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Abstract

This paper develops an AI-assisted computational framework for exploratory causal
modeling of cumulative advantage in small-N , spatially heterogeneous domains,
demonstrated through a case study of junior golf. The analysis is methodologically
challenging due to sparse state-level data, high collinearity among predictors,
and the need to approximate unobservable factors. We address these challenges
with a dual-method framework that combines forward-selection regression with
leave-one-out cross-validation (LOOCV) for predictive modeling, and Directed
Acyclic Graph (DAG)-guided structural modeling to explore assumption-dependent
associations and simulate counterfactual scenarios.
Using data on 16,000+ junior golfers across all U.S. states, we find that population
and participation serve as strong baseline predictors of elite performance; PGA
Tour event presence, a proxy for elite training access, shows an independent and
sizable association; financial strength is predictive only for Top 50 girls; and climate
shows little direct association once other factors are accounted for. Exploratory
simulations—such as adding a PGA Tour event or increasing participation—suggest
potential gains in elite-player production. Our framework demonstrates how AI-
assisted exploratory causal modeling can generate transparent, assumption-guided
insights that generalize beyond sport to other small-N scientific domains.

1 Introduction

The book Outliers by Malcolm Gladwell [14] popularized the concept of the Relative Age Effect
(RAE)—a phenomenon where individuals born earlier in a selection year enjoy cumulative advantages,
particularly in youth sports, due to greater physical and psychological maturity. While often discussed
in the context of team sports such as hockey and soccer, where early physical development is heavily
rewarded, RAE is more broadly a lens into cumulative advantage—how initial benefits compound
over time to create significant long-term disparities.

Golf presents an intriguing counterpoint. Prior studies [5, 8, 23, 33] suggest that RAE is largely
absent at the elite levels of golf, such as the PGA and LPGA tours. The individual nature of the
sport, its emphasis on skill over physicality, and flexible age-group structures may dilute age-based
disparities [13]. Even in collegiate golf, where some evidence of RAE emerges under a calendar-year
cutoff, the effect is modulated by athletes’ ability to take a gap year—effectively neutralizing age
disadvantages [7, 30]. This raises a critical question: If not relative age, are there other hidden
cumulative advantages in golf?

One such potential advantage is geography—specifically, the climate and competitive environment
where a golfer grows up. Studies and expert commentary [4, 9, 24, 34] point to a strong concentration
of top elite golfers in warm-weather states such as Florida, Texas, California, and Arizona. These
regions not only offer year-round access to training but also host a high density of tournaments
and professional-level infrastructure. Yet, this climate-based explanation has inconsistencies. Some
states with similar weather and infrastructure do not produce proportionally elite talent, and unlike
early-year birth, climate is a movable condition—families can relocate.



To rigorously test the impact of geography and climate, we turn to junior golfers, a population
uniquely positioned for analysis. Unlike adults, junior players typically cannot move or make career
decisions independently. If climate or geography acts as a cumulative advantage, its effects should
be most pronounced here. Nonetheless, this approach brings added complexity: junior golfers also
lack control over financial resources and coaching access, the effect of which needs to be carefully
isolated. Furthermore, the scarcity of public data on junior golf makes rigorous empirical analysis
more difficult than with professional or NCAA players.

Analyzing such structural advantages also presents a methodological challenge: the data are sparse
(only 51 state-level observations), highly collinear (e.g., population, participation, and income), and
many relevant factors are unobservable. Standard regression approaches risk overfitting or obscuring
theoretically meaningful effects. To address this, we develop a dual-method computational frame-
work: a forward-selection pipeline with leave-one-out cross-validation (LOOCV) for predictive
robustness, paired with structural modeling guided by a directed acyclic graph (DAG) to clarify
assumptions and explore how geography, participation, and financial strength may shape outcomes.
While our methods cannot by themselves establish causality, they provide a transparent framework
for interpreting adjusted associations and simulating plausible counterfactual scenarios. Cumulative
advantage manifests across domains, but is especially challenging to study in small-N , structurally
heterogeneous contexts. Junior golf provides a compelling testbed for developing methods that can
generalize to other small-N , structurally heterogeneous domains.

We summarize our contributions below:

• Framework: We introduce an AI-assisted dual-method computational approach that com-
bines LOOCV-based regression for predictive robustness with DAG-guided structural mod-
eling for transparent assumption testing.

• Findings: Participant base and PGA Tour presence explain over 85% of performance
variance. PGA presence consistently shows an independent association, while climate and
income associations are largely mediated.

• Exploratory Insights: Under our DAG assumptions, PGA event access appears linked to
enhanced outcomes beyond participation. Purchasing power is predictive for Top 50 girls
but shows a stronger conditional association for boys.

• Implications: Assumption-dependent simulations suggest hosting PGA events yields the
largest performance gains, participation programs offer moderate improvements, and targeted
aid may support players on the cusp of elite status.

• AI in Science: The work demonstrates how AI systems can support hypothesis generation,
model selection, and exploratory causal analysis, enabling reproducible and interpretable
scientific workflows.

2 Related Work

Econometrics and AI-Inspired Modeling. Our methodological approach draws inspiration from
econometric and causal-inference traditions, particularly the use of DAGs to clarify assumptions
and guide adjusted association estimates. Rather than treating DAGs as sources of definitive causal
identification, we use them to support exploratory causal modeling under explicit assumptions,
in line with recent AI- and ML-inspired approaches to structured inference [2, 22, 20]. Pearl [26]
provides the foundational framework for DAG-based reasoning, while Arlot & Celisse[1] and Hastie,
Tibshirani & Friedman [17] motivate our use of cross-validation and forward-selection regression in
small-sample, multicollinear settings.

