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Abstract

The paradigm of pretraining a backbone on a large set of (often unlabeled) images has
gained popularity. The quality of the resulting features is commonly measured by freezing
the backbone and training different task heads on top of it. However, current evaluations
cover only classifications of whole images or require complex dense task heads which in-
troduce a large number of parameters and add their own inductive biases. In this work,
we propose dense attentive probing, a parameter-efficient readout to make dense prediction
using arbitrary backbones independent of the size and resolution of their feature volume. To
this end, we utilize a masked cross-attention layer with learnable mask sizes which enables
dense prediction with a small parameter budget, thus providing relatively unbiased access
to the features. We employ this method to evaluate common backbones in three dimensions:
instance awareness, local semantics and spatial understanding. We find that DINOv2 out-
performs all other backbones tested – including those supervised with masks and language
– across all three task categories. Furthermore, our analysis suggests that self-supervised
training tends to yield features that separate object instances better than vision-language
models. Code is available at https://to.be.released.

1 Introduction

Driven by the success of self-supervised learning (Chen et al., 2020; He et al., 2022; Oquab et al., 2023) and
vision-language training (Radford et al., 2021), in many computer vision tasks, training from scratch has
largely been replaced by fine-tuning large pretrained backbones. Ideally, the latter provide powerful features
such that in the fine-tuning step only a small number of parameters needs to be modified and no large
datasets are required. Many factors influence the feature quality of backbones: for instance, the pretraining
paradigm, model architecture and the training data. Therefore, for both computer vision scientists and
practitioners, it is crucial to characterize strengths and weaknesses of large pretrained backbones through
systematic benchmarks. For whole-image classification (i. e. predicting one label per image) such benchmarks
exist, for example, ImageNet (Russakovsky et al., 2014), VTAB (Zhai et al., 2019) and FGVC (Jia et al.,
2022). They often rely on the established approaches of linear and attentive probing. Linear probing
applies global average pooling and then linearly maps the resulting feature vector to class predictions while
attentive probing uses cross-attention with a query token that predicts the class. Both techniques are not
applicable for dense prediction tasks (i. e. predicting a label for each pixel). For example, in linear probing the
prediction has the same spatial resolution as the feature volume, which is usually too low to capture object
structures. Furthermore, the resolution of the feature volume varies across different backbones, preventing
a fair comparison. Therefore, often common task heads (e. g. UPerNet by Chen et al. (2024a)) are used at
the price of adding a large number of parameters and introducing additional inductive biases. Thus, the
resulting backbone feature quality measurements are mediated by compatibility and performance of these
heads.

Here we address the problem of assessing and comparing the representational quality of dense feature vol-
umes. To this end, we measure dense prediction performance of feature backbones as directly as possible
by proposing a novel dense equivalent to attentive probing. Our model consists of a single masked cross-
attention layer, introduces only a small number of parameters (less than 100K, often even less than 50K)
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Model learnable parameters

ConvAdapter (Chen et al., 2024a) >24M
ViT-Adapter (Chen et al., 2022b) 2.5M to 23.7M
Conv LoRA (Zhong et al., 2024) ∼ 4M

Dense Attentive Probing (ours) 0.05M to 0.5M

Table 1: Adapter methods for dense prediction with the number of learnable parameters.

and adds little computational overhead over the backbone. By using cross-attention, we decouple the size
and resolution of the input image and encoder output from that of the dense output, i. e. generate outputs
at any resolution. We introduce a learnable masking radius in the cross-attention layer, which allows the
readout to work with variable feature locality.

Balestriero et al. (2023) note the lack of a standardized evaluation protocol for self-supervised learning
methods on dense prediction tasks. We believe our dense attentive probing method can address this gap and
experimentally assess the quality of various supervised, self-supervised, vision-language training methods.
Specifically, we use the new readout to characterize features along these three dimensions: (1) instance
disentanglement, i. e. how well are individual instances recognizable from the features; (2) local semantics,
evaluating how meaningful the features are for a local classification; and (3) spatial understanding, which
assesses how well is the 3d structure of the scene captured.

