740 scratch, while others, like Yuan et al. (2024), sought to enhance adversarial robustness in downstream  
741 tasks by fine-tuning model parameters focusing only on visual models. More recently, studies Li et al.  
742 (2024); Zhang et al. (2024); Jia et al. (2025) have explored prompt tuning as a means of adversarial  
743 adaptation. For instance, APT Li et al. (2024) improves VLM robustness by learning robust textual  
744 prompts rather than modifying model weights. However, LoRA-based methods for strengthening  
745 VLM robustness in few-shot settings remain largely unexplored. Prior work in this area Ji et al. (2024)  
746 applies LoRA to adversarial fine-tuning with BLIP Li et al. (2022a), and does not provide theoretical  
747 guarantees. Our study differs in three key aspects: (i) we target few-shot learning with CLIP, (ii) we  
748 offer comprehensive comparisons against strong prompt-tuning baselines across multiple evaluation  
749 settings, and (iii) we conduct an extensive ablation study. In addition, we adopt a principled minimax  
750 optimization framework to enhance robustness and furnish a rigorous convergence analysis to a  
751 stationary solution.  
752

753  
754  
755

## 756 B ADDITIONAL EXPERIMENTS RESULTS

### 757 B.1 ADVERSARIAL FEW-SHOT LEARNING

758 **Table 5:** Detailed comparative analysis of various adversarial PEFT methods with ViT-B/32 as  
759 backbone. Top-1 accuracy averaged over 3 random seeds is reported.

| 763 Shots | 764 Method                     | 765 Average |         | 766 ImageNet |         | 767 Caltech |         | 768 DTD   |         | 769 Food  |         | 770 Pets  |         | 771 Flowers |         | 772 UCF   |         | 773 SUN   |         |       |
|-----------|--------------------------------|-------------|---------|--------------|---------|-------------|---------|-----------|---------|-----------|---------|-----------|---------|-------------|---------|-----------|---------|-----------|---------|-------|
|           |                                | 774 Clean   | 775 PGD | 776 Clean    | 777 PGD | 778 Clean   | 779 PGD | 780 Clean | 781 PGD | 782 Clean | 783 PGD | 784 Clean | 785 PGD | 786 Clean   | 787 PGD | 788 Clean | 789 PGD | 790 Clean | 791 PGD |       |
|           | AdvVP Mao et al.               | 41.90       | 17.13   | 46.27        | 12.77   | 90.40       | 52.60   | 20.20     | 13.87   | 0.80      | 56.40   | 16.43     | 86.63   | 8.97        | 69.40   | 4.40      | 65.67   | 17.63     |         |       |
|           | AdvPT Li et al. (2024)         | 71.05       | 8.35    | 52.63        | 2.07    | 92.93       | 30.23   | 54.93     | 10.47   | 6.07      | 83.70   | 4.40      | 86.63   | 8.97        | 69.40   | 4.40      | 65.67   | 3.67      |         |       |
|           | AdvPT Zhang et al. (2024)      | 40.94       | 2.68    | 24.53        | 1.47    | 68.70       | 9.63    | 43.77     | 5.70    | 18.47     | 0.73    | 46.27     | 0.23    | 56.03       | 0.80    | 36.60     | 0.53    | 33.13     | 2.37    |       |
|           | AdvMaPLe Khattak et al. (2023) | 71.48       | 38.11   | 52.93        | 21.90   | 92.17       | 68.63   | 57.93     | 32.17   | 65.13     | 25.27   | 83.27     | 36.87   | 87.87       | 58.70   | 68.97     | 31.67   | 63.57     | 29.70   |       |
|           | AdvVLIP Zhou et al. (2024)     | 68.76       | 37.01   | 53.23        | 22.10   | 92.37       | 67.97   | 57.53     | 32.73   | 43.30     | 16.50   | 82.93     | 35.57   | 87.70       | 58.70   | 69.10     | 32.80   | 63.90     | 29.70   |       |
|           | FAP Zhou et al. (2024)         | 69.88       | 39.22   | 52.53        | 22.99   | 91.10       | 67.33   | 55.17     | 31.33   | 64.03     | 26.67   | 81.90     | 41.00   | 86.27       | 61.47   | 65.70     | 32.80   | 62.37     | 30.27   |       |
| 16        | AdvCLIP-LoRA ( $\tau = 1$ )    | 81.26       | 36.08   | 68.42        | 25.05   | 95.29       | 72.66   | 67.49     | 26.95   | 77.88     | 16.83   | 88.25     | 32.52   | 96.67       | 52.46   | 81.89     | 30.00   | 74.17     | 32.20   |       |
|           | AdvCLIP-LoRA ( $\tau = 2$ )    | 81.23       | 36.08   | 68.38        | 25.05   | 94.93       | 72.98   | 67.67     | 28.37   | 81.77     | 17.76   | 88.44     | 34.29   | 96.47       | 54.69   | 81.87     | 30.74   | 74.23     | 33.52   |       |
|           | AdvCLIP-LoRA ( $\tau = 5$ )    | 81.02       | 38.63   | 68.28        | 27.05   | 95.05       | 75.42   | 67.20     | 28.31   | 77.65     | 18.98   | 88.01     | 34.59   | 96.39       | 55.62   | 81.34     | 34.10   | 74.22     | 34.98   |       |
|           | AdvCLIP-LoRA ( $\tau = 10$ )   | 81.04       | 39.53   | 52.13        | 20.60   | 94.97       | 76.63   | 67.35     | 29.96   | 85.85     | 20.20   | 86.30     | 36.33   | 96.22       | 55.82   | 82.18     | 34.10   | 74.11     | 35.76   |       |
|           | AdvCLIP-LoRA ( $\tau = 20$ )   | 80.79       | 40.73   | 67.00        | 28.85   | 94.97       | 77.00   | 66.44     | 31.77   | 72.23     | 20.37   | 87.67     | 37.37   | 96.31       | 57.49   | 82.10     | 36.00   | 73.99     | 36.53   |       |
|           | AdvCLIP-LoRA ( $\tau = 25$ )   | 80.83       | 41.06   | 67.98        | 29.03   | 94.93       | 76.96   | 67.32     | 32.39   | 75.07     | 20.82   | 87.44     | 37.68   | 96.35       | 57.33   | 81.68     | 36.64   | 74.09     | 37.55   |       |
|           | AdvCLIP-LoRA ( $\tau = 30$ )   | 80.70       | 40.93   | 67.82        | 29.25   | 95.21       | 77.04   | 66.73     | 30.73   | 76.86     | 20.72   | 87.54     | 38.05   | 96.31       | 58.18   | 81.15     | 36.08   | 73.98     | 37.42   |       |
|           | <i>Relative Improvement</i>    | +13.37      | +0.79   | +22.53       | +2.2    | +1.16       | +1.16   | +8.46     | +18.72  | +26.7     | +5.38   | +11.39    | +9.5    | +9.18       | +18.41  | +3.96     | +12.85  | +18.11    |         |       |
| 8         | AdvVP Mao et al.               | 44.24       | 17.23   | 46.37        | 13.00   | 90.43       | 50.35   | 55.63     | 1.47    | 1.00      | 57.43   | 1.23      | 83.84   | 2.57        | 10.40   | 4.93      | 52.53   | 17.54     |         |       |
|           | AdvPT Li et al. (2024)         | 69.76       | 7.56    | 50.03        | 1.92    | 92.37       | 30.83   | 54.43     | 8.70    | 6.57      | 2.33    | 82.97     | 3.10    | 84.00       | 4.00    | 66.53     | 4.30    | 63.61     | 3.40    |       |
|           | AdvPT Zhang et al. (2024)      | 38.50       | 2.39    | 24.30        | 0.87    | 68.07       | 10.10   | 37.47     | 4.20    | 16.97     | 0.10    | 44.40     | 51.31   | 83.87       | 33.43   | 1.40      | 32.47   | 1.33      |         |       |
|           | AdvMaPLe Khattak et al. (2023) | 62.90       | 30.45   | 52.13        | 20.60   | 96.03       | 63.80   | 33.20     | 16.97   | 62.70     | 20.13   | 55.60     | 21.07   | 83.10       | 48.80   | 64.33     | 25.93   | 61.50     | 26.30   |       |
|           | AdvVLIP Zhou et al. (2024)     | 68.32       | 32.87   | 52.83        | 20.97   | 90.17       | 61.33   | 51.83     | 25.77   | 61.73     | 19.33   | 80.67     | 29.63   | 83.90       | 50.90   | 64.07     | 26.97   | 61.33     | 26.23   |       |
|           | FAP Zhou et al. (2024)         | 67.23       | 34.26   | 52.17        | 21.53   | 89.63       | 62.50   | 52.13     | 25.77   | 61.80     | 23.20   | 79.47     | 34.57   | 81.53       | 52.63   | 60.70     | 26.67   | 60.40     | 27.23   |       |
|           | AdvCLIP-LoRA ( $\tau = 1$ )    | 79.56       | 34.36   | 67.24        | 23.65   | 94.28       | 70.35   | 67.47     | 25.12   | 77.17     | 15.79   | 87.95     | 32.57   | 92.73       | 48.52   | 80.12     | 27.70   | 72.26     | 30.81   |       |