Cumulative Advantage in Sports and Economics. This work also connects to the sports economics
and sport science literatures on cumulative advantage. In economics, Szymanski [32], Groot [16], and
Fort & Maxcy [12] analyze how structural features and competitive balance shape outcomes, while
Humphreys & Ruseski [18, 19] model sport participation as an economic decision influenced by
income and opportunity costs. In sport science, studies of climate [28, 29], coaching access [3, 21],
and the relative age effect [5, 11] demonstrate systemic influences on athlete development. However,
these works often stop short of structural or assumption-guided modeling. Our framework builds
on these strands by combining predictive accuracy with assumption-aware structural analysis, using
junior golf as a case study.
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3 Methodology

We develop an integrated framework that maps observable proxies for structural factors (Section 3.1),
builds predictive models using forward-selection regression (Section 3.2), and estimates adjusted
associations under explicit assumptions (Section 3.3) based on a domain-informed DAG (Sectioni
3.4).

AI assistance was integrated throughout this pipeline: generating candidate hypotheses, suggesting
DAG structures, and drafting the initial implementations of regression and cross-validation routines.
Human oversight refined these outputs, ensuring alignment with domain expertise in junior golf and
methodological standards. This collaboration situates our framework as an example of AI-assisted
exploratory causal modeling in practice.

3.1 Potential Factors

We consider five key factors that may create cumulative advantages for junior golfers across states:

• Climate influences playable days and year-round access to golf.

• Coaching and Training Access, at both entry-level (e.g., number of courses) and elite-level
(e.g., PGA event infrastructure), shapes development pipelines.

• Financial Strength affects a junior player’s ability to afford travel, training, and tournament
exposure.

• Population serves as a baseline predictor—larger states have more potential golfers.

• Participation Base captures actual engagement, bridging population and performance.

To operationalize these, we map each factor to one or more observable variables:

• Climate—Solar irradiance (average annual W/m2 [6])

• Coaching (entry-level)—Number of golf courses in the state [25, 34].

• Coaching (elite-level)—Number of PGA Tour events hosted in 2025 [4], as a proxy for elite
coaching facilities due to the industrial clustering effect [15, 27]. For completeness, we
also consider the number of LPGA Tour events.

• Financial Strength—We use both (1) state Median Household Income (MHI) and (2) average
hometown MHI of junior players to normalized for price levels [3, 10]. We use purchasing
power ratio (average hometown MHI / state MHI) to normalize for interstate economic
disparity.

• Population and Participation—We use both (1) total state population and (2) number of
players who have ever entered a ranked junior golf tournament.

3.2 Predictive Modeling Framework

We adopt a forward-selection regression pipeline to identify the most predictive subset of features for
elite performance (Top 50, 100, 200 players per state). This serves two goals: (1) Model explanatory
power: Which factors predict success, and how well? And (2) Handle multicollinearity: Control
redundant or collinear predictors.

The steps are:

1. Start with the single most predictive variable (by Pearson r).

2. Iteratively add the next-best variable if:

• It significantly improves leave-one-out cross-validation (LOOCV) R2 [1, 17, 31], and
• Its regression coefficient is significant at p < 0.05.

3. Stop when no further variables meet both criteria.

This allows a compact, interpretable model suitable for small-N , high-collinearity domains. We now
present the General Forward-Selection Regression:
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TopPlayerss = β0 + β1 · PGAEventss +β2 · Participantss +β3 · PurchasingPowers +ϵ

Where s indexes U.S. states. Note that not all terms are included in every model; selection is
determined by the forward-selection criterion described above.

3.3 Sequential Regression for Adjusted Associations

We estimate the conditional contribution of each predictor using multiple regression models that
include both the variable of interest and one or more covariates. This approach allows us to isolate
the association of a variable X (e.g., PGA Tour events or purchasing power) on the outcome Y (e.g.,
Top 50 players), while holding a known confounder Z (e.g., participant count) constant.

We implement this using standard linear regression:

Y = β0 + βXX + βZZ + ϵ

where the coefficient βX captures the marginal association of X on Y , controlling for Z. Statistical
significance is assessed via p-values, and the magnitude of βX is used to support interpretation of
explanatory and policy-relevant power.

This method provides an interpretable estimate of adjusted relationships and aligns with our forward-
selection regression framework. While it does not, on its own, establish causal claims, it serves as the
empirical engine for exploratory interpretation of conditional associations under a DAG.

3.4 DAG-Guided Structural Modeling and Back-Door Adjustment

Figure 1: DAG of assumed relationship armong variables

To move from adjusted association toward structured interpretation, we formalize our assumptions
using a DAG (Figure 1). The DAG encodes our domain-informed view of how population, participa-
tion, income, and access to elite tournaments may interact. This representation does not guarantee
causal identification but instead clarifies the assumptions required for exploratory causal modeling.
Using back-door adjustment and sequential regression, we examine conditional relationships under
these assumptions and simulate potential structural changes. The DAG is constructed from domain
expertise and temporal logic:

• Population and climate influence participation levels, but not vice versa.
• PGA Tour event presence is assumed to be an exogenous institutional decision that precedes

and facilitates elite development, not a function of junior player counts.
• Purchasing power is treated as a fixed background factor derived from family socioeco-

nomic status.

Given this structure, we identify valid adjustment sets using the back-door criterion [26], which
specifies that all non-causal (confounding) paths from a treatment variable X to an outcome Y must
be blocked by conditioning on a sufficient set of covariates Z.

We focus on two key relationships:

• Estimating the association of PGA Tour presence on top player counts, adjusting for
participants
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• Estimating the association of purchasing power, also adjusting for participants

These lead to the following adjusted association model:

TopPlayerss = α0 + α1 ·Xs + α2 · Participantss +νs

Where X ∈ {PGAEvents,PurchasingPower} depending on the variable of interest, and s indexