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ABSTRACT

Vision-Language Models (VLMs) such as CLIP have shown remarkable perfor-
mance in cross-modal tasks through large-scale contrastive pre-training. To adapt
these large transformer-based models efficiently for downstream tasks, Parameter-
Efficient Fine-Tuning (PEFT) techniques like (Low-Rank Adaptation) LoRA have
emerged as scalable alternatives to full fine-tuning, especially in few-shot scenarios.
However, like traditional deep neural networks, VLMs are highly vulnerable to
adversarial attacks, where imperceptible perturbations can significantly degrade
model performance. Adversarial training remains the most effective strategy for
improving model robustness in PEFT. In this work, we propose AdvCLIP-LoRA,
to our knowledge the first method designed to enhance the adversarial robustness
of CLIP models fine-tuned with LoRA in few-shot settings. Our method formulates
training as a minimax optimization over low-rank adapters and adversarial pertur-
bations, enabling robust adaptation with a small trainable footprint. Across eight
datasets and two backbones (ViT-B/16 and ViT-B/32), AdvCLIP-LoRA achieves
state-of-the-art performance in few-shot classification, adversarial base-to-new gen-
eralization, and cross-dataset transfer, delivering higher adversarial robustness than
prompt tuning baselines without sacrificing much clean accuracy. These findings
highlight AdvCLIP-LoRA as a practical approach for robust adaptation of VLMs
in resource-constrained settings.

1 INTRODUCTION

Vision-Language Models (VLMs), such as CLIP Radford et al. (2021), have become foundational
in learning cross-modal representations by aligning visual and textual embeddings through large-
scale contrastive pre-training Jia et al. (2021); Li et al. (2022b); Yao et al.. While these models
enable effective zero-shot and few-shot adaptation Zhang et al. (2022); Zhu et al. (2023), their larger
transformer-based variants Vaswani (2017) demonstrate superior performance (e.g., CLIP’s ViT-L/14
surpasses ViT-B/16 by over 6% on ImageNet Deng et al. (2009)). However, these large models
typically contain billions of trainable parameters, making full fine-tuning (FFT) computationally
expensive and inefficient, particularly for task-specific adaptations.

To address this, Parameter-Efficient Fine-Tuning (PEFT) methods have gained traction, particularly
in NLP, where techniques like adapters Chen et al. (2022); Karimi Mahabadi et al. (2021); Rebuffi
et al. (2017) and prompt tuning Jia et al. (2022); Li & Liang (2021) reduce overhead, by adding
a small number of trainable parameters or trainable prompt tokens while keeping the rest of the
model frozen. Among PEFT methods, Low-Rank Adaptation (LoRA) Hu et al. (2021) offers an
efficient alternative by fine-tuning only low-rank matrices, enabling single-GPU adaptation of billion-
parameter models Dettmers et al. (2023) while matching full fine-tuning performance Hu et al.
(2021). Recent work by Zanella & Ben Ayed (2024) employed LoRA in the context of few-shot
VLMs, demonstrating improved accuracy across various tasks and models. Unlike few-shot prompt
tuning Bulat & Tzimiropoulos (2023); Chen et al.; Zhu et al. (2023), which involves computationally
intensive optimization of textual prompts, or adapter-based methods Gao et al. (2024); Zhang et al.
(2022) that often demand extensive hyperparameter tuning Silva-Rodriguez et al. (2024), LoRA
provides a more scalable and portable solution for fine-tuning VLMs Zanella & Ben Ayed (2024).

Despite their impressive capabilities, VLMs share the susceptibility of traditional deep neural net-
works (DNNs) to adversarial attacks, where imperceptible perturbations can significantly degrade
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model performance Szegedy et al. (2013); Zhou et al. (2023). This vulnerability is particularly
concerning in the visual domain, where adversarial noise can be more subtle and difficult to detect
compared to textual modifications. Extensive research in computer vision has demonstrated that
adversarial training remains the most effective approach for developing robust DNNs resistant to
adversarial perturbations Madry et al. (2018). When applied to PEFT paradigms, this adversarial
training is typically implemented during the fine-tuning phase rather than during initial pre-training.
More recently, studies Li et al. (2024); Zhang et al. (2024); Jia et al. (2025) have explored few-shot
prompt tuning as a means of adversarial adaptation. For instance, Zhang et al. (2024) trains the clean
text embedding with the adversarial image embedding to improve adversarial robustness. APT Li et al.
(2024) learns robust text prompts via adversarial training, while FAP Zhou et al. (2023) leverages
multimodal prompts and proposes a loss function that balances the connection between natural and
adversarial features across modalities.
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Figure 1: Few-shot performance across datasets under clean and adversarial evaluation. Spider
plots show top-1 accuracy (%) for Clean (top row) and PGD-100 (bottom row) on eight datasets at
shot counts {1, 2, 4, 8, 16} with ViT-B/32. Each polygon denotes a method (larger area is better).

Despite their effectiveness, adversarial prompt-based methods exhibit two limitations: (i) they often
attain robustness by sacrificing substantial clean accuracy, especially in the extreme few-shot regime
(1–4 shots), where many underperform even zero-shot CLIP (Fig. 1, top); and (ii) their robustness
typically improves only as the shot count increases, with some methods struggling to gain robustness
in the extreme few-shot regime (Fig. 1, bottom). Although LoRA has proven effective for standard
fine-tuning, its use for enhancing adversarial robustness in few-shot VLMs remains largely unexplored.
We address this gap with AdvCLIP-LoRA, which fine-tunes CLIP using LoRA adapters under a
minimax objective. As shown in Fig. 1, our simple AdvCLIP-LoRA avoids the above trade-offs,
delivering superior robustness and higher clean accuracy, consistently outperforming adversarial
prompt-tuning baselines on both clean and PGD metrics for the majority of shots.

Before delving into the details, we summarize our main contributions.

• We investigate LoRA for adversarially robust few-shot VLMs, a setting largely dominated
by prompt-based strategies, and introduce AdvCLIP-LoRA, which frames adaptation as a
minimax optimization problem and solves it efficiently.

• We conduct extensive experiments on eight datasets with ViT-B/16 and ViT-B/32 backbones,
covering few-shot classification, adversarial base-to-new generalization, and cross-dataset
transfer; AdvCLIP-LoRA significantly improves robustness to strong attacks (e.g., PGD) in
most settings with minimal loss in clean accuracy.

• We present comprehensive ablations that analyze design choices and hyperparameters,
providing guidance for practical deployment.

• Under standard assumptions from the minimax optimization literature (e.g., smooth objec-
tives and bounded gradients), we establish convergence guarantees for the primal function
Φ(·) = maxδ∈∆ f(·, δ) to a stationary point, with rates matching classical results.
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2 PRELIMINARIES AND RELATED WORK

2.1 FEW-SHOT FINE-TUNING FOR VLMS

In vision-language classification tasks, predictions are made by leveraging the pretrained alignment
between visual and textual modalities. Given a label set of K classes, one first constructs natural
language descriptions, or prompts Liu et al. (2023a), denoted as {ck}Kk=1, where each ck is a textual
phrase such as “a photo of a [class name].” These prompts are embedded using a frozen text encoder
θt, yielding normalized representations z(T )

k = θt(ck) ∈ Rd. Similarly, an image xi is embedded
via a visual encoder θv to obtain z

(I)
i = θv(xi) ∈ Rd, also normalized to unit length. The prediction

logits are computed as the cosine similarity between each image-text pair. These logits are converted
into a probability distribution over classes using a softmax with temperature scaling:

pi,k =
exp(cos(z

(I)
i , z

(T )
k )/γ)∑K

j=1 exp(cos(z
(I)
i , z

(T )
j )/γ)

, (1)

where γ is a softmax-temperature parameter. The predicted label for image xi is the one with the
highest posterior probability: k̂ = argmaxk pi,k. This form of zero-shot prediction directly mirrors
the contrastive training setup used in large-scale VLM pretraining, such as CLIP Radford et al. (2021),
and allows models to generalize to novel classification tasks without fine-tuning on the target domain.

To further adapt vision-language models to downstream tasks, the few-shot setting assumes access
to a limited number of labeled examples per target class—typically fewer than 16. Given N such
labeled support images per class, we denote the one-hot encoded ground-truth label for image xi

as yik, where yik = 1 if xi belongs to class k, and 0 otherwise. Classification probabilities pi,k are
obtained as in the zero-shot setup, and the model is adapted by minimizing the cross-entropy loss:

LCE = − 1

N

N∑
i=1

K∑
k=1

yik ln pi,k. (2)

This adaptation can be implemented in several ways. One strategy is to optimize the input prompts
{ck}Kk=1 directly, an approach inspired by prompt tuning techniques Chen et al.. Alternatively, one
may fine-tune lightweight, task-specific modules such as adapter layers Gao et al. (2024) or low-rank
parameterizations like LoRA Zanella & Ben Ayed (2024), leaving the backbone encoders frozen.

2.2 FINE-TUNING VLMS VIA LORA

Low-Rank Adaptation (LoRA) Hu et al. (2021) is a highly promising PEFT method, enabling
efficient fine-tuning of large models by freezing the entire pre-trained model and introducing low-
rank, trainable matrices within each layer. In LoRA, given a pre-trained weight matrix W0 ∈ Rd×k,
the weight update is achieved through a low-rank decomposition W0 +∆W = W0 + BA, where
the training occurs on matrices A ∈ Rr×k and B ∈ Rd×r, with r ≪ min(d, k). The values in A are
initialized via a Gaussian distribution, while B is initialized as a zero matrix. This setup ensures that
no low-rank update occurs before training, meaning that the output remains unchanged initially.

Although the original LoRA paper applies the low-rank matrices to the attention matrices of
transformer-based architectures, Zanella & Ben Ayed (2024) extends LoRA to all matrices in the
vision and text encoders of VLMs. This adaptation leads to improved accuracy over prompt-based
methods across various CLIP architectures and datasets Zanella & Ben Ayed (2024).

2.3 ADVERSARIAL ROBUSTNESS

Given an arbitrary classifier h : X → Y , where an input x ∈ X is associated with its true label y ∈ Y ,
an adversary attempts to find an imperceptible perturbation δ, which shares the same dimensionality
as x. This perturbation must satisfy the condition that x+ δ ∈ X , and more critically, h(x+ δ) ̸= y,
thereby misclassifying the original input. To ensure that this perturbation remains imperceptible, the
adversarial perturbation δ is usually constrained within some bounded set ∆ ⊆ Rn.

The adversarial attack on a classifier h, constrained by bounded set ∆, is formulated as follows:
x̂ = x+ argmax

δ∈∆
L(h(x+ δ), y), (3)

3
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Original Input𝛿"

ℒ = 𝑑(𝐼!, 𝑇!)

A photo of 
a {dog}.

Figure 2: : Trainable Parameters, : Frozen Parameters. Illustration of AdvCLIP-LoRA algorithm.
During iteration t, the perturbation δt is updated and applied to the input image batch. Subsequently,
the low-rank matrices A and B are optimized, while the rest of the model remains frozen.

Algorithm 1 AdvCLIP-LoRA

Require: Training samples X , batch-size M , learning rates ηw, ηδ
1: A0 ∼ N (0, σ2), B0 = 0.
2: δ ← 0
3: for epoch = 1 . . . T do
4: for minibatch M ⊂ X do
5: for j = 1 . . . τ do
6: δt = P∆

(
δt−1 + ηδ(

1
M

∑M
i=1∇δF (Wt−1, δt−1; ξi))

)
7: end for
8: At = At−1 − ηw

(
1
M

∑M
i=1∇AF (Wt−1, δt; ξi)

)
▷ Update the low-rank matrix A

9: Bt = Bt−1 − ηw

(
1
M

∑M
i=1∇BF (Wt−1, δt; ξi)

)
▷ Update the low-rank matrix B

10: end for
11: end for

where L is the training loss function. This formulation represents an optimization problem where the
perturbation δ is chosen such that the classifier’s output is maximally disrupted while staying within
a bounded set. Methods like Projected Gradient Descent (PGD) Madry et al. (2018) are commonly
employed to solve this optimization problem. Given the vulnerability of deep learning models to these
perturbations Szegedy et al. (2013), it becomes crucial to defend against such adversarial attacks.

One of the most effective strategies for defending against adversarial attacks is adversarial training,
as proposed by Madry et al. (2018). When hW denotes a classifier parameterized by W , adversarial
training seeks to solve the following minimax optimization problem:

min
W

E(x,y)∼D

[
max
δ∈∆
L(hW (x+ δ), y)

]
, (4)

where D represents the underlying data distribution. This approach effectively trains the classifier to
be robust against adversarial perturbations by simultaneously minimizing the classifier’s loss and
maximizing perturbation within a bounded set.

3 PROPOSED ALGORITHM

3.1 ADVERSARIAL FINE-TUNING OF CLIP VIA LORA

Assume that the LoRA matrices A and B are initialized with a Gaussian distribution and zero matrices,
respectively, and are applied to all weight matrices in the vision and text encoders of a CLIP model.
Following the approach introduced in Section 2.3, we aim to improve the adversarial robustness of
the LoRA-based CLIP model by introducing a perturbation δ to input images and solving a minimax
optimization problem. Focusing on the dependence of the training loss function on the low-rank
matrices A and B and the perturbation δ, we formulate the following minimax optimization problem:

min
A,B

max
δ∈∆

f(W := W0 +BA, δ), (5)

4
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where ∆ is a bounded set of admissible perturbations, and f : Rd×k+n → R is a non-convex loss
function expressible in the stochastic form Eξ∼D[F (W0 +BA, δ; ξ)]. Here, the expectation is taken
over sampled batches ξ ∼ D, where D represents the underlying data distribution.

3.2 ADVCLIP-LORA ALGORITHM

In this section, we present the proposed AdvCLIP-LoRA algorithm, which solves the minimax
problem (Eq. 5) to enhance the adversarial robustness of a CLIP model fine-tuned with LoRA. The
AdvCLIP-LoRA algorithm proceeds for T iterations. At each iteration t:

1) Select M samples {ξi}Mi=1 from the dataset.

2) Update the perturbation δ for τ iterations via:

δt = P∆(δt−1 +
ηδ
M

M∑
i=1

∇δF (Wt−1, δt−1; ξi)), (6)

where ηδ is the learning rate for δ, ∆ is a bounded perturbation set, and P∆ projects onto ∆. The set
∆ may be any convex, bounded subset of Rn; in our experiments we take ∆ = {δ : ∥δ∥∞ ≤ ϵ}, i.e.,
an ℓ∞-ball of radius ϵ.

3) Update the LoRA matrices A and B using the current δt to obtain At and Bt (lines 8 and 9 of
Alg. 1), where ηw is the learning rate for A and B. The steps of the AdvCLIP-LoRA algorithm are
illustrated in Fig. 2. Moreover, the AdvCLIP-LoRA pipeline can be found in Alg. 1.

4 CONVERGENCE ANALYSIS

In this section, we present a thorough convergence analysis of the proposed AdvCLIP-LoRA algo-
rithm. The complete proofs can be found in Appendix C.

Consider the minimax problem (Eq. 5), which is equivalent to minimizing the function Φ(·) =
maxδ∈∆ f(·, δ). In the context of nonconvex-strongly-concave minimax problems, where f(W, ·) is
strongly-concave for each W , the maximization problem maxδ∈∆ f(W, δ) can be solved efficiently,
yielding useful insights into Φ. However, finding the global minimum of Φ remains NP-hard in
general due to its nonconvex nature. To address this challenge, we define local surrogates for the
global minimum of Φ. One commonly used surrogate in nonconvex optimization is the notion of
stationarity, which is suitable when Φ is differentiable. A point W is an ϵ-stationary point (ϵ ≥ 0) of
a differentiable function Φ if ∥∇Φ(W )∥ ≤ ϵ.

Let us proceed with a few assumptions. Note that ∥ · ∥F denotes the Frobenius norm.

Assumption 4.1 We assume that the stochastic gradients are unbiased and bounded, that is,

Eξ [∇F (W, δ; ξ)] = ∇f (W, δ) , Eξ

[
∥∇F (W, δ; ξ)∥2F

]
≤ G2, (7)

for all W ∈ Rd×k, where ξ represents a randomly sampled subset of training data and Eξ[·] denotes
the expectation over ξ ∼ D.

Assumption 4.2 The objective function and constraint set
(
f : Rd×k+n → R,∆ ⊆ Rn

)
satisfy (i)

∆ is a convex and bounded set with a diameter D ≥ 0. (ii) f has ℓ-Lipchits gradients and is
µ-strongly concave in δ. That is, for both ∗ ∈ {W, δ}

∥∇∗f(W, δ)−∇∗f (W ′, δ′)∥2F ≤ ℓ2
(
∥W −W ′∥2F + ∥δ − δ′∥2F

)
. (8)

Let κ = ℓ/µ denote the condition number and define

Φ(·) = max
δ∈∆

f(·, δ), δ⋆(·) = argmax
δ∈∆

f(·, δ). (9)

The following theorem characterizes the convergence rate of the proposed AdvCLIP-LoRA in Alg. 1
to find a stationary solution for Φ(W ).

5
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Table 1: Few-shot classification under clean and adversarial evaluation (1-, 4-, and 16-shot).

Shots Method ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average
Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD

1

AdvVP Mao et al. 46.60 11.07 85.73 50.33 26.97 12.93 24.43 5.23 57.60 22.73 63.10 29.70 3.37 0.40 41.20 11.10 43.62 17.94
APT Li et al. (2024) 49.30 1.30 84.77 26.90 41.67 3.83 56.57 0.83 70.23 0.60 61.97 2.10 54.50 3.87 53.53 1.23 59.07 5.08
AdvPT Zhang et al. (2024) 20.17 0.43 62.97 7.60 16.73 2.60 13.27 0.00 37.93 0.13 33.97 0.43 27.03 0.00 27.57 0.37 29.96 1.44
AdvMaPLe Khattak et al. (2023) 49.27 14.60 85.53 48.37 13.63 2.93 5.27 0.30 30.67 4.97 1.40 0.10 32.70 7.07 49.70 12.67 33.52 11.38
AdvVLP Zhou et al. (2024) 50.53 17.50 85.43 48.47 15.97 4.77 1.07 0.77 29.63 3.83 19.77 6.57 11.83 1.73 49.83 12.60 33.01 12.03
FAP Zhou et al. (2024) 49.90 15.40 83.53 41.13 18.40 2.40 31.67 1.43 49.23 3.47 10.40 0.53 28.50 2.43 49.53 14.93 40.14 10.22
AdvCLIP-LoRA 65.28 20.89 93.06 66.49 49.65 18.68 78.90 16.41 86.97 36.03 76.17 34.55 72.48 22.34 67.92 26.99 73.80 30.30
Relative Improvement +29.19 +19.37 +8.55 +32.11 +19.15 +44.47 +39.47 +163.84 +23.84 +58.51 +20.71 +16.33 +32.99 +163.84 +26.88 +80.78 +24.94 +68.9

4

AdvVP Mao et al. 49.80 11.13 90.17 52.50 18.77 9.27 22.73 4.57 57.80 16.20 55.97 23.73 1.07 0.80 48.47 13.03 43.10 16.40
APT Li et al. (2024) 50.90 1.40 90.77 26.67 51.33 6.33 54.80 1.63 71.83 2.10 82.40 4.23 66.53 3.03 62.37 2.90 66.37 6.04
AdvPT Zhang et al. (2024) 23.40 1.33 64.97 7.30 31.70 4.37 15.23 0.37 44.13 1.73 41.97 0.63 31.17 0.47 29.97 0.40 35.32 2.07
AdvMaPLe Khattak et al. (2023) 51.27 19.00 89.53 59.40 6.43 2.40 60.00 14.83 30.70 9.03 52.20 25.37 59.73 21.30 58.23 21.53 51.01 21.61
AdvVLP Zhou et al. (2024) 51.30 19.37 89.37 59.07 22.97 10.33 41.50 11.20 67.43 18.47 51.00 25.80 59.97 21.77 57.90 21.17 55.18 23.40
FAP Zhou et al. (2024) 51.53 19.60 87.57 57.33 31.27 8.07 59.37 23.20 79.47 34.57 81.53 52.63 60.70 26.67 60.40 27.23 57.51 24.60
AdvCLIP-LoRA 66.34 23.78 93.96 71.03 62.41 26.36 75.80 17.69 87.03 32.98 90.70 48.72 76.18 26.22 71.09 31.11 77.94 34.74
Relative Improvement +28.74 +21.33 +3.51 +19.58 +21.59 +155.18 +27.67 −23.75 +9.51 −4.6 +10.07 −7.43 +14.5 −1.69 +13.98 +14.25 +17.43 +41.22

16

AdvVP Mao et al. 46.27 12.77 90.40 52.60 29.20 13.87 1.07 0.80 56.40 16.43 56.17 22.03 0.97 0.93 54.70 17.63 41.90 17.13
APT Li et al. (2024) 52.63 2.07 92.93 30.23 54.93 10.47 62.50 2.63 83.70 4.40 86.63 8.97 69.40 4.40 65.67 3.67 71.05 8.35
AdvPT Zhang et al. (2024) 24.53 1.47 68.70 9.63 43.77 5.70 18.47 0.73 46.27 0.23 56.03 0.80 36.60 0.53 33.13 2.37 40.94 2.68
AdvMaPLe Khattak et al. (2023) 52.93 21.90 92.17 68.63 57.93 32.17 65.13 25.27 83.27 36.87 87.87 58.70 68.97 31.67 63.57 29.70 71.48 38.11
AdvVLP Zhou et al. (2024) 53.23 22.10 92.37 67.97 57.53 32.73 43.30 16.50 82.93 35.57 87.70 58.70 69.10 32.80 63.90 29.70 68.76 37.01
FAP Zhou et al. (2024) 52.53 22.90 91.10 67.33 55.17 31.33 64.03 26.67 81.90 41.00 86.27 61.47 65.70 32.80 62.37 30.27 69.88 39.22
AdvCLIP-LoRA 68.38 25.86 94.93 72.98 67.67 28.37 77.81 17.76 88.44 34.29 96.47 54.69 81.87 30.74 74.23 33.52 81.23 37.28
Relative Improvement +28.46 +12.93 +2.15 +6.34 +16.81 −13.32 +19.47 −33.41 +5.66 −16.37 +9.79 −11.03 +17.97 −6.28 +13.03 +10.74 +13.64 −4.95

Theorem 4.1 Let Assumptions 4.1 and 4.2 hold. Moreover, assume that the low-rank matrices
remain bounded by constants cA and cB in each iteration, i.e., ∥At∥F ≤ cA and ∥Bt∥F ≤ cB . Then,
there exists iteration t ∈ {0, · · · , T − 1} for which

E ∥∇Φ(Wt)∥2F ≤ O
(
4∆Φ(1/ηw) + κℓ2(c2A + c2B)D

2

ϵ2

)
, (10)

where ηw = Θ(min{1/κℓ(c4A + c4B), 1/κ
2ℓ(c2A + c2B), 1/(G

2 + κℓc4Ac
2
B)

1/2}), ηδ = Θ(1/ℓ), and
∆Φ = EΦ(W0)− EΦ(WT+1). Moreover, the mini-batch size M is bounded by

O
(
G2 + κ(c2A + c2B)G

2

ϵ2

)
. (11)

Remark 4.1 AdvCLIP-LoRA is guaranteed to reach an ϵ-stationary point of Φ(·) in O(ϵ−2) iter-
ations, with total stochastic gradient complexity O(ϵ−4), matching classical rates in the minimax
optimization literature Lin et al. (2020).

5 EMPIRICAL RESULTS

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate the proposed method, we follow prior works Zhou et al. (2022); Jia et al. (2025)
and utilize a diverse set of 8 image recognition datasets spanning multiple vision tasks. The datasets
include two generic object recognition datasets: ImageNet-1K Deng et al. (2009) and Caltech101 Fei-
Fei et al. (2004); a texture recognition dataset: DTD Cimpoi et al. (2014); four fine-grained object
recognition datasets: OxfordPets Parkhi et al. (2012), Flowers102 Nilsback & Zisserman (2008), and
Food101 Bossard et al. (2014); a scene recognition dataset: SUN397 Xiao et al. (2010); and an action
recognition dataset: UCF101 Soomro et al. (2012).

Baselines. To rigorously evaluate the proposed method, we benchmark it against a representative set
of adversarial prompt-learning baselines. We consider two categories: (i) methods using hand-crafted
text supervision, such as zero-shot CLIP Radford et al. (2021) and AdvVP Mao et al.; and (ii) methods
with learnable text prompts. In the single-modality textual setting, we compare against APT Li et al.
(2024), which learns robust text prompts without modifying model parameters, and AdvPT Zhang
et al. (2024), which first employs the image encoder to generate adversarial examples and then aligns
them with learnable text prompts. For multimodal adversarial prompt learning, we follow Zhou et al.
(2024) and include AdvVLP, AdvMaPLe Khattak et al. (2023), and FAP Zhou et al. (2024).

Implementation Details. We conduct experiments with CLIP backbones ViT-B/16 and ViT-B/32
and report averages over three random seeds. The base optimizer uses a learning rate of 2× 10−4

with a cosine decay schedule. Learning the perturbation δ is challenging early in training due to
small gradients; to mitigate this, we employ a larger, adaptive rate ηδ = 0.05/∥δt∥2, which scales
inversely with the current perturbation magnitude. This choice amplifies early updates and serves
as implicit data augmentation by injecting noise. ηδ then decays during training and is fixed at 0.05

6
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Figure 3: Effect of shot count on clean and adversarial performance. Clean and PGD accuracy
versus number of shots {1, 2, 4, 8, 16} on representative datasets and the eight-dataset average.

from iteration 300 onward. The total number of training iterations is 500×N/K. We use a batch
size of 16 for ImageNet-1K and 32 for all other datasets.

For LoRA, the class-conditional prompt is “a photo of a kth class name,” k = 1, . . . ,K, to
demonstrate AdvCLIP-LoRA’s applicability without elaborate manual prompt engineering. LoRA
modules are inserted at all layers of both encoders with rank 2 and dropout p = 0.25. Attacks
are generated within an ℓ∞-ball using a 2-step PGD procedure with budget ϵ = 1/255 and step
size α = 1/255, following Mao et al.; robustness is evaluated with a 100-step PGD attack. All
experiments are run on NVIDIA A6000 and V100 GPUs.

5.2 PERFORMANCE EVALUATION

Adversarial Few-Shot Learning. We assess performance under scarce supervision by fine-tuning
with {1, 2, 4, 8, 16} shots per class. Table 1 reports results for the 1-, 4-, and 16-shot settings across
eight datasets; results for the remaining shot counts are provided in the Appendix. We also report
the relative improvement of AdvCLIP-LoRA over the strongest non-ours baseline for each setting.
Overall, AdvCLIP-LoRA consistently delivers higher clean accuracy with substantial margins. Under
PGD evaluation, the advantage is pronounced at 1–4 shots, remains favorable at 8 shots, and narrows
at 16 shots, where performance is slightly trailing the best baseline (FAP). Fig. 3 visualizes clean
and PGD accuracy as a function of shots for representative datasets and the eight-dataset average,
highlighting that while some prompt-based baselines improve as shots increase, others fail to improve,
whereas AdvCLIP-LoRA is already strong from the 1-shot regime.

Adversarial Base-to-New Generalization. We present a more challenging adversarial base-to-new
generalization setting in which each dataset is partitioned into base and new subclasses. Models are
fine-tuned with 16 shots per base class and then evaluated on both base and new classes under clean
and PGD-100 conditions. As the number of categories is typically modest relative to the per-class
sample count, this setting requires learning intrinsic, dataset-level structure and robust representations
from limited supervision that transfer to a large test pool. Table 2 presents results together with
relative improvement. AdvCLIP-LoRA attains consistently superior clean and adversarial accuracy
on both base and new splits; moreover, the gains are larger on the new classes, highlighting stronger
robustness and generalization to previously unseen categories.

Adversarial Cross-Dataset Evaluation. We assess zero-shot transfer robustness via cross-dataset
generalization. A CLIP backbone is first adversarially fine-tuned on ImageNet-1K with 16 shots per
class, then evaluated without further fine-tuning on seven downstream datasets under Clean and PGD-
100 conditions. Table 3 reports the results and the relative improvement of AdvCLIP-LoRA over the
strongest non-ours baseline (excluding zero-shot CLIP). As expected, zero-shot CLIP attains strong
clean accuracy but offers minimal adversarial resistance. Adversarially adapted models typically
sacrifice some clean accuracy for robustness; AdvCLIP-LoRA shows the smallest drop in clean

7
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Table 2: Adversarial base-to-new generalization (16-shot). Top-1 accuracy (%) on base and new
classes under clean and PGD-100 evaluation across eight datasets.

Clean Acc (%) ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average
Base New Base New Base New Base New Base New Base New Base New Base New Base New

AdvVP Mao et al. 49.87 44.80 92.83 88.83 23.27 13.23 32.57 32.30 2.27 2.20 50.43 45.23 60.20 62.20 1.77 2.47 31.68 30.39
APT Li et al. (2024) 24.73 25.43 67.63 43.83 14.17 19.43 9.47 2.73 2.97 8.10 2.07 3.47 13.10 11.17 14.73 17.37 18.21 13.99
AdvPT Zhang et al. (2024) 26.53 69.03 72.27 62.33 52.70 46.77 53.43 51.17 25.07 53.70 70.23 46.70 41.40 59.17 43.47 43.60 43.87 44.94
AdvVLP Khattak et al. (2023) 58.40 48.83 94.40 83.27 43.40 21.27 38.97 39.67 71.37 68.93 88.90 49.90 70.23 63.57 72.77 49.83 60.38 46.18
AdvMaPLe Zhou et al. (2024) 58.47 48.67 94.87 84.47 48.63 22.87 60.67 57.90 71.40 69.90 56.53 30.00 70.57 63.27 72.80 50.70 58.95 46.92
FAP Zhou et al. (2024) 58.10 47.83 94.07 76.53 69.17 35.17 87.37 72.13 72.37 68.20 89.30 45.67 68.47 61.47 70.37 47.10 70.52 49.58
AdvCLIP-LoRA (Ours) 72.21 56.72 97.48 91.05 78.94 52.90 91.28 87.75 81.75 79.61 96.01 54.82 79.05 70.48 82.57 62.30 84.91 69.45
Relative Improvement +23.5 +16.16 +2.75 +7.79 +14.12 +13.11 +4.48 +21.66 +12.96 +13.89 +7.51 +17.39 +12.02 +11.4 +13.42 +22.88 +20.41 +40.08

PGD-100 Acc (%) ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average
Base New Base New Base New Base New Base New Base New Base New Base New Base New

AdvVP Mao et al. 12.27 12.27 57.17 49.13 10.03 7.20 12.27 13.37 1.27 1.00 24.63 15.77 18.50 21.10 1.73 1.43 14.43 13.36
APT Li et al. (2024) 9.83 5.90 15.97 9.97 8.87 3.60 0.33 0.00 0.47 1.93 0.13 0.03 0.67 2.23 2.03 5.33 3.80 3.07
AdvPT Zhang et al. (2024) 0.50 14.77 13.60 15.17 7.13 6.83 1.27 8.53 1.63 10.97 1.17 9.93 3.77 12.83 0.63 6.60 3.50 8.84
AdvVLP Khattak et al. (2023) 25.33 21.03 73.90 56.70 21.50 9.97 16.80 17.50 27.90 24.50 62.80 21.07 33.87 29.83 36.37 20.13 30.69 20.25
AdvMaPLe Zhou et al. (2024) 24.93 20.50 76.23 57.67 27.57 12.37 31.80 28.90 28.43 24.60 36.70 11.63 34.10 29.40 36.77 18.00 32.37 21.61
FAP Zhou et al. (2024) 25.83 21.57 74.20 50.00 41.63 19.77 34.13 26.07 27.57 24.20 65.50 18.10 34.63 30.77 36.63 18.30 38.05 21.86
AdvCLIP-LoRA (Ours) 25.58 22.40 79.15 65.61 41.90 31.16 45.19 49.38 23.54 23.50 57.26 29.43 39.80 37.02 32.52 19.15 43.12 34.71
Relative Improvement −0.97 +9.27 +3.83 +13.77 +0.65 +57.61 +32.41 +70.87 −17.2 −2.89 −12.58 +153.05 +16.72 +20.31 −11.56 +4.64 +13.32 +58.78

Table 3: Cross-dataset generalization (zero-shot transfer). Models are adversarially fine-tuned on
ImageNet-1K with 16 shots, then evaluated without further adaptation on seven downstream datasets.

Method ImageNet-1K Caltech101 DTD OxfordPets Food101 Flowers102 SUN397 UCF101 Average
Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD

Zero-shot CLIP Radford et al. (2021) 62.10 1.57 91.50 26.23 43.70 5.07 87.40 3.27 80.50 5.03 66.90 1.73 62.10 1.20 62.00 2.47 69.53 5.82
AdvVP Mao et al. 44.87 11.67 85.47 48.07 30.23 12.93 74.20 19.03 56.53 9.70 43.17 16.20 41.97 12.77 44.60 10.47 52.63 17.60
APT Li et al. (2024) 12.23 0.90 53.57 7.70 11.93 3.47 13.97 1.10 7.30 0.10 13.73 0.67 14.73 2.37 18.30 0.33 18.22 2.08
AdvPT Zhang et al. (2024) 23.50 0.33 63.70 3.47 19.47 3.30 43.10 0.87 12.23 0.00 28.57 0.60 26.33 0.40 25.77 0.27 30.33 1.16
AdvVLP Zhou et al. (2024) 53.23 22.10 87.33 62.97 33.43 18.60 78.80 40.83 55.80 17.83 49.77 25.23 52.80 21.67 51.50 22.10 57.83 28.92
AdvMaPLe Khattak et al. (2023) 52.93 21.90 88.23 64.90 30.87 17.50 77.87 42.83 56.67 18.53 52.90 28.73 52.53 21.90 50.97 23.20 57.87 29.94
FAP Zhou et al. (2024) 52.53 22.90 87.80 65.43 30.93 16.93 78.20 43.77 55.83 19.60 51.20 27.23 52.47 22.40 51.73 23.77 57.59 30.25
AdvCLIP-LoRA (Ours) 66.90 26.51 89.57 69.05 34.40 21.63 82.34 42.11 73.27 17.39 48.80 24.12 58.01 27.84 58.50 20.57 63.97 31.15
Relative Improvement +25.68 +15.76 +1.52 +5.53 +2.9 +16.29 +4.49 −3.79 +29.29 −11.28 −7.75 −16.05 +9.87 +24.29 +13.09 −13.46 +10.54 +2.98

accuracy (5.56% below zero-shot CLIP) while achieving state-of-the-art robustness, yielding the best
overall trade-off.

Comparison with the Non-Robust Counterpart. We compare AdvCLIP-LoRA with its non-
robust variant, CLIP-LoRA, using the ViT-B/16 backbone in the 16-shot setting. As shown in
Fig. 4 (top-left), for moderately small values of τ , AdvCLIP-LoRA attains clean accuracy only
marginally below CLIP-LoRA while achieving substantial gains in PGD accuracy, yielding a favorable
robustness–accuracy trade-off. In practice, careful tuning of τ yields strong robustness gains at
minimal nominal performance cost; we analyze this trade-off in more depth later. We provide an
extensive comparison of CLIP-LoRA and AdvCLIP-LoRA on ViT-B/16 and ViT-B/32 across different
shot counts in Appendix B.2.

5.3 ABLATION STUDY

LoRA Rank. Fig. 4 (bottom-left) plots clean and PGD-100 accuracy on ImageNet-1K as a function
of the LoRA rank r for {1, 2, 4, 8, 16} shots. Increasing the rank to a moderate value (e.g., r = 16)
improves both clean and robust performance of AdvCLIP-LoRA across all shot counts, with the
gains most pronounced in the 1-shot regime where data are scarce. To keep the number of trainable
parameters low, we adopt r = 2 in the main experiments; despite its small footprint, this setting
provides strong performance and a favorable robustness–accuracy trade-off, outperforming prompt
tuning baselines.

Attack Budget ϵ. Fig. 4 (top-right) shows the effect of the PGD budget ϵ on the average robust
accuracy over five datasets using ViT-B/16. As expected, larger ϵ degrades robustness. Increasing the
number of inner maximization steps τ consistently improves performance across budgets, yielding
higher PGD accuracy for different ϵ. Per-dataset and per-shot curves are provided in Fig. 6 (Appendix).

Number of Inner Maximization Iterations τ . Figure 4 (bottom-right) shows clean and PGD-100
accuracy, averaged over eight datasets, as a function of the inner maximization steps τ in Alg. 1.
Increasing τ tightens the approximation to the inner maximization in the minimax objective (Eq. 5),
yielding steadily higher robustness; the largest gains occur between τ = 2 and τ = 15. This
improvement comes at the cost of longer training and a modest drop in clean accuracy. For a fair
comparison with baselines, we use τ = 2 in the main tables; however, the curves indicate that τ ≈ 15
offers a strong robustness–efficiency trade-off, while for larger τ (beyond∼ 15) changes in both clean
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Figure 4: Top-left: comparison to the non-robust CLIP-LoRA. Ablations for AdvCLIP-LoRA.
Top-right: effect of the PGD budget ϵ. Bottom-left: effect of LoRA rank r. Bottom-right: effect of
inner maximization steps τ .

and PGD accuracy become less pronounced, particularly for the larger shots. In practice, τ ∈ [10, 15]
is a reasonable default, with smaller τ remaining competitive under tight compute budgets.

Table 4: Average Clean, PGD-100, and har-
monic mean (HM) for LoRA variants.

Method Clean PGD-100 HM

AdvCLIP-LoRA 81.25 34.76 48.69
Vision 78.71 30.74 44.21
Wq 80.65 30.62 44.39
Wv 80.95 34.73 48.61
WqWv 80.95 34.65 48.53
up 81.21 29.32 43.08
bottom 80.09 33.02 46.76
half-up 81.37 30.72 44.60
half-bottom 79.80 32.70 46.39
mid 80.45 30.98 44.73

Ablation on LoRA Design Choices. We study how
different adapter configurations affect robustness and
accuracy. In our default setup, LoRA is applied to
both vision and text encoders, across all layers, and
to attention projections. We vary one factor at a
time and report averages over four datasets (clean,
PGD-100, and harmonic mean) in Table 4. We ob-
serve that (1) restricting adapters to the vision en-
coder degrades performance, indicating the benefit of
adapting both modalities, (2) placing adapters only
at specific depths (e.g., up, bottom, mid, or half-
stacks) underperforms using adapters in all layers,
suggesting that distributed adaptation is more effec-
tive, (3) among per-matrix targets, applying LoRA to
the value projections (Wv) is the strongest single choice and nearly matches the full AdvCLIP-LoRA,
while Wq alone is weaker. Overall, the full configuration yields the best harmonic mean, reinforcing
the importance of multi-modal, all-layer adaptation with appropriately chosen attention targets.

6 CONCLUSION

We introduced AdvCLIP-LoRA, a parameter-efficient adversarial fine-tuning method for CLIP that
optimizes a minimax objective over low-rank adapters and an adversarial perturbation. Across
eight datasets and two backbones (ViT-B/16 and ViT-B/32), the method achieves state-of-the-art
results in few-shot classification, adversarial base-to-new generalization, and cross-dataset transfer,
consistently improving PGD robustness while largely preserving clean accuracy. In contrast to
adversarial prompt-tuning baselines, AdvCLIP-LoRA avoids large losses in clean accuracy and
delivers strong robustness from the start. Ablations on adapter placement, LoRA rank, the attack
budget ϵ, and the number of inner maximization steps τ provide pragmatic guidance: adapting both
encoders across all layers is beneficial, rank as small as r=2 remains competitive, and τ around 15
offers a favorable robustness–efficiency trade-off. Finally, under standard assumptions, we establish
convergence of the primal objective to a stationary point, giving a theoretical foundation for the
proposed training procedure.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Adrian Bulat and Georgios Tzimiropoulos. Lasp: Text-to-text optimization for language-aware soft
prompting of vision & language models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 23232–23241, 2023.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang. Plot:
Prompt learning with optimal transport for vision-language models. In The Eleventh International
Conference on Learning Representations.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606–3613, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In 2004 conference
on computer vision and pattern recognition workshop, pp. 178–178. IEEE, 2004.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale adver-
sarial training for vision-and-language representation learning. Advances in Neural Information
Processing Systems, 33:6616–6628, 2020.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and
Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International Journal
of Computer Vision, 132(2):581–595, 2024.

Xiaoshuai Hao and Wanqian Zhang. Uncertainty-aware alignment network for cross-domain video-
text retrieval. Advances in Neural Information Processing Systems, 36:38284–38296, 2023.

Xiaoshuai Hao, Wanqian Zhang, Dayan Wu, Fei Zhu, and Bo Li. Dual alignment unsupervised domain
adaptation for video-text retrieval. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 18962–18972, 2023.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuheng Ji, Yue Liu, Zhicheng Zhang, Zhao Zhang, Yuting Zhao, Gang Zhou, Xingwei Zhang,
Xinwang Liu, and Xiaolong Zheng. Advlora: Adversarial low-rank adaptation of vision-language
models. CoRR, 2024.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In International conference on machine learning, pp. 4904–4916. PMLR,
2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European conference on computer vision, pp. 709–727.
Springer, 2022.

Xiaojun Jia, Sensen Gao, Simeng Qin, Ke Ma, Xinfeng Li, Yihao Huang, Wei Dong, Yang Liu, and
Xiaochun Cao. Evolution-based region adversarial prompt learning for robustness enhancement in
vision-language models. arXiv preprint arXiv:2503.12874, 2025.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035,
2021.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
Khan. Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 19113–19122, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022a.

Lin Li, Haoyan Guan, Jianing Qiu, and Michael Spratling. One prompt word is enough to boost
adversarial robustness for pre-trained vision-language models. In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 24408–24419. IEEE Computer Society,
2024.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-
training. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10965–10975, 2022b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, 2021.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International conference on machine learning, pp. 6083–6093. PMLR, 2020.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
26286–26296. IEEE, 2024.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1–35, 2023a.

Ziquan Liu, Yi Xu, Xiangyang Ji, and Antoni B Chan. Twins: A fine-tuning framework for improved
transferability of adversarial robustness and generalization. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16436–16446. IEEE, 2023b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-
shot adversarial robustness for large-scale models. In The Eleventh International Conference on
Learning Representations.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and
Tom Goldstein. Adversarially robust transfer learning. In International Conference on Learning
Representations.

Julio Silva-Rodriguez, Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. A closer look at the few-shot
adaptation of large vision-language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 23681–23690, 2024.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Xilie Xu, Jingfeng Zhang, and Mohan Kankanhalli. Autolora: A parameter-free automated robust
fine-tuning framework. arXiv preprint arXiv:2310.01818, 2023a.

Xilie Xu, Jingfeng Zhang, Feng Liu, Masashi Sugiyama, and Mohan S Kankanhalli. Enhancing
adversarial contrastive learning via adversarial invariant regularization. Advances in Neural
Information Processing Systems, 36:16783–16803, 2023b.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. In
International Conference on Learning Representations.

Qiying Yu, Jieming Lou, Xianyuan Zhan, Qizhang Li, Wangmeng Zuo, Yang Liu, and Jingjing Liu.
Adversarial contrastive learning via asymmetric infonce. In European Conference on Computer
Vision, pp. 53–69. Springer, 2022.

Zheng Yuan, Jie Zhang, and Shiguang Shan. Fulllora-at: Efficiently boosting the robustness of
pretrained vision transformers. arXiv preprint arXiv:2401.01752, 2024.

Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1593–1603, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiaming Zhang, Xingjun Ma, Xin Wang, Lingyu Qiu, Jiaqi Wang, Yu-Gang Jiang, and Jitao Sang.
Adversarial prompt tuning for vision-language models. In ECCV (45), 2024.

Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and
Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In European
conference on computer vision, pp. 493–510. Springer, 2022.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong Tian.
Galore: Memory-efficient llm training by gradient low-rank projection. In Forty-first International
Conference on Machine Learning.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, and Min Lin.
On evaluating adversarial robustness of large vision-language models. In NeurIPS, 2023.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, and Tongliang Liu. Few-shot adversarial prompt
learning on vision-language models. Advances in Neural Information Processing Systems, 37:
3122–3156, 2024.

Ziqi Zhou, Shengshan Hu, Minghui Li, Hangtao Zhang, Yechao Zhang, and Hai Jin. Advclip:
Downstream-agnostic adversarial examples in multimodal contrastive learning. In Proceedings of
the 31st ACM International Conference on Multimedia, pp. 6311–6320, 2023.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for
prompt tuning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
15659–15669, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 PARAMETER-EFFICIENT FINE-TUNING ON VLMS

Vision-Language Models (VLMs) such as LLaVa Liu et al. (2024) and GPT-4V Achiam et al.
(2023) have achieved remarkable performance across various vision-language tasks, including cross-
modal retrieval Hao & Zhang (2023); Hao et al. (2023) and image captioning Li et al. (2022a).
However, these models typically contain billions of trainable parameters, making full fine-tuning
(FFT) computationally expensive and inefficient, particularly for task-specific adaptations. To address
this, Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced, enabling adaptation
with significantly fewer trainable parameters while maintaining performance close to FFT. PEFT
techniques can be broadly categorized into adapter-based Houlsby et al. (2019); He et al., prompt-
based Lester et al. (2021); Zhou et al. (2022), and Low-Rank Adaptation (LoRA)-based Hu et al.
(2021); Zhao et al. approaches. Among these, LoRA stands out for its efficiency, effectiveness, and
adaptability, making it a compelling choice for fine-tuning VLMs. In this work, we specifically focus
on improving the robustness of LoRA against adversarial attacks.

A.2 ROBUST FINE-TUNING

Robust fine-tuning (RFT) has been introduced as an efficient and cost-effective method for enhancing
adversarial robustness in downstream tasks by adapting pre-trained feature extractors (FEs) through
adversarial training data Shafahi et al.; Madry et al. (2018). The vanilla RFT jointly learns repre-
sentations from both natural and adversarial data Shafahi et al.. This approach has been widely
employed in fine-tuning adversarially self-supervised pre-trained models, demonstrating significant
robustness improvements across various tasks Yu et al. (2022); Xu et al. (2023b). Expanding on
this, TWINS Liu et al. (2023b) introduces a dual-network fine-tuning framework that enhances both
generalization and robustness by optimizing two neural networks. More recently, AutoLoRA Xu et al.
(2023a) refines RFT by decoupling the optimization process into two distinct components: using
the LoRA branch for natural objectives while leveraging the FEs for adversarial objectives, thereby
addressing the gradient instability present in TWINS. However, despite their effectiveness, these
methods demand substantial computational resources due to intensive gradient computations and full
model fine-tuning, making them impractical for VLMs.

A.3 ADVERSARIAL ADAPTATION ON VLMS

It has been shown that VLMs are susceptible to adversarial attacks, where small input perturbations
can cause them to make incorrect predictions with high confidence Zhao et al. (2023). Early
approaches, such as Gan et al. (2020), employed adversarial training techniques to train VLMs from
scratch, while others, like Yuan et al. (2024), sought to enhance adversarial robustness in downstream
tasks by fine-tuning model parameters focusing only on visual models. More recently, studies Li et al.
(2024); Zhang et al. (2024); Jia et al. (2025) have explored prompt tuning as a means of adversarial
adaptation. For instance, APT Li et al. (2024) improves VLM robustness by learning robust textual
prompts rather than modifying model weights. However, LoRA-based methods for strengthening
VLM robustness in few-shot settings remain largely unexplored. Prior work in this area Ji et al. (2024)
applies LoRA to adversarial fine-tuning with BLIP Li et al. (2022a), and does not provide theoretical
guarantees. Our study differs in three key aspects: (i) we target few-shot learning with CLIP, (ii) we
offer comprehensive comparisons against strong prompt-tuning baselines across multiple evaluation
settings, and (iii) we conduct an extensive ablation study. In addition, we adopt a principled minimax
optimization framework to enhance robustness and furnish a rigorous convergence analysis to a
stationary solution.
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B ADDITIONAL EXPERIMENTS RESULTS

B.1 ADVERSARIAL FEW-SHOT LEARNING

Table 5: Detailed comparative analysis of various adversarial PEFT methods with ViT-B/32 as
backbone. Top-1 accuracy averaged over 3 random seeds is reported.

Average ImageNet Caltech DTD Food Pets Flowers UCF SUN

Shots Method Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD

16

AdvVP Mao et al. 41.90 17.13 46.27 12.77 90.40 52.60 29.20 13.87 1.07 0.80 56.40 16.43 56.17 22.03 0.97 0.93 54.70 17.63
APT Li et al. (2024) 71.05 8.35 52.63 2.07 92.93 30.23 54.93 10.47 62.50 2.63 83.70 4.40 86.63 8.97 69.40 4.40 65.67 3.67
AdvPT Zhang et al. (2024) 40.94 2.68 24.53 1.47 68.70 9.63 43.77 5.70 18.47 0.73 46.27 0.23 56.03 0.80 36.60 0.53 33.13 2.37
AdvMaPLe Khattak et al. (2023) 71.48 38.11 52.93 21.90 92.17 68.63 57.93 32.17 65.13 25.27 83.27 36.87 87.87 58.70 68.97 31.67 63.57 29.70
AdvVLP Zhou et al. (2024) 68.76 37.01 53.23 22.10 92.37 67.97 57.53 32.73 43.30 16.50 82.93 35.57 87.70 58.70 69.10 32.80 63.90 29.70
FAP Zhou et al. (2024) 69.88 39.22 52.53 22.90 91.10 67.33 55.17 31.33 64.03 26.67 81.90 41.00 86.27 61.47 65.70 32.80 62.37 30.27
AdvCLIP-LoRA (τ = 1) 81.26 36.08 68.42 25.05 95.29 72.66 67.49 26.95 77.88 16.83 88.25 32.52 96.67 52.46 81.89 30.00 74.17 32.20
AdvCLIP-LoRA (τ = 2) 81.23 37.28 68.38 25.86 94.93 72.98 67.67 28.37 77.81 17.76 88.44 34.29 96.47 54.69 81.87 30.74 74.23 33.52
AdvCLIP-LoRA (τ = 5) 81.02 38.63 68.28 27.05 95.05 75.42 67.20 28.31 77.65 18.98 88.01 34.59 96.39 55.62 81.34 34.10 74.22 34.98
AdvCLIP-LoRA (τ = 10) 81.04 39.53 68.12 28.06 94.97 76.63 67.20 29.96 77.32 19.55 88.20 36.33 96.22 55.83 82.18 34.10 74.11 35.76
AdvCLIP-LoRA (τ = 15) 80.95 40.68 67.97 28.59 94.93 76.96 67.32 31.97 77.38 20.40 87.68 37.37 96.31 57.49 82.10 36.16 73.91 36.51
AdvCLIP-LoRA (τ = 20) 80.79 40.73 67.90 28.85 94.97 77.00 66.84 31.74 77.22 20.37 87.87 37.61 96.22 57.21 81.26 36.08 74.03 37.01
AdvCLIP-LoRA (τ = 25) 80.83 41.06 67.88 29.03 94.93 76.96 67.32 32.39 76.97 20.82 87.44 37.78 96.35 57.33 81.68 36.64 74.09 37.55
AdvCLIP-LoRA (τ = 30) 80.70 40.93 67.82 29.25 95.21 77.04 66.73 30.73 76.86 20.72 87.54 38.05 96.31 58.18 81.15 36.08 73.98 37.42
Relative Improvement +13.37 +0.79 +27.97 +22.53 +2.2 +11.66 +16 −8.46 +18.72 −26.7 +5.38 −11.39 +9.5 −9.18 +18.41 +3.96 +12.85 +18.14

8

AdvVP Mao et al. 43.24 17.21 46.37 11.90 91.20 50.33 23.63 11.47 1.00 0.83 57.43 17.33 55.50 23.57 18.27 4.93 52.53 17.30
APT Li et al. (2024) 69.76 7.56 52.03 1.80 92.37 30.83 54.43 8.70 61.57 2.33 82.87 3.10 84.00 6.00 66.53 4.30 64.30 3.40
AdvPT Zhang et al. (2024) 38.50 2.39 24.30 0.87 68.07 10.10 37.47 4.20 16.97 0.10 44.20 0.27 51.13 0.87 33.43 1.40 32.47 1.33
AdvMaPLe Khattak et al. (2023) 62.90 30.45 52.13 20.60 90.63 63.80 33.20 16.97 62.70 20.13 55.60 21.07 83.10 48.80 64.33 25.93 61.50 26.30
AdvVLP Zhou et al. (2024) 68.32 32.87 52.83 20.97 90.17 63.13 51.83 25.77 61.73 19.33 80.67 29.63 83.90 50.90 64.07 26.97 61.33 26.23
FAP Zhou et al. (2024) 67.23 34.26 52.17 21.53 89.63 62.50 52.13 25.77 61.80 23.20 79.47 34.57 81.53 52.63 60.70 26.67 60.40 27.23
AdvCLIP-LoRA (τ = 1) 79.56 34.36 67.24 23.65 94.28 70.75 64.72 25.12 77.17 15.79 87.95 32.57 92.73 48.52 80.12 27.70 72.26 30.81
AdvCLIP-LoRA (τ = 2) 79.32 35.44 67.11 24.49 94.60 72.09 63.24 26.42 77.03 16.93 87.71 33.63 92.49 48.68 80.31 29.16 72.09 32.08
AdvCLIP-LoRA (τ = 5) 79.27 36.73 67.16 25.68 94.56 72.90 63.36 27.90 76.77 18.76 87.54 34.83 92.61 49.98 80.20 30.69 71.97 33.09
AdvCLIP-LoRA (τ = 10) 79.19 37.93 67.00 26.61 94.20 74.24 63.06 28.90 76.32 19.87 87.76 35.35 92.57 51.48 80.41 32.59 72.17 34.38
AdvCLIP-LoRA (τ = 15) 79.02 38.33 66.74 27.08 94.28 74.48 63.00 29.43 76.13 20.33 87.41 36.09 92.53 51.81 80.23 32.78 71.87 34.62
AdvCLIP-LoRA (τ = 20) 78.91 38.54 66.67 27.36 93.87 75.38 63.12 29.67 75.78 20.57 87.08 35.38 92.61 52.42 80.02 32.33 72.12 35.22
AdvCLIP-LoRA (τ = 25) 78.80 38.88 66.64 27.61 94.00 75.09 62.59 30.56 75.91 21.31 87.00 35.40 92.33 52.09 79.83 33.31 72.11 35.68
AdvCLIP-LoRA (τ = 30) 78.84 39.05 66.61 27.82 93.91 75.33 62.94 30.44 75.71 21.33 87.27 36.33 92.12 52.42 80.07 33.10 72.11 35.64
Relative Improvement +13.52 +10.71 +26.82 +23.59 +1.98 +16.36 +15.86 +12.15 +21.72 −14.35 +5.9 +2.26 +10.2 −2.19 +20.86 +20.84 +12.24 +26.26

4

AdvVP Mao et al. 43.10 16.40 49.80 11.13 90.17 52.50 18.77 9.27 22.73 4.57 57.80 16.20 55.97 23.73 1.07 0.80 48.47 13.03
APT Li et al. (2024) 66.37 6.04 50.90 1.40 90.77 26.67 51.33 6.33 54.80 1.63 71.83 2.10 82.40 4.23 66.53 3.03 62.37 2.90
AdvPT Zhang et al. (2024) 35.32 2.07 23.40 1.33 64.97 7.30 31.70 4.37 15.23 0.37 44.13 1.73 41.97 0.63 31.17 0.47 29.97 0.40
AdvMaPLe Khattak et al. (2023) 51.01 21.61 51.27 19.00 89.53 59.40 6.43 2.40 60.00 14.83 30.70 9.03 52.20 25.37 59.73 21.30 58.23 21.53
AdvVLP Zhou et al. (2024) 55.18 23.40 51.30 19.37 89.37 59.07 22.97 10.33 41.50 11.20 67.43 18.47 51.00 25.80 59.97 21.77 57.90 21.17
FAP Zhou et al. (2024) 57.51 24.60 51.53 19.60 87.57 57.33 31.27 8.07 59.37 23.20 79.47 34.57 81.53 52.63 60.70 26.67 60.40 27.23
AdvCLIP-LoRA (τ = 1) 77.88 33.70 66.38 22.92 94.08 69.78 61.17 26.36 75.91 16.40 87.05 32.22 90.99 48.27 76.37 24.08 71.05 29.55
AdvCLIP-LoRA (τ = 2) 77.94 34.74 66.34 23.78 93.96 71.03 62.41 26.36 75.80 17.69 87.03 32.98 90.70 48.72 76.18 26.22 71.09 31.11
AdvCLIP-LoRA (τ = 5) 77.71 36.01 66.10 24.84 93.87 72.21 61.70 27.96 75.41 18.76 86.78 33.91 90.58 50.95 76.13 26.86 71.08 32.62
AdvCLIP-LoRA (τ = 10) 77.57 37.36 65.96 25.58 93.91 73.59 61.11 28.43 75.06 20.48 87.00 35.90 90.17 52.33 76.37 28.97 71.00 33.57
AdvCLIP-LoRA (τ = 15) 77.41 37.80 65.91 26.15 94.20 73.91 61.11 29.14 74.82 20.99 86.97 36.20 89.93 52.54 75.55 29.58 70.82 33.85
AdvCLIP-LoRA (τ = 20) 77.20 38.02 65.87 26.50 93.75 73.75 60.28 29.14 74.49 21.13 86.75 35.30 90.01 53.88 75.65 30.06 70.81 34.43
AdvCLIP-LoRA (τ = 25) 77.10 38.19 65.81 26.67 93.91 74.32 60.34 29.20 74.62 21.83 85.75 35.40 90.05 53.02 75.44 30.61 70.86 34.49
AdvCLIP-LoRA (τ = 30) 77.16 38.59 65.77 26.88 93.59 74.77 60.22 29.61 74.42 21.86 86.40 36.47 90.38 53.55 75.89 30.69 70.64 34.90
Relative Improvement +16.88 +51.87 +28 +30.51 +3.46 +23.89 +19.05 +163.84 +26.43 −11.72 +9.48 +3.85 +9.43 −0.57 +14.79 +8.62 +13.84 +23.28

2

AdvVP Mao et al. 39.24 16.23 46.23 10.90 91.25 55.23 14.27 6.93 1.05 0.10 47.13 15.10 61.47 26.93 1.73 1.07 50.77 13.57
APT Li et al. (2024) 63.56 5.90 48.83 1.03 89.70 31.70 45.57 4.27 60.17 0.87 72.87 1.07 67.17 3.10 65.00 3.10 59.20 2.03
AdvPT Zhang et al. (2024) 32.47 1.76 22.37 0.77 66.07 8.33 24.57 2.43 11.13 0.17 39.17 1.17 38.47 0.23 29.37 0.23 28.57 0.77
AdvMaPLe Khattak et al. (2023) 39.09 15.58 49.97 17.13 88.00 56.20 16.53 4.20 3.10 0.67 34.03 6.87 46.17 17.00 21.17 6.20 53.73 16.33
AdvVLP Zhou et al. (2024) 42.79 17.76 50.53 17.50 87.60 55.33 18.33 7.17 1.53 1.10 31.27 7.07 62.43 25.17 36.83 11.43 53.77 17.33
FAP Zhou et al. (2024) 55.18 18.14 48.53 17.83 87.73 53.90 18.40 4.33 56.90 10.53 64.23 12.67 53.10 19.57 58.50 7.03 54.07 19.30
AdvCLIP-LoRA (τ = 1) 75.89 32.04 65.69 21.70 93.55 69.41 57.98 23.88 76.04 15.74 86.18 33.99 84.86 40.19 74.52 23.50 68.29 27.90
AdvCLIP-LoRA (τ = 2) 75.75 32.55 65.74 22.58 93.35 69.94 57.15 23.52 76.00 16.92 86.32 34.31 84.57 39.14 74.39 24.95 68.50 29.01
AdvCLIP-LoRA (τ = 5) 75.73 34.27 65.60 24.03 93.27 71.76 57.51 24.47 75.64 18.46 86.43 35.95 85.18 41.78 73.57 26.51 68.67 31.20
AdvCLIP-LoRA (τ = 10) 75.58 35.35 65.47 24.80 93.23 73.47 57.45 25.24 75.22 19.48 86.40 36.79 85.02 43.65 73.33 27.17 68.49 32.24
AdvCLIP-LoRA (τ = 15) 75.70 35.94 65.36 25.37 93.39 73.51 58.22 26.30 75.07 20.26 86.02 37.20 85.51 44.09 73.51 27.91 68.56 32.90
AdvCLIP-LoRA (τ = 20) 75.56 36.29 65.30 25.59 93.51 73.96 57.39 26.36 74.91 20.56 86.43 37.72 85.10 44.86 73.28 28.05 68.59 33.24
AdvCLIP-LoRA (τ = 25) 75.42 36.45 65.22 25.78 93.35 74.16 57.09 26.48 74.59 21.05 86.18 37.64 85.30 44.58 73.09 28.44 68.52 33.50
AdvCLIP-LoRA (τ = 30) 75.47 36.78 65.18 26.00 93.47 74.28 57.51 27.01 74.70 21.11 86.26 38.62 84.90 44.62 73.12 28.97 68.62 33.63
Relative Improvement +18.91 +94.87 +29.57 +39.09 +2.17 +30.73 +26.07 +163.84 +25.01 +85 +18.57 +143.64 +26.57 +62.09 +12.82 +137.71 +15.69 +67.05

1

AdvVP Mao et al. 43.62 17.94 46.60 11.07 85.73 50.33 26.97 12.93 24.43 5.23 57.60 22.73 63.10 29.70 3.37 0.40 41.20 11.10
APT Li et al. (2024) 59.07 5.08 49.30 1.30 84.77 26.90 41.67 3.83 56.57 0.83 70.23 0.60 61.97 2.10 54.50 3.87 53.53 1.23
AdvPT Zhang et al. (2024) 29.96 1.44 20.17 0.43 62.97 7.60 16.73 2.60 13.27 0.00 37.93 0.13 33.97 0.43 27.03 0.00 27.57 0.37
AdvMaPLe Khattak et al. (2023) 33.52 11.38 49.27 14.60 85.53 48.37 13.63 2.93 5.27 0.30 30.67 4.97 1.40 0.10 32.70 7.07 49.70 12.67
AdvVLP Zhou et al. (2024) 33.01 12.03 50.53 17.50 85.43 48.47 15.97 4.77 1.07 0.77 29.63 3.83 19.77 6.57 11.83 1.73 49.83 12.60
FAP Zhou et al. (2024) 40.14 10.22 49.90 15.40 83.53 41.13 18.40 2.40 31.67 1.43 49.23 3.47 10.40 0.53 28.50 2.43 49.53 14.93
AdvCLIP-LoRA (τ = 1) 73.87 29.83 65.17 20.48 93.10 66.00 50.24 18.38 78.91 15.72 87.03 35.57 76.25 34.35 72.27 21.73 68.00 26.45
AdvCLIP-LoRA (τ = 2) 73.80 30.30 65.28 20.89 93.06 66.49 49.65 18.68 78.90 16.41 86.97 36.03 76.17 34.55 72.48 22.34 67.92 26.99
AdvCLIP-LoRA (τ = 5) 73.91 31.50 65.13 22.20 93.27 67.30 50.12 19.21 78.89 17.39 87.14 36.93 76.09 36.87 72.59 23.47 68.06 28.65
AdvCLIP-LoRA (τ = 10) 73.75 32.25 64.96 23.02 93.51 68.19 48.82 19.03 78.81 18.41 87.14 37.59 76.21 37.64 72.40 24.45 68.13 29.68
AdvCLIP-LoRA (τ = 15) 73.80 32.99 64.88 23.69 93.47 69.17 49.53 19.44 78.73 19.07 87.33 38.46 76.05 38.37 72.40 25.17 68.03 30.57
AdvCLIP-LoRA (τ = 20) 73.83 33.55 64.68 24.04 93.39 69.61 50.12 19.98 78.72 19.64 87.00 39.33 76.37 38.69 72.24 25.75 68.11 31.38
AdvCLIP-LoRA (τ = 25) 73.66 33.88 64.65 24.29 93.23 69.98 49.88 20.04 78.65 20.09 87.14 39.30 75.64 39.18 71.82 26.38 68.25 31.80
AdvCLIP-LoRA (τ = 30) 73.60 34.28 64.60 24.52 93.31 70.34 49.76 20.80 78.58 20.26 86.84 40.15 75.68 39.38 71.95 26.78 68.10 32.01
Relative Improvement +24.85 +79.77 +28.56 +31.54 +9.07 +35.49 +17.16 +47.18 +39.31 +163.84 +24.08 +65.38 +20.78 +26.73 +32.84 +163.84 +27.27 +98.79

This section expands Section 5.2 with full adversarial few-shot results on ViT-B/32 across
{1, 2, 4, 8, 16} shots. In addition to baseline comparisons, we sweep the number of inner maximiza-
tion steps τ used to train AdvCLIP-LoRA. Baselines report training with a 2-step PGD procedure,
and the impact of using more steps is unspecified; therefore, for fairness, the main paper fixes τ = 2.
The extended tables here show that increasing τ consistently improves AdvCLIP-LoRA’s robustness
and overall accuracy. Here, we also report ∆, defined as the relative improvement of AdvCLIP-LoRA
with τ = 10 over the strongest non-ours baseline for each dataset and shot.
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B.2 COMPARATIVE ANALYSIS OF ADVCLIP-LORA AND CLIP-LORA

Table 6: Detailed results for the 8 datasets with ViT-B/16 as backbone. Top-1 accuracy averaged over
3 random seeds is reported. Highest value is highlighted in bold.

ImageNet Caltech DTD Food

Shots Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

1

CLIP-LoRA 70.24 15.14 4.73 94.20 59.86 26.26 54.77 14.99 3.11 84.99 8.43 2.90
AdvCLIP-LoRA (τ = 1) 56.02 29.17 17.10 92.67 62.70 26.40 49.64 20.09 4.06 79.86 26.50 9.62
AdvCLIP-LoRA (τ = 2) 54.76 30.52 19.44 90.20 67.29 29.48 50.53 21.12 3.04 78.19 31.31 12.74
AdvCLIP-LoRA (τ = 4) 53.14 31.19 21.70 87.17 70.18 34.16 48.84 21.16 2.60 74.88 35.01 20.04
AdvCLIP-LoRA (τ = 6) 50.19 30.96 21.30 83.96 79.69 37.09 44.71 31.86 3.17 72.09 57.40 26.45
AdvCLIP-LoRA (τ = 8) 45.35 30.60 21.66 81.39 78.96 41.28 42.61 32.76 4.24 68.57 58.32 32.84
AdvCLIP-LoRA (τ = 10) 42.88 30.12 22.38 77.51 76.54 40.76 42.12 33.35 6.14 64.52 56.22 34.47

4

CLIP-LoRA 71.52 14.59 5.12 95.16 59.39 29.19 63.73 19.39 6.68 83.07 7.83 2.21
AdvCLIP-LoRA (τ = 1) 67.81 40.62 37.74 95.28 76.84 61.49 59.73 27.64 8.89 83.75 31.57 27.47
AdvCLIP-LoRA (τ = 2) 67.63 42.53 38.42 95.15 80.68 72.81 59.26 31.01 13.59 83.77 35.19 35.03
AdvCLIP-LoRA (τ = 4) 67.43 42.50 41.40 95.20 84.00 82.80 60.40 36.41 26.04 83.67 43.52 50.08
AdvCLIP-LoRA (τ = 6) 66.90 44.35 43.75 95.19 92.03 87.21 59.75 49.45 34.71 83.53 69.85 56.92
AdvCLIP-LoRA (τ = 8) 66.67 44.47 43.92 95.03 92.67 88.27 59.42 50.87 39.54 83.12 73.09 62.16
AdvCLIP-LoRA (τ = 10) 65.93 45.15 45.07 95.03 92.66 89.36 59.60 52.42 44.48 82.56 72.74 65.41

16

CLIP-LoRA 73.41 14.56 5.51 96.31 60.63 31.05 72.40 24.57 9.30 84.32 7.15 2.45
AdvCLIP-LoRA (τ = 1) 72.03 44.41 30.24 96.19 79.92 74.13 70.51 33.06 15.78 84.77 26.43 23.41
AdvCLIP-LoRA (τ = 2) 71.96 46.91 48.73 95.95 81.35 81.12 70.45 38.00 30.99 84.70 28.42 34.18
AdvCLIP-LoRA (τ = 4) 71.69 47.42 50.08 96.09 82.14 86.31 69.70 42.61 46.02 84.24 32.68 48.56
AdvCLIP-LoRA (τ = 6) 71.32 47.44 50.34 96.08 93.12 88.95 69.31 60.26 52.27 83.68 66.18 55.57
AdvCLIP-LoRA (τ = 8) 69.63 53.31 56.33 96.16 93.72 90.82 68.93 61.43 55.70 83.05 68.12 59.64
AdvCLIP-LoRA (τ = 10) 67.00 54.71 57.56 96.09 94.28 91.98 68.28 62.61 58.69 82.75 69.25 62.17

Pets Flowers UCF SUN

Shots Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

1

CLIP-LoRA 92.14 23.52 17.21 82.45 6.70 3.15 75.95 18.36 2.98 70.22 17.78 6.20
AdvCLIP-LoRA (τ = 1) 90.02 23.51 17.17 70.62 26.04 5.33 66.44 29.53 8.94 61.68 35.60 17.50
AdvCLIP-LoRA (τ = 2) 88.34 40.84 16.75 69.62 30.42 6.86 63.04 31.95 10.68 61.02 39.98 20.41
AdvCLIP-LoRA (τ = 4) 82.76 41.56 16.66 66.14 36.80 8.66 58.80 35.09 16.07 60.01 39.91 24.03
AdvCLIP-LoRA (τ = 6) 78.35 40.96 17.90 62.79 39.09 8.86 54.59 37.02 18.71 58.61 41.34 27.40
AdvCLIP-LoRA (τ = 8) 73.21 42.56 21.15 57.69 40.06 11.20 49.58 36.80 20.22 56.66 43.33 30.46
AdvCLIP-LoRA (τ = 10) 66.37 40.95 22.92 54.01 39.29 10.79 45.33 34.65 19.57 54.56 43.80 31.46

4

CLIP-LoRA 89.99 16.73 10.08 93.48 11.20 7.62 80.44 18.85 4.00 72.19 16.15 6.20
AdvCLIP-LoRA (τ = 1) 91.36 57.37 51.38 91.10 46.41 31.14 74.42 37.49 25.23 70.99 45.40 40.31
AdvCLIP-LoRA (τ = 2) 91.06 60.57 60.56 91.03 51.39 45.29 78.51 38.06 32.07 71.28 48.84 47.63
AdvCLIP-LoRA (τ = 4) 91.07 64.57 71.11 91.03 58.53 61.24 77.96 42.07 45.39 71.19 51.37 50.67
AdvCLIP-LoRA (τ = 6) 91.05 67.77 77.72 90.62 65.16 69.60 77.83 45.35 52.36 71.69 56.71 56.20
AdvCLIP-LoRA (τ = 8) 91.06 69.96 80.19 89.78 66.38 74.67 77.09 47.98 55.99 70.96 57.14 56.96
AdvCLIP-LoRA (τ = 10) 91.22 71.70 82.02 89.35 68.59 77.75 76.60 50.47 58.53 71.04 60.27 59.89

16

CLIP-LoRA 92.18 16.28 7.14 98.19 17.39 13.09 86.71 22.20 5.01 76.22 16.94 6.15
AdvCLIP-LoRA (τ = 1) 92.90 48.31 46.94 97.55 57.42 52.53 85.96 37.73 23.54 75.94 48.77 45.10
AdvCLIP-LoRA (τ = 2) 92.88 49.72 60.47 97.84 60.87 69.71 85.58 36.71 35.53 75.92 52.37 54.50
AdvCLIP-LoRA (τ = 4) 92.72 51.65 73.12 97.70 65.68 83.88 84.92 39.19 50.39 76.09 55.02 61.05
AdvCLIP-LoRA (τ = 6) 92.65 56.37 78.18 97.45 68.71 88.09 84.33 40.60 58.42 75.58 57.18 64.04
AdvCLIP-LoRA (τ = 8) 92.33 58.02 80.52 97.39 70.97 90.29 83.38 42.05 62.15 75.89 59.28 66.43
AdvCLIP-LoRA (τ = 10) 92.43 60.49 81.86 97.33 74.26 91.83 83.08 43.93 65.40 75.87 61.92 68.18

Setup. For adversarial training, we define the projection set for updating δ as an ℓ∞-ball with a radius
of ϵ = 10/255 across all datasets. To evaluate adversarial robustness, we implement two standard
attack methods: FGSM Szegedy et al. (2013) and PGD Madry et al. (2018). For FGSM, we set
ϵ = 10/255, while for PGD, we use ϵ = 2/255 with a total of 20 attack iterations.

Table 6 presents the experimental results of CLIP-LoRA and AdvCLIP-LoRA with varying values
of τ , using the ViT-B/16 backbone. Our findings show that AdvCLIP-LoRA significantly enhances
model robustness, increasing FGSM accuracy for a minimum of 11.04% and a maximum of 42.97%,
and PGD accuracy for a minimum of 15.67% and a maximum of 62.25%, averaged across all datasets.
Specifically, for τ = 1, the model demonstrates improved robustness without a significant impact on
clean accuracy (the difference in clean accuracy is less than 22.58% for 1 shot and less than 2.24%
for 16 shots, on average). As τ increases, robustness continues to improve; however, this comes
at the cost of a slight decrease in clean accuracy. This effect is less prominent for larger shots. It
is noteworthy that with 16 shots, the clean accuracy decreases by an average of only 2.24%, while
we observe a minimum improvement of 24.55% in the FGSM robustness and 29.00% in the PGD
robustness. For clearer comparison, we visualize clean and PGD-robust accuracies for both 4-shot
and 16-shot settings across ViT-B/16 and ViT-B/32 backbones in Fig. 5. Further results using the
ViT-B/32 model can be found in Table 7.
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Figure 5: Comparative analysis of CLIP-LoRA and AdvCLIP-LoRA with ViT-B/16 and ViT-B/32
backbones on 8 fine-grained datasets, showing clean accuracy and PGD-adversarial robustness (shots
labeled above). AdvCLIP-LoRAi means AdvCLIP-LoRA with τ = i.
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Table 7: Detailed results for the 8 datasets with ViT-B/32 as backbone. Top-1 accuracy averaged over
3 random seeds is reported. Highest value is highlighted in bold.

ImageNet Caltech DTD Food

Shots Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

2

CLIP-LoRA 65.70 15.97 8.23 93.54 62.83 42.34 55.46 17.16 9.16 76.53 9.00 4.57
AdvCLIP-LoRA (τ = 1) 56.97 21.00 11.88 92.11 64.44 40.04 52.03 17.83 5.28 75.68 14.17 6.83
AdvCLIP-LoRA (τ = 2) 56.73 20.68 11.34 91.89 66.02 41.61 52.05 19.36 6.36 75.70 16.11 8.62
AdvCLIP-LoRA (τ = 4) 56.32 22.14 12.06 91.94 68.26 44.88 51.16 19.41 6.78 75.71 18.97 10.31
AdvCLIP-LoRA (τ = 6) 55.45 23.21 12.48 91.63 70.45 46.69 50.26 20.75 7.25 76.11 21.26 11.93
AdvCLIP-LoRA (τ = 8) 54.87 23.65 12.38 91.76 71.51 48.79 50.22 21.12 7.49 76.32 23.27 13.25
AdvCLIP-LoRA (τ = 10) 53.46 22.27 10.85 91.58 74.28 52.32 49.33 21.49 8.18 76.35 25.05 14.85

4

CLIP-LoRA 66.43 15.59 8.59 94.44 62.44 42.12 60.18 19.35 10.70 76.18 9.02 4.55
AdvCLIP-LoRA (τ = 1) 61.60 20.63 13.03 93.90 64.46 43.28 56.40 18.99 7.53 77.30 14.00 7.96
AdvCLIP-LoRA (τ = 2) 61.44 20.36 12.18 93.75 67.96 51.67 56.68 21.06 9.73 77.52 14.46 10.29
AdvCLIP-LoRA (τ = 4) 61.44 20.46 12.30 93.81 71.09 55.11 56.58 22.24 12.81 77.88 16.49 13.92
AdvCLIP-LoRA (τ = 6) 60.49 20.80 12.77 93.47 85.94 59.67 56.17 36.90 15.62 77.96 49.43 17.54
AdvCLIP-LoRA (τ = 8) 60.22 21.91 12.99 92.82 86.17 62.50 55.32 37.87 18.62 77.40 49.34 23.05
AdvCLIP-LoRA (τ = 10) 59.10 22.65 13.57 92.94 86.49 65.52 54.34 38.67 22.02 76.91 50.40 27.20

8

CLIP-LoRA 67.28 15.35 8.62 94.46 61.68 43.30 63.36 21.30 13.12 76.90 8.84 4.65
AdvCLIP-LoRA (τ = 1) 64.19 22.24 14.53 94.67 65.44 49.37 61.17 20.57 9.99 78.03 12.35 8.47
AdvCLIP-LoRA (τ = 2) 63.93 22.37 14.74 94.63 67.10 58.70 60.78 21.63 14.34 77.90 12.05 13.36
AdvCLIP-LoRA (τ = 4) 63.76 22.93 16.41 94.54 68.38 68.78 61.11 22.56 22.69 77.55 13.37 22.54
AdvCLIP-LoRA (τ = 6) 63.50 24.00 17.57 94.28 69.90 74.21 60.05 23.15 27.88 77.29 14.98 27.55
AdvCLIP-LoRA (τ = 8) 63.22 24.20 18.38 94.38 69.25 77.78 58.81 23.46 30.44 76.94 15.39 31.07
AdvCLIP-LoRA (τ = 10) 62.74 23.69 18.51 94.39 68.45 79.68 58.91 23.62 32.29 76.57 16.25 33.24

16

CLIP-LoRA 68.43 15.09 9.06 95.50 64.29 47.80 68.62 20.11 16.80 78.00 8.97 5.32
AdvCLIP-LoRA (τ = 1) 66.24 19.48 13.26 95.84 67.46 55.38 66.90 22.40 12.61 78.55 12.96 10.10
AdvCLIP-LoRA (τ = 2) 66.08 20.06 15.03 95.40 68.64 66.09 65.84 21.63 19.37 78.41 12.84 16.25
AdvCLIP-LoRA (τ = 4) 66.08 21.13 15.98 95.39 68.19 75.62 64.89 22.02 29.33 78.09 12.68 24.62
AdvCLIP-LoRA (τ = 6) 65.39 22.46 17.10 95.46 88.52 80.22 63.91 43.04 34.02 77.75 45.41 28.79
AdvCLIP-LoRA (τ = 8) 65.63 23.74 21.17 95.31 89.22 82.29 64.01 45.18 38.00 77.44 46.89 32.03
AdvCLIP-LoRA (τ = 10) 64.06 24.07 17.93 95.28 89.59 84.10 64.77 46.69 39.26 77.08 48.62 35.18

Pets Flowers UCF SUN

Shots Method Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

2

CLIP-LoRA 87.43 21.70 16.11 84.40 15.36 10.68 74.07 22.04 7.18 68.71 17.61 8.56
AdvCLIP-LoRA (τ = 1) 85.70 34.83 16.92 77.71 19.48 8.10 69.41 26.69 8.48 65.45 23.28 13.56
AdvCLIP-LoRA (τ = 2) 85.14 34.61 18.19 77.16 22.58 10.53 68.06 28.94 8.99 65.22 23.97 13.80
AdvCLIP-LoRA (τ = 4) 84.90 37.19 22.85 76.12 26.01 12.29 67.48 31.42 10.31 64.96 23.77 14.58
AdvCLIP-LoRA (τ = 6) 84.67 40.80 26.93 75.78 28.49 13.52 66.56 33.71 11.86 64.64 25.18 14.62
AdvCLIP-LoRA (τ = 8) 84.39 46.05 31.78 74.83 33.10 16.20 65.64 36.75 13.79 63.30 27.20 16.48
AdvCLIP-LoRA (τ = 10) 85.07 49.10 34.16 72.71 37.89 19.16 64.19 40.73 16.70 63.59 29.12 17.01

4

CLIP-LoRA 86.43 16.02 11.74 90.21 16.82 13.71 75.65 25.87 7.67 70.20 16.96 8.89
AdvCLIP-LoRA (τ = 1) 87.87 34.51 27.58 86.32 20.46 16.83 73.43 25.87 10.09 68.93 24.03 15.60
AdvCLIP-LoRA (τ = 2) 87.87 35.30 33.51 86.26 21.32 19.33 73.39 27.39 12.88 69.22 26.58 16.65
AdvCLIP-LoRA (τ = 4) 87.82 35.82 37.40 86.26 26.00 30.50 73.57 31.43 16.59 68.92 27.55 17.11
AdvCLIP-LoRA (τ = 6) 87.80 37.40 46.76 86.29 30.50 32.46 73.72 33.87 23.55 68.88 30.48 19.27
AdvCLIP-LoRA (τ = 8) 87.56 41.96 53.47 85.82 33.62 39.13 72.75 35.43 26.53 68.40 32.25 20.09
AdvCLIP-LoRA (τ = 10) 87.52 43.52 56.88 85.34 37.54 43.78 72.28 37.15 28.19 68.47 38.04 23.22

8

CLIP-LoRA 87.61 16.54 10.92 93.29 21.60 18.35 80.46 22.48 9.17 72.18 18.23 9.85
AdvCLIP-LoRA (τ = 1) 88.71 30.46 24.04 91.76 28.11 21.26 78.64 26.55 11.77 71.73 24.53 16.43
AdvCLIP-LoRA (τ = 2) 88.75 29.11 35.99 91.91 27.81 34.81 78.67 27.45 18.03 71.71 24.76 17.73
AdvCLIP-LoRA (τ = 4) 88.63 28.67 50.19 91.65 29.57 51.02 78.35 29.29 27.54 71.86 27.07 20.80
AdvCLIP-LoRA (τ = 6) 88.65 30.79 57.28 91.76 33.65 58.67 77.53 28.86 33.02 71.57 29.72 23.87
AdvCLIP-LoRA (τ = 8) 88.53 34.13 61.57 91.20 33.51 63.04 77.22 28.71 37.31 71.39 31.83 26.10
AdvCLIP-LoRA (τ = 10) 88.26 35.15 64.59 90.91 35.49 65.77 76.36 28.15 39.32 71.10 31.77 28.14

16

CLIP-LoRA 88.43 15.40 10.54 96.39 24.13 22.26 82.86 25.09 10.16 74.09 18.20 10.52
AdvCLIP-LoRA (τ = 1) 89.67 27.06 23.70 95.22 32.45 30.33 81.18 27.36 13.95 73.77 24.73 17.79
AdvCLIP-LoRA (τ = 2) 89.66 24.00 35.08 95.75 31.14 48.50 81.18 26.86 21.92 73.46 23.69 20.29
AdvCLIP-LoRA (τ = 4) 89.69 24.41 50.63 95.93 33.37 62.78 80.99 26.34 31.94 73.52 25.18 23.23
AdvCLIP-LoRA (τ = 6) 89.56 24.81 57.38 95.49 34.89 70.13 80.49 25.48 37.94 73.61 27.10 25.11
AdvCLIP-LoRA (τ = 8) 89.27 24.85 61.59 95.25 35.24 74.29 80.49 25.10 41.07 74.09 27.61 29.55
AdvCLIP-LoRA (τ = 10) 88.83 25.10 64.06 95.20 36.64 77.37 79.56 25.85 43.64 73.65 31.34 31.08
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B.3 ABLATION ON ATTACK BUDGET ϵ

Figure 6: Robust accuracy of AdvCLIP-LoRA with ViT-B/16 backbone on Pets, Flowers, UCF, and
SUN datasets with different τ and ϵ values.

B.4 ABLATION ON LORA DESIGN CHOICES

Table 8: Average Clean, PGD-100, and harmonic mean (HM) for LoRA variants.

Overall Average Flowers Pets SUN UCF

Method Clean PGD HM Clean PGD HM Clean PGD HM Clean PGD HM Clean PGD HM

AdvCLIP-LoRA 81.25 34.76 48.69 90.70 48.72 63.39 87.03 32.98 47.83 71.09 31.11 43.28 76.18 26.22 39.01
Vision 78.71 30.74 44.21 86.07 37.72 52.45 88.74 35.08 50.28 67.40 26.02 37.55 72.64 24.13 36.23
Wq 80.65 30.62 44.39 87.86 37.07 52.14 88.09 33.69 48.74 70.88 28.34 40.49 75.76 23.39 35.74
Wv 80.95 34.73 48.61 89.05 45.43 60.17 87.14 35.62 50.57 70.53 31.18 43.24 77.09 26.40 39.33
WqWv 80.95 34.65 48.53 89.85 48.96 63.38 86.86 33.69 48.55 71.22 30.44 42.65 75.87 25.51 38.18
up 81.21 29.32 43.08 90.17 38.81 54.26 88.42 30.25 45.08 70.35 25.95 37.91 75.89 22.28 34.45
bottom 80.09 33.02 46.76 88.10 41.18 56.13 87.03 36.77 51.70 70.30 31.11 43.13 74.91 23.00 35.19
half-up 81.37 30.72 44.60 90.05 41.53 56.84 88.14 29.82 44.56 70.40 27.14 39.18 76.90 24.40 37.05
half-bottom 79.80 32.70 46.39 88.79 42.43 57.42 85.55 33.52 48.17 70.33 31.26 43.28 74.52 23.61 35.86
mid 80.45 30.98 44.73 87.82 39.95 54.92 88.31 32.38 47.39 69.92 28.40 40.39 75.73 23.18 35.50
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C CONVERGENCE ANALYSIS

Before presenting the main theorem, we state several key intermediate lemmas used in the proof.
For notational convenience, we denote Φ(W := W0 +BA) as Φ(BA), and use Φ(W ) and Φ(BA)
interchangeably throughout the analysis. Let us begin with a few definitions.

Definition C.1 A function f is L-Lipschitz if for all W,W ′, we have

∥f(W )− f (W ′)∥ ≤ L ∥W −W ′∥ . (12)

Definition C.2 A function f is ℓ-smooth if for all W,W ′, we have

∥∇f(W )−∇f (W ′)∥ ≤ ℓ ∥W −W ′∥ . (13)

Proposition C.1 Lin et al. (2020) Under Assumption 4.2, Φ(·) is 2κℓ-smooth with ∇Φ(·) =
∇W f (·, δ⋆(·)). Also, δ⋆(·) is κ-Lipschitz.

Lemma C.1 For any matrices A,B ∈ Rd×k and α, δ > 0 we have

2⟨A,B⟩ ≤ δ∥A∥2 + δ−1∥B∥2,
∥A+B∥2 ≤ (1 + α)∥A∥2 + (1 + 1

α )∥B∥
2. (14)

Using Proposition C.1 and ∥A∥F ≤ cA, ∥B∥F ≤ cB , we can prove the smoothness of Φ(·) with
respect to A and B when the other is held fixed. Formally, we state the following lemma:

Lemma C.2 Under Assumption 4.2 and boundedness of low-rank matrices, the function Φ is 2κℓc2B-
smooth with respect to A when B is fixed, and 2κℓc2A-smooth with respect to B when A is fixed.

Proof. First, by the chain rule we notice that

∇AΦ(W ) = ∇Af(W, δ∗(W )) = BT∇W f(W, δ∗(W )) +
(

dδ∗(W )
dW

)T
∇δf(W, δ∗(W ))︸ ︷︷ ︸

=0

= BT∇WΦ(W ). (15)

Similarly, we have:

∇BΦ(W ) = ∇WΦ(W )AT . (16)

Now, we can write

∥∇AΦ(BA)−∇AΦ(BA′)∥ =
∥∥BT∇WΦ(BA)−BT∇WΦ(BA′)

∥∥
= ∥B∥ ∥∇WΦ(BA)−∇WΦ(BA′)∥
(a)

≤ cB(2κℓ) ∥BA−BA′∥
≤ 2κℓc2B ∥A−A′∥ . (17)

In (a), we used the boundedness of the low-rank matrices and Proposition C.1. Similarly, we can
prove that Φ is 2κℓc2A-smooth with respect to B when A is fixed. □

Lemma C.3 The iterates {At, Bt}t≥1 in Alg. 1 (lines 8-9) satisfy the following inequality:

EΦ(BtAt) ≤ EΦ(Bt−1At−1)− ηw

2

(
E ∥∇AΦ(Bt−1At−1)∥2 + E ∥∇BΦ(Bt−1At−1)∥2

)
+ 5ηw

4 E ∥∇Af(Bt−1At−1, δt)−∇AΦ(Bt−1At−1)∥2

+ ηw

2 E ∥∇Bf(Bt−1At−1, δt)−∇BΦ(Bt−1At−1)∥2

+
κℓ(c4A+c4B)η2

wG2

M +
2G2(2κℓc2Bc4A+G2)η3

w

M . (18)
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Proof. Using smoothness for A from Lemma C.2, we can write

EΦ(BtAt) ≤ EΦ(BtAt−1) + E ⟨∇AΦ(BtAt−1), At −At−1⟩+ κℓc2Bη
2
wE ∥At −At−1∥2

≤ EΦ(BtAt−1) + E ⟨∇AΦ(BtAt−1),−ηw∇Af(Bt−1At−1, δt)⟩

+ κℓc2Bη
2
wE

∥∥∥∥∥ 1
M

M∑
i=1

∇AF (Bt−1At−1, δt; ξi)

∥∥∥∥∥
2

(a)

≤ EΦ(BtAt−1) +
κℓc4Bη2

wG2

M

+ E ⟨∇AΦ(BtAt−1)−∇AΦ(Bt−1At−1) +∇AΦ(Bt−1At−1),−ηw∇Af(Bt−1At−1, δt)⟩
= EΦ(BtAt−1)− ηwE ⟨∇AΦ(BtAt−1)−∇AΦ(Bt−1At−1),∇Af(Bt−1At−1, δt)⟩

− ηwE ⟨∇AΦ(Bt−1At−1),∇Af(Bt−1At−1, δt)⟩+ κℓc4Bη2
wG2

M

(b)

≤ EΦ(BtAt−1) + 2ηwE ∥∇AΦ(BtAt−1)−∇AΦ(Bt−1At−1)∥2 + ηw

8 E ∥∇Af(Bt−1At−1, δt)∥2

− ηwE ⟨∇AΦ(Bt−1At−1),∇Af(Bt−1At−1, δt)−∇AΦ(Bt−1At−1) +∇AΦ(Bt−1At−1)⟩

+
κℓc4Bη2

wG2

M

(c)

≤ EΦ(BtAt−1) + 2ηwE ∥∇AΦ(BtAt−1)−∇AΦ(Bt−1At−1)∥2 + ηw

4 E ∥∇AΦ(Bt−1At−1)∥2

+ ηw

4 E ∥∇AΦ(Bt−1At−1)−∇Af(Bt−1At−1, δt)∥2 − 3ηw

4 E ∥∇AΦ(Bt−1At−1)∥2

+ ηwE ∥∇Af(Bt−1At−1, δt)−∇AΦ(Bt−1At−1)∥2 + κℓc4Bη2
wG2

M

= EΦ(BtAt−1) + 2ηwE ∥∇AΦ(BtAt−1)−∇AΦ(Bt−1At−1)∥2 − ηw

2 E ∥∇AΦ(Bt−1At−1)∥2

+ 5ηw

4 E ∥∇Af(Bt−1At−1, δt)−∇AΦ(Bt−1At−1)∥2 + κℓc4Bη2
wG2

M . (19)

In (a) we applied Assumption 4.1, in (b) we employed the inequality ⟨a, b⟩ ≤ 1
8∥a∥

2 + 2∥b∥2, and
in (c) we utilized the inequalities ⟨a, b⟩ ≤ 1

4∥a∥
2 + ∥b∥2 and ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. We derive

the following bound on the term in the above inequality:

E ∥∇AΦ(BtAt−1)−∇AΦ(Bt−1At−1)∥2 ≤ E
∥∥BT

t ∇WΦ(BtAt−1)−BT
t−1∇WΦ(Bt−1At−1)

∥∥2
≤ E

∥∥BT
t ∇WΦ(BtAt−1)−BT

t ∇WΦ(Bt−1At−1)
∥∥2

+ E
∥∥BT

t ∇WΦ(Bt−1At−1)−BT
t−1∇WΦ(Bt−1At−1)

∥∥2
≤ 2κℓc2Bc

2
AE ∥Bt −Bt−1∥2 + E

∥∥BT
t −BT

t−1

∥∥2 G2

≤ 2κℓc2Bc4AG2η2
w

M +
G4η2

w

M . (20)
If we use equation 20 in equation 19, we have

EΦ(BtAt) ≤ EΦ(BtAt−1)− ηw

2 E ∥∇AΦ(Bt−1At−1)∥2

+ 5η
4 E ∥∇Af(Bt−1At−1, δt)−∇AΦ(Bt−1At−1)∥2

+
κℓc4Bη2

wG2

M +
4κℓc2Bc4AG2η3

w

M +
2G4η3

w

M . (21)
Using smoothness for B from Lemma C.2, we can write

EΦ(BtAt−1) ≤ EΦ(Bt−1At−1) + E ⟨∇BΦ(Bt−1At−1), Bt −Bt−1⟩+ κℓc2Aη
2
wE ∥Bt −Bt−1∥2

≤ EΦ(Bt−1At−1) + E ⟨∇BΦ(Bt−1At−1),−ηw∇Bf(Bt−1At−1, δt)⟩

+ κℓc2Aη
2
wE

∥∥∥∥∥ 1
M

M∑
i=1

∇BF (Bt−1At−1, δt; ξ)

∥∥∥∥∥
2

≤ EΦ(Bt−1At−1) +
κℓc4Aη2

wG2

M

− ηwE ⟨∇BΦ(Bt−1At−1),∇Bf(Bt−1At−1, δt)−∇BΦ(Bt−1At−1) +∇BΦ(Bt−1At−1)⟩

≤ EΦ(Bt−1At−1)− ηw

2 E ∥∇BΦ(Bt−1At−1)∥2 + κℓc4Aη2
wG2

M

+ ηw

2 E ∥∇Bf(Bt−1At−1, δt)−∇BΦ(Bt−1At−1)∥2 . (22)
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Summing equation 21 and equation 22 yields the desired inequality. □

Lemma C.4 Let γt = E ∥δ⋆ (Wt)− δt∥2, the following statement holds true,

γt ≤
(
1− 1

2κ

)
γt−1 +

8κ3(c4A+c4B)G2η2
w

M + 2G2

ℓ2M . (23)

Proof. Since f(Wt, ·) is µ-strongly concave and ηδ = 1/ℓ, we have Lin et al. (2020)

E ∥δ⋆ (Wt−1)− δt∥2 ≤
(
1− 1

κ

)
γt−1 +

2G2

ℓ2M . (24)

We can also write

γt ≤
(
1 + 1

2(max{κ,2}−1)

)
E ∥δ⋆ (Wt−1)− δt∥2

+ (1 + 2(max{κ, 2} − 1))E ∥δ⋆ (Wt)− δ⋆ (Wt−1)∥2

≤
(

2max{κ,2}−1
2max{κ,2}−2

)
E ∥δ⋆ (Wt−1)− δt∥2 + 4κE ∥δ⋆ (Wt)− δ⋆ (Wt−1)∥2

(a)

≤
(
1− 1

2κ

)
γt−1 + 4κE ∥δ⋆ (Wt)− δ⋆ (Wt−1)∥2 + 2G2

ℓ2M , (25)

where in (a) we used equation 24. Since δ⋆(·) is κ-Lipschitz, ∥δ⋆ (Wt)− δ⋆ (Wt−1)∥ ≤
κ ∥Wt −Wt−1∥. Furthermore, we have

E ∥Wt −Wt−1∥2 = E ∥BtAt −BtAt−1 +BtAt−1 −Bt−1At−1∥2

≤ 2c2BE ∥At −At−1∥2 + 2c2AE ∥Bt −Bt−1∥2

=
2G2(c4A+c4B)η2

w

M . (26)

Using equation 26 into equation 25 yields the desired inequality □

Lemma C.5 Let γt = E ∥δ⋆ (Wt)− δt∥2, the following statement holds true,

EΦ(BtAt) ≤ EΦ(Bt−1At−1)− ηw

2

(
E ∥∇AΦ(Bt−1At−1)∥2 + E ∥∇BΦ(Bt−1At−1)∥2

)
+ ℓ2ηw

(
5c2B+2c2A

2

)
γt−1 +

G2(2.5c2B+c2A)ηw

M +
κℓ(c4A+c4B)G2η2

w

M +
2G2(2κℓc2Bc4A+G2)η3

w

M . (27)

Proof. Since ∇WΦ(Wt−1) = ∇W f(Wt−1, δ
∗(Wt−1)), we have

E ∥∇Af(Wt−1, δ
∗(Wt−1))−∇Af(Wt−1, δt)∥2

= E
∥∥BT

t−1∇Af(Wt−1, δ
∗(Wt−1))−BT

t−1∇Af(Wt−1, δt)
∥∥2

≤ c2Bℓ
2E ∥δ∗(Wt−1)− δt∥2 ≤ 2c2Bℓ

2
(
E ∥δ∗(Wt−1)− δt−1∥2 + E ∥δt − δt−1∥2

)
≤ 2c2Bℓ

2
(
γt−1 +

G2

ℓ2M

)
= 2c2Bℓ

2γt−1 +
2c2BG2

M . (28)

Similarly, we have

E ∥∇Bf(Wt−1, δ
∗(Wt−1))−∇Bf(Wt−1, δt)∥2 ≤ 2c2Aℓ

2γt−1 +
2c2AG2

M . (29)

Combining equation 28 and equation 29 with equation 18 yields the desired inequality. □

Theorem C.1 Let Assumptions 4.1 and 4.2 hold. Moreover, assume that the low-rank matrices
remain bounded by constants cA and cB in each iteration, i.e., ∥At∥F ≤ cA and ∥Bt∥F ≤ cB . Then,
there exists iteration t ∈ {0, · · · , T − 1} for which

E ∥∇Φ(Wt)∥2 ≤ O
(
4∆Φ(1/ηw) + κℓ2(c2A + c2B)D

2

ϵ2

)
, (30)

where ηw = Θ(min{1/κℓ(c4A + c4B), 1/κ
2ℓ(c2A + c2B), 1/(G

2 + κℓc4Ac
2
B)

1/2}), ηδ = Θ(1/ℓ), and
∆Φ = EΦ(W0)− EΦ(WT+1). Moreover, the mini-batch size M is bounded by

O
(
G2 + κ(c2A + c2B)G

2

ϵ2

)
. (31)
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Proof. Performing the inequality in Lemma C.4 recursively and using γ0 ≤ D2 from Assumption 4.2
results in

γt ≤
(
1− 1

2κ

)t
D2 +

(
8κ3(c4A+c4B)G2η2

w

M + 2G2

ℓ2M

)t−1∑
j=0

(
1− 1

2κ

)t−1−j

 . (32)

Combining equation 32 with equation 27, we have

EΦ(Wt) ≤ EΦ(Wt−1)− ηw

2

(
E ∥∇AΦ(Wt−1)∥2 + E ∥∇BΦ(Wt−1)∥2

)
+ ηwℓ

2
(

5c2B+2c2A
2

) (
1− 1

2κ

)t−1
D2

+ ηwℓ
2
(

5c2B+2c2A
2

)(
8κ3(c4A+c4B)G2η2

w

M + 2G2

ℓ2M

)t−2∑
j=0

(
1− 1

2κ

)t−2−j


+

G2(2.5c2B+c2A)ηw

M +
κℓ(c4A+c4B)G2η2

w

M +
2G2(2κℓc2Bc4A+G2)η3

w

M . (33)

Summing up equation 33 over t = 1, 2, · · · , T + 1 and rearranging, we can write

EΦ(WT+1) ≤ EΦ(W0)− ηw

2

T∑
t=0

(
E ∥∇AΦ(Wt)∥2 + E ∥∇BΦ(Wt)∥2

)
+ ηwℓ

2
(

5c2B+2c2A
2

)
D2

(
T∑

t=0

(
1− 1

2κ

)t)

+ ηwℓ
2
(

5c2B+2c2A
2

)(
8κ3(c4A+c4B)G2η2

w

M + 2G2

ℓ2M

)T+1∑
t=1

t−2∑
j=0

(
1− 1

2κ

)t−2−j


+

G2(2.5c2B+c2A)ηw(T+1)
M +

κℓ(c4A+c4B)G2η2
w(T+1)

M +
2G2(2κℓc2Bc4A+G2)η3

w(T+1)
M

≤ EΦ(W0)− ηw

2

T∑
t=0

(
E ∥∇AΦ(Wt)∥2 + E ∥∇BΦ(Wt)∥2

)
+ κηwℓ

2
(
5c2B + 2c2A

)
D2

+ κηwℓ
2
(
5c2B + 2c2A

) ( 8κ3(c4A+c4B)G2η2
w

M + 2G2

ℓ2M

)
(T + 1)

+
G2(2.5c2B+c2A)ηw(T+1)

M +
κℓ(c4A+c4B)G2η2

w(T+1)
M +

2G2(2κℓc2Bc4A+G2)η3
w(T+1)

M . (34)

Then, it follows that

1
T+1

T∑
t=0

E
∥∥∇(A,B)Φ(Wt)

∥∥2 = 1
T+1

T∑
t=0

(
E ∥∇AΦ(Wt)∥2 + E ∥∇BΦ(Wt)∥2

)
≤ 2(EΦ(W0)−EΦ(WT+1))

ηw(T+1)

+
κℓ2(10c2B+4c2A)D

2

T+1 + κℓ2
(
10c2B + 4c2A

) ( 8κ3(c2A+c2B)G2η2
w

M + 2G2

ℓ2M

)
+

2G2(2.5c2B+c2A)
M

+
2κℓ(c4A+c4B)G2ηw

M +
4G2(2κℓc2Bc4A+G2)η2

w

M

≤ O
(

∆Φ

ηw(T+1) +
κℓ2(c2A+c2B)D2

T+1 + G2

M +
κ(c2A+c2B)G2

M

)
. (35)

This implies that the number of iterations required by Algorithm 1 to return an ϵ-stationary point is
bounded by

O
(
4∆Φ(1/ηw) + κℓ2(c2A + c2B)D

2

ϵ2

)
, (36)

Moreover, the mini-batch size M is bounded by

O
(
G2 + κ(c2A + c2B)G

2

ϵ2

)
, (37)

which completes the proof. □
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