|           | AdvCLIP-LoRA ( $\tau = 2$ )    | 79.32       | 35.44   | 67.11        | 24.49   | 94.60       | 72.09   | 63.24     | 26.42   | 77.03     | 16.93   | 87.71     | 33.63   | 92.49       | 48.86   | 80.31     | 29.16   | 72.09     | 32.08   |       |
|           | AdvCLIP-LoRA ( $\tau = 5$ )    | 79.27       | 36.73   | 67.16        | 25.68   | 94.56       | 72.90   | 63.30     | 27.90   | 76.77     | 18.76   | 87.54     | 34.83   | 92.61       | 49.98   | 80.20     | 30.69   | 71.97     | 33.09   |       |
|           | AdvCLIP-LoRA ( $\tau = 10$ )   | 79.19       | 37.93   | 67.00        | 26.61   | 94.20       | 74.24   | 63.06     | 28.90   | 76.32     | 19.87   | 87.76     | 35.82   | 92.57       | 51.49   | 80.41     | 32.59   | 72.17     | 34.38   |       |
|           | AdvCLIP-LoRA ( $\tau = 20$ )   | 79.02       | 38.33   | 66.74        | 27.08   | 94.78       | 74.88   | 63.00     | 29.43   | 76.13     | 20.33   | 87.41     | 36.09   | 92.53       | 51.81   | 80.23     | 32.78   | 71.87     | 34.09   |       |
|           | AdvCLIP-LoRA ( $\tau = 25$ )   | 78.80       | 38.84   | 66.67        | 27.88   | 93.87       | 75.38   | 62.92     | 29.67   | 75.78     | 20.57   | 87.86     | 35.38   | 92.61       | 52.02   | 80.63     | 32.33   | 72.12     | 35.22   |       |
|           | AdvCLIP-LoRA ( $\tau = 30$ )   | 78.84       | 39.05   | 66.61        | 28.22   | 93.91       | 75.33   | 62.94     | 30.44   | 75.71     | 21.33   | 87.27     | 36.33   | 92.73       | 52.42   | 80.07     | 33.10   | 72.11     | 35.64   |       |
|           | <i>Relative Improvement</i>    | +13.37      | +0.79   | +22.53       | +2.2    | +1.18       | +1.16   | +15.36    | +18.72  | +26.7     | +5.38   | +11.39    | +9.5    | +9.18       | +18.41  | +3.96     | +12.85  | +18.11    |         |       |
| 4         | AdvVP Mao et al.               | 43.10       | 16.40   | 49.80        | 10.93   | 90.17       | 52.50   | 17.49     | 2.97    | 22.73     | 5.47    | 57.80     | 16.20   | 53.97       | 23.73   | 1.07      | 1.80    | 48.47     | 13.33   |       |
|           | AdvPT Li et al. (2024)         | 66.37       | 6.04    | 49.00        | 1.04    | 90.77       | 26.67   | 51.33     | 6.33    | 54.80     | 1.63    | 71.83     | 2.01    | 82.40       | 4.23    | 66.53     | 3.03    | 62.37     | 2.90    |       |
|           | AdvPT Zhang et al. (2024)      | 35.32       | 2.07    | 23.40        | 1.33    | 64.97       | 12.00   | 43.70     | 4.27    | 15.23     | 0.37    | 44.31     | 1.73    | 41.97       | 0.63    | 31.17     | 0.47    | 29.07     | 0.40    |       |
|           | AdvMaPLe Khattak et al. (2023) | 51.01       | 21.61   | 51.27        | 19.00   | 89.53       | 59.40   | 6.43      | 24.0    | 60.00     | 14.83   | 30.70     | 0.03    | 52.20       | 25.37   | 59.73     | 21.30   | 58.23     | 21.53   |       |
|           | AdvVLIP Zhou et al. (2024)     | 55.18       | 23.40   | 51.30        | 19.37   | 89.37       | 59.07   | 29.97     | 10.33   | 41.50     | 11.20   | 67.43     | 18.47   | 51.00       | 25.80   | 59.97     | 21.77   | 57.90     | 21.17   |       |
|           | FAP Zhou et al. (2024)         | 57.51       | 24.60   | 51.53        | 19.60   | 87.57       | 53.33   | 31.27     | 8.07    | 59.37     | 23.20   | 79.47     | 34.57   | 81.53       | 52.63   | 60.70     | 26.67   | 60.40     | 27.23   |       |
|           | AdvCLIP-LoRA ( $\tau = 1$ )    | 77.88       | 33.70   | 66.38        | 22.92   | 94.08       | 69.78   | 61.17     | 26.36   | 75.91     | 16.40   | 87.05     | 32.22   | 90.99       | 48.27   | 86.37     | 24.08   | 71.05     | 29.55   |       |
|           | AdvCLIP-LoRA ( $\tau = 2$ )    | 77.94       | 34.74   | 66.34        | 23.78   | 93.96       | 71.03   | 62.41     | 26.36   | 75.80     | 17.69   | 87.03     | 32.98   | 90.70       | 48.72   | 86.18     | 26.22   | 71.09     | 31.11   |       |
|           | AdvCLIP-LoRA ( $\tau = 5$ )    | 77.71       | 36.01   | 66.10        | 24.84   | 93.87       | 72.21   | 61.70     | 27.96   | 75.41     | 18.76   | 86.78     | 33.91   | 90.58       | 50.95   | 76.13     | 26.86   | 71.08     | 32.62   |       |
|           | AdvCLIP-LoRA ( $\tau = 10$ )   | 77.57       | 37.36   | 65.99        | 25.08   | 93.91       | 73.59   | 11.11     | 28.43   | 70.06     | 20.48   | 87.00     | 35.10   | 92.17       | 52.33   | 76.37     | 28.97   | 71.00     | 33.57   |       |
|           | AdvCLIP-LoRA ( $\tau = 15$ )   | 77.41       | 37.80   | 65.91        | 26.15   | 94.20       | 73.91   | 61.11     | 29.14   | 74.82     | 20.99   | 86.97     | 36.20   | 89.93       | 52.54   | 75.55     | 29.58   | 70.82     | 33.85   |       |
|           | AdvCLIP-LoRA ( $\tau = 20$ )   | 77.20       | 38.19   | 65.81        | 26.67   | 93.47       | 74.32   | 60.34     | 29.20   | 74.62     | 21.83   | 85.75     | 35.30   | 90.01       | 53.86   | 75.65     | 30.06   | 70.81     | 34.45   |       |
|           | AdvCLIP-LoRA ( $\tau = 25$ )   | 77.10       | 38.19   | 65.81        | 26.67   | 93.47       | 74.32   | 60.34     | 29.20   | 74.62     | 21.83   | 85.75     | 35.40   | 90.05       | 53.86   | 75.44     | 30.61   | 70.86     | 34.49   |       |
|           | AdvCLIP-LoRA ( $\tau = 30$ )   | 77.16       | 38.59   | 65.77        | 26.88   | 93.59       | 74.47   | 60.22     | 29.61   | 74.42     | 21.86   | 86.40     | 36.47   | 90.38       | 55.55   | 75.89     | 30.69   | 70.64     | 34.90   |       |
|           | <i>Relative Improvement</i>    | +16.88      | +4.81   | +28          | +30.51  | +4.46       | +23.89  | +19.05    | +163.84 | +20.43    | +4.48   | +4.85     | +4.85   | +4.85       | +4.85   | +4.85     | +4.85   | +4.85     | +4.85   |       |
| 2         | AdvVP Mao et al.               | 43.62       | 17.94   | 46.60        | 11.07   | 87.73       | 50.33   | 26.97     | 12.93   | 60.20     | 1.05    | 41.0      | 47.13   | 15.10       | 61.47   | 26.92     | 1.73    | 1.07      | 50.77   | 13.57 |
|           | AdvPT Li et al. (2024)         | 50.97       | 5.01    | 49.13        | 1.04    | 87.31       | 26.90   | 41.73     | 4.27    | 4.07      | 0.03    | 72.97     | 6.77    | 61.77       | 3.03    | 60.50     | 0.34    | 59.20     | 2.03    |       |
|           | AdvPT Zhang et al. (2024)      | 32.47       | 1.72    | 22.37        | 0.77    | 66.07       | 8.33    | 24.27     | 2.43    | 11.13     | 0.17    | 38.47     | 0.23    | 29.37       | 0.23    | 20.77     | 0.23    | 20.77     | 0.23    |       |
|           | AdvMaPLe Khattak et al. (2023) | 39.09       | 15.58   | 49.97        | 17.13   | 88.00       | 16.53   | 4.20      | 3.10    | 6.67      | 34.03   | 6.87      | 46.17   | 17.00       | 21.17   | 6.20      | 53.73   | 16.33     |         |       |
|           | AdvVLIP Zhou et al. (2024)     | 42.79       | 17.76   | 50.53        | 17.50   | 87.60       | 55.33   | 18.33     | 7.17    | 1.53      | 1.10    | 31.27     | 7.07    | 62.43       | 25.17   | 36.83     | 11.43   | 53.77     | 17.33   |       |
|           | FAP Zhou et al. (2024)         | 55.18       | 18.14   | 48.53        | 17.83   | 87.73       | 18.40   | 4.33      | 56.90   | 10.53     | 12.67   | 1.57      | 39.80   | 16.23       | 54.23   | 28.50     | 7.03    | 54.07     | 19.30   |       |
|           | AdvCLIP-LoRA ( $\tau = 2$ )    | 75.75       | 32.04   | 65.74        | 21.70   | 93.55       | 69.41   | 57.98     | 23.88   | 76.04     | 15.74   | 86.18     | 33.99   | 84.86       | 40.19   | 74.52     | 23.50   | 68.29     | 27.90   |       |
|           | AdvCLIP-LoRA (<                |             |         |              |         |             |         |           |         |           |         |           |         |             |         |           |         |           |         |       |