2 Related work

Representation learning Self-supervised representation learning has been a popular research topic with
multiple approaches that can roughly be categorized into joint-embedding (Chen et al., 2020; 2021; Caron
et al., 2021) and reconstruction-based (He et al., 2022). DINOv2 is based on the iBot (Zhou et al., 2021)
method which uses a joint-embedding architecture in combination with self-distillation and reconstruction.
VicRegL (Bardes et al., 2021) and many other recent methods explicitly addresses local features by modeling
losses at the token level. There has been a discussion about which techniques leads to better and more efficient
features for perception tasks (Balestriero & LeCun, 2024). The approaches discussed above mainly address
classification. Another stream of research, called object-centric learning, focuses on learning disentangled
object representations. While early methods only worked on synthetic data (Burgess et al., 2019; Locatello
et al., 2020) more recent approaches succeed on natural images (Zadaianchuk et al., 2024; Aydemir et al.,
2023). Recently, a new method for evaluating such object-centric representations was proposed Didolkar
et al. (2024). The main difference of our present work to object-centric methods is that we assume encode
object instances are encoded implicitly in feature volumes whereas object-centric methods explicitly represent
objects in their architecture (e. g. in slots). The seminal CLIP model (Radford et al., 2021) introduced another
stream of research called vision-language models (VLMs), where the model is trained on aligning text-image
pairs. Later, this training paradigm was simplified to use a sigmoid-based loss function (Zhai et al., 2023)
instead of a softmax-based loss, making the method less dependent on the batch size. Recently, the role
of data is investigated more closely in the context of vision-language models (Gadre et al., 2024; Xu et al.,
2024; Fang et al., 2024).

Feature evaluation Evaluations on features predate the deep learning era in computer vision. Recently,
there have been numerous attempts at characterizing and comparing common feature backbones but with
different objectives. The works by Bonnen et al. (2024) and El Banani et al. (2024) focus on 3d shape under-
standing. Chen et al. (2024b) design a zero-shot benchmark for image encoders in contrastive vision-language
pretraining setting and propose the ViTamin architecture. Goldblum et al. (2024) evaluate classification,
instance segmentation, object detection and retrieval. Our work differs in focusing on dense prediction tasks
without large heads enabling a more direct measurement of the feature quality. Further efforts to characterize
vision backbones include the timm leaderboard (Wightman, 2019) for image classification, CLIP benchmark
(LAION-AI, 2022) for vision-language models and CV-Bench for multimodal large language models (MLLMs;
Tong et al., 2024).
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Figure 1: Dense attentive probing design: Queries in form of a coordinate grid attend to features extracted
from an arbitrary backbone. The transformed queries upscaled by a small CNN to yield a task-specific
output. Our dense readout decouples the predicted output size from the size of the feature volume. The
masking strength is defined by a Gaussian function over the distance between corresponding points in the
feature volume and the query grid, with the standard deviation being a learnable scalar parameter for each
attention head.

Adapters and parameter-efficient fine-tuning Adapters are (often small) sub-networks that are
trained to take generic features and adapt them to solve a specific task. For computer vision problems,
many adapters were proposed that address whole-image classification (Chen et al., 2022a; Steitz & Roth,
2024). Also, the attentive probing (or attentional pooling) used in the CoCa (Yu et al., 2022) and V-JEPA
evaluation (Bardes et al., 2023) can be considered a minimal adapter for whole image classification. These
methods are not straightforward applicable for dense prediction. Based on the upsampling method FeatUp
(Fu et al., 2024), linear evaluation can be applied in higher resolutions. To our knowledge this has not been
done before but we compare to a baseline that uses this approach. The method proposed by Bhattacharjee
et al. (2023) adapts to dense images but addresses multi-task learning, whereas our goal is to fine-tune on
single tasks. Yang et al. (2024) mainly adapt the cluster-prediction paradigm for regression tasks. In both
methods, the backbones are not entirely frozen.

In another research stream, learnable parameters are added inside the frozen backbone network, for instance
in Adapter (Houlsby et al., 2019), low-rank adaptation (Hu et al., 2021, LoRA) and scaling-and-shifting (Lian
et al., 2022). ViT-Adapter (Chen et al., 2022b) applies this paradigm for dense prediction tasks but builds on
established task heads for segmentation (UperNet) and detection (Mask R-CNN and HTC++). Furthermore,
the number of parameters introduced by the adapter depends on the backbone, ranging from 2.5M to 23.7M
parameters. ConvAdapter (Chen et al., 2024a) propose an adapter specifically for convolutional networks. In
case of dense prediction, their method uses standard task heads which require a large number of parameters.
Zhong et al. (2024) apply low-rank adaptation to image segmentation tasks by introducing around 4M
parameters, which is an order of magnitude more than our approach. For an in-depth review of adapters we
refer to the survey of Yu et al. (2024).

