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ABSTRACT

Vision-Language Models (VLMs) such as CLIP have shown remarkable perfor-
mance in cross-modal tasks through large-scale contrastive pre-training. To adapt
these large transformer-based models efficiently for downstream tasks, Parameter-
Efficient Fine-Tuning (PEFT) techniques like (Low-Rank Adaptation) LoRA have
emerged as scalable alternatives to full fine-tuning, especially in few-shot scenarios.
However, like traditional deep neural networks, VLMs are highly vulnerable to
adversarial attacks, where imperceptible perturbations can significantly degrade
model performance. Adversarial training remains the most effective strategy for
improving model robustness in PEFT. In this work, we propose AdvCLIP-LoRA,
to our knowledge the first method designed to enhance the adversarial robustness
of CLIP models fine-tuned with LoRA in few-shot settings. Our method formulates
training as a minimax optimization over low-rank adapters and adversarial pertur-
bations, enabling robust adaptation with a small trainable footprint. Across eight
datasets and two backbones (ViT-B/16 and ViT-B/32), AdvCLIP-LoRA achieves
state-of-the-art performance in few-shot classification, adversarial base-to-new gen-
eralization, and cross-dataset transfer, delivering higher adversarial robustness than
prompt tuning baselines without sacrificing much clean accuracy. These findings
highlight AdvCLIP-LoRA as a practical approach for robust adaptation of VLMs
in resource-constrained settings.

1 INTRODUCTION

Vision-Language Models (VLMs), such as CLIP Radford et al.|(2021)), have become foundational
in learning cross-modal representations by aligning visual and textual embeddings through large-
scale contrastive pre-training [Jia et al.| (2021); L1 et al.| (2022b)); 'Yao et al.. While these models
enable effective zero-shot and few-shot adaptation |Zhang et al.[(2022); [Zhu et al.| (2023)), their larger
transformer-based variants [Vaswani| (2017)) demonstrate superior performance (e.g., CLIP’s ViT-L/14
surpasses ViT-B/16 by over 6% on ImageNet Deng et al.| (2009)). However, these large models
typically contain billions of trainable parameters, making full fine-tuning (FFT) computationally
expensive and inefficient, particularly for task-specific adaptations.

To address this, Parameter-Efficient Fine-Tuning (PEFT) methods have gained traction, particularly
in NLP, where techniques like adapters (Chen et al.| (2022)); Karimi Mahabadi et al.|(2021)); Rebuffi
et al.| (2017) and prompt tuning Jia et al.| (2022); |Li & Liang| (2021) reduce overhead, by adding
a small number of trainable parameters or trainable prompt tokens while keeping the rest of the
model frozen. Among PEFT methods, Low-Rank Adaptation (LoRA) Hu et al.| (2021)) offers an
efficient alternative by fine-tuning only low-rank matrices, enabling single-GPU adaptation of billion-
parameter models [Dettmers et al.| (2023) while matching full fine-tuning performance Hu et al.
(2021)). Recent work by Zanella & Ben Ayed| (2024) employed LoRA in the context of few-shot
VLMs, demonstrating improved accuracy across various tasks and models. Unlike few-shot prompt
tuning Bulat & Tzimiropoulos| (2023)); Chen et al.; Zhu et al.|(2023)), which involves computationally
intensive optimization of textual prompts, or adapter-based methods|Gao et al.|(2024)); Zhang et al.
(2022) that often demand extensive hyperparameter tuning [Silva-Rodriguez et al.| (2024), LoRA
provides a more scalable and portable solution for fine-tuning VLMs Zanella & Ben Ayed|(2024).

Despite their impressive capabilities, VLMs share the susceptibility of traditional deep neural net-
works (DNN5s) to adversarial attacks, where imperceptible perturbations can significantly degrade
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model performance Szegedy et al.| (2013); Zhou et al| (2023). This vulnerability is particularly
concerning in the visual domain, where adversarial noise can be more subtle and difficult to detect
compared to textual modifications. Extensive research in computer vision has demonstrated that
adversarial training remains the most effective approach for developing robust DNNs resistant to
adversarial perturbations Madry et al.[(2018). When applied to PEFT paradigms, this adversarial
training is typically implemented during the fine-tuning phase rather than during initial pre-training.
More recently, studies |Li et al.|(2024); Zhang et al.|(2024); Jia et al.| (2025) have explored few-shot
prompt tuning as a means of adversarial adaptation. For instance, Zhang et al.|(2024) trains the clean
text embedding with the adversarial image embedding to improve adversarial robustness. APT|Li et al.
(2024)) learns robust text prompts via adversarial training, while FAP|Zhou et al.| (2023)) leverages
multimodal prompts and proposes a loss function that balances the connection between natural and
adversarial features across modalities.

—— Zero-shot CLIP AdvVP —— APT  —— AdvPT —— AdvMaPLe —— AdvVLP FAP —— AdvCLIP-LoRA (Ours)
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Figure 1: Few-shot performance across datasets under clean and adversarial evaluation. Spider
plots show top-1 accuracy (%) for Clean (top row) and PGD-100 (bottom row) on eight datasets at
shot counts {1, 2,4, 8,16} with ViT-B/32. Each polygon denotes a method (larger area is better).

Despite their effectiveness, adversarial prompt-based methods exhibit two limitations: (i) they often
attain robustness by sacrificing substantial clean accuracy, especially in the extreme few-shot regime
(1-4 shots), where many underperform even zero-shot CLIP (Fig.[l] top); and (ii) their robustness
typically improves only as the shot count increases, with some methods struggling to gain robustness
in the extreme few-shot regime (Fig. [T} bottom). Although LoRA has proven effective for standard
fine-tuning, its use for enhancing adversarial robustness in few-shot VLMs remains largely unexplored.
We address this gap with AdvCLIP-LoRA, which fine-tunes CLIP using LoRA adapters under a
minimax objective. As shown in Fig.[I] our simple AdvCLIP-LoRA avoids the above trade-offs,
delivering superior robustness and higher clean accuracy, consistently outperforming adversarial
prompt-tuning baselines on both clean and PGD metrics for the majority of shots.

Before delving into the details, we summarize our main contributions.

* We investigate LoRA for adversarially robust few-shot VLMs, a setting largely dominated
by prompt-based strategies, and introduce AdvCLIP-LoRA, which frames adaptation as a
minimax optimization problem and solves it efficiently.

* We conduct extensive experiments on eight datasets with ViT-B/16 and ViT-B/32 backbones,
covering few-shot classification, adversarial base-to-new generalization, and cross-dataset
transfer; AdvCLIP-LoRA significantly improves robustness to strong attacks (e.g., PGD) in
most settings with minimal loss in clean accuracy.

* We present comprehensive ablations that analyze design choices and hyperparameters,
providing guidance for practical deployment.

* Under standard assumptions from the minimax optimization literature (e.g., smooth objec-
tives and bounded gradients), we establish convergence guarantees for the primal function
®(-) = maxsea f(+,0) to a stationary point, with rates matching classical results.
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2 PRELIMINARIES AND RELATED WORK

2.1 FEW-SHOT FINE-TUNING FOR VLMSs

In vision-language classification tasks, predictions are made by leveraging the pretrained alignment
between visual and textual modalities. Given a label set of K classes, one first constructs natural
language descriptions, or prompts Liu et al.{(2023a), denoted as {ck}szl, where each ¢y, is a textual
phrase such as “a photo of a [class name].” These prompts are embedded using a frozen text encoder
0;, yielding normalized representations z,(CT) = 0;(c) € R? Similarly, an image x; is embedded

via a visual encoder 6, to obtain ZEI) = 0,(x;) € R?, also normalized to unit length. The prediction

logits are computed as the cosine similarity between each image-text pair. These logits are converted
into a probability distribution over classes using a softmax with temperature scaling:

exp(cos(z”, 2" /)

K N (T )
S expleos(z)” 25") /)
where + is a softmax-temperature parameter. The predicted label for image x; is the one with the

highest posterior probability: k& = argmaxy, p; ;. This form of zero-shot prediction directly mirrors
the contrastive training setup used in large-scale VLM pretraining, such as CLIP|Radford et al.|(2021)),
and allows models to generalize to novel classification tasks without fine-tuning on the target domain.

Pik = ey

To further adapt vision-language models to downstream tasks, the few-shot setting assumes access
to a limited number of labeled examples per target class—typically fewer than 16. Given N such
labeled support images per class, we denote the one-hot encoded ground-truth label for image x;
as y;i, where y;, = 1 if x; belongs to class £, and 0 otherwise. Classification probabilities p; j, are
obtained as in the zero-shot setup, and the model is adapted by minimizing the cross-entropy loss:

| MK
Lee=— DO vk lnps. (@)

i=1 k=1

This adaptation can be implemented in several ways. One strategy is to optimize the input prompts
{ck}f:1 directly, an approach inspired by prompt tuning techniques|Chen et al., Alternatively, one
may fine-tune lightweight, task-specific modules such as adapter layers Gao et al.|(2024) or low-rank
parameterizations like LoRA [Zanella & Ben Ayed| (2024), leaving the backbone encoders frozen.

2.2 FINE-TUNING VLMS via LORA

Low-Rank Adaptation (LoRA) [Hu et al.| (2021)) is a highly promising PEFT method, enabling
efficient fine-tuning of large models by freezing the entire pre-trained model and introducing low-
rank, trainable matrices within each layer. In LoRA, given a pre-trained weight matrix W, € R4*¥,
the weight update is achieved through a low-rank decomposition Wy + AW = W, + BA, where
the training occurs on matrices A € R"** and B € R%*", with » < min(d, k). The values in A are
initialized via a Gaussian distribution, while B is initialized as a zero matrix. This setup ensures that
no low-rank update occurs before training, meaning that the output remains unchanged initially.

Although the original LoRA paper applies the low-rank matrices to the attention matrices of
transformer-based architectures, |[Zanella & Ben Ayed (2024) extends LoRA to all matrices in the
vision and text encoders of VLMs. This adaptation leads to improved accuracy over prompt-based
methods across various CLIP architectures and datasets |Zanella & Ben Ayed|(2024).

2.3 ADVERSARIAL ROBUSTNESS

Given an arbitrary classifier h : X — ), where an input x € X is associated with its true label y € ),
an adversary attempts to find an imperceptible perturbation d, which shares the same dimensionality
as x. This perturbation must satisfy the condition that = + § € X, and more critically, h(z + 0) # y,
thereby misclassifying the original input. To ensure that this perturbation remains imperceptible, the
adversarial perturbation ¢ is usually constrained within some bounded set A C R™.

The adversarial attack on a classifier h, constrained by bounded set A, is formulated as follows:
& =z +argmax L(h(z +9),y), (©)
€
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Figure 2: A: Trainable Parameters, “*: Frozen Parameters. Illustration of AdvCLIP-LoRA algorithm.
During iteration ¢, the perturbation d; is updated and applied to the input image batch. Subsequently,
the low-rank matrices A and B are optimized, while the rest of the model remains frozen.

Algorithm 1 AdvCLIP-LoRA

Require: Training samples X, batch-size M, learning rates 7, 7s
1: Ap NN(O,O'Q), By =0.
2: 00
3: forepoch=1...7 do

4 for minibatch M C X do

5 forj=1...7do

6 6 = Pa (01 +mslr S VaF(Wiir,8136) )

7: end for

8 A= A1 — ( ZZ 1 VAF (W1, 64 52)) > Update the low-rank matrix A
9: By =Bi1 — (ﬁ M VEF(Wi_1,6; gi)) > Update the low-rank matrix B
10: end for

11: end for

where L is the training loss function. This formulation represents an optimization problem where the
perturbation ¢ is chosen such that the classifier’s output is maximally disrupted while staying within
a bounded set. Methods like Projected Gradient Descent (PGD) |Madry et al.[(2018)) are commonly
employed to solve this optimization problem. Given the vulnerability of deep learning models to these
perturbations [Szegedy et al.|(2013)), it becomes crucial to defend against such adversarial attacks.

One of the most effective strategies for defending against adversarial attacks is adversarial training,
as proposed by [Madry et al.|(2018)). When hy denotes a classifier parameterized by W, adversarial
training seeks to solve the following minimax optimization problem:

min B y)~p |max L{hw (z +9),y)| “)

where D represents the underlying data distribution. This approach effectively trains the classifier to
be robust against adversarial perturbations by simultaneously minimizing the classifier’s loss and
maximizing perturbation within a bounded set.

3 PROPOSED ALGORITHM

3.1 ADVERSARIAL FINE-TUNING OF CLIP viA LORA

Assume that the LoRA matrices A and B are initialized with a Gaussian distribution and zero matrices,
respectively, and are applied to all weight matrices in the vision and text encoders of a CLIP model.
Following the approach introduced in Section[2.3] we aim to improve the adversarial robustness of
the LoRA-based CLIP model by introducing a perturbation J to input images and solving a minimax
optimization problem. Focusing on the dependence of the training loss function on the low-rank
matrices A and B and the perturbation 4, we formulate the following minimax optimization problem:

r}‘l%lr&neax J(W := Wy + BA,J), Q)
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where A is a bounded set of admissible perturbations, and f : R4*k+n _s R is a non-convex loss
function expressible in the stochastic form E¢..p [F(W, + BA, §;&)]. Here, the expectation is taken
over sampled batches £ ~ D, where D represents the underlying data distribution.

3.2 ADVCLIP-LORA ALGORITHM

In this section, we present the proposed AdvCLIP-LoRA algorithm, which solves the minimax
problem (Eq.[5) to enhance the adversarial robustness of a CLIP model fine-tuned with LoRA. The
AdvCLIP-LoRA algorithm proceeds for 7 iterations. At each iteration ¢:

1) Select M samples {&;}}, from the dataset.

2) Update the perturbation ¢ for 7 iterations via:

M
6 = Pade-1 + 3 2 VsF(Wio1,0,-15&), ©)
where 75 is the learning rate for 4, A is a bounded perturbation set, and Pa projects onto A. The set

A may be any convex, bounded subset of R™; in our experiments we take A = {0 : ||0]|oc < €}, i.€.,
an {.-ball of radius e.

3) Update the LoRA matrices A and B using the current d; to obtain A; and B; (lines 8 and 9 of
Alg. [T)), where 7, is the learning rate for A and B. The steps of the AdvCLIP-LoRA algorithm are
illustrated in Fig. [2| Moreover, the AdvCLIP-LoRA pipeline can be found in Alg.

4 CONVERGENCE ANALYSIS

In this section, we present a thorough convergence analysis of the proposed AdvCLIP-LoRA algo-
rithm. The complete proofs can be found in Appendix [C|

Consider the minimax problem (Eq. , which is equivalent to minimizing the function ®(-) =
maxsea f(+,9). In the context of nonconvex-strongly-concave minimax problems, where f(W,-) is
strongly-concave for each WV, the maximization problem maxsea f(W, §) can be solved efficiently,
yielding useful insights into ®. However, finding the global minimum of ® remains NP-hard in
general due to its nonconvex nature. To address this challenge, we define local surrogates for the
global minimum of ®. One commonly used surrogate in nonconvex optimization is the notion of
stationarity, which is suitable when ® is differentiable. A point W is an e-stationary point (e > 0) of
a differentiable function @ if | V®(W)|| < e.

Let us proceed with a few assumptions. Note that || - | 7 denotes the Frobenius norm.
Assumption 4.1 We assume that the stochastic gradients are unbiased and bounded, that is,
Ee[VF (W,6:6)] = Vi (W,0), Ee[|VF(W,6:6)[3] <G, )

for all W € RY¥F where ¢ represents a randomly sampled subset of training data and E¢[-] denotes
the expectation over & ~ D.

Assumption 4.2 The objective function and constraint set ( fiROF S ROAC R”’) satisfy (i)
A is a convex and bounded set with a diameter D > 0. (ii) f has (-Lipchits gradients and is
u-strongly concave in 6. That is, for both x € {W, 6}

IV f(W,8) = Vo f (W, )5 < €2 (I = W3+ 16 = 8113 ®)

Let k = ¢/ denote the condition number and define

() = {Srlefgf(-, 8), 0*(-)= ar(;gerriaXf(-, 5). )

The following theorem characterizes the convergence rate of the proposed AdvCLIP-LoRA in Alg. [I]
to find a stationary solution for ®(W).
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Table 1: Few-shot classification under clean and adversarial evaluation (1-, 4-, and 16-shot).

Shots  Method ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average

Clean PGD  Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD

AdvVPIMao et al. 46.60 11.07 8573 5033 2697 12.93 24.43 523 57.60  22.73 63.10 29.70 337 0.40 4120 1110 43.62 17.94
APT|Li et al. £2024 49.30 130 8477 2690  41.67 3.83 56.57 0.83 70.23 0.60 61.97 2.10 54.50 3.87 53.53 1.23 59.07 5.08
AdvPT|Zhang et al. 12024} 20.17 043 6297  7.60 16.73 2.60 13.27 0.00 37.93 0.13 33.97 0.43 27.03 0.00 27.57 0.37 29.96 1.44

1 AdvMaPLe Khattak et al. ¥2023]  49.27 14.60 8553 4837 13.63 2.93 527 0.30 30.67 4.97 1.40 0.10 3270 7.07 49.70 12.67 3352 11.38
AdvVLPZhou et al. 42024] 50.53 17.50 8543 4847 15.97 477 1.07 0.77 29.63 3.83 19.77 6.57 11.83 1.73 49.83 12.60  33.01 12.03
FAP{Zhou et al. 2024 49.90 1540 8353 41.13 18.40 2.40 31.67 1.43 49.23 347 10.40 0.53 28.50 243 49.53 1493 40.14 10.22
AdvCTIP-LoRA 6528 2089 93.06 6649  49.65 18.68 78.90 16.41 86.97 36.03 76.17 34.55 72.48 22.34 67.92 2699 7380 3030
Relative Improvement 42019 +19.37  4+855 43211 #1915 #4447 #3947  +163.84 42381 #5851 42071 41633  +32.99 +163.81 +26.88 +80.78 42491  +68.9
AdvVPMao et al. 49.80 1113 90.17 5250 18.77 9.27 22.73 4.57 57.80 16.20 55.97 2373 1.07 0.80 48.47 13.03 4310 16.40
APT]Li et al. §2024' 50.90 140 90.77  26.67 51.33 6.33 54.80 1.63 71.83 2.10 82.40 4.23 66.53 3.03 62.37 2.90 66.37 6.04
AdvPT|Zhang et al. #2024 23.40 1.33 64.97 7.30 31.70 437 15.23 0.37 44.13 1.73 41.97 0.63 31.17 0.47 29.97 0.40 3532 2.07

4 AdvMaPLe/Khattak et al. 42023} 51.27 19.00 89.53  59.40 6.43 2.40 60.00 14.83 30.70 9.03 52.20 2537 59.73 21.30 58.23 21.53 51.01 21.61
AdvVLP/Zhou et al. #2024 51.30 1937 8937 59.07 2297 10.33 41.50 11.20 67.43 18.47 51.00 25.80 59.97 2177 57.90 2117 55.18 23.40
FAP|Zhou et al. $2024 51.53 19.60 87.57 57.33 31.27 8.07 59.37 23.20 79.47 3457 81.53 52.63 60.70 26.67 60.40  27.23 57.51 24.60
AdvCTIP-CoRA 6634 2378 9396 71.03 6241 26.36 75.80 17.69 87.03 32.98 90.70 4872 76.18 26.22 7109 3L11 7794 3474
Relative Improvement 42874 42133 4351 41958 42159 +155.18  427.67 2375 4951 —4.6 41007 —T43 4145 —1.69  +13.98 +14.25 41743  +41.22
AdvVPIMao et al. 46.27 1277 9040 5260  29.20 13.87 1.07 0.80 56.40 16.43 56.17 22.03 0.97 093 5470 17.63 4190 1713
APTILi et al. #2024 52.63 207 9293 3023 5493 10.47 62.50 2.63 83.70 4.40 86.63 8.97 69.40 4.40 65.67 3.67 71.05 8.35
AdvPT|Zhang et al. #2024 24.53 147 6870  9.63 43.77 5.70 18.47 0.73 46.27 0.23 56.03 0.80 36.60 0.53 3313 237 40.94 2.68

16 AdvMaPLe|Khattak et al. #2023] 5293 21.90 92.17 68.63  57.93 3217 65.13 25.27 83.27 36.87 87.87 5870  68.97 31.67 63.57 2970 7148  38.11
AdvVLP{Zhou et al. §2024] 5323 2210 9237 6797 5753 3273 43.30 16.50 82.93 3557 8770 5870  69.10 32.80 6390 2970 6876  37.01
FAP|Zhou et al. §2024 52.53 2290 91.10 67.33 55.17 31.33 64.03 26.67 81.90 41.00 86.27 61.47 65.70 32.80 6237 30.27 69.88 39.22
AdvCTIP-CoRA 68.38 2586 9493 7298 67.67 28.37 77.81 17.76 88.44 34.29 96.47 54.69 81.87 30.74 74.23 3352 8123 37.28
Relative Improvement +28.46  +12.93  +215  +634  +16.81 1332 +19.47 3341 +5.66 1637 +9.79 1103 +17.97 6.28  +13.03  +10.74  +13.64 1.95

Theorem 4.1 Let Assumptions and hold. Moreover, assume that the low-rank matrices
remain bounded by constants c4 and cg in each iteration, i.e., ||A¢||r < ca and | Bi||r < cp. Then,
there exists iteration t € {0,--- ,T — 1} for which

406 (1/nw) + KOP(A + C2B)D2)
2 b

E|V® (W[5 <O ( (10)

€

where 1, = O(min{1/kl(cY + ), 1/k20(4 + c%), 1/(G? + kbl )2}, ns = ©(1/f), and
Ag = E®(Wy) — E®(Wryq). Moreover, the mini-batch size M is bounded by

o (G2 + k(4 + CQB)G2> .

(11)

€2

Remark 4.1 AdvCLIP-LoRA is guaranteed to reach an e-stationary point of ®(-) in O(e~?) iter-
ations, with total stochastic gradient complexity O(e~*), matching classical rates in the minimax
optimization literature |Lin et al.|(2020).

5 EMPIRICAL RESULTS

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate the proposed method, we follow prior works Zhou et al.|(2022); Jia et al.[(2025)
and utilize a diverse set of 8 image recognition datasets spanning multiple vision tasks. The datasets
include two generic object recognition datasets: ImageNet-1K |Deng et al.| (2009) and Caltech101 |Fei-
Fei et al.[(2004); a texture recognition dataset: DTD |Cimpoi et al.| (2014)); four fine-grained object
recognition datasets: OxfordPets Parkhi et al.| (2012)), Flowers102 Nilsback & Zisserman| (2008)), and
Food101 Bossard et al.| (2014); a scene recognition dataset: SUN397 [ Xiao et al.[(2010); and an action
recognition dataset: UCF101 [Soomro et al.[(2012).

Baselines. To rigorously evaluate the proposed method, we benchmark it against a representative set
of adversarial prompt-learning baselines. We consider two categories: (i) methods using hand-crafted
text supervision, such as zero-shot CLIP|Radford et al.|(2021)) and AdvVP|Mao et al.; and (ii) methods
with learnable text prompts. In the single-modality textual setting, we compare against APT |Li et al.
(2024), which learns robust text prompts without modifying model parameters, and AdvPT |Zhang
et al.[(2024)), which first employs the image encoder to generate adversarial examples and then aligns
them with learnable text prompts. For multimodal adversarial prompt learning, we follow [Zhou et al.
(2024)) and include AdvVLP, AdvMaPLe Khattak et al. (2023)), and FAP|Zhou et al.|(2024).

Implementation Details. We conduct experiments with CLIP backbones ViT-B/16 and ViT-B/32
and report averages over three random seeds. The base optimizer uses a learning rate of 2 x 10~*
with a cosine decay schedule. Learning the perturbation § is challenging early in training due to
small gradients; to mitigate this, we employ a larger, adaptive rate 5 = 0.05/||d;||2, which scales
inversely with the current perturbation magnitude. This choice amplifies early updates and serves
as implicit data augmentation by injecting noise. 75 then decays during training and is fixed at 0.05



Under review as a conference paper at ICLR 2026

Average (Clean)

—e— AdvCLIP-LoRA (Ours)

ImageNet (Clean)

—e— APT

AdvMaPLe

Caltech (Clean)

—e— AdVPT —e— AdWLP —e— C-AVP —e— FAP

DTD (Clean)

SUN (Clean)

UCF (Clean)

%)

7..—0——0—/“

2

|

7'/.,4//‘

e

Accuracy (

70 4 1
% 50 4 50—% 60 1
501
60 s
] 204
80 50+ 40
50 4 401 30 1
40 4

—— f\'/./_/. o ol .‘/'/.,_,. ““/\‘
20 4 04
Average (PGD) ImageNet (PGD) Caltech (PGD) DTD (PGD)

SUN (PGD)
40 4
25'//*/ | S G— 30—/”// 304
4 Zu,//./r/{/“‘ 60 25
15 4 20 4 20 4 20 4
] 404
10—"’*/./'. 154
10 e 10 1 107
o @ S SR Y e a—
12 4 3 Y 124 8 1

5 4 20 4
Shots

UCF (PGD)

Accuracy (%)
N
]

Figure 3: Effect of shot count on clean and adversarial performance. Clean and PGD accuracy
versus number of shots {1,2,4, 8,16} on representative datasets and the eight-dataset average.

from iteration 300 onward. The total number of training iterations is 500 x N/K. We use a batch
size of 16 for ImageNet-1K and 32 for all other datasets.

For LoRA, the class-conditional prompt is “a photo of a kth class name, "k =1,..., K, to
demonstrate AdvCLIP-LoRA’s applicability without elaborate manual prompt engineering. LoRA
modules are inserted at all layers of both encoders with rank 2 and dropout p = 0.25. Attacks
are generated within an ¢..-ball using a 2-step PGD procedure with budget ¢ = 1/255 and step
size @ = 1/255, following Mao et al.; robustness is evaluated with a 100-step PGD attack. All
experiments are run on NVIDIA A6000 and V100 GPUs.

5.2 PERFORMANCE EVALUATION

Adversarial Few-Shot Learning. We assess performance under scarce supervision by fine-tuning
with {1,2,4,8,16} shots per class. Tablereports results for the 1-, 4-, and 16-shot settings across
eight datasets; results for the remaining shot counts are provided in the Appendix. We also report
the relative improvement of AdvCLIP-LoRA over the strongest non-ours baseline for each setting.
Overall, AdvCLIP-LoRA consistently delivers higher clean accuracy with substantial margins. Under
PGD evaluation, the advantage is pronounced at 1-4 shots, remains favorable at 8 shots, and narrows
at 16 shots, where performance is slightly trailing the best baseline (FAP). Fig. [3] visualizes clean
and PGD accuracy as a function of shots for representative datasets and the eight-dataset average,
highlighting that while some prompt-based baselines improve as shots increase, others fail to improve,
whereas AdvCLIP-LoRA is already strong from the 1-shot regime.

Adpversarial Base-to-New Generalization. We present a more challenging adversarial base-to-new
generalization setting in which each dataset is partitioned into base and new subclasses. Models are
fine-tuned with 16 shots per base class and then evaluated on both base and new classes under clean
and PGD-100 conditions. As the number of categories is typically modest relative to the per-class
sample count, this setting requires learning intrinsic, dataset-level structure and robust representations
from limited supervision that transfer to a large test pool. Table [2] presents results together with
relative improvement. AdvCLIP-LoRA attains consistently superior clean and adversarial accuracy
on both base and new splits; moreover, the gains are larger on the new classes, highlighting stronger
robustness and generalization to previously unseen categories.

Adversarial Cross-Dataset Evaluation. We assess zero-shot transfer robustness via cross-dataset
generalization. A CLIP backbone is first adversarially fine-tuned on ImageNet-1K with 16 shots per
class, then evaluated without further fine-tuning on seven downstream datasets under Clean and PGD-
100 conditions. Table [3|reports the results and the relative improvement of AdvCLIP-LoRA over the
strongest non-ours baseline (excluding zero-shot CLIP). As expected, zero-shot CLIP attains strong
clean accuracy but offers minimal adversarial resistance. Adversarially adapted models typically
sacrifice some clean accuracy for robustness; AdvCLIP-LoRA shows the smallest drop in clean



Under review as a conference paper at ICLR 2026

Table 2: Adversarial base-to-new generalization (16-shot). Top-1 accuracy (%) on base and new
classes under clean and PGD-100 evaluation across eight datasets.

Clean Acc (%) ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average
Base New Base New Base New Base New Base New Base New Base New Base New Base New
AdvVPMao et al. 49.87 4480 9283 88.83 23.27 13.23 3257 32.30 227 2.20 50.43 45.23 6020  62.20 1.77 247 31.68 30.39
APT|Li et al. $2024 2473 2543  67.63 43.83 14.17 19.43 9.47 2.73 2.97 8.10 2.07 347 13.10 11.17 14.73 17.37 18.21 13.99
AdvPT|Zhang et al. (2024 2653 69.03 7227 62.33 5270  46.77 5343 51.17 25.07 53.70 70.23 46.70 4140 59.17 43.47 43.60  43.87 4494

AdvVLP|Khattak et al. {2023]  58.40  48.83 9440 8327 4340 21.27 38.97 39.67 71.37 68.93 88.90 49.90 70.23 63.57 7277 49.83 60.38  46.18
AdvMaPLe[Zhou etal. (2024] 5847  48.67 9487 8447 4863 2287 60.67 57.90 7140 6990 5653 3000 7057 6327 7280 5070 5895  46.92

FAPZhou et al. {2024] 58.10 47.83 9407 7653 69.17 35.17 87.37 72.13 7237 68.20 89.30 45.67 68.47 61.47 70.37 47.10 7052 49.58
AdvCLIP-CoRA (Ours) 7221 5672 9748 91.05 78.94 5290 91.28 81.75 8175  79.61 96.01 54.82 79.05 70.48 82.57 62.30  84.91 69.45
Relative Improvement 4235 41616 4275 4779 +1412 41311 +448 42166 +12.96  +13.89  +7.51 +17.39 412,02 +114 41342 42288 42041 +40.08
PGD-100 Ace (%) ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average
Base New Base New Base New Base New Base New Base New Base New Base New Base New
AdvVPMao et al. 12.27 1227 57.17  49.13 10.03 7.20 12.27 13.37 1.27 1.00 24.63 15.77 18.50  21.10 1.73 1.43 14.43 13.36
APT|Li et al. {2024] 9.83 5.90 15.97 9.97 8.87 3.60 0.33 0.00 0.47 1.93 0.13 0.03 0.67 2.23 2.03 5.33 3.80 3.07
AdvPT|Zhang et al. (2024 0.50 1477 1360 15.17 7.13 6.83 1.27 8.53 1.63 10.97 1.17 9.93 3.77 12.83 0.63 6.60 3.50 8.84
AdvVLP|Khattak etal.(2023]  25.33  21.03 7390 5670 2150  9.97 1680 17.50  27.90 2450  62.80 21.07 3387 2983 3637 2013  30.69 2025
AdvMaPLeZhou et al. (2024] 2493 20.50 7623  57.67 2757 12.37 31.80 2890 2843 24.60 36.70 11.63 3410 29.40 36.77 18.00 32.37 21.61
FAPZhou et al. {2024 2583 2157 7420 50.00 41.63 19.77 34.13 26.07 27.57 24.20 65.50 18.10 34.63 30.77 36.63 18.30  38.05 21.86
AdvCLIP-CoRA (Ours) 25.58 2240 79.15 65.61 4190 31.16  45.19  49.38 23.54 23.50 57.26 29.43 39.80  37.02 3252 19.15 43.12 34.71
Relative Improvement 0.97  +9.27  +3.83  +13.77  +0.65 +57.61 +3241 +70.87 17.2 2.89 1258 +153.05 +16.72  +20.31 1156 +4.64  +13.32  +58.78

Table 3: Cross-dataset generalization (zero-shot transfer). Models are adversarially fine-tuned on
ImageNet-1K with 16 shots, then evaluated without further adaptation on seven downstream datasets.

Method ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average
Clean PGD Clean PGD Clean PGD Clean PGD  Clean PGD Clean PGD  Clean PGD Clean PGD Clean  PGD
Zero-shot CLIP|Radford et al. 2021}  62.10 1.57 91.50 2623 4370 5.07 87.40 327 80.50 5.03 66.90 1.73 62.10 1.20 62.00 247 69.53 5.82
AdvVPMao et al. 44.87 1167 8547 4807 3023 1293 7420 19.03 56.53 970 4317 1620 4197 1277 4460 1047 5263  17.60
APT|Li et al. (2024] 12.23 0.90 5357 770 11.93 347 13.97 1.10 7.30 0.10 13.73 0.67 14.73 237 18.30 0.33 18.22 2.08
AdvPT|Zhang et al. (2024 23.50 0.33 63.70 347 1947 3.30 43.10 087 12.23 0.00 28.57 0.60 2633 0.40 2577 0.27 30.33 1.16
AdvVLP|Zhou et al. (2024 53.23 22,10 8733 6297 3343 18.60 7880 40.83  55.80 17.83  49.77 2523 52.80 21.67 51.50 22.10 57.83  28.92
AdvMaPLe|Khattak et al. 12023 5293 2190 8823 6490 3087 1750 77.87 4283 56.67 1853 5290 2873 5253 21.90 5097 2320 57.87 29.94
FAP|Zhou et al. §2024] 52.53 2290 87.80 6543 3093 1693 7820 43.77 5583 19.60 5120 2723 5247 2240 51.73 23.77 5759 3025
AdvCLIP-CoRA (Ours) 66.90 2651 89.57 69.05 3440 21.63 8234 42.11 7327 17.39 4880 24.12 58.01 2784  58.50 20.57 6397 3115
Relative Improvement +25.68  +15.76  +1.52  +5.53 429 41620 +4.49 —3.79 42029 —11.28 —7.75 —16.05 +9.87 +24.29 +13.09 —13.46 +10.54 +2.98

accuracy (5.56% below zero-shot CLIP) while achieving state-of-the-art robustness, yielding the best
overall trade-off.

Comparison with the Non-Robust Counterpart. We compare AdvCLIP-LoRA with its non-
robust variant, CLIP-LoRA, using the ViT-B/16 backbone in the 16-shot setting. As shown in
Fig. [ (top-left), for moderately small values of 7, AdvCLIP-LoRA attains clean accuracy only
marginally below CLIP-LoRA while achieving substantial gains in PGD accuracy, yielding a favorable
robustness—accuracy trade-off. In practice, careful tuning of 7 yields strong robustness gains at
minimal nominal performance cost; we analyze this trade-off in more depth later. We provide an
extensive comparison of CLIP-LoRA and AdvCLIP-LoRA on ViT-B/16 and ViT-B/32 across different
shot counts in Appendix

5.3 ABLATION STUDY

LoRA Rank. Fig. ] (bottom-left) plots clean and PGD-100 accuracy on ImageNet-1K as a function
of the LoRA rank r for {1,2, 4,8, 16} shots. Increasing the rank to a moderate value (e.g., 7 = 16)
improves both clean and robust performance of AdvCLIP-LoRA across all shot counts, with the
gains most pronounced in the 1-shot regime where data are scarce. To keep the number of trainable
parameters low, we adopt » = 2 in the main experiments; despite its small footprint, this setting
provides strong performance and a favorable robustness—accuracy trade-off, outperforming prompt
tuning baselines.

Attack Budget e. Fig. 4| (top-right) shows the effect of the PGD budget € on the average robust
accuracy over five datasets using ViT-B/16. As expected, larger € degrades robustness. Increasing the
number of inner maximization steps 7 consistently improves performance across budgets, yielding
higher PGD accuracy for different e. Per-dataset and per-shot curves are provided in Fig. [f] (Appendix).

Number of Inner Maximization Iterations 7. Figure 4| (bottom-right) shows clean and PGD-100
accuracy, averaged over eight datasets, as a function of the inner maximization steps 7 in Alg. [T}
Increasing 7 tightens the approximation to the inner maximization in the minimax objective (Eq. [5),
yielding steadily higher robustness; the largest gains occur between 7 = 2 and 7 = 15. This
improvement comes at the cost of longer training and a modest drop in clean accuracy. For a fair
comparison with baselines, we use 7 = 2 in the main tables; however, the curves indicate that 7 ~ 15
offers a strong robustness—efficiency trade-off, while for larger 7 (beyond ~ 15) changes in both clean
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Figure 4: Top-left: comparison to the non-robust CLIP-LoRA. Ablations for AdvCLIP-LoRA.
Top-right: effect of the PGD budget €. Bottom-left: effect of LoRA rank r. Bottom-right: effect of
inner maximization steps 7.

and PGD accuracy become less pronounced, particularly for the larger shots. In practice, 7 € [10, 15]
is a reasonable default, with smaller 7 remaining competitive under tight compute budgets.

Ablation on LoRA Design Choices. We study how
different adapter configurations affect robustness and
accuracy. In our default setup, LoRA is applied to
both vision and text encoders, across all layers, and

Table 4: Average Clean, PGD-100, and har-
monic mean (HM) for LoRA variants.

to attention projections. We vary one factor at a Method Clean PGD-100 HM
time and report averages over four datasets (clean, éfiYCLIP'LORA %ﬁ gg-;g ﬁ-g?
. . 1s10n . . .

PGD-100, and harmoplc mean) in TableE[ We ob- W, 20,65 3062 4439
serve that (1) restricting adapters to the vision en- W, 80.95 3473 4861
coder degrades performance, indicating the benefit of WoW, 8095 3465 4853
adapting both modalities, (2) placing adapters only up 8121 29.32 4308

: . bottom 80.09 33.02 46.76
at specific depths (e.g., up, bottom, rpld, or half- half-up 8137 3072  44.60
stacks) underperforms using adapters in all layers, half-bottom 79.80 3270  46.39
suggesting that distributed adaptation is more effec- mid 80.45 3098  44.73

tive, (3) among per-matrix targets, applying LoRA to

the value projections (WW,,) is the strongest single choice and nearly matches the full AdvCLIP-LoRA,
while W, alone is weaker. Overall, the full configuration yields the best harmonic mean, reinforcing
the importance of multi-modal, all-layer adaptation with appropriately chosen attention targets.

6 CONCLUSION

We introduced AdvCLIP-LoRA, a parameter-efficient adversarial fine-tuning method for CLIP that
optimizes a minimax objective over low-rank adapters and an adversarial perturbation. Across
eight datasets and two backbones (ViT-B/16 and ViT-B/32), the method achieves state-of-the-art
results in few-shot classification, adversarial base-to-new generalization, and cross-dataset transfer,
consistently improving PGD robustness while largely preserving clean accuracy. In contrast to
adversarial prompt-tuning baselines, AdvCLIP-LoRA avoids large losses in clean accuracy and
delivers strong robustness from the start. Ablations on adapter placement, LoRA rank, the attack
budget €, and the number of inner maximization steps 7 provide pragmatic guidance: adapting both
encoders across all layers is beneficial, rank as small as » =2 remains competitive, and 7 around 15
offers a favorable robustness—efficiency trade-off. Finally, under standard assumptions, we establish
convergence of the primal objective to a stationary point, giving a theoretical foundation for the
proposed training procedure.
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A RELATED WORK

A.1 PARAMETER-EFFICIENT FINE-TUNING ON VLMS

Vision-Language Models (VLMs) such as LLaVa [Liu et al.| (2024) and GPT-4V |Achiam et al.
(2023)) have achieved remarkable performance across various vision-language tasks, including cross-
modal retrieval Hao & Zhang| (2023); Hao et al.| (2023) and image captioning [Li et al.| (2022al).
However, these models typically contain billions of trainable parameters, making full fine-tuning
(FFT) computationally expensive and inefficient, particularly for task-specific adaptations. To address
this, Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced, enabling adaptation
with significantly fewer trainable parameters while maintaining performance close to FFT. PEFT
techniques can be broadly categorized into adapter-based [Houlsby et al.| (2019); |He et al., prompt-
based |Lester et al.| (2021)); |[Zhou et al.| (2022), and Low-Rank Adaptation (LoRA)-based |[Hu et al.
(2021);|Zhao et al.| approaches. Among these, LoRA stands out for its efficiency, effectiveness, and
adaptability, making it a compelling choice for fine-tuning VLMs. In this work, we specifically focus
on improving the robustness of LoRA against adversarial attacks.

A.2 ROBUST FINE-TUNING

Robust fine-tuning (RFT) has been introduced as an efficient and cost-effective method for enhancing
adversarial robustness in downstream tasks by adapting pre-trained feature extractors (FEs) through
adversarial training data Shafahi et al.; Madry et al.|(2018)). The vanilla RFT jointly learns repre-
sentations from both natural and adversarial data [Shafahi et al.. This approach has been widely
employed in fine-tuning adversarially self-supervised pre-trained models, demonstrating significant
robustness improvements across various tasks |Yu et al.| (2022)); | Xu et al.| (2023b)). Expanding on
this, TWINS [Liu et al.| (2023b) introduces a dual-network fine-tuning framework that enhances both
generalization and robustness by optimizing two neural networks. More recently, AutoLoRA [Xu et al.
(2023a)) refines RFT by decoupling the optimization process into two distinct components: using
the LoRA branch for natural objectives while leveraging the FEs for adversarial objectives, thereby
addressing the gradient instability present in TWINS. However, despite their effectiveness, these
methods demand substantial computational resources due to intensive gradient computations and full
model fine-tuning, making them impractical for VLMs.

A.3 ADVERSARIAL ADAPTATION ON VLMSs

It has been shown that VLMs are susceptible to adversarial attacks, where small input perturbations
can cause them to make incorrect predictions with high confidence [Zhao et al.| (2023). Early
approaches, such as|Gan et al.| (2020), employed adversarial training techniques to train VLMs from
scratch, while others, like|Yuan et al.|(2024), sought to enhance adversarial robustness in downstream
tasks by fine-tuning model parameters focusing only on visual models. More recently, studies|Li et al.
(2024); |Zhang et al.|(2024); Jia et al.[(2025)) have explored prompt tuning as a means of adversarial
adaptation. For instance, APT |Li et al.|(2024) improves VLM robustness by learning robust textual
prompts rather than modifying model weights. However, LoRA-based methods for strengthening
VLM robustness in few-shot settings remain largely unexplored. Prior work in this area|Ji et al.|(2024))
applies LoRA to adversarial fine-tuning with BLIP |Li et al.| (2022a), and does not provide theoretical
guarantees. Our study differs in three key aspects: (i) we target few-shot learning with CLIP, (ii) we
offer comprehensive comparisons against strong prompt-tuning baselines across multiple evaluation
settings, and (iii) we conduct an extensive ablation study. In addition, we adopt a principled minimax
optimization framework to enhance robustness and furnish a rigorous convergence analysis to a
stationary solution.
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B ADDITIONAL EXPERIMENTS RESULTS
B.1 ADVERSARIAL FEW-SHOT LEARNING

Table 5: Detailed comparative analysis of various adversarial PEFT methods with ViT-B/32 as
backbone. Top-1 accuracy averaged over 3 random seeds is reported.

Average ImageNet Caltech DTD Food Pets Flowers UCF SUN

Shots  Method Clean PGD  Clean PGD  Clean PGD  Clean PGD Clean PGD Clean Clean  PGD  Clean PGD Clean PGD
AdvVPIMao et 41.90 17.13  46.27 1277 9040 5260  29.20 13.87 1.07 0.80 56.40 56.17  22.03 0.97 0.93 54.70 17.63
APT|Li et al.| 71.05 52.63 207 9293 3023  54.93 10.47 62.50 2.63 83.70 86.63 8.97 69.40 4.40 65.67 3.67
Adv 40.94 24.53 147 6870  9.63 43.77 5.70 18.47 0.73 46.27 56.03 0.80 36.60 0.53 33.13 237
AdvMa 71.48 5293 2190 92.17 68.63 5793 32.17 65.13 25.27 83.27 87.87 5870 6897 31.67 63.57  29.70
AdvVLPIZhou et al.| 68.76 2210 9237 6797  57.53 3273 43.30 16.50 82.93 87.70 69.10 32.80 63.90  29.70
FAP; 69.88 2290 9110 6733 5517 31.33 64.03 26.67 81.90 86.27 65.70 32.80 62.37  30.27
Adv A 81.26 2505 9529 7266 6749 26.95 77.88 16.83 88.25 96.67 81.89 30.00 7417 3220
16 AdvCLIP-LoRA ( 81.23 2586 9493 7298  67.67 28.37 77.81 17.76 88.44 96.47 81.87 30.74 7423 3352
AdvCLIP-LoRA ( 81.02 2705 9505 7542  67.20 2831 77.65 18.98 88.01 96.39 81.34 34.10 7422 3498
AdvCLIP-LoRA ( 81.04 28.06 9497 76.63  67.20 29.96 77.32 19.55 88.20 96.22 82.18 34.10 74.11 3576
AdvCLIP-LoRA (7 = 15) 80.95 2859 9493 7696  67.32 31.97 77.38 20.40 87.68 96.31 82.10 36.16 7391 3651
AdvCLIP-LoRA ( 80.79 2885 9497 77.00  66.84 31.74 77.22 20.37 87.87 96.22 81.26 36.08 74.03  37.01
AdvCLIP-LoRA ( 80.83 29.03 9493 7696  67.32 32.39 76.97 20.82 87.44 96.35 81.68 36.64 74.09  37.55
AdvCLIP-LoRA ( 80.70 2925 9521  77.04  66.73 30.73 76.86 20.72 87.54 96.31 81.15 36.08 73.98 3742
+13.37 42253 422 41166 +16 —846  +18.72  —26.7  +5.38 +9.5 41841 4396 +12.85 +18.14

43.24 1190 9120 5033 23.63 11.47 1.00 0.83 57.43 55.50 18.27 4.93 52.53 17.30

69.76 1.80 9237 3083 5443 8.70 61.57 233 82.87 84.00 66.53 4.30 64.30 3.40

38.50 087 6807 10.10 3747 4.20 16.97 0.10 44.20 51.13 3343 1.40 3247 1.33

62.90 20.60 90.63  63.80  33.20 16.97 62.70 20.13 55.60 83.10 64.33 25.93 61.50  26.30

68.32 2097 9017  63.13  51.83 2577 61.73 19.33 80.67 83.90 64.07 26.97 6133 2623

FAP 67.23 21.53  89.63 6250 52.13 25.77 61.80 23.20 79.47 81.53 60.70 26.67 6040  27.23
Adv A 79.56 23.65 9428 7075 64.72 25.12 77.17 15.79 87.95 92.73 80.12 27.70 7226 30.81
8 AdvCLIP-LoRA ( 79.32 2449 9460 7209  63.24 2642 77.03 16.93 87.71 92.49 80.31 29.16 72.09 3208
AdvCLIP-LoRA ( 5, 79.27 25.68 9456 7290  63.36 27.90 76.77 18.76 87.54 92.61 80.20 30.69 7197  33.09
AdvCLIP-LoRA (1 = 10) 79.19 2661 9420 7424  63.06 28.90 76.32 19.87 87.76 92.57 80.41 7217 3438
AdvCLIP-LoRA (1 = 15) 79.02 27.08 9428 7448  63.00 29.43 76.13 2033 87.41 92.53 80.23 71.87 34.62
AdvCLIP-LoRA (1 = 20) 7891 2736 9387 7538  63.12 29.67 75.78 20.57 87.08 92.61 80.02 7212 3522
AdvCLIP-LoRA ( 5 78.80 2761 9400 7509 6259 30.56 7591 21.31 87.00 92.33 79.83 72.11 35.68
78.84 2782 9391 7533 6294 30.44 75.71 21.33 87.27 92.12 80.07 72.11 35.64
+13.52 42350 +1.98 41636 +15.86  +1215 42172 14.35  +5.9 +10.2 42086 42084 41224 42626

43.10 113 90.17 5250 18.77 9.27 2273 4.57 57.80 5597 1.07 0.80 4847 13.03

66.37 140 9077 2667 51.33 6.33 54.80 1.63 71.83 82.40 66.53 3.03 6237 2.90

3532 1.33 64.97 7.30 31.70 4.37 15.23 0.37 44.13 41.97 3117 0.47 29.97 0.40

51.01 19.00  89.53  59.40 6.43 2.40 60.00 14.83 30.70 5220 59.73 21.30 58.23 21.53

55.18 19.37 8937  59.07 2297 10.33 41.50 11.20 67.43 51.00 59.97 21.77 5790 2117

57.51 19.60  87.57 5733 31.27 8.07 59.37 23.20 79.47 81.53 60.70 26.67 6040  27.23

77.88 2292 9408 69.78 6117 26.36 7591 16.40 87.05 90.99 76.37 24.08 71.05 29.55

4 77.94 2378 9396 71.03 6241 26.36 75.80 17.69 87.03 90.70 76.18 26.22 71.09 3111
7771 2484 9387 7221 61.70 27.96 75.41 18.76 86.78 90.58 76.13 26.86 71.08  32.62

71.57 2558 9391 7359  6lL11 28.43 75.06 20.48 87.00 90.17 76.37 28.97 71.00  33.57

77.41 26.15 9420 7391 61.11 29.14 74.82 20.99 86.97 89.93 75.55 29.58 7082 33.85

77.20 2650 9375 7375  60.28 29.14 74.49 21.13 86.75 90.01 75.65 30.06 70.81 3443

77.10 26.67 9391 7432 60.34 29.20 74.62 21.83 85.75 90.05 75.44 30.61 70.86 3449

77.16 26.88 9359 7477 60.22 29.61 74.42 21.86 86.40 90.38 75.89 30.69 70.64 3490
+16.88 43051 +3.46  +23.80  +19.05  +163.84 42643 —1LT: +9.48 +9.43 H1479 4862 +13.84 42328

39.24 10.90 9125 5523 14.27 6.93 1.05 0.10 47.13 15.10 61.47 1.73 1.07 50.77 13.57

63.56 1.03 89.70  31.70 4557 4.27 60.17 0.87 72.87 1.07 67.17 65.00 3.10 59.20 2.03

3247 0.77 66.07 8.33 24.57 243 1113 0.17 39.17 117 38.47 29.37 0.23 28.57 0.77

39.09 17.13  88.00 56.20 16.53 4.20 3.10 0.67 34.03 6.87 46.17 21.17 6.20 53.73 16.33

42.79 17.50  87.60 55.33 1833 717 1.53 1.10 31.27 7.07 62.43 36.83 11.43 53.77 17.33

55.18 17.83  87.73  53.90 18.40 4.33 56.90 10.53 64.23 12.67 53.10 58.50 7.03 54.07 19.30

75.89 21.70 9355  69.41 57.98 23.88 76.04 15.74 86.18 33.99 84.86 74.52 23.50 68.29  27.90

2 75.75 2258 9335  69.94 57.15 23.52 76.00 16.92 86.32 3431 84.57 74.39 24.95 68.50  29.01
75.73 2403 9327 7176 57.51 24.47 75.64 18.46 86.43 35.95 85.18 73.57 26.51 68.67  31.20

75.58 2480 9323 7347 5745 2524 7522 19.48 86.40 36.79 85.02 73.33 27.17 6849  32.24

75.70 2537 9339 7351 58.22 26.30 75.07 20.26 86.02 37.20 85.51 73.51 2791 68.56  32.90

75.56 2559 9351 7396 57.39 26.36 74.91 20.56 86.43 37.72 85.10 73.28 28.05 68.59 33.24

AdvCLIP-LoRA (7 = 25) 75.42 2578 9335 74.16 57.09 26.48 74.59 21.05 86.18 37.64 85.30 73.09 28.44 68.52 33.50
AdvCLIP-LoRA (7 = 30) 75.47 26.00 9347 74.28 57.51 27.01 74.70 2111 86.26 38.62 84.90 73.12 2897 68.62 33.63
Relative Improvement +18.91 +39.00 4217  +30.73  +26.07 +163.81  +25.01 +85 +18.57  +143.64  +26.57  +62.09 +12.82 413771 +15.69  +67.05
43.62 11.07 8573 5033 2697 1293 24.43 523 57.60 22.73 63.10  29.70 3.37 0.40 41.20 1110

59.07 1.30 8477 2690  41.67 3.83 56.57 0.83 70.23 0.60 61.97 2.10 54.50 3.87 53.53 1.23

29.96 0.43 62.97 7.60 16.73 2.60 13.27 0.00 37.93 0.13 33.97 043 27.03 0.00 27.57 0.37

33.52 1460 8553 4837 13.63 293 527 0.30 30.67 4.97 1.40 3270 7.07 49.70 12.67

33.01 17.50 8543 4847 15.97 4.77 1.07 0.77 29.63 3.83 19.77 11.83 1.73 49.83 12.60

40.14 1540 8353  41.13 18.40 2.40 31.67 1.43 49.23 3.47 10.40 28.50 243 49.53 14.93

73.87 2048  93.10 66.00  50.24 18.38 78.91 15.72 87.03 35.57 76.25 72.27 21.73 68.00 2645

1 AdvCLIP-LoRA ( 73.80 20.89  93.06 6649  49.65 18.68 78.90 16.41 86.97 36.03 76.17 72.48 22.34 67.92 2699
AdvCLIP-LoRA ( 73.91 2220 9327 6730 50.12 19.21 78.89 17.39 87.14 36.93 76.09 72.59 23.47 68.06  28.65
AdvCLIP-LoRA ( 73.75 23.02 9351 68.19 48.82 19.03 78.81 18.41 87.14 37.59 76.21 72.40 24.45 68.13  29.68
AdvCLIP-LoRA ( 73.80 23.69 9347 69.17  49.53 19.44 78.73 19.07 87.33 38.46 76.05 72.40 25.17 68.03  30.57
AdvCLIP-LoRA ( 73.83 24.04 9339 69.61 50.12 19.98 78.72 19.64 87.00 39.33 76.37 72.24 25.75 68.11 31.38
AdvCLIP-LoRA (7 73.66 2429 9323  69.98  49.88 20.04 78.65 20.09 87.14 39.30 75.64 71.82 26.38 68.25  31.80
AdvCLIP-LoRA (7 = 30) 73.60 2452 9331 7034 49.76 20.80 78.58 20.26 86.84 40.15 75.68 71.95 26.78 32.01
Relative Improvement +24.85 42856 43154 +9.07 #3549 41706 +47.08  +39.31  +163.84 42408  +65.38  +20.78 43281 +163.84 42727 49879

This section expands Section with full adversarial few-shot results on ViT-B/32 across
{1,2,4, 8,16} shots. In addition to baseline comparisons, we sweep the number of inner maximiza-
tion steps 7 used to train AdvCLIP-LoRA. Baselines report training with a 2-step PGD procedure,
and the impact of using more steps is unspecified; therefore, for fairness, the main paper fixes 7 = 2.
The extended tables here show that increasing 7 consistently improves AdvCLIP-LoRA’s robustness
and overall accuracy. Here, we also report A, defined as the relative improvement of AdvCLIP-LoRA
with 7 = 10 over the strongest non-ours baseline for each dataset and shot.
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B.2 COMPARATIVE ANALYSIS OF ADVCLIP-LORA AND CLIP-LORA

Table 6: Detailed results for the 8 datasets with ViT-B/16 as backbone. Top-1 accuracy averaged over
3 random seeds is reported. Highest value is highlighted in bold.

ImageNet Caltech DTD Food
Shots  Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD
CLIP-LoRA 70.24 15.14 473 94.20 5986 26.26 54.77 14.99 3.11  84.99 843 2.90

AdvCLIP-LoRA (7 = 1) 56.02  29.17  17.10  92.67 62.70 26.40 49.64  20.09 4.06 79.86  26.50 9.62
AdvCLIP-LoRA (T = 2) 54.76  30.52  19.44 90.20 67.29 2948 50.53 21.12 3.04 7819  31.31  12.74
1 AdvCLIP-LoRA (17 = 4) 53.14 31.19 21.70 87.17 70.18 34.16 48.84 21.16 2.60 74.88  35.01  20.04
AdvCLIP-LoRA (7 = 6) 50.19  30.96 21.30 83.96 79.69 37.09 44.71 31.86 3.17 72.09 5740 26.45
AdvCLIP-LoRA (7 = 8) 4535 30.60 21.66 81.39 78.96 41.28 42.61 32.76 4.24 6857 58.32 32.84
AdvCLIP-LoRA (7 = 10) 42.88 30.12 22.38 77.51 76.54 40.76 4212 33.35 6.14 6452 56.22 34.47

CLIP-LoRA 71.52  14.59 5.12 95.16  59.39  29.19 63.73 19.39 6.68 83.07 7.83 2.21
AdvCLIP-LoRA (7 = 1) 67.81 40.62 37.74 95.28 76.84 61.49 59.73 27.64 8.89 83.75 3157 2747
AdvCLIP-LoRA (7 = 2) 67.63 42,53 3842 95.15 80.68 7281 59.26 31.01 13.59 83.77 35.19 35.03
4 AdvCLIP-LoRA (7 = 4) 67.43 42,50 41.40 9520 84.00 82.80 60.40 36.41 26.04 83.67 4352 50.08
AdvCLIP-LoRA (7 = 6) 66.90 44.35 43.75  95.19  92.03 87.21 59.75 4945 34.71 8353 69.85 56.92
AdvCLIP-LoRA (7 = 8) 66.67 44.47 4392 95.03 92.67 88.27 5942 50.87 39.54 8312 73.09 62.16
AdvCLIP-LoRA (7 = 10) 65.93 45.15 45.07 95.03 92.66 89.36 59.60 52.42 44.48 82.56 72.74 65.41

CLIP-LoRA 73.41  14.56 551  96.31 60.63 31.05 72.40 24.57 9.30 84.32 7.15 2.45
AdvCLIP-LoRA (T = 1) 72.03 4441 30.24 96.19 79.92 74.13 70.51 33.06 15.78 84.77 26.43  23.41
AdvCLIP-LoRA (T = 2) 71.96  46.91 4873 9595 81.35 81.12 7045 38.00 30.99 84.70 2842 34.18
16 AdvCLIP-LoRA (1 = 4) 71.69 4742 50.08 96.09 82.14 86.31 69.70 42.61 46.02 8424  32.68 48.56
AdvCLIP-LoRA (7 = 6) 71.32 4744 50.34  96.08 93.12 8895 69.31 60.26 52.27 83.68 66.18 55.57
AdvCLIP-LoRA (1 = 8) 69.63 53.31 56.33 96.16 93.72 90.82 68.93 6143 55.70 83.05 68.12 59.64
AdvCLIP-LoRA (7 =10) 67.00 54.71 57.56 96.09 94.28 91.98 68.28 62.61 58.69 82.75 69.25 62.17

Pets Flowers UCF SUN
Shots  Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD
CLIP-LoRA 92.14 23.52 17.21  82.45 6.70 3.15 75.95 18.36 2.98 70.22 17.78 6.20

AdvCLIP-LoRA (7 = 1) 90.02 2351 17.17 70.62  26.04 5.33 66.44  29.53 8.94 61.68  35.60 17.50
AdvCLIP-LoRA (7 = 2) 88.34 40.84 16.75 69.62  30.42 6.86 63.04 3195 10.68 61.02 39.98 20.41
1 AdvCLIP-LoRA (7 = 4) 82.76  41.56 16.66  66.14  36.80 8.66 58.80  35.09 16.07 60.01  39.91  24.03
AdvCLIP-LoRA (7 = 6) 78.35 40.96 17.90  62.79  39.09 8.86 54.59  37.02 1871 58.61 41.34  27.40
AdvCLIP-LoRA (7 = 8) 73.21 42.56 21.15 57.69 40.06 11.20 49.58 36.80 20.22 56.66 43.33  30.46
AdvCLIP-LoRA (7 = 10) 66.37  40.95 22.92 54.01 39.29 10.79 45.33 34.65 19.57 54.56 43.80 31.46

CLIP-LoRA 89.99  16.73  10.08 93.48 11.20 7.62 80.44 18.85 4.00 72.19 16.15 6.20
AdvCLIP-LoRA (r =1) 91.36 57.37 51.38 91.10 46.41 31.14 7442 3749 2523 7099 4540 40.31
AdvCLIP-LoRA (T = 2) 91.06  60.57 60.56 91.03 51.39 4529 7851 38.06 32.07 71.28 48.84 47.63
4 AdvCLIP-LoRA (1 = 4) 91.07  64.57 7111 91.03 5853 61.24 77.96 42.07 4539 7119 5137  50.67
AdvCLIP-LoRA (7 = 6) 91.05 67.77 77.72 90.62 65.16 69.60 77.83 4535 52.36 71.69 56.71  56.20
AdvCLIP-LoRA (1 = §) 91.06 69.96 80.19 89.78 66.38 74.67 77.09 47.98 55.99 7096 57.14  56.96
AdvCLIP-LoRA (7 =10) 91.22 71.70 82.02 89.35 68.59 77.75 76.60 50.47 58.53 71.04 60.27 59.89

CLIP-LoRA 92.18  16.28 714 98.19 1739 13.09 86.71 22.20 5.01 76.22 16.94 6.15
AdvCLIP-LoRA (1 =1) 92.90 4831 46.94 97.55 5742 52,53 85.96 37.73 23.54 7594 4877 4510
AdvCLIP-LoRA (1 = 2) 92.88 49.72 60.47 97.84 60.87 69.71 85.58 36.71 35,53 7592 5237 54.50
16 AdvCLIP-LoRA (T = 4) 92.72  51.65 73.12 97.70 65.68 83.88 84.92 39.19 50.39 76.09 55.02 61.05
AdvCLIP-LoRA (1 = 6) 92.65 56.37 7818 9745 68.71 88.09 84.33 40.60 5842 7558 57.18  64.04
AdvCLIP-LoRA (T = 8) 92.33  58.02 80.52 97.39 70.97 90.29 83.38 42.05 62.15 7589 59.28  66.43
AdvCLIP-LoRA (1 = 10) 92.43 60.49 81.86 97.33 74.26 91.83 83.08 43.93 65.40 75.87 61.92 68.18

Setup. For adversarial training, we define the projection set for updating ¢ as an £.-ball with a radius
of e = 10/255 across all datasets. To evaluate adversarial robustness, we implement two standard
attack methods: FGSM |Szegedy et al.| (2013 and PGD Madry et al|(2018)). For FGSM, we set
e = 10/255, while for PGD, we use € = 2/255 with a total of 20 attack iterations.

Table 6] presents the experimental results of CLIP-LoRA and AdvCLIP-LoRA with varying values
of 7, using the ViT-B/16 backbone. Our findings show that AdvCLIP-LoRA significantly enhances
model robustness, increasing FGSM accuracy for a minimum of 11.04% and a maximum of 42.97%,
and PGD accuracy for a minimum of 15.67% and a maximum of 62.25%, averaged across all datasets.
Specifically, for 7 = 1, the model demonstrates improved robustness without a significant impact on
clean accuracy (the difference in clean accuracy is less than 22.58% for 1 shot and less than 2.24%
for 16 shots, on average). As 7 increases, robustness continues to improve; however, this comes
at the cost of a slight decrease in clean accuracy. This effect is less prominent for larger shots. It
is noteworthy that with 16 shots, the clean accuracy decreases by an average of only 2.24%, while
we observe a minimum improvement of 24.55% in the FGSM robustness and 29.00% in the PGD
robustness. For clearer comparison, we visualize clean and PGD-robust accuracies for both 4-shot
and 16-shot settings across ViT-B/16 and ViT-B/32 backbones in Fig. 5} Further results using the
ViT-B/32 model can be found in Table[7]
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Figure 5

backbones on 8 fine-grained datasets, showing clean accuracy and PGD-adversarial robustness (shots

labeled above). AdvCLIP-LoRA; means AdvCLIP-LoRA with 7 = 4.
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Table 7: Detailed results for the 8 datasets with ViT-B/32 as backbone. Top-1 accuracy averaged over
3 random seeds is reported. Highest value is highlighted in bold.

ImageNet Caltech DTD Food
Shots  Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD
CLIP-LoRA 65.70 1597 823 93.54 62.83 4234 55.46 17.16 9.16 76.53  9.00 4.57

56.97  21.00 11.88 92.11 6444 40.04 52.03 17.83 5.28 75.68  14.17 6.83
56.73  20.68 11.34 91.89 66.02 41.61 52.05 19.36 6.36 75.70  16.11 8.62
56.32 2214 12.06 91.94 68.26 4488 51.16 19.41 6.78 75.71 18.97  10.31

AdvCLIP-LoRA )
)
)
) 55.45 2321 12.48 91.63 70.45 46.69 50.26  20.75 7.25 76.11  21.26  11.93
)
0

AdvCLIP-LoRA
2 AdvCLIP-LoORA
AdvCLIP-LORA
AdvCLIP-LoORA 54.87 23.65 1238 91.76 71.51 48.79 50.22 21.12 7.49 76.32 2327  13.25
AdvCLIP-LORA ) 5346 2227 1085 91.58 74.28 52.32 49.33 21.49 8.8 76.35 25.05 14.85

CLIP-LORA 66.43  15.59 8.59 94.44 62.44 4212 60.18 1935 10.70 76.18 9.02 4.55

AdvCLIP-LoRA (7 =1) 61.60 20.63 13.03 93.90 6446 43.28 56.40 18.99 7.53 77.30  14.00 7.96
AdvCLIP-LORA (7 =2) 61.44 2036 1218 93.75 67.96 51.67 56.68 21.06 9.73 7752 1446  10.29
4 AdvCLIP-LORA (7 =4) 61.44 2046 1230 93.81 7109 55.11 56.58 2224 1281 77.88 1649  13.92
AdvCLIP-LoRA (7 =6) 60.49  20.80 12,77 93.47 8594 59.67 56.17 36.90 15.62 77.96 4943 17.54
AdvCLIP-LoORA (7 =38) 60.22 2191 1299 92.82 86.17 62.50 55.32 37.87 18.62 77.40 49.34 23.05
AdvCLIP-LoRA (7=10) 59.10 22.65 13.57 9294 86.49 65.52 ©54.34 38.67 22.02 7691 50.40 27.20

CLIP-LORA 67.28 15.35 8.62 94.46  61.68 43.30 63.36 21.30 13.12  76.90 8.84 4.65

AdvCLIP-LoRA (7=1) 64.19 2224 14.53 94.67 65.44 49.37 61.17  20.57 9.99 78.03 12.35 8.47
AdvCLIP-LORA (7 =2) 63.93 2237 14.74 94.63 67.10 58.70 60.78 21.63 14.34 7790 12.05 13.36
8 AdvCLIP-LORA (7 =4) 63.76 2293 16.41 9454 6838 68.78 61.11 2256 22.69 77.55 13.37 22.54
AdvCLIP-LoRA (7 =6) 63.50 24.00 17.57 9428 69.90 74.21 60.05 23.15 27.88 77.29 1498 27.55
AdvCLIP-LoORA (7 =38) 63.22 24.20 1838 9438 69.25 77.78 58.81 2346 3044 76.94 1539 31.07
AdvCLIP-LoRA (7=10) 62.74 23.69 18.51 94.39 6845 79.68 5891 23.62 32.29 76.57 16.25 33.24

CLIP-LORA 68.43  15.09 9.06 95.50  64.29 47.80 68.62 20.11 16.80  78.00 8.97 5.32

AdvCLIP-LoRA (7 =1) 66.24 1948 13.26 95.84 67.46 55.38 66.90 2240 12.61 78.55 12.96 10.10
AdvCLIP-LORA (T =2) 66.08 20.06 15.03 9540 68.64 66.09 6584 21.63 19.37 7841 12.84 16.25
16 AdVCLIP-LoRA (7 =4) 66.08 21.13 1598 9539 6819 75.62 64.89 22.02 29.33 78.09 12.68  24.62
AdvCLIP-LoRA (7 =6) 65.39 2246 1710 9546 88.52 80.22 63.91 43.04 34.02 T77.75 4541  28.79
AdVvCLIP-LoORA (7 =38) 65.63 23.74 21.17 9531 89.22 8229 64.01 4518 38.00 77.44 46.89  32.03
AdvCLIP-LoRA (7 = 10) 64.06 24.07 17.93 95.28 89.59 84.10 64.77 46.69 39.26 77.08 48.62 35.18
Pets Flowers UCF SUN
Shots  Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD
CLIP-LoRA 87.43 21.70 16.11 84.40 1536 10.68 74.07 2204 7.18 68.71 17.61 8.56
AdvCLIP-LoRA (7 =1) 85.70  34.83 1692 77.71 1948 810  69.41 26.69 848 6545 2328 13.56
AdvCLIP-LoRA (T =2) 85.14 34.61 1819 77.16 22.58 10.53 68.06 28.94 899 6522 2397 13.80
2 AdvCLIP-LORA (7 =4) 84.90 3719 2285 76.12 26.01 1229 6748 3142 1031 64.96 23.77  14.58
AdvCLIP-LoRA (7 =6) 84.67 40.80 2693 7578 2849 13.52 66.56 33.71 11.86 64.64 25.18  14.62
AdvCLIP-LoRA (7 =38) 84.39  46.05 31.78 74.83 33.10 16.20 65.64 36.75 13.79 63.30 2720 16.48
AdvCLIP-LoRA (7=10) 85.07 49.10 34.16 72.71 37.89 19.16 64.19 40.73 16.70 63.59 29.12 17.01

CLIP-LORA 86.43 16.02 11.74 90.21 16.82 13.71 75.65 25.87 7.67 70.20 16.96 8.89
AdvCLIP-LORA ) 87.87 34.51 2758 86.32 2046 16.83 7343 25.87 10.09 68.93 24.03 15.60
AdvCLIP-LORA ) 87.87 3530 33.51 86.26 21.32 19.33 73.39 2739 1288 69.22 26.58  16.65
4 AdvCLIP-LORA ) 87.82 3582 3740 86.26 26.00 30.50 73.57 3143 16.59 68.92 27.55 17.11
AdvCLIP-LORA ) 87.80  37.40 46.76 86.29 30.50 3246 73.72 33.87 23.55 68.88 3048 19.27
AdvCLIP-LORA ) 87.56 41.96 53.47 85.82 33.62 39.13 72.75 3543 26.53 6840 3225 20.09
AdvCLIP-LORA 0) 87.52 43.52 56.88 8534 37.54 43.78 7228 37.15 28.19 6847 38.04 23.22

CLIP-LORA 87.61 16.54 1092 93.29 21.60 1835 80.46 2248 917 72.18 18.23 9.85
AdvCLIP-LoRA 88.71  30.46  24.04 91.76 28.11 21.26 78.64 26.55 11.77 T71.73 24.53 16.43
AdvCLIP-LoRA 88.75 29.11 3599 9191 27.81 3481 7867 2745 1803 7171 2476 17.73
8 AdvCLIP-LoORA 88.63  28.67 50.19 91.65 29.57 51.02 7835 29.29 27.54 T71.86 27.07 20.80
AdvCLIP-LORA 88.65 30.79 57.28 91.76  33.65 58.67 77.53 28.86 33.02 TL.57 29.72 23.87
AdvCLIP-LORA 88.53 34.13 61.57 91.20 33.51 63.04 77.22 2871 3731 7139 31.83 26.10
AdvCLIP-LoORA 88.26 35.15 64.59 90.91 35.49 65.77 76.36 28.15 39.32 7110 3177 28.14

CLIP-LORA 88.43 1540 10.54 96.39 24.13 22.26 82.86 25.09 10.16 74.09 1820 10.52
AdvCLIP-LORA ) 89.67 27.06 23.70 95.22 3245 30.33 81.18 27.36 13.95 73.77 24.73 17.79
AdvCLIP-LORA ) 89.66  24.00 35.08 95.75 31.14 48,50 81.18 26.86 21.92 73.46 23.69 20.29
16 AdvCLIP-LORA ) 89.69 2441 50.63 9593 33.37 62.78 80.99 26.34 31.94 7352 2518 23.23
AdvCLIP-LORA ) 89.56  24.81 5738 9549 3489 70.13 8049 2548 3794 73.61 27.10 25.11

)

0

R

AdvCLIP-LORA 89.27 2485 61.59 9525 3524 7429 8049 2510 41.07 74.09 27.61 29.55
AdvCLIP-LoRA ) 8883 2510 64.06 9520 36.64 77.37 79.56 25.85 43.64 73.65 31.34 31.08

555553
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B.3 ABLATION ON ATTACK BUDGET ¢
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Figure 6: Robust accuracy of AdvCLIP-LoRA with ViT-B/16 backbone on Pets, Flowers, UCF, and
SUN datasets with different 7 and e values.

B.4 ABLATION ON LORA DESIGN CHOICES

Table 8: Average Clean, PGD-100, and harmonic mean (HM) for LoRA variants.

Overall Average Flowers Pets SUN UCF
Method Clean PGD HM Clean PGD HM Clean PGD HM Clean PGD HM Clean PGD HM
AdvCLIP-LoRA  81.25 3476 48.69 90.70 4872 63.39 87.03 3298 4783 71.09 31.11 4328 76.18 26.22 39.01
Vision 7871 30.74 4421 86.07 37.72 5245 8874 3508 5028 6740 26.02 37.55 7264 24.13 36.23
Wy 80.65 30.62 4439 8786 37.07 52.14 88.09 33.69 4874 70.88 2834 4049 7576 2339 3574
W, 80.95 3473 48.61 89.05 4543 60.17 87.14 3562 50.57 70.53 31.18 4324 77.09 2640 39.33
W,W, 80.95 34.65 4853 89.85 4896 63.38 86.86 33.69 4855 7122 3044 42.65 7587 2551 38.18
up 81.21 2932 43.08 90.17 38.81 5426 8842 3025 4508 70.35 2595 3791 7589 2228 3445
bottom 80.09 33.02 46.76 88.10 41.18 56.13 87.03 36.77 51.70 70.30 31.11 43.13 7491 23.00 35.19
half-up 81.37 30.72 44.60 90.05 4153 56.84 88.14 2982 4456 7040 27.14 39.18 7690 2440 37.05
half-bottom 79.80 32.70 4639 8879 4243 5742 8555 3352 48.17 7033 31.26 43.28 7452 23.61 35.86
mid 80.45 30.98 44.73 87.82 3995 5492 8831 3238 4739 69.92 2840 4039 7573 23.18 35.50

19



Under review as a conference paper at ICLR 2026

C CONVERGENCE ANALYSIS

Before presenting the main theorem, we state several key intermediate lemmas used in the proof.
For notational convenience, we denote ®(W := Wy + BA) as ®(BA), and use ®(W) and &(BA)
interchangeably throughout the analysis. Let us begin with a few definitions.

Definition C.1 A function f is L-Lipschitz if for all W, W', we have
LFW) = f (Wl < LW —W||. (12)
Definition C.2 A function f is {-smooth if for all W, W', we have
VW) = VW) < W —W']. (13)

Proposition C.1 |Lin et al.| (2020) Under Assumption ®(-) is 2kl-smooth with V() =
Vw f (-,6%(+)). Also, 6*(-) is k-Lipschitz.

Lemma C.1 For any matrices A, B € R™* and o, § > 0 we have

2(A, B) < §||A|I> + 61| B|]?,
[A+ B|* < (1+a)|AlI*+ 1+ 1)|BJ> (14)

Using Proposition|C.1]and ||A||r < ca, ||B||r < ¢, we can prove the smoothness of ®(-) with
respect to A and B when the other is held fixed. Formally, we state the following lemma:

Lemma C.2 Under Assumpnonnand boundedness of low-rank matrices, the function ® is 2klc%-
smooth with respect to A when B is fixed, and 2rLc? -smooth with respect to B when A is fixed.

Proof. First, by the chain rule we notice that

VAB(W) = Va (W8 (W)) = BTV F(W,8°(W)) + (£582) " war (w,5 (W)

=0
= BTV o(W). (15)
Similarly, we have:
Ve®(W) = Vi d(W)AT. (16)
Now, we can write
[Va®(BA) — Va2(BA)| = ||B"Vw®(BA) — B"Vw (B4
= |B|| [Vw ®(BA) — Vw ®(BA)|
(@)
< cp(2xl) ||BA — BA'||
< 2kleq |A— A (17)

In (a), we used the boundedness of the low-rank matrices and Proposmonm Similarly, we can
prove that @ is 2r/c? -smooth with respect to B when A is fixed.

Lemma C.3 The iterates { Ay, By },~., in Alg. (lines 8-9) satisfy the following inequality:

E®(BiAr) < E®(Bi—1 A1) — %5 (E IVA®(Bi—1Ar—1)[* + E ||VB<I>(Bt,1At,1)||2)
+ 2R |V o f(Bio1Ar-1,0,) — Va®(Bi_1 A0
+ |V f(Bio1Ai-1,0:) — V(B A

i ne(c:Jr]c;B)ni,Gz 4 2G2(2nfc%‘/c[i+G2)nﬁ). (18)
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Proof. Using smoothness for A from Lemma|C.2] we can write
E®(B;Ar) < E®(BiA; 1) + E(VAD(BiAr-1), A — Avv) + klepmiE || Ay — Ao |)?

<E®(BiA;i—1) + E(VAP(BiAi—1), —nuVaf(Bi—1Ai-1,6))
2

M
+ kb’ B || 2 ZVAF(BtflAtfhat;gi)

(a) 4
< E®(ByAyq) + —Ep—
+E(VAP(BiA—1) = VaAP(Bi_1A:-1) + VAP(Bi—14:1), 1wV af(Bi—14¢—1,0t))

= E(P(BtAtfl) — Ny <VA(I)(BtAt71) - VA(I)(BtflAtfl); VAf(BtflAtfh 5t>>
— N E(Va®(Bt1A4:1), Vaf(Bi—14:-1,6)) + %
(b)
< EQ(BiAi—1) + 200E |[VA®(BiAi—1) — Va®(Bi_1A)|* + R IVaf(Bi—1Ai—1,8,)|
—NwE(VAP(Bi14:-1),Vaf(Bi_14:-1,0) = VaP(Bi_1A1) + VaP(Bi-14:1))
4 2 2
+ anBj\?/][wG
©)
< E®(BiAi—1) + 20 |[Va®(Bi A1) — Va®(Bio1 A1) |* + LRV A®(Bi—1 A1)
+ R | VAB(Bio1Ai—1) — Vaf(Bio1Ai-1,0)|)° — 21 |V a®(B,—1 A1)

KZCAB nfv G?

+ B Vaf(Bi1Ai-1,0¢) — VA(I)(Bt—lAt—l)HQ + i
= E®(BiAr-1) + 20uE[|VA®(BeAr1) — VaP(Bio1Ae1)|* — BE | Va®(Be—1Ary)||”
SNw 2 rlepn? G2
+ PR Vaf(Bi-1Ai-1,01) = Va®(Br1 Ay 1)||” + —Ep—.
In (a) we applied Assumption in (b) we employed the inequality (a, b) < £/|al|* + 2||b||?, and
in (c) we utilized the inequalities (a,b) < 1|la|? + [|b]|* and ||a + b]|* < 2||a||? + 2[|b||%. We derive
the following bound on the term in the above inequality:
2
E|Va®(BiAi_1) — Va®(By_1Ai1)|” <E||Bf Vig®(BiAi—1) — BL Vv ®(Bi_1 A1) ||
2
<E|Bf Vw®(BiAi—1) — B/ Vig®(B,_1 A1) ||
+E||Bf Vw®(Bi-14i-1) — B[,V ®(Bi—14;-1)

(19)

I

< 2ty AR 1B, — Bia|® +E|| BT — BL, | 62

< Z&ZCQBX%Gzn?U + G;‘\Z?U_ (20)
If we use equation[20]in equation[T9] we have
E®(B,Ay) <E®(BiAi—1) — K | Va®(B—1 A1)
+ O | Vaf(Bim1Ai—1,6) — Va®(Bi—1 A1)
méc‘gniGz 4KZC%C§lG217i + 2G47713U ) (21)

+ M + M M
Using smoothness for B from Lemma[C.2] we can write
E®(B;A;—1) <E®(B;_14;-1) + E(Vp®(B;_14;-1), By — Bi_1) + Kkl

<E®(Bi—1Ai-1) +E(VBP®(Bi—1Ai-1), —nuwV B[ (Bi—1A1-1,0:))
2

2E||B; — By |I”

w

M
LN VBF(Bi1Ai1,0,:€)

i=1

+ kb2 R

<E®(B;1A;1) + %
—NwE(VB®(Bi—144-1),VBf(Bi—1A1-1,0;) = VpP(Bi_1A4-1) + VpP(Bi_14A;-1))

4,2 ~2
Klean, G

<E®(Bi_1Ai—1) — BE | Vp®(B—1 Ar)|? + ZLar
+ 2R Vg f(Bio1Ai-1,0:) — VeP®(Bi_1 A1) (22)
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Summing equation 2] and equation22]yields the desired inequality. O

Lemma C.4 Let v, = E||6* (W) — 6,

, the following statement holds true,

3(ch 1t )G2n2 2
e < (1= k) oy + S Caten)Cmn | 267 (23)

Proof. Since f(Wy, ) is u-strongly concave and ns = 1/¢, we have Lin et al.|(2020)
E[|6* (We—1) — 6 < (1= 1) yees + 255 24)
We can also write
= (1 + ST )E 1% (Wi—1) — 6
(14 2(maxtr, 2} — D)E 67 (W) — 8* (W)
(2‘“"{” H=3) BNl (Weer) = 81 +46E 0° (W3) = 8* (W) |
(

IA

2max{k,2}—2

- L) yio1 + 4RE||8* (Wy) — 6 (W) ||” + 25, (25)

where in (a) we used equation 24] Since 0*() is s-Lipschitz, [6* (W;) — 6* (Wy—1)|| <
K ||Wy — We_1||. Furthermore, we have

E|W, — Wt—1||2 =E|BA; — BiAi—1+ BAi—1 — Bt—lAt—1H2
< 23R || Ay — A | + 24 E (1B — By
_ QGQ(CiAJ{rC%)ﬂ;‘L. (26)

Using equation [26] into equation 23] yields the desired inequality ]

Lemma C.5 Let v, = E ||6* (W) — 6%, the following statement holds true,

E®(B;Ay) < EO(By 1A 1) — (E IVA®(By1 A 1)|? +E ||vB<I>(Bt,1At,1)||2)

2 5¢2,+2¢2 G?(2.5¢%+c> Nw (et +ct Ganv 2G2? (2kbcL ct +G? 77?JJ
Ny nw( B2 A Vo1 + ( JJ\B/I 4) 4 (ca ]\f) 4 ( ?\/[A ) . (27)

Proof. Since Vyy ®(Wy_1) = Vi f(Wy_1,0*(Wy_1)), we have
E(Vaf(Wi1,6"(Wi1)) = Vaf(Wi1,8)|
=E|[Bl \Vaf(Wier,8* (Wie1)) = BE Vaf(Wier,6)|
< GO 6" (Wior) = 80l* < 2656 (B0 (Wee1) = 001 |* +E 0, = 0,-1%)

2 2¢3G?
<220 (% L+ @M) = 2% 2,y + 2 (28)
Similarly, we have
* 2 2 42 2¢%4 G2
E(|Vpf(Wi—1,0"(Wi—1)) = VBf(Wi—1,0:)[I” < 2cal7v1 + =47 (29)
Combining equation 28] and equation 29| with equation [I8]yields the desired inequality. ]

Theorem C.1 Let Assumptions and hold. Moreover, assume that the low-rank matrices
remain bounded by constants c 4 and cp in each iteration, Le., lF < caand || B:||r < cp. Then,
there exists iterationt € {0,--- ,T — 1} for which

4As(1/nw) + K2 (A + CQB)D2>

(30)

E (Ve (W) < 0( !

€

where 1, = O(min{1/kl(c} + ), 1/k20( + c%),1/(G? + kbl )2}, ns = O(1/f), and

Ay = E®(Wy) — E®(Wry1). Moreover, the mini-batch size M is bounded by
o (G2 + k(4 + CQB)G2> .

€2

(3D
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Proof. Performing the inequality in Lemmarecursively and using o < D? from Assumption
results in

t—1

< (1- i)t D2 4 (8%3(Ci'5\;;13)6127712u + gzcj\;) Z (1- T;)t_l_j . (32)
=0

Combining equation [32] with equation 27} we have
E®(W,) < E&(Wi 1) — % (B[ VAW, 0)|” +E [V 5@(Wi 1))

ol (P52 (1 ) 2

t—2
2 (5cpt2cs \ (8r%(chtep)GPns, | 2G? 1\t=2-7
+ 1t ( 2 M + & E:(l_ﬂ)
=0
G22.52+2 w Z4+4G22 2G22£24+G23

4 ( cﬂ can 4 rl(cy ;JB) M + 2k CJ?\;A )711“. (33)

Summing up equation[33Jover t = 1,2, --- , T + 1 and rearranging, we can write
T

E®(Wr.41) < E(Wp) — % (E IVA@(W2)|* +E |V s@(W2)]*)

t=

o () 2 (S0

=0

T+1t-2
2 (52 +2c 8k3 (% +c )G2n2, 2G2 t 2—j
+nwl ( B A)( * +r) (222

1t—
t=1 =0

4 G2(2.5c23+]§4)77w(T+1) 4
T

13 (EIVARWI? + E[Va@(W)|[?) + rnf? (3} +2¢%) D?
t=0

+ ol (5% + 2% ) (SARAIE L 4 368 (7 4 1)

G?(2.5¢5+2)Nw (T+1) | kl(ch+cE)G®n2 (T+1) | 2G%(2kbch et +G?)nS (T+1) 34
M + M + M - (34)

nl(ci +C‘LB)G27712“ (T+1) + 2G?(2kbc% cj +G2)n3 (T+1)
M M

<E®(Wp) —

+
Then, it follows that

T
2(E® (W, E®(W:
T ZE IV am@Wo|* = 71 3 (EIVARW)| + B[V p@(W,)|*) < 2E20M- 20
t=0 t=0
22 42 K)S c2 02 2, 2 2 . 02 C2
4 SO0 HG)D | 2 (1062 + 4c3) (% n %) | 267 @schrch)
+ QKZ(Cj-l-]\f[%)Gznw + 4G2(2n2c%\/c[?4+G2)7712”
K c c 2 K C2 C2 2
< O (it + MG 4 G 4 MR ) (35)

This implies that the number of iterations required by Algorithm I]to return an e-stationary point is
bounded by

o (4A<1>(1/?7w) + 552(0,24 + CQB)D2> ’ 36)

Moreover, the mini-batch size M is bounded by
0 (G2 +/~e(cz42+c%>6‘2>7 (37)
which completes the proof. U
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