810 B.2 COMPARATIVE ANALYSIS OF ADVCLIP-LORA AND CLIP-LORA  
811812 Table 6: Detailed results for the 8 datasets with ViT-B/16 as backbone. Top-1 accuracy averaged over  
813 3 random seeds is reported. Highest value is highlighted in **bold**.  
814

| 815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823<br>824<br>825<br>826<br>827<br>828<br>829<br>830<br>831<br>832<br>833<br>834<br>835<br>836<br>837<br>838<br>839<br>840<br>841<br>842<br>843<br>844<br>845<br>846<br>847<br>848<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859<br>860<br>861<br>862<br>863 | Shots | Method                       | ImageNet     |              |              | Caltech      |              |              | DTD          |              |              | Food         |              |              |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|
|                                                                                                                                                                                                                                                                                                                                                     |       |                              | Clean        | FGSM         | PGD          |     |
| 1                                                                                                                                                                                                                                                                                                                                                   | 1     | CLIP-LoRA                    | <b>70.24</b> | 15.14        | 4.73         | <b>94.20</b> | 59.86        | 26.26        | <b>54.77</b> | 14.99        | 3.11         | <b>84.99</b> | 8.43         | 2.90         |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 1$ )  | 56.02        | 29.17        | 17.10        | 92.67        | 62.70        | 26.40        | 49.64        | 20.09        | 4.06         | 79.86        | 26.50        | 9.62         |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 2$ )  | 54.76        | 30.52        | 19.44        | 90.20        | 67.29        | 29.48        | 50.53        | 21.12        | 3.04         | 78.19        | 31.31        | 12.74        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 4$ )  | 53.14        | <b>31.19</b> | 21.70        | 87.17        | 70.18        | 34.16        | 48.84        | 21.16        | 2.60         | 74.88        | 35.01        | 20.04        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 6$ )  | 50.19        | 30.96        | 21.30        | 83.96        | <b>79.69</b> | 37.09        | 44.71        | 31.86        | 3.17         | 72.09        | 57.40        | 26.45        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 8$ )  | 45.35        | 30.60        | 21.66        | 81.39        | 78.96        | <b>41.28</b> | 42.61        | 32.76        | 4.24         | 68.57        | <b>58.32</b> | 32.84        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 10$ ) | 42.88        | 30.12        | <b>22.38</b> | 77.51        | 76.54        | 40.76        | 42.12        | <b>33.35</b> | <b>6.14</b>  | 64.52        | 56.22        | <b>34.47</b> |     |
|                                                                                                                                                                                                                                                                                                                                                     | 4     | CLIP-LoRA                    | <b>71.52</b> | 14.59        | 5.12         | 95.16        | 59.39        | 29.19        | <b>63.73</b> | 19.39        | 6.68         | 83.07        | 7.83         | 2.21         |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 1$ )  | 67.81        | 40.62        | 37.74        | <b>95.28</b> | 76.84        | 61.49        | 59.73        | 27.64        | 8.89         | 83.75        | 31.57        | 27.47        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 2$ )  | 67.63        | 42.53        | 38.42        | 95.15        | 80.68        | 72.81        | 59.26        | 31.01        | 13.59        | <b>83.77</b> | 35.19        | 35.03        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 4$ )  | 67.43        | 42.50        | 41.40        | 95.20        | 84.00        | 82.80        | 60.40        | 36.41        | 26.04        | 83.67        | 43.52        | 50.08        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 6$ )  | 66.90        | 44.35        | 43.75        | 95.19        | 92.03        | 87.21        | 59.75        | 49.45        | 34.71        | 83.53        | 69.85        | 56.92        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 8$ )  | 66.67        | 44.47        | 43.92        | 95.03        | <b>92.67</b> | 88.27        | 59.42        | 50.87        | 39.54        | 83.12        | <b>73.09</b> | 62.16        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 10$ ) | 65.93        | <b>45.15</b> | <b>45.07</b> | 95.03        | 92.66        | <b>89.36</b> | 59.60        | <b>52.42</b> | <b>44.48</b> | 82.56        | 72.74        | <b>65.41</b> |     |
| 16                                                                                                                                                                                                                                                                                                                                                  | 16    | CLIP-LoRA                    | <b>73.41</b> | 14.56        | 5.51         | <b>96.31</b> | 60.63        | 31.05        | <b>72.40</b> | 24.57        | 9.30         | 84.32        | 7.15         | 2.45         |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 1$ )  | 72.03        | 44.41        | 30.24        | 96.19        | 79.92        | 74.13        | 70.51        | 33.06        | 15.78        | <b>84.77</b> | 26.43        | 23.41        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 2$ )  | 71.96        | 46.91        | 48.73        | 95.95        | 81.35        | 81.12        | 70.45        | 38.00        | 30.99        | 84.70        | 28.42        | 34.18        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 4$ )  | 71.68        | 47.42        | 50.08        | 96.09        | 82.14        | 86.31        | 69.70        | 42.61        | 46.02        | 84.24        | 32.68        | 48.56        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 6$ )  | 71.32        | 47.44        | 50.34        | 96.08        | 93.12        | 88.95        | 69.31        | 60.26        | 52.27        | 83.68        | 66.18        | 55.57        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 8$ )  | 69.63        | 53.31        | 56.33        | 96.16        | 93.72        | 90.82        | 68.93        | 61.43        | 55.70        | 83.05        | 68.12        | 59.64        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 10$ ) | 67.00        | <b>54.71</b> | <b>57.56</b> | 96.09        | <b>94.28</b> | <b>91.98</b> | 68.28        | <b>62.61</b> | <b>58.69</b> | 82.75        | <b>69.25</b> | <b>62.17</b> |     |
|                                                                                                                                                                                                                                                                                                                                                     | 16    | Pets                         |              |              | Flowers      |              |              | UCF          |              |              | SUN          |              |              |              |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | Shots                        | Method       | Clean        | FGSM         | PGD          | Clean        | FGSM         | PGD          | Clean        | FGSM         | PGD          | Clean        | FGSM         | PGD |
|                                                                                                                                                                                                                                                                                                                                                     |       | CLIP-LoRA                    | <b>92.14</b> | 23.52        | 17.21        | <b>82.45</b> | 6.70         | 3.15         | <b>75.95</b> | 18.36        | 2.98         | <b>70.22</b> | 17.78        | 6.20         |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 1$ )  | 90.02        | 23.51        | 17.17        | 70.62        | 26.04        | 5.33         | 66.44        | 29.53        | 8.94         | 61.68        | 35.60        | 17.50        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 2$ )  | 88.34        | 40.84        | 16.75        | 69.62        | 30.42        | 6.86         | 63.04        | 31.95        | 10.68        | 61.02        | 39.98        | 20.41        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 4$ )  | 82.76        | 41.56        | 16.66        | 66.14        | 36.80        | 8.66         | 58.80        | 35.09        | 16.07        | 60.01        | 39.91        | 24.03        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 6$ )  | 78.35        | 40.96        | 17.90        | 62.79        | 39.09        | 8.86         | 54.59        | <b>37.02</b> | 18.71        | 58.61        | 41.34        | 27.40        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 8$ )  | 73.21        | <b>42.56</b> | 21.15        | 57.69        | <b>40.06</b> | <b>11.20</b> | 49.58        | 36.80        | <b>20.22</b> | 56.66        | 43.33        | 30.46        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 10$ ) | 66.37        | 40.95        | <b>22.92</b> | 54.01        | 39.29        | 10.79        | 45.33        | 34.65        | 19.57        | 54.56        | <b>43.80</b> | <b>31.46</b> |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | CLIP-LoRA                    | 89.99        | 16.73        | 10.08        | <b>93.48</b> | 11.20        | 7.62         | <b>80.44</b> | 18.85        | 4.00         | <b>72.19</b> | 16.15        | 6.20         |     |
| 4                                                                                                                                                                                                                                                                                                                                                   | 4     | AdvCLIP-LoRA ( $\tau = 1$ )  | <b>91.36</b> | 57.37        | 51.38        | 91.10        | 46.41        | 31.14        | 74.42        | 37.49        | 25.23        | 70.99        | 45.40        | 40.31        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 2$ )  | 91.06        | 60.57        | 60.56        | 91.03        | 51.39        | 45.29        | 78.51        | 38.06        | 32.07        | 71.28        | 48.84        | 47.63        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 4$ )  | 91.07        | 64.57        | 71.11        | 91.03        | 58.53        | 61.24        | 77.96        | 42.07        | 45.39        | 71.19        | 51.37        | 50.67        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 6$ )  | 91.05        | 67.77        | 70.62        | 65.16        | 69.60        | 77.63        | 45.35        | 52.36        | 71.69        | 56.71        | 56.20        |              |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 8$ )  | 91.06        | 69.96        | 80.19        | 89.78        | 66.38        | 74.67        | 77.09        | 47.98        | 55.99        | 70.96        | 57.14        | 56.96        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 10$ ) | 91.22        | <b>71.70</b> | <b>82.02</b> | 89.35        | <b>68.59</b> | <b>77.75</b> | 76.60        | <b>50.47</b> | <b>58.53</b> | 71.04        | <b>60.27</b> | <b>59.89</b> |     |
|                                                                                                                                                                                                                                                                                                                                                     | 16    | CLIP-LoRA                    | 92.18        | 16.28        | 7.14         | <b>98.19</b> | 17.39        | 13.09        | <b>86.71</b> | 22.20        | 5.01         | <b>76.22</b> | 16.94        | 6.15         |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 1$ )  | <b>92.90</b> | 48.31        | 46.94        | 97.55        | 57.42        | 52.53        | 85.96        | 37.73        | 23.54        | 75.94        | 48.77        | 45.10        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 2$ )  | 92.88        | 49.72        | 60.47        | 97.84        | 60.87        | 69.71        | 85.58        | 36.71        | 35.53        | 75.92        | 52.37        | 54.50        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 4$ )  | 92.72        | 51.65        | 73.12        | 97.70        | 65.68        | 83.88        | 84.92        | 39.19        | 50.39        | 76.09        | 55.02        | 61.05        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 6$ )  | 92.65        | 56.37        | 78.17        | 97.45        | 68.71        | 88.09        | 84.33        | 40.60        | 58.42        | 75.58        | 57.18        | 64.04        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 8$ )  | 92.35        | 58.02        | 80.52        | 97.39        | 70.97        | 90.29        | 83.88        | 42.05        | 62.15        | 75.89        | 59.28        | 66.43        |     |
|                                                                                                                                                                                                                                                                                                                                                     |       | AdvCLIP-LoRA ( $\tau = 10$ ) | 92.43        | <b>60.49</b> | <b>81.86</b> | 97.33        | <b>74.26</b> | <b>91.83</b> | 83.08        | <b>43.93</b> | <b>65.40</b> | 75.87        | <b>61.92</b> | <b>68.18</b> |     |

**Setup.** For adversarial training, we define the projection set for updating  $\delta$  as an  $\ell_\infty$ -ball with a radius of  $\epsilon = 10/255$  across all datasets. To evaluate adversarial robustness, we implement two standard attack methods: FGSM Szegedy et al. (2013) and PGD Madry et al. (2018). For FGSM, we set  $\epsilon = 10/255$ , while for PGD, we use  $\epsilon = 2/255$  with a total of 20 attack iterations.

Table 6 presents the experimental results of CLIP-LoRA and AdvCLIP-LoRA with varying values of  $\tau$ , using the ViT-B/16 backbone. Our findings show that AdvCLIP-LoRA significantly enhances model robustness, increasing FGSM accuracy for a minimum of 11.04% and a maximum of 42.97%, and PGD accuracy for a minimum of 15.67% and a maximum of 62.25%, averaged across all datasets. Specifically, for  $\tau = 1$ , the model demonstrates improved robustness without a significant impact on clean accuracy (the difference in clean accuracy is less than 22.58% for 1 shot and less than 2.24% for 16 shots, on average). As  $\tau$  increases, robustness continues to improve; however, this comes at the cost of a slight decrease in clean accuracy. This effect is less prominent for larger shots. It is noteworthy that with 16 shots, the clean accuracy decreases by an average of only 2.24%, while we observe a minimum improvement of 24.55% in the FGSM robustness and 29.00% in the PGD robustness. For clearer comparison, we visualize clean and PGD-robust accuracies for both 4-shot and 16-shot settings across ViT-B/16 and ViT-B/32 backbones in Fig. 5. Further results using the ViT-B/32 model can be found in Table 7.