3 Dense Attentive Probing

In this section, we introduce the Dense Attentive Probing (DeAP) method (Fig. 1). It is designed to
be a parameter and compute efficient readout that uses cross-attention to make dense predictions based
on features from a frozen backbone. An arbitrary (frozen) image backbone ϕ receives an image x of size
(Hs,Ws, 3) and generates features of size (H,W,D′) with s indicating the backbone’s stride (the factor by
which the backbone reduces the spatial resolution of its input). These features are concatenated (denoted
by []) with a non-learnable, sinusoidal positional encoding (PE) of the grid coordinates p. The resulting
activations are projected to the internal dimension D and flattened along the spatial dimensions (both by
ψ), yielding F(x) of size (HW,D):

F(x) = ψ([PE(p), ϕ(x)]) (1)
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Supervised
Supervised ViT-B (86M) ImageNet
SAM2 Sam B+ SA-1B

Self-supervised
MoCoV3 J ViT-B (86M) ImageNet
MAE R ViT-B (86M) ImageNet
Hiera R Hiera B+ (69M) ImageNet
DINO J ViT-B (86M) ImageNet
DINOv2 J & R ViT-B (86M) LVD-142M
DINOv2 J & R ViT-L (304M) LVD-142M

Vision-language
CLIP ViT-B (86M) CLIP
MetaCLIP ViT-B (86M) CC-400M
SigLIP ViT-B (86M) Webli
SigLIP (SO) ViT (414M) Webli
SigLIP 512 ViT-B (86M) Webli
Aim2 (300M) many
ViTamin-L2 (333M) DataComp-1

Table 2: Models, their backbone architectures (with parameters) and their training datasets. J and R denote
joint-embedding and reconstruction self-supervised learning methods.

To generate a dense output, we use a cross-attention-based approach: Spatial queries Q of size (HQWQ, 8)
attend to the feature volume F(x), with each query Qj ∈ R8 being responsible for generating the output
of a local region. The queries Q are fixed, 8-dimensional positional sinusoidal encodings of the respective
output positions (normally just a grid of positions) and thus have no learnable parameters.

To enable the model to account for feature locality, we modify the cross-attention to consider spatial proximity
by adding M(σ). The computation per head h (out of H heads) is described by

T(h) = softmax
(

(QW (h)
q )(F(x)W (h)

k )T

√
dk

+ M(σ)
)

(F(x)W (h)
v ), (2)

with W (h)
v ∈ RD× 2D

H , W (h)
k ∈ RD× D

H and Wq ∈ R8× D
H . Since the attention considers all backbone tokens for

each query, M(σ) has size (HQWQ, HW ). Each element Mij depends on the squared euclidean distance d2
ij

between pixel i in the query and i in the feature volume through the function Mij = 1
σ

√
2π

exp
(

− d2
ij

2σ2

)
. Here,

σ is a learned parameter per attention head. This means, the size of the region around each query position
from which features are considered is adjustable by the model. The output is obtained by a concatenation of
all H head outputs T = [T(0), ...T(H−1)]. Similar to the transformer layer, after this layer, each token Ti is
processed independently by a 2-layer multi-layer perceptron (or feedforward layer) FFN, i.e. T′

i = FFN(Ti).
In the hidden dimension, the vectors are expanded by a factor of two.

Instead of using a separate query for every output pixel, regions of size 8 × 8 are processed jointly for
efficiency reasons, i. e. each query q generates 64 pixels of the output. This is realized through a small CNN
γ operating on the output of all tokens using transposed convolutions to increase spatial resolution. This
CNN has three blocks, each composed of convolution and transposed convolution and ReLU non-linearity to
increase resolution. These blocks are followed by a final convolution layer, a skip-connection enables efficient
learning. The number of channels in this CNN is given by DCNN = max (D/4, Dout), with the number of
output channels Dout being task-dependent. The tokens T′ are re-arranged to the spatial shape (H,W,D)
and jointly processed by the CNN γ, yielding the final output γ(T′). Dense attentive probing consists of
only a single masked cross attention layer.

Since the queries only receive a position as input and can attend to all features, the masked cross-attention
architecture resembles implicit (or coordinate-based) networks (Mescheder et al., 2019; Park et al., 2019),
especially PiFU (Saito et al., 2019) and PixelNerf (Yu et al., 2021) which combine implicit networks with
feature volumes. The modification of the attention through a bias term is similar to GraphDINO (Weis
et al., 2021).

4 Experiments

Choice of models and training datasets We select a broad range of feature backbones that encompass
different training paradigms and were trained on different datasets (Tab. 2). This enables us to conduct
controlled comparisons along several axes, for instance, datasets and pretraining task. In general, we dif-
ferentiate between three broad classes of methods: supervised (Dosovitskiy et al., 2021; Ravi et al., 2024),
self-supervised (Caron et al., 2021; He et al., 2022; Ryali et al., 2023), and vision-language (Radford et al.,
2021; Xu et al., 2024; Fini et al., 2024; Chen et al., 2024b; Liu et al., 2022). The latter involves training
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Image Object centers Instance boundaries Instance discrimination

Figure 2: We use three tasks to probe instance awareness: object deteciton based on CenterNet, instance
boundaries and instance discrimination.

on image-caption pairs often obtained from the internet, while self-supervised training operates on images
only. Many models are trained on the ImageNet dataset (Russakovsky et al., 2014), but there are several
exceptions: All SigLIP models are trained on the Webli dataset, a Google-internal dataset of 10 billion
images with 12 billion multi-lingual text-image pairs. MetaCLIP uses a selection of the open LAION dataset
(Schuhmann et al., 2021), CLIP is trained on the unpublished CLIP dataset by OpenAI. DINOv2 (Oquab
et al., 2023) is trained on the LVD-142M, a Meta-internal dataset of 142M images which were deduplicated
and curated to be similar to ImageNet-22k images. In our experiments, we use the DinoV2 version with
registers Darcet et al. (2024). The data mix of Aim2 (Fini et al., 2024) contains DFN-2B, COYO, the
proprietary HQITP dataset and synthetic data.

We decide to mainly focus on vision transformers as many approaches share the same architecture and
checkpoints are available for a large number of training paradigms. To ensure comparability with other work
and control for model architecture, we primarily use ViT-B/16 and similarly sized models in our experiments.
We also include larger models in some cases to obtain an estimate of how much performance can be improved
simply by scaling-up model size. Pretrained-weights are obtained from the timm package (Wightman, 2019)
or the code repositories of the methods.

Experiment design We provide images in the native resolution of the respective backbones to prevent
out-of-distribution input. For a fair comparison, we use images of size 224 × 224 as the basis for all tasks, if
not indicated otherwise. When backbones require a higher native input resolution, we scale the 224 × 224
image to the respective resolution. For generating predictions, we make use of the capability of our model
to decouple input and output resolution (see Sec. 3): The output size is fixed to 224 × 224 for all models
(even for backbones with larger input image sizes), ensuring a fair comparison across models and limiting the
advantage of large input sizes for the backbone. In the masked cross attention we use a dimension D = 16
and eight attention heads (i. e. two dimensions per head). Although the readout could attend to backbone
activations at different layers we opt for using only the last layer, motivated by Li et al. (2022) who found
that a simple feature pyramid using the last layer without top-down connections works best.

We pursue a straightforward approach to comparison: We freeze the backbone features, train the small
readout in a supervised way and evaluate on a held-out test set. The rationale is that the low expressivity
and capacity of the readout forces it to directly rely on the feature volume for making a dense prediction.
This setup differs from conventional task heads (e. g. in object detection) which are able to perform more
complex computations on the features. For example, using Faster R-CNN on top of a ResNet50 backbone
adds around 18 million parameters to the model.1

4.1 Evaluation tasks

To characterize a broad spectrum of traits of the backbones we implement three task categories: probing
instance awareness, local semantics and spatial understanding.

Instance awareness In this task we evaluate how well the features are able to disentangle individual
instances, for example multiple apples in a bowl. In the field of object-centric machine learning (Burgess

1These calculations were obtained using the Faster R-CNN implementation in PyTorch vision (Paszke et al., 2019), in more
detail FPN: 3.3M, RPN: 0.6M, ROI heads: 14.3M parameters.
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et al., 2019) models are designed to disentangle instances. Here we assess the extent to which instance
discrimination is already encoded in the features of different backbones as a result of their pretraining. We
consider the following three notions of how instances can be encoded (Fig. 2):

• Boundaries: The objective is to outline individual objects in the image. We frame this problem as
a binary segmentation and consequently use an output dimension Dout = 1 as well as the binary
cross-entropy loss function on the output.

• CenterNet heatmaps: CenterNet (Zhou et al., 2019) is a detector that uses multiple heatmaps for
detection. We use the center map and regress the bounding box sizes in a second heatmap. Both
heatmaps are predicted using individual dense attentive probing readouts with Dcenter

out = 1 and
Dsize

out = 2. As proposed in the original paper, we obtain detections by finding 9-neighborhood
maxima in the center heatmap and extracting the bounding box sizes at these locations. We further
process the detections with non-maximum suppression. For comparison we report average precision
of large objects.

• Instance discrimination: Another way to encode instances is to generate a latent space where features
within instances are the same (or similar) while being different to all other instances. If this works
perfectly, clustering the latent vectors of all pixels would yield instances. This task is sometimes
also called coloring (Novotny et al., 2018). We train on only 8,000 sample images and treat every
instance as an individual class (resulting in a around 60,000 classes). We first use dense attentive
probing to map the features to a latent space (in our case Dout = 32). Then, a linear layer maps each
local 32-dimensional feature to a probability over all instances in the dataset. Thus, the problem
is essentially framed as semantic segmentation with 60,000 classes. This way, the latent features
before the classification head learn to discriminate instances. For testing, we cluster these features
obtained from unseen images. For clustering we use k-means and provide the ground-truth number
of instances as well as a foreground mask. Then we compare the predicted foreground instances with
the ground truth instance segmentation based on the adjusted rand index.

For these experiments, we use the COCO dataset (Lin et al., 2014), with the 5,000 images from the validation
set being used for testing. For the instance discrimination task, we compute the ARI (adjusted rand index)
test scores only on images with at least three large objects (resulting in a subset of 754 images). Note,
these tasks do not involve classifying the instances into object categories, unlike typically done in instance
segmentation (this is assessed below in “local semantics”).

Local semantics A natural choice for evaluating local semantics is a semantic segmentation task. Here we
rely on two benchmarks: Pascal VOC 2012 (Everingham et al., 2015) and COCO Stuff (Caesar et al., 2018).
The Pascal VOC 2012 encompasses a fairly small set of only 1,464 training images. For COCO Stuff, we
train on 100,000 images. We account for the larger number of classes in COCO Stuff by setting the internal
dimension of the CNN, DCNN, to 32.

Spatial understanding To assess how well the features capture the 3D structure of the scene, we imple-
ment the well-known monocular depth estimation task: The models need to infer the depth (i. e. position
along the z-axis) for every pixel of the visible scene based on the features provided by the backbone. We
frame this as a depth map estimation problem, i. e. Dout = 1, relying on the NYUv2 dataset (Nathan Silber-
man & Fergus, 2012) for training and testing the depth estimation readout. We first scale the input images
to a resolution of 216 × 288 and then to the native resolution of the backbones.

4.2 Baselines

We compare our method with other dense readout baselines. In all cases, the goal is to obtain a high
resolution prediction based on a low-resolution feature volume F(x) of size (HW,D).

Bicubic Interpolation A natural choice to increase resolution is to interpolate in the feature volume
F . This baseline replaces the cross-attention of our model by projection to a low dimension followed by a
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Inst. Disc. Boundaries Object Detection
Cat. Backbone I F P ARI ↑ Plearn CE ↓ IoU ↑ Plearn APlg ↑ Plearn

Random (untrained) 224 14 85.8 23.5 0.053 0.2544 0.8 0.043 0.0015 0.087
ImageNet 224 14 85.8 36.3 0.053 0.1787 16.0 0.043 0.1126 0.087
SAM V2 B+ 1024 64 80.8 50.0 0.028 0.1394 30.2 0.018 0.1759 0.035
MoCo V3 224 14 85.8 41.8 0.053 0.1613 21.4 0.043 0.2078 0.087
Dino 224 28 85.9 41.5 0.053 0.1433 28.3 0.043 0.2344 0.087
Dino V2 518 37 86.6 46.8 0.053 0.1297 32.4 0.043 0.2666 0.087
Dino V2 (ViT-L) 518 37 304.4 46.4 0.066 0.1450 33.8 0.056 0.2811 0.112
MAE 224 14 85.8 49.8 0.053 0.1500 25.3 0.043 0.2662 0.087
Hiera B+ 224 7 69.1 44.8 0.060 0.1717 17.1 0.050 0.2315 0.099
CLIP 224 14 85.9 39.5 0.053 0.1665 19.0 0.043 0.1391 0.087
CLIP (ViT-L) 336 24 303.6 40.6 0.066 0.1543 24.3 0.056 0.2005 0.112
MetaCLIP 224 14 85.9 38.4 0.053 0.1669 19.1 0.043 0.1667 0.087
SigLIP-224 224 14 85.8 37.8 0.053 0.1718 17.2 0.043 0.1677 0.087
SigLIP-384 384 24 86.1 39.1 0.053 0.1564 23.3 0.043 0.1836 0.087
SigLIP-512 512 32 86.5 38.9 0.053 0.1496 26.2 0.043 0.1910 0.087
SigLIP-SO 512 36 413.7 40.7 0.073 0.1496 25.7 0.062 0.1952 0.125
Aim2 336 24 309.6 40.0 0.066 0.1556 23.5 0.056 0.2011 0.112
ViTamin 384 24 333.0 42.1 0.066 0.1535 24.4 0.056 0.1648 0.112

Table 3: Instance awareness results in all three categories. I: image size. F : Size of feature volume. P
and Plearn: Number of all and learnable parameters, respectively, in millions. Metrics: Adjusted rand index
(ARI), cross-entropy (CE), intersection over union (IoU), average precision for large objects (APlg).

parameter-less bicubic interpolation operation. The rest of the baseline, i.e. the MLP and CNN, is identical
to dense attentive pooling.

Transposed Convolutions A common component in many dense prediction architectures are transposed
convolutions. This operation reverses downsampling by applying learned filters that generate spatially larger
outputs. Analogous to the bicubic interpolation baseline, we replace the masked cross-attention with a single
transposed convolution layer, while we use the same CNN for upsampling. A disadvantage of this baseline
is that the output resolution depends on the feature volume resolution, e.g. increasing the feature volume
from by a factor of two would also increase the output size by a factor of two.

FeatUp Recently, the FeatUp (Fu et al., 2024) method was introduced that up-scales a feature volume
under consideration (conditional on) of the input image. We employ this image-aware upsampling technique
to up-scale the feature volumes F(x) and add a linear projection that maps to the task-defined output space.

5 Results

5.1 Comparison on backbone performance

A main goal of our work is to provide a fair comparison of different backbones regarding instance discrim-
ination, local semantics and spatial understanding. We aim to highlight strengths and weaknesses of each
backbone. Results (Tab. 3) indicate that DINOv2 has the best instance awareness. The backbone of SAM2
does not outperform other backbones considerably, this is surprising given that it was trained on instance
discrimination. It suggests SAM2’s mask decoder (which we did not use here) is a crucial component. In-
terestingly, self-supervised methods consistently outperform vision-language models in instance awareness
(Fig. 3). Despite following the same reconstruction-based training, MAE performs better than Hiera in in-
stance awareness while the opposite is true for semantic segmentation and depth. Among the vision-language
models CLIP, MetaCLIP and SigLIP we did not find meaningful differences.
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Pascal VOC2012 COCO Stuff Depth
Cat. Backbone I F P CE ↓ IoU ↑ Plearn CE ↓ IoU ↑ Plearn RMSE ↓ Plearn

Random (untrained) 224 14 85.8 2.7364 3.5 0.047 5.0889 0.1 0.088 1.253 0.043
ImageNet 224 14 85.8 0.3924 61.0 0.047 1.5140 28.1 0.088 0.769 0.043
SAM V2 B+ 1024 64 80.8 0.6005 33.9 0.022 2.0630 12.6 0.062 0.754 0.018
MoCo V3 224 14 85.8 0.3274 63.3 0.047 1.4417 27.3 0.088 0.680 0.043
Dino 224 28 85.9 0.3397 63.8 0.047 1.3423 30.2 0.088 0.672 0.043
Dino V2 518 37 86.6 0.1259 83.4 0.047 1.0468 42.8 0.088 0.449 0.043
Dino V2 (ViT-L) 518 37 304.4 0.1173 85.3 0.060 1.0347 43.8 0.101 0.429 0.056
MAE 224 14 85.8 0.3471 60.2 0.047 1.4822 25.3 0.088 0.631 0.043
Hiera B+ 224 7 69.1 0.3344 61.5 0.054 1.5007 25.7 0.094 0.556 0.050
CLIP 224 14 85.9 0.2710 68.3 0.047 1.3367 32.0 0.088 0.646 0.043
CLIP (ViT-L) 336 24 303.6 0.2228 74.9 0.060 1.2623 35.5 0.101 0.590 0.056
MetaCLIP 224 14 85.9 0.2580 69.4 0.047 1.3427 31.9 0.088 0.648 0.043
SigLIP-224 224 14 85.8 0.2898 67.1 0.047 1.3355 33.0 0.088 0.674 0.043
SigLIP-384 384 24 86.1 0.2137 73.9 0.047 1.2565 35.4 0.088 0.627 0.043
SigLIP-512 512 32 86.5 0.2203 75.7 0.047 1.2435 36.3 0.088 0.620 0.043
SigLIP-SO 512 36 413.7 0.1908 77.9 0.066 1.1737 38.8 0.107 0.556 0.062
Aim2 336 24 309.6 0.2244 75.2 0.060 1.1957 37.5 0.101 0.562 0.056
ViTamin 384 24 333.0 0.1843 77.9 0.060 1.1757 37.9 0.101 0.541 0.056

Table 4: Local semantics results on Pascal and COCO Stuff as well as spatial understanding on NYUv2
(right). I: image size. F : Size of feature volume. P and Plearn: Number of all and learnable parameters,
respectively, in millions. Metrics: cross-entropy (CE), intersection over union (IoU), mean-squared error
(MSE)
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Figure 3: Self-supervised methods consistently outperform vision-language methods across all three instance
awareness tasks. To show all tasks in a single figure, we report the relative task performance, for which the
original scores were mapped linearly into the interval [0,1].

Vision-language models tend to show stronger local semantics (Tab. 4). While all vision-language models
with 224px input size show similar performance, the larger versions of SigLIP (i. e. 384px and the shape
optimized SO version) perform better but at a higher cost. Also in this evaluation, DINOv2 achieves the
best scores. All things considered, possibly the most striking finding is the dominance of DINOv2. While
one might argue that this is due to large image sizes and feature volumes, the mediocre performance of
SigLIP-512, Hiera-B+ and (partly) SAM V2 show that it cannot be the only factor.

The evaluation on spatial understanding shows mixed results. Larger backbones tend to perform better,
with the exception of Hiera-B+. Again, DINOv2 performs best, in this case by a large margin.
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Object Detection: APlg ↑ Semantic Segmentation: IoU ↑ Depth: RMSE ↓
names Dino V2 SigLIP-384 MAE Dino V2 SigLIP-384 MAE Dino V2 SigLIP-384 MAE

base 0.2666 0.1836 0.2662 83.4 73.9 60.2 0.4488 0.6274 0.6307
8-dim 0.2448 0.1722 0.2529 82.8 70.4 55.6 0.4697 0.6626 0.6111
no-sigma 0.1791 0.1196 0.1712 50.5 38.1 35.1 0.6660 0.8362 0.7360
no-indiv-sigma 0.2409 0.1520 0.2429 83.8 70.2 58.6 0.4797 0.6552 0.6657
only-mask 0.2606 0.1934 0.2673 82.7 73.0 60.0 0.4712 0.6378 0.5887

Table 5: Ablation. The full model is the variant we use in all other experiments.
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Figure 4: Dense attentive probing outperforms CNN, interpolation and FeatUp-based readouts on DinoV2
features* (instances: ↑ = better; semantic segmentation ↑; depth ↓). For semantic segmentation and depth
the lines represent averages over three runs.
* For the largest bicubic run on object detection we report the best score of three runs due to training instability.

5.2 Readout design

Ablation We next explore design choices of our dense attentive probing readout by varying relevant
hyperparameters (Tab. 5). The introduction of the σ parameter and its adaptivity per head is crucial for
good performance. This suggests that information is organized at different levels of locality in the feature
volumes.

Alternative readout architectures Next, we ask whether alternative architectures (introduced in
Sec. 4.2) with a similar parameter budget could perform competitively to dense attentive probing. We
find the latter to be more parameter efficient and to achieve better scores than the baselines across all three
tasks (Fig. 4). An additional advantage of our method over CNNs is decoupling input and output resolution,
in a CNN, a larger feature volume size would result in a larger output. FeatUp is highly parameter efficient
but has high memory demands and requires long computation times (factor 4 compared to dense attentive
probing).

Variable output size To ensure a fair comparison, the readout size is fixed in the previous experiments.
However, it is possible to generate outputs at an arbitrary resolution, because the adapter takes positions
as inputs (similar to implicit neural fields). Instead of using the standard query position grid for a 224 px
output, we can sample different query coordinates at test time (Fig. 5). The results show that our method
generalizes well to higher resolutions, with some details being resolved better at higher resolutions (see for
example the head of the horse and the chair).

5.3 DeAP performance correlates with performance of specialized models on downstream tasks

To assess the reliability of our findings, we consider previous work in object-centric representation learning
and a classification-based evaluation (Fig. 6). Object-centric learning shares the goal of disentangling in-
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Figure 5: After training, our readout can be queried to output different resolutions from the same backbone.
Here we use a DINOv2 backbone trained on Pascal VOC.
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Figure 6: We compare our results with reported scores on two object-centric learning methods (three leftmost
panels) (Aydemir et al., 2023; Seitzer et al., 2023)), fine-tuned Faster R-CNN backbones (Goldblum et al.,
2024) and CV-Bench 2D and 3D (Tong et al., 2024).

stances but achieves this through specific model architectures, whereas we evaluate model-agnostic features
for instance-specific signals. In these experiments we compare how well the object-centric scores match
our instance discrimination scores for the same backbones. Relating to the instance clustering foreground
adjusted rand-index, which indicates how well instances are disentangled, by Aydemir et al. (2023) we find
an almost linear relationship between their and our instance discrimination scores. Also comparing to DI-
NOSAUR (Seitzer et al., 2023), we find an almost linear relationship over three backbones (Dino ViT-S,
Dino ViT-B and MAE).

The evaluation of Goldblum et al. (2024) shares the goal of characterizing current backbones with our work
but put more emphasis on out-of-distribution and backbone architecture. While a positive relation between
their and our scores is recognizable, the trend is less pronounced that in previous experiments. CV-Bench-
2D and CV-Bench-3D (Tong et al., 2024) were recently introduced to assess the capabilities of multi-modal
language models and provide scores for several vision backbones. While the variance is larger, we can see the
same trends again: For the semantic score of CV-Bench-2D there is a positive correlation with our semantic
segmentation measurements while there is a negative correlation between the spatial scores of CV-Bench-3D
and our monocular depth prediction errors (where lower is better). In summary, our method can be used to
obtain similar insights on relative backbone performance as more expensive and slower evaluation methods.
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Figure 7: Inference speed over performance on three tasks, relative to the ViT-B/16 with 224px image input
(the fastest and most frequent architecture in our evaluation). The lines depict the pareto fronts.

5.4 Speed-performance tradeoff

For practitioners, runtime limitations can constrain the selection of viable backbones, for example when a
minimal latency is required. Therefore, we explore the relationship between task performance and inference
speed in more detail (Fig. 7). We measure the time to run ten batches with eight samples each in inference
mode (i. e. without gradient computation). The fastest model in our evaluation set is the ViT-B/16 at a
resolution of 224 pixels. Therefore we indicate the factor by which the runtime is extended with respect
to this model. For example, the slowest model, SigLIP-SO takes around 30 times as long as the ViT-B/16
reference model. The results show that, depending on the task, there are fast models that achieve good
performance, namely MAE for object detection and Hiera B+ for depth prediction. For local semantics we
find a stronger dependency between model sizes and performance, i.e. larger models are required for good
performance.

6 Conclusion

In this work we proposed dense attentive probing, a fast and parameter-efficient readout for evaluating
the representational expressiveness of trained backbones on dense prediction. For example, our standard
training for a readout on a ViT-B/16 224 pixel backbone on Pascal VOC adds less than 70,000 parameters
and trains in less than 16 minutes (using a single Nvidia RXT2080 GPU). We used dense attentive probing to
systematically analyze common vision backbones with respect to the three complementary aspects: instance
awareness, depth and local semantics. Our results suggest that the backbones of the DINOv2 family are
highly capable. It is the best ViT-B model across all experiments. Using DINOv2 with a ViT-L backbone
improves performance further but at the cost of a three times longer runtime. Classic supervised pretraining
on ImageNet results in fairly poor performance. Excluding DINOv2, we identified the trend that local
semantics is better captured by language-vision models while reconstruction-based self-supervised learning
leads to features with better instance awareness.

For practitioners, DINOv2 is a natural choice if enough compute is available. For compute-constrained cases,
the decision is more complex: MAE is recommendable for instance related tasks while CLIP-based models
(e.g. MetaCLIP) show good local semantics. For spatial understanding Hiera-B represents a good trade-off
between performance and inference speed. We plan to retain an online leaderboard where new backbones
can easily be incorporated to help tracking future progress of dense prediction performance.

7 Limitations

While we use a fairly small readout (in terms of parameters) that can adapt to multiple locality scales
in the features through the learnable masks, even this readout has inductive biases and can favor certain
backbones such that results might get distorted. We deliberately opted for a small readout to directly measure
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the feature performance. Consequently, this limits the degree to which the features can be re-combined and
processed. In fact, this could be the reason why the SAM2 backbone performs comparably poorly in instance
awareness in our hands: it does rely on a relatively “heavy” decoder. A more direct comparison to object-
centric approaches would be interesting, but is challenging as these approaches explicitly encode objects (e. g.
in attention slots) which can be compared to ground truth.

The current selection of tasks we evaluated is limited to three broad categories and a few instances of those.
Adding additional task categories (e. g. as in Taskonomy (Zamir et al., 2018)) would be desirable in the
future for a broader characterization of backbones.
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