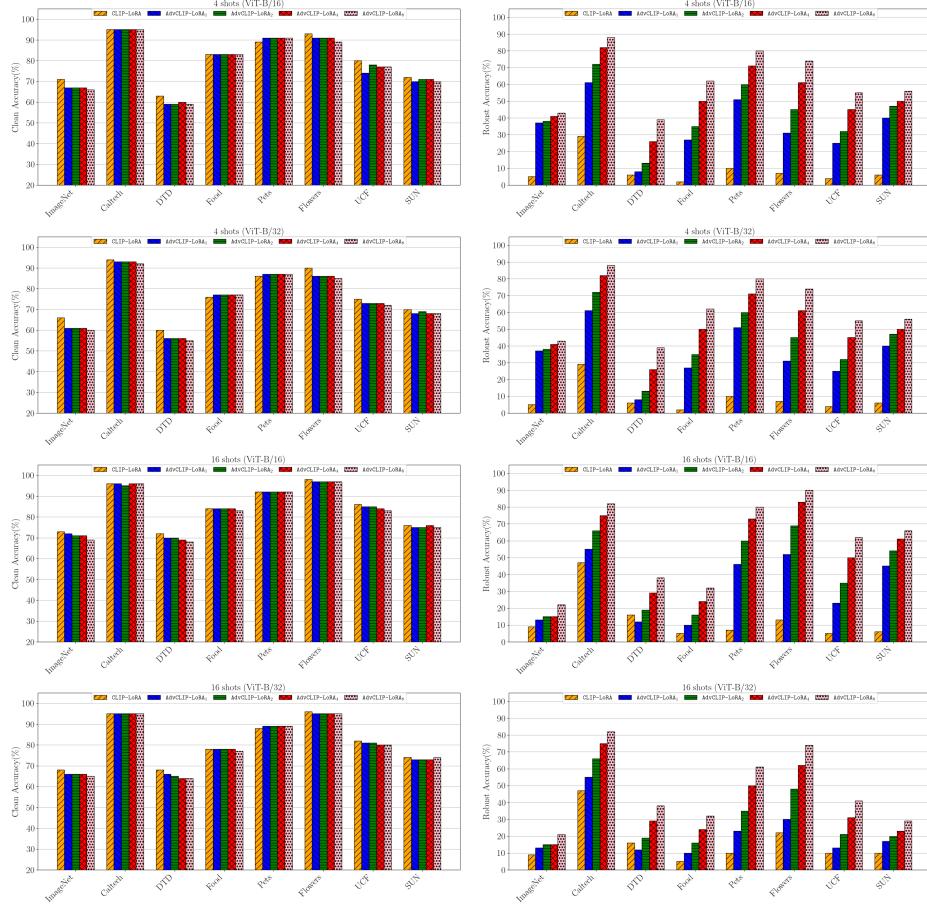


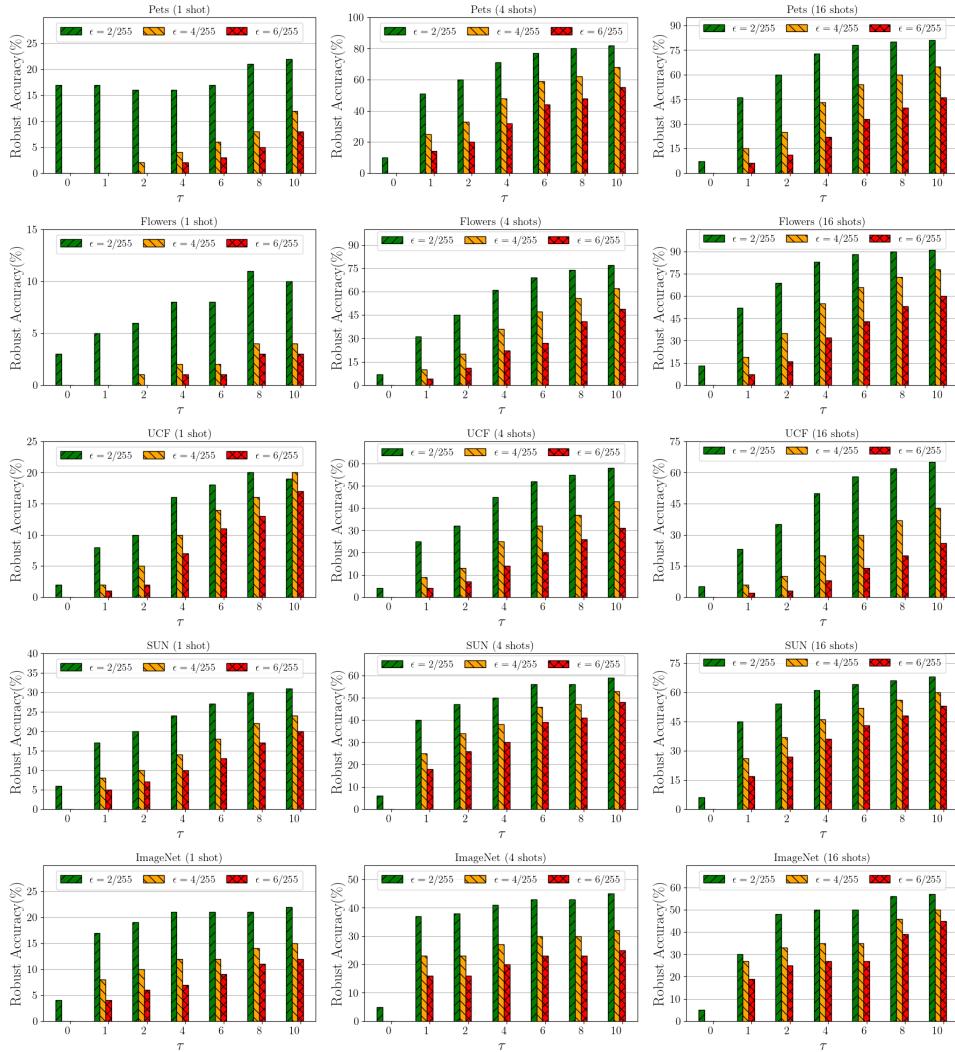
Figure 5: Comparative analysis of CLIP-LoRA and AdvCLIP-LoRA with ViT-B/16 and ViT-B/32 backbones on 8 fine-grained datasets, showing clean accuracy and PGD-adversarial robustness (shots labeled above). AdvCLIP-LoRA<sub>i</sub> means AdvCLIP-LoRA with  $\tau = i$ .

918  
919  
920  
921  
922  
923  
924  
925  
926

927 Table 7: Detailed results for the 8 datasets with ViT-B/32 as backbone. Top-1 accuracy averaged over  
928 3 random seeds is reported. Highest value is highlighted in **bold**.

929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971

| Shots | Method                       | ImageNet     |              |              | Caltech      |              |              | DTD          |              |              | Food         |              |              |     |
|-------|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|
|       |                              | Clean        | FGSM         | PGD          |     |
| 2     | CLIP-LoRA                    | <b>65.70</b> | 15.97        | 8.23         | <b>93.54</b> | 62.83        | 42.34        | <b>55.46</b> | 17.16        | <b>9.16</b>  | <b>76.53</b> | 9.00         | 4.57         |     |
|       | AdvCLIP-LoRA ( $\tau = 1$ )  | 56.97        | 21.00        | 11.88        | 92.11        | 64.44        | 40.04        | 52.03        | 17.83        | 5.28         | 75.68        | 14.17        | 6.83         |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | 56.73        | 20.68        | 11.34        | 91.89        | 66.02        | 41.61        | 52.05        | 19.36        | 6.36         | 75.70        | 16.11        | 8.62         |     |
|       | AdvCLIP-LoRA ( $\tau = 4$ )  | 56.32        | 22.14        | 12.06        | 91.94        | 68.26        | 44.88        | 51.16        | 19.41        | 6.78         | 75.71        | 18.97        | 10.31        |     |
|       | AdvCLIP-LoRA ( $\tau = 6$ )  | 55.45        | 23.21        | <b>12.48</b> | 91.63        | 70.45        | 46.69        | 50.26        | 20.75        | 7.25         | 76.11        | 21.26        | 11.93        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 54.87        | <b>23.65</b> | 12.38        | 91.76        | 71.51        | 48.79        | 50.22        | 21.12        | 7.49         | 76.32        | 23.27        | 13.25        |     |
|       | AdvCLIP-LoRA ( $\tau = 10$ ) | 53.46        | 22.27        | 10.85        | 91.58        | <b>74.28</b> | <b>52.32</b> | 49.33        | <b>21.49</b> | 8.18         | 76.35        | <b>25.05</b> | <b>14.85</b> |     |
|       | CLIP-LoRA                    | <b>66.43</b> | 15.59        | 8.59         | <b>94.44</b> | 62.44        | 42.12        | <b>60.18</b> | 19.35        | 10.70        | 76.18        | 9.02         | 4.55         |     |
|       | AdvCLIP-LoRA ( $\tau = 1$ )  | 61.60        | 20.63        | 13.03        | 93.90        | 64.46        | 43.28        | 56.40        | 18.99        | 7.53         | 77.30        | 14.00        | 7.96         |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | 61.44        | 20.36        | 12.18        | 93.75        | 67.96        | 51.67        | 56.68        | 21.06        | 9.73         | 77.52        | 14.46        | 10.29        |     |
| 4     | AdvCLIP-LoRA ( $\tau = 4$ )  | 61.44        | 20.46        | 12.30        | 93.81        | 71.09        | 55.11        | 56.58        | 22.24        | 12.81        | 77.88        | 16.49        | 13.92        |     |
|       | AdvCLIP-LoRA ( $\tau = 6$ )  | 60.49        | 20.80        | 12.77        | 93.47        | 85.94        | 59.67        | 56.17        | 36.90        | 15.62        | <b>77.96</b> | 49.43        | 17.54        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 60.22        | 21.91        | 12.99        | 92.82        | 86.17        | 62.50        | 55.32        | 37.87        | 18.62        | 77.40        | 49.34        | 23.05        |     |
|       | AdvCLIP-LoRA ( $\tau = 10$ ) | 59.10        | <b>22.65</b> | <b>13.57</b> | 92.94        | <b>86.49</b> | <b>65.52</b> | 54.34        | <b>38.67</b> | <b>22.02</b> | 76.91        | <b>50.40</b> | <b>27.20</b> |     |
|       | CLIP-LoRA                    | <b>67.28</b> | 15.35        | 8.62         | 94.46        | 61.68        | 43.30        | <b>63.36</b> | 21.30        | 13.12        | 76.90        | 8.84         | 4.65         |     |
|       | AdvCLIP-LoRA ( $\tau = 1$ )  | 64.19        | 22.24        | 14.53        | <b>94.67</b> | 65.44        | 49.37        | 61.17        | 20.57        | 9.99         | <b>78.03</b> | 12.35        | 8.47         |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | 63.93        | 22.37        | 14.74        | 94.63        | 67.10        | 58.70        | 60.78        | 21.63        | 14.34        | 77.90        | 12.05        | 13.36        |     |
|       | AdvCLIP-LoRA ( $\tau = 4$ )  | 63.76        | 22.93        | 16.41        | 94.54        | 68.38        | 68.78        | 61.11        | 22.56        | 22.69        | 77.55        | 13.37        | 22.54        |     |
|       | AdvCLIP-LoRA ( $\tau = 6$ )  | 63.50        | 24.00        | 17.57        | 94.28        | <b>69.90</b> | 74.21        | 60.05        | 23.15        | 27.88        | 77.29        | 14.98        | 27.55        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 63.22        | <b>24.20</b> | 18.38        | 94.38        | 69.25        | 77.78        | 58.81        | 23.46        | 30.44        | 76.94        | 15.39        | 31.07        |     |
| 8     | AdvCLIP-LoRA ( $\tau = 10$ ) | 62.74        | 23.69        | 18.51        | 94.39        | 68.45        | 79.68        | 58.91        | <b>23.62</b> | <b>32.29</b> | 76.57        | <b>16.25</b> | <b>33.24</b> |     |
|       | CLIP-LoRA                    | <b>68.43</b> | 15.09        | 9.06         | 95.50        | 64.29        | 47.80        | <b>68.62</b> | 20.11        | 16.80        | 78.00        | 8.97         | 5.32         |     |
|       | AdvCLIP-LoRA ( $\tau = 1$ )  | 66.24        | 19.48        | 13.26        | <b>95.84</b> | 67.46        | 55.38        | 66.90        | 22.40        | 12.61        | <b>78.55</b> | 12.96        | 10.10        |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | 66.08        | 20.06        | 15.03        | 95.40        | 68.64        | 66.09        | 65.84        | 21.63        | 19.37        | 78.41        | 12.84        | 16.25        |     |
|       | AdvCLIP-LoRA ( $\tau = 4$ )  | 66.08        | 21.13        | 15.98        | 95.39        | 68.19        | 75.62        | 64.89        | 22.02        | 29.33        | 78.09        | 12.68        | 24.62        |     |
|       | AdvCLIP-LoRA ( $\tau = 6$ )  | 65.39        | 22.46        | 17.10        | 95.46        | 88.52        | 80.22        | 63.91        | 43.04        | 34.02        | 77.75        | 45.41        | 28.79        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 65.63        | 23.74        | <b>21.17</b> | 95.31        | 89.22        | 82.29        | 64.01        | 45.18        | 38.00        | 77.44        | 46.89        | 32.03        |     |
|       | AdvCLIP-LoRA ( $\tau = 10$ ) | 64.06        | <b>24.07</b> | 17.93        | 95.28        | <b>89.59</b> | <b>84.10</b> | 64.77        | <b>46.69</b> | <b>39.26</b> | 77.08        | <b>48.62</b> | <b>35.18</b> |     |
| 16    | Pets                         | Pets         |              |              | Flowers      |              |              | UCF          |              |              | SUN          |              |              |     |
|       | Shots                        | Method       | Clean        | FGSM         | PGD          | Clean        | FGSM         | PGD          | Clean        | FGSM         | PGD          | Clean        | FGSM         | PGD |
|       | CLIP-LoRA                    | <b>87.43</b> | 21.70        | 16.11        | <b>84.40</b> | 15.36        | 10.68        | <b>74.07</b> | 22.04        | 7.18         | <b>68.71</b> | 17.61        | 8.56         |     |
|       | AdvCLIP-LoRA ( $\tau = 1$ )  | 85.70        | 34.83        | 16.92        | 77.71        | 19.48        | 8.10         | 69.41        | 26.69        | 8.48         | 65.45        | 23.28        | 13.56        |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | 85.14        | 34.61        | 18.19        | 77.16        | 22.58        | 10.53        | 68.06        | 28.94        | 8.99         | 65.22        | 23.97        | 13.80        |     |
|       | AdvCLIP-LoRA ( $\tau = 4$ )  | 84.90        | 37.19        | 22.85        | 76.12        | 26.01        | 12.29        | 67.48        | 31.42        | 10.31        | 64.96        | 23.77        | 14.58        |     |
|       | AdvCLIP-LoRA ( $\tau = 6$ )  | 84.67        | 40.80        | 26.93        | 75.78        | 28.49        | 13.52        | 66.56        | 33.71        | 11.86        | 64.64        | 25.18        | 14.62        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 84.39        | 46.05        | 31.78        | 74.83        | 33.10        | 16.20        | 65.64        | 36.75        | 13.79        | 63.30        | 27.20        | 16.48        |     |
|       | AdvCLIP-LoRA ( $\tau = 10$ ) | 85.07        | <b>49.10</b> | <b>34.16</b> | 72.71        | <b>37.89</b> | <b>19.16</b> | 64.19        | <b>40.73</b> | <b>16.70</b> | 63.59        | <b>29.12</b> | <b>17.01</b> |     |
|       | CLIP-LoRA                    | 86.43        | 16.02        | 11.74        | <b>90.21</b> | 16.82        | 13.71        | <b>75.65</b> | 25.87        | 7.67         | <b>70.20</b> | 16.96        | 8.89         |     |
| 4     | AdvCLIP-LoRA ( $\tau = 1$ )  | <b>87.87</b> | 34.51        | 27.58        | 86.32        | 20.46        | 16.83        | 73.43        | 25.87        | 10.09        | 68.93        | 24.03        | 15.60        |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | 87.87        | 35.30        | 33.51        | 86.26        | 21.32        | 19.33        | 73.39        | 27.39        | 12.88        | 69.22        | 26.58        | 16.65        |     |
|       | AdvCLIP-LoRA ( $\tau = 4$ )  | 87.82        | 37.82        | 37.40        | 86.26        | 26.00        | 30.50        | 73.57        | 31.43        | 16.59        | 68.92        | 27.55        | 17.11        |     |
|       | AdvCLIP-LoRA ( $\tau = 6$ )  | 87.80        | 37.40        | 46.76        | 86.29        | 30.50        | 32.46        | 73.72        | 33.87        | 23.55        | 68.88        | 30.48        | 19.27        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 87.56        | 41.96        | 53.47        | 85.82        | 33.62        | 39.13        | 72.75        | 35.43        | 26.53        | 68.40        | 32.25        | 20.09        |     |
|       | AdvCLIP-LoRA ( $\tau = 10$ ) | 87.52        | <b>43.52</b> | <b>56.88</b> | 85.34        | <b>37.54</b> | <b>43.78</b> | 72.28        | <b>37.15</b> | <b>28.19</b> | 68.47        | <b>38.04</b> | <b>23.22</b> |     |
|       | CLIP-LoRA                    | 87.61        | 16.54        | 10.92        | <b>93.29</b> | 21.60        | 18.35        | <b>80.46</b> | 22.48        | 9.17         | <b>72.18</b> | 18.23        | 9.85         |     |
|       | AdvCLIP-LoRA ( $\tau = 1$ )  | 88.71        | 30.46        | 24.04        | 91.76        | 28.11        | 21.26        | 78.64        | 26.55        | 11.77        | 71.73        | 24.53        | 16.43        |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | <b>88.75</b> | 29.11        | 35.99        | 91.91        | 27.81        | 34.81        | 78.67        | 27.45        | 18.03        | 71.71        | 24.76        | 17.73        |     |
|       | AdvCLIP-LoRA ( $\tau = 4$ )  | 88.63        | 28.67        | 50.19        | 91.65        | 29.57        | 51.02        | 78.35        | <b>29.29</b> | 27.54        | 71.86        | 27.07        | 20.80        |     |
| 8     | AdvCLIP-LoRA ( $\tau = 6$ )  | 88.65        | 30.79        | 57.28        | 91.76        | 33.65        | 58.67        | 77.53        | 28.86        | 33.02        | 71.57        | 29.72        | 23.87        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 88.53        | 34.13        | 61.57        | 91.20        | 33.51        | 63.04        | 77.22        | 28.71        | 37.31        | 71.39        | <b>31.83</b> | 26.10        |     |
|       | AdvCLIP-LoRA ( $\tau = 10$ ) | 88.26        | <b>35.15</b> | <b>64.59</b> | 90.91        | <b>35.49</b> | <b>65.77</b> | 76.36        | 28.15        | <b>39.32</b> | 71.10        | 31.77        | <b>28.14</b> |     |
|       | CLIP-LoRA                    | 88.43        | 15.40        | 10.54        | <b>96.39</b> | 24.13        | 22.26        | <b>82.86</b> | 25.09        | 10.16        | <b>74.09</b> | 18.20        | 10.52        |     |
|       | AdvCLIP-LoRA ( $\tau = 1$ )  | 89.67        | <b>27.06</b> | 23.70        | 95.22        | 32.45        | 30.33        | 81.18        | <b>27.36</b> | 13.95        | 73.77        | 24.73        | 17.79        |     |
|       | AdvCLIP-LoRA ( $\tau = 2$ )  | 89.66        | 24.00        | 35.08        | 95.75        | 31.14        | 48.50        | 81.18        | 26.86        | 21.92        | 73.46        | 23.69        | 20.29        |     |
|       | AdvCLIP-LoRA ( $\tau = 4$ )  | <b>89.69</b> | 24.41        | 50.63        | 95.93        | 33.37        | 62.78        | 80.99        | 26.34        | 31.94        | 73.52        | 25.18        | 23.23        |     |
|       | AdvCLIP-LoRA ( $\tau = 6$ )  | 89.56        | 24.81        | 57.38        | 95.49        | 34.89        | 70.13        | 80.49        | 25.48        | 37.94        | 73.61        | 27.10        | 25.11        |     |
|       | AdvCLIP-LoRA ( $\tau = 8$ )  | 89.27        | 24.85        | 61.59        | 95.25        | 35.24        | 74.29        | 80.49        | 25.10        | 41.07        | 74.09        | 27.61        | 29.55        |     |
|       | AdvCLIP-LoRA ( $\tau = 10$ ) | 88.83        | 25.10        | <b>64.06</b> | 95.20        | <b>36.64</b> | <b>77.37</b> | 79.56        | 25.85        | <b>43.64</b> | 73.65        | <b>31.34</b> | <b>31.08</b> |     |

972 B.3 ABLATION ON ATTACK BUDGET  $\epsilon$   
973  
974975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
Figure 6: Robust accuracy of AdvCLIP-LoRA with ViT-B/16 backbone on Pets, Flowers, UCF, and SUN datasets with different  $\tau$  and  $\epsilon$  values.
1012 B.4 ABLATION ON LORA DESIGN CHOICES  
10131014 Table 8: Average Clean, PGD-100, and harmonic mean (HM) for LoRA variants.  
1015

| Method       | Overall Average |       |       | Flowers |       |       | Pets  |       |       | SUN   |       |       | UCF   |       |       |
|--------------|-----------------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|              | Clean           | PGD   | HM    | Clean   | PGD   | HM    | Clean | PGD   | HM    | Clean | PGD   | HM    | Clean | PGD   | HM    |
| AdvCLIP-LoRA | 81.25           | 34.76 | 48.69 | 90.70   | 48.72 | 63.39 | 87.03 | 32.98 | 47.83 | 71.09 | 31.11 | 43.28 | 76.18 | 26.22 | 39.01 |
| Vision       | 78.71           | 30.74 | 44.21 | 86.07   | 37.72 | 52.45 | 88.74 | 35.08 | 50.28 | 67.40 | 26.02 | 37.55 | 72.64 | 24.13 | 36.23 |
| $W_q$        | 80.65           | 30.62 | 44.39 | 87.86   | 37.07 | 52.14 | 88.09 | 33.69 | 48.74 | 70.88 | 28.34 | 40.49 | 75.76 | 23.39 | 35.74 |
| $W_v$        | 80.95           | 34.73 | 48.61 | 89.05   | 45.43 | 60.17 | 87.14 | 35.62 | 50.57 | 70.53 | 31.18 | 43.24 | 77.09 | 26.40 | 39.33 |
| $W_qW_v$     | 80.95           | 34.65 | 48.53 | 89.85   | 48.96 | 63.38 | 86.86 | 33.69 | 48.55 | 71.22 | 30.44 | 42.65 | 75.87 | 25.51 | 38.18 |
| up           | 81.21           | 29.32 | 43.08 | 90.17   | 38.81 | 54.26 | 88.42 | 30.25 | 45.08 | 70.35 | 25.95 | 37.91 | 75.89 | 22.28 | 34.45 |
| bottom       | 80.09           | 33.02 | 46.76 | 88.10   | 41.18 | 56.13 | 87.03 | 36.77 | 51.70 | 70.30 | 31.11 | 43.13 | 74.91 | 23.00 | 35.19 |
| half-up      | 81.37           | 30.72 | 44.60 | 90.05   | 41.53 | 56.84 | 88.14 | 29.82 | 44.56 | 70.40 | 27.14 | 39.18 | 76.90 | 24.40 | 37.05 |
| half-bottom  | 79.80           | 32.70 | 46.39 | 88.79   | 42.43 | 57.42 | 85.55 | 33.52 | 48.17 | 70.33 | 31.26 | 43.28 | 74.52 | 23.61 | 35.86 |
| mid          | 80.45           | 30.98 | 44.73 | 87.82   | 39.95 | 54.92 | 88.31 | 32.38 | 47.39 | 69.92 | 28.40 | 40.39 | 75.73 | 23.18 | 35.50 |

## 1026 C CONVERGENCE ANALYSIS

1028 Before presenting the main theorem, we state several key intermediate lemmas used in the proof.  
 1029 For notational convenience, we denote  $\Phi(W := W_0 + BA)$  as  $\Phi(BA)$ , and use  $\Phi(W)$  and  $\Phi(BA)$   
 1030 interchangeably throughout the analysis. Let us begin with a few definitions.

1031  
 1032 **Definition C.1** A function  $f$  is  $L$ -Lipschitz iff for all  $W, W'$ , we have

$$1033 \quad \|f(W) - f(W')\| \leq L \|W - W'\|. \quad (12)$$

1034  
 1035 **Definition C.2** A function  $f$  is  $\ell$ -smooth iff for all  $W, W'$ , we have

$$1036 \quad \|\nabla f(W) - \nabla f(W')\| \leq \ell \|W - W'\|. \quad (13)$$

1037  
 1038 **Proposition C.1** Lin et al. (2020) Under Assumption 4.2,  $\Phi(\cdot)$  is  $2\kappa\ell$ -smooth with  $\nabla\Phi(\cdot) =$   
 $\nabla_W f(\cdot, \delta^*(\cdot))$ . Also,  $\delta^*(\cdot)$  is  $\kappa$ -Lipschitz.

1039  
 1040 **Lemma C.1** For any matrices  $A, B \in \mathbb{R}^{d \times k}$  and  $\alpha, \delta > 0$  we have

$$1041 \quad \begin{aligned} 2\langle A, B \rangle &\leq \delta \|A\|^2 + \delta^{-1} \|B\|^2, \\ 1042 \quad \|A + B\|^2 &\leq (1 + \alpha) \|A\|^2 + (1 + \frac{1}{\alpha}) \|B\|^2. \end{aligned} \quad (14)$$

1043  
 1044 Using Proposition C.1 and  $\|A\|_F \leq c_A$ ,  $\|B\|_F \leq c_B$ , we can prove the smoothness of  $\Phi(\cdot)$  with  
 1045 respect to  $A$  and  $B$  when the other is held fixed. Formally, we state the following lemma:

1046  
 1047 **Lemma C.2** Under Assumption 4.2 and boundedness of low-rank matrices, the function  $\Phi$  is  $2\kappa\ell c_B^2$ -  
 1048 smooth with respect to  $A$  when  $B$  is fixed, and  $2\kappa\ell c_A^2$ -smooth with respect to  $B$  when  $A$  is fixed.

1049  
 1050 *Proof.* First, by the chain rule we notice that

$$1051 \quad \begin{aligned} \nabla_A \Phi(W) &= \nabla_A f(W, \delta^*(W)) = B^T \nabla_W f(W, \delta^*(W)) + \left( \frac{d\delta^*(W)}{dW} \right)^T \underbrace{\nabla_\delta f(W, \delta^*(W))}_{=0} \\ 1052 \quad &= B^T \nabla_W \Phi(W). \end{aligned} \quad (15)$$

1053  
 1054 Similarly, we have:

$$1055 \quad \nabla_B \Phi(W) = \nabla_W \Phi(W) A^T. \quad (16)$$

1056  
 1057 Now, we can write

$$1058 \quad \begin{aligned} \|\nabla_A \Phi(BA) - \nabla_A \Phi(BA')\| &= \|B^T \nabla_W \Phi(BA) - B^T \nabla_W \Phi(BA')\| \\ 1059 \quad &= \|B\| \|\nabla_W \Phi(BA) - \nabla_W \Phi(BA')\| \\ 1060 \quad &\stackrel{(a)}{\leq} c_B (2\kappa\ell) \|BA - BA'\| \\ 1061 \quad &\leq 2\kappa\ell c_B^2 \|A - A'\|. \end{aligned} \quad (17)$$

1062  
 1063 In (a), we used the boundedness of the low-rank matrices and Proposition C.1. Similarly, we can  
 1064 prove that  $\Phi$  is  $2\kappa\ell c_A^2$ -smooth with respect to  $B$  when  $A$  is fixed.  $\square$

1065  
 1066 **Lemma C.3** The iterates  $\{A_t, B_t\}_{t \geq 1}$  in Alg. 1 (lines 8-9) satisfy the following inequality:

$$1067 \quad \begin{aligned} \mathbb{E}\Phi(B_t A_t) &\leq \mathbb{E}\Phi(B_{t-1} A_{t-1}) - \frac{\eta_w}{2} \left( \mathbb{E} \|\nabla_A \Phi(B_{t-1} A_{t-1})\|^2 + \mathbb{E} \|\nabla_B \Phi(B_{t-1} A_{t-1})\|^2 \right) \\ 1068 \quad &+ \frac{5\eta_w}{4} \mathbb{E} \|\nabla_A f(B_{t-1} A_{t-1}, \delta_t) - \nabla_A \Phi(B_{t-1} A_{t-1})\|^2 \\ 1069 \quad &+ \frac{\eta_w}{2} \mathbb{E} \|\nabla_B f(B_{t-1} A_{t-1}, \delta_t) - \nabla_B \Phi(B_{t-1} A_{t-1})\|^2 \\ &+ \frac{\kappa\ell(c_A^4 + c_B^4)\eta_w^2 G^2}{M} + \frac{2G^2(2\kappa\ell c_B^2 c_A^4 + G^2)\eta_w^3}{M}. \end{aligned} \quad (18)$$

1080 *Proof.* Using smoothness for  $A$  from Lemma C.2, we can write  
1081 
$$\mathbb{E}\Phi(B_tA_t) \leq \mathbb{E}\Phi(B_tA_{t-1}) + \mathbb{E}\langle \nabla_A\Phi(B_tA_{t-1}), A_t - A_{t-1} \rangle + \kappa\ell c_B^2 \eta_w^2 \mathbb{E}\|A_t - A_{t-1}\|^2$$
1082 
$$\leq \mathbb{E}\Phi(B_tA_{t-1}) + \mathbb{E}\langle \nabla_A\Phi(B_tA_{t-1}), -\eta_w \nabla_A f(B_{t-1}A_{t-1}, \delta_t) \rangle$$
1083 
$$+ \kappa\ell c_B^2 \eta_w^2 \mathbb{E} \left\| \frac{1}{M} \sum_{i=1}^M \nabla_A F(B_{t-1}A_{t-1}, \delta_t; \xi_i) \right\|^2$$
1084 
$$\stackrel{(a)}{\leq} \mathbb{E}\Phi(B_tA_{t-1}) + \frac{\kappa\ell c_B^4 \eta_w^2 G^2}{M}$$
1085 
$$+ \mathbb{E}\langle \nabla_A\Phi(B_tA_{t-1}) - \nabla_A\Phi(B_{t-1}A_{t-1}) + \nabla_A\Phi(B_{t-1}A_{t-1}), -\eta_w \nabla_A f(B_{t-1}A_{t-1}, \delta_t) \rangle$$
1086 
$$= \mathbb{E}\Phi(B_tA_{t-1}) - \eta_w \mathbb{E}\langle \nabla_A\Phi(B_tA_{t-1}) - \nabla_A\Phi(B_{t-1}A_{t-1}), \nabla_A f(B_{t-1}A_{t-1}, \delta_t) \rangle$$
1087 
$$- \eta_w \mathbb{E}\langle \nabla_A\Phi(B_{t-1}A_{t-1}), \nabla_A f(B_{t-1}A_{t-1}, \delta_t) \rangle + \frac{\kappa\ell c_B^4 \eta_w^2 G^2}{M}$$
1088 
$$\stackrel{(b)}{\leq} \mathbb{E}\Phi(B_tA_{t-1}) + 2\eta_w \mathbb{E}\|\nabla_A\Phi(B_tA_{t-1}) - \nabla_A\Phi(B_{t-1}A_{t-1})\|^2 + \frac{\eta_w}{8} \mathbb{E}\|\nabla_A f(B_{t-1}A_{t-1}, \delta_t)\|^2$$
1089 
$$- \eta_w \mathbb{E}\langle \nabla_A\Phi(B_{t-1}A_{t-1}), \nabla_A f(B_{t-1}A_{t-1}, \delta_t) - \nabla_A\Phi(B_{t-1}A_{t-1}) + \nabla_A\Phi(B_{t-1}A_{t-1}) \rangle$$
1090 
$$+ \frac{\kappa\ell c_B^4 \eta_w^2 G^2}{M}$$
1091 
$$\stackrel{(c)}{\leq} \mathbb{E}\Phi(B_tA_{t-1}) + 2\eta_w \mathbb{E}\|\nabla_A\Phi(B_tA_{t-1}) - \nabla_A\Phi(B_{t-1}A_{t-1})\|^2 + \frac{\eta_w}{4} \mathbb{E}\|\nabla_A\Phi(B_{t-1}A_{t-1})\|^2$$
1092 
$$+ \frac{\eta_w}{4} \mathbb{E}\|\nabla_A\Phi(B_{t-1}A_{t-1}) - \nabla_A f(B_{t-1}A_{t-1}, \delta_t)\|^2 - \frac{3\eta_w}{4} \mathbb{E}\|\nabla_A\Phi(B_{t-1}A_{t-1})\|^2$$
1093 
$$+ \eta_w \mathbb{E}\|\nabla_A f(B_{t-1}A_{t-1}, \delta_t) - \nabla_A\Phi(B_{t-1}A_{t-1})\|^2 + \frac{\kappa\ell c_B^4 \eta_w^2 G^2}{M}$$
1094 
$$= \mathbb{E}\Phi(B_tA_{t-1}) + 2\eta_w \mathbb{E}\|\nabla_A\Phi(B_tA_{t-1}) - \nabla_A\Phi(B_{t-1}A_{t-1})\|^2 - \frac{\eta_w}{2} \mathbb{E}\|\nabla_A\Phi(B_{t-1}A_{t-1})\|^2$$
1095 
$$+ \frac{5\eta_w}{4} \mathbb{E}\|\nabla_A f(B_{t-1}A_{t-1}, \delta_t) - \nabla_A\Phi(B_{t-1}A_{t-1})\|^2 + \frac{\kappa\ell c_B^4 \eta_w^2 G^2}{M}. \quad (19)$$
1096

1106 In (a) we applied Assumption 4.1, in (b) we employed the inequality  $\langle a, b \rangle \leq \frac{1}{8}\|a\|^2 + 2\|b\|^2$ , and  
1107 in (c) we utilized the inequalities  $\langle a, b \rangle \leq \frac{1}{4}\|a\|^2 + \|b\|^2$  and  $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$ . We derive  
1108 the following bound on the term in the above inequality:

1109 
$$\mathbb{E}\|\nabla_A\Phi(B_tA_{t-1}) - \nabla_A\Phi(B_{t-1}A_{t-1})\|^2 \leq \mathbb{E}\|B_t^T \nabla_W\Phi(B_tA_{t-1}) - B_{t-1}^T \nabla_W\Phi(B_{t-1}A_{t-1})\|^2$$
1110 
$$\leq \mathbb{E}\|B_t^T \nabla_W\Phi(B_tA_{t-1}) - B_t^T \nabla_W\Phi(B_{t-1}A_{t-1})\|^2$$
1111 
$$+ \mathbb{E}\|B_t^T \nabla_W\Phi(B_{t-1}A_{t-1}) - B_{t-1}^T \nabla_W\Phi(B_{t-1}A_{t-1})\|^2$$
1112 
$$\leq 2\kappa\ell c_B^2 c_A^2 \mathbb{E}\|B_t - B_{t-1}\|^2 + \mathbb{E}\|B_t^T - B_{t-1}^T\|^2 G^2$$
1113 
$$\leq \frac{2\kappa\ell c_B^2 c_A^4 G^2 \eta_w^2}{M} + \frac{G^4 \eta_w^2}{M}. \quad (20)$$
1114

1115 If we use equation 20 in equation 19, we have

1116 
$$\mathbb{E}\Phi(B_tA_t) \leq \mathbb{E}\Phi(B_tA_{t-1}) - \frac{\eta_w}{2} \mathbb{E}\|\nabla_A\Phi(B_{t-1}A_{t-1})\|^2$$
1117 
$$+ \frac{5\eta_w}{4} \mathbb{E}\|\nabla_A f(B_{t-1}A_{t-1}, \delta_t) - \nabla_A\Phi(B_{t-1}A_{t-1})\|^2$$
1118 
$$+ \frac{\kappa\ell c_B^4 \eta_w^2 G^2}{M} + \frac{4\kappa\ell c_B^2 c_A^4 G^2 \eta_w^3}{M} + \frac{2G^4 \eta_w^3}{M}. \quad (21)$$
1119

1120 Using smoothness for  $B$  from Lemma C.2, we can write

1121 
$$\mathbb{E}\Phi(B_tA_{t-1}) \leq \mathbb{E}\Phi(B_{t-1}A_{t-1}) + \mathbb{E}\langle \nabla_B\Phi(B_{t-1}A_{t-1}), B_t - B_{t-1} \rangle + \kappa\ell c_A^2 \eta_w^2 \mathbb{E}\|B_t - B_{t-1}\|^2$$
1122 
$$\leq \mathbb{E}\Phi(B_{t-1}A_{t-1}) + \mathbb{E}\langle \nabla_B\Phi(B_{t-1}A_{t-1}), -\eta_w \nabla_B f(B_{t-1}A_{t-1}, \delta_t) \rangle$$
1123 
$$+ \kappa\ell c_A^2 \eta_w^2 \mathbb{E} \left\| \frac{1}{M} \sum_{i=1}^M \nabla_B F(B_{t-1}A_{t-1}, \delta_t; \xi_i) \right\|^2$$
1124 
$$\leq \mathbb{E}\Phi(B_{t-1}A_{t-1}) + \frac{\kappa\ell c_A^4 \eta_w^2 G^2}{M}$$
1125 
$$- \eta_w \mathbb{E}\langle \nabla_B\Phi(B_{t-1}A_{t-1}), \nabla_B f(B_{t-1}A_{t-1}, \delta_t) - \nabla_B\Phi(B_{t-1}A_{t-1}) + \nabla_B\Phi(B_{t-1}A_{t-1}) \rangle$$
1126 
$$\leq \mathbb{E}\Phi(B_{t-1}A_{t-1}) - \frac{\eta_w}{2} \mathbb{E}\|\nabla_B\Phi(B_{t-1}A_{t-1})\|^2 + \frac{\kappa\ell c_A^4 \eta_w^2 G^2}{M}$$
1127 
$$+ \frac{\eta_w}{2} \mathbb{E}\|\nabla_B f(B_{t-1}A_{t-1}, \delta_t) - \nabla_B\Phi(B_{t-1}A_{t-1})\|^2. \quad (22)$$
1128

1134 Summing equation 21 and equation 22 yields the desired inequality.  $\square$   
 1135

1136 **Lemma C.4** Let  $\gamma_t = \mathbb{E} \|\delta^*(W_t) - \delta_t\|^2$ , the following statement holds true,  
 1137

$$1138 \quad \gamma_t \leq \left(1 - \frac{1}{2\kappa}\right) \gamma_{t-1} + \frac{8\kappa^3(c_A^4 + c_B^4)G^2\eta_w^2}{M} + \frac{2G^2}{\ell^2 M}. \quad (23)$$

1140 *Proof.* Since  $f(W_t, \cdot)$  is  $\mu$ -strongly concave and  $\eta_\delta = 1/\ell$ , we have Lin et al. (2020)  
 1141

$$1142 \quad \mathbb{E} \|\delta^*(W_{t-1}) - \delta_t\|^2 \leq \left(1 - \frac{1}{\kappa}\right) \gamma_{t-1} + \frac{2G^2}{\ell^2 M}. \quad (24)$$

1143 We can also write

$$\begin{aligned} 1144 \quad \gamma_t &\leq \left(1 + \frac{1}{2(\max\{\kappa, 2\} - 1)}\right) \mathbb{E} \|\delta^*(W_{t-1}) - \delta_t\|^2 \\ 1145 \quad &\quad + (1 + 2(\max\{\kappa, 2\} - 1)) \mathbb{E} \|\delta^*(W_t) - \delta^*(W_{t-1})\|^2 \\ 1146 \quad &\leq \left(\frac{2\max\{\kappa, 2\} - 1}{2\max\{\kappa, 2\} - 2}\right) \mathbb{E} \|\delta^*(W_{t-1}) - \delta_t\|^2 + 4\kappa \mathbb{E} \|\delta^*(W_t) - \delta^*(W_{t-1})\|^2 \\ 1147 \quad &\stackrel{(a)}{\leq} \left(1 - \frac{1}{2\kappa}\right) \gamma_{t-1} + 4\kappa \mathbb{E} \|\delta^*(W_t) - \delta^*(W_{t-1})\|^2 + \frac{2G^2}{\ell^2 M}, \end{aligned} \quad (25)$$

1148 where in (a) we used equation 24. Since  $\delta^*(\cdot)$  is  $\kappa$ -Lipschitz,  $\|\delta^*(W_t) - \delta^*(W_{t-1})\| \leq 1149 \kappa \|W_t - W_{t-1}\|$ . Furthermore, we have  
 1150

$$\begin{aligned} 1151 \quad \mathbb{E} \|W_t - W_{t-1}\|^2 &= \mathbb{E} \|B_t A_t - B_t A_{t-1} + B_t A_{t-1} - B_{t-1} A_{t-1}\|^2 \\ 1152 \quad &\leq 2c_B^2 \mathbb{E} \|A_t - A_{t-1}\|^2 + 2c_A^2 \mathbb{E} \|B_t - B_{t-1}\|^2 \\ 1153 \quad &= \frac{2G^2(c_A^4 + c_B^4)\eta_w^2}{M}. \end{aligned} \quad (26)$$

1154 Using equation 26 into equation 25 yields the desired inequality  $\square$   
 1155

1156 **Lemma C.5** Let  $\gamma_t = \mathbb{E} \|\delta^*(W_t) - \delta_t\|^2$ , the following statement holds true,  
 1157

$$\begin{aligned} 1158 \quad \mathbb{E} \Phi(B_t A_t) &\leq \mathbb{E} \Phi(B_{t-1} A_{t-1}) - \frac{\eta_w}{2} \left( \mathbb{E} \|\nabla_A \Phi(B_{t-1} A_{t-1})\|^2 + \mathbb{E} \|\nabla_B \Phi(B_{t-1} A_{t-1})\|^2 \right) \\ 1159 \quad &\quad + \ell^2 \eta_w \left( \frac{5c_B^2 + 2c_A^2}{2} \right) \gamma_{t-1} + \frac{G^2(2.5c_B^2 + c_A^2)\eta_w}{M} + \frac{\kappa\ell(c_A^4 + c_B^4)G^2\eta_w^2}{M} + \frac{2G^2(2\kappa\ell c_B^2 c_A^4 + G^2)\eta_w^3}{M}. \end{aligned} \quad (27)$$

1160 *Proof.* Since  $\nabla_W \Phi(W_{t-1}) = \nabla_W f(W_{t-1}, \delta^*(W_{t-1}))$ , we have  
 1161

$$\begin{aligned} 1162 \quad \mathbb{E} \|\nabla_A f(W_{t-1}, \delta^*(W_{t-1})) - \nabla_A f(W_{t-1}, \delta_t)\|^2 \\ 1163 \quad &= \mathbb{E} \|B_{t-1}^T \nabla_A f(W_{t-1}, \delta^*(W_{t-1})) - B_{t-1}^T \nabla_A f(W_{t-1}, \delta_t)\|^2 \\ 1164 \quad &\leq c_B^2 \ell^2 \mathbb{E} \|\delta^*(W_{t-1}) - \delta_t\|^2 \leq 2c_B^2 \ell^2 \left( \mathbb{E} \|\delta^*(W_{t-1}) - \delta_{t-1}\|^2 + \mathbb{E} \|\delta_t - \delta_{t-1}\|^2 \right) \\ 1165 \quad &\leq 2c_B^2 \ell^2 \left( \gamma_{t-1} + \frac{G^2}{\ell^2 M} \right) = 2c_B^2 \ell^2 \gamma_{t-1} + \frac{2c_B^2 G^2}{M}. \end{aligned} \quad (28)$$

1166 Similarly, we have  
 1167

$$\mathbb{E} \|\nabla_B f(W_{t-1}, \delta^*(W_{t-1})) - \nabla_B f(W_{t-1}, \delta_t)\|^2 \leq 2c_A^2 \ell^2 \gamma_{t-1} + \frac{2c_A^2 G^2}{M}. \quad (29)$$

1168 Combining equation 28 and equation 29 with equation 18 yields the desired inequality.  $\square$   
 1169

1170 **Theorem C.1** Let Assumptions 4.1 and 4.2 hold. Moreover, assume that the low-rank matrices  
 1171 remain bounded by constants  $c_A$  and  $c_B$  in each iteration, i.e.,  $\|A_t\|_F \leq c_A$  and  $\|B_t\|_F \leq c_B$ . Then,  
 1172 there exists iteration  $t \in \{0, \dots, T-1\}$  for which  
 1173

$$\mathbb{E} \|\nabla \Phi(W_t)\|^2 \leq \mathcal{O} \left( \frac{4\Delta_\Phi(1/\eta_w) + \kappa\ell^2(c_A^2 + c_B^2)D^2}{\epsilon^2} \right), \quad (30)$$

1174 where  $\eta_w = \Theta(\min\{1/\kappa\ell(c_A^4 + c_B^4), 1/\kappa^2\ell(c_A^2 + c_B^2), 1/(G^2 + \kappa\ell c_A^4 c_B^2)^{1/2}\})$ ,  $\eta_\delta = \Theta(1/\ell)$ , and  
 1175  $\Delta_\Phi = \mathbb{E} \Phi(W_0) - \mathbb{E} \Phi(W_{T+1})$ . Moreover, the mini-batch size  $M$  is bounded by  
 1176

$$\mathcal{O} \left( \frac{G^2 + \kappa(c_A^2 + c_B^2)G^2}{\epsilon^2} \right). \quad (31)$$

1188  
1189 *Proof.* Performing the inequality in Lemma C.4 recursively and using  $\gamma_0 \leq D^2$  from Assumption 4.2  
1190 results in

1191 
$$\gamma_t \leq \left(1 - \frac{1}{2\kappa}\right)^t D^2 + \left(\frac{8\kappa^3(c_A^4+c_B^4)G^2\eta_w^2}{M} + \frac{2G^2}{\ell^2 M}\right) \left(\sum_{j=0}^{t-1} \left(1 - \frac{1}{2\kappa}\right)^{t-1-j}\right). \quad (32)$$
  
1192  
1193

1194 Combining equation 32 with equation 27, we have

1195 
$$\begin{aligned} \mathbb{E}\Phi(W_t) &\leq \mathbb{E}\Phi(W_{t-1}) - \frac{\eta_w}{2} \left( \mathbb{E} \|\nabla_A \Phi(W_{t-1})\|^2 + \mathbb{E} \|\nabla_B \Phi(W_{t-1})\|^2 \right) \\ 1196 &\quad + \eta_w \ell^2 \left( \frac{5c_B^2+2c_A^2}{2} \right) \left(1 - \frac{1}{2\kappa}\right)^{t-1} D^2 \\ 1197 &\quad + \eta_w \ell^2 \left( \frac{5c_B^2+2c_A^2}{2} \right) \left( \frac{8\kappa^3(c_A^4+c_B^4)G^2\eta_w^2}{M} + \frac{2G^2}{\ell^2 M} \right) \left( \sum_{j=0}^{t-2} \left(1 - \frac{1}{2\kappa}\right)^{t-2-j} \right) \\ 1198 &\quad + \frac{G^2(2.5c_B^2+c_A^2)\eta_w}{M} + \frac{\kappa\ell(c_A^4+c_B^4)G^2\eta_w^2}{M} + \frac{2G^2(2\kappa\ell c_B^2 c_A^4 + G^2)\eta_w^3}{M}. \end{aligned} \quad (33)$$
  
1199  
1200  
1201  
1202  
1203

1204 Summing up equation 33 over  $t = 1, 2, \dots, T+1$  and rearranging, we can write

1205 
$$\begin{aligned} \mathbb{E}\Phi(W_{T+1}) &\leq \mathbb{E}\Phi(W_0) - \frac{\eta_w}{2} \sum_{t=0}^T \left( \mathbb{E} \|\nabla_A \Phi(W_t)\|^2 + \mathbb{E} \|\nabla_B \Phi(W_t)\|^2 \right) \\ 1206 &\quad + \eta_w \ell^2 \left( \frac{5c_B^2+2c_A^2}{2} \right) D^2 \left( \sum_{t=0}^T \left(1 - \frac{1}{2\kappa}\right)^t \right) \\ 1207 &\quad + \eta_w \ell^2 \left( \frac{5c_B^2+2c_A^2}{2} \right) \left( \frac{8\kappa^3(c_A^4+c_B^4)G^2\eta_w^2}{M} + \frac{2G^2}{\ell^2 M} \right) \left( \sum_{t=1}^{T+1} \sum_{j=0}^{t-2} \left(1 - \frac{1}{2\kappa}\right)^{t-2-j} \right) \\ 1208 &\quad + \frac{G^2(2.5c_B^2+c_A^2)\eta_w(T+1)}{M} + \frac{\kappa\ell(c_A^4+c_B^4)G^2\eta_w^2(T+1)}{M} + \frac{2G^2(2\kappa\ell c_B^2 c_A^4 + G^2)\eta_w^3(T+1)}{M} \\ 1209 &\leq \mathbb{E}\Phi(W_0) - \frac{\eta_w}{2} \sum_{t=0}^T \left( \mathbb{E} \|\nabla_A \Phi(W_t)\|^2 + \mathbb{E} \|\nabla_B \Phi(W_t)\|^2 \right) + \kappa\eta_w \ell^2 (5c_B^2 + 2c_A^2) D^2 \\ 1210 &\quad + \kappa\eta_w \ell^2 (5c_B^2 + 2c_A^2) \left( \frac{8\kappa^3(c_A^4+c_B^4)G^2\eta_w^2}{M} + \frac{2G^2}{\ell^2 M} \right) (T+1) \\ 1211 &\quad + \frac{G^2(2.5c_B^2+c_A^2)\eta_w(T+1)}{M} + \frac{\kappa\ell(c_A^4+c_B^4)G^2\eta_w^2(T+1)}{M} + \frac{2G^2(2\kappa\ell c_B^2 c_A^4 + G^2)\eta_w^3(T+1)}{M}. \end{aligned} \quad (34)$$
  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222

1223 Then, it follows that

1224 
$$\begin{aligned} \frac{1}{T+1} \sum_{t=0}^T \mathbb{E} \|\nabla_{(A,B)} \Phi(W_t)\|^2 &= \frac{1}{T+1} \sum_{t=0}^T \left( \mathbb{E} \|\nabla_A \Phi(W_t)\|^2 + \mathbb{E} \|\nabla_B \Phi(W_t)\|^2 \right) \leq \frac{2(\mathbb{E}\Phi(W_0) - \mathbb{E}\Phi(W_{T+1}))}{\eta_w(T+1)} \\ 1225 &\quad + \frac{\kappa\ell^2(10c_B^2+4c_A^2)D^2}{T+1} + \kappa\ell^2(10c_B^2+4c_A^2) \left( \frac{8\kappa^3(c_A^4+c_B^4)G^2\eta_w^2}{M} + \frac{2G^2}{\ell^2 M} \right) + \frac{2G^2(2.5c_B^2+c_A^2)}{M} \\ 1226 &\quad + \frac{2\kappa\ell(c_A^4+c_B^4)G^2\eta_w}{M} + \frac{4G^2(2\kappa\ell c_B^2 c_A^4 + G^2)\eta_w^2}{M} \\ 1227 &\leq \mathcal{O} \left( \frac{\Delta_\Phi}{\eta_w(T+1)} + \frac{\kappa\ell^2(c_A^2+c_B^2)D^2}{T+1} + \frac{G^2}{M} + \frac{\kappa(c_A^2+c_B^2)G^2}{M} \right). \end{aligned} \quad (35)$$
  
1228  
1229  
1230  
1231  
1232

1233 This implies that the number of iterations required by Algorithm 1 to return an  $\epsilon$ -stationary point is  
1234 bounded by

1235 
$$\mathcal{O} \left( \frac{4\Delta_\Phi(1/\eta_w) + \kappa\ell^2(c_A^2+c_B^2)D^2}{\epsilon^2} \right), \quad (36)$$
  
1236  
1237

1238 Moreover, the mini-batch size  $M$  is bounded by

1239 
$$\mathcal{O} \left( \frac{G^2 + \kappa(c_A^2+c_B^2)G^2}{\epsilon^2} \right), \quad (37)$$
  
1240  
1241

1242 which completes the proof.  $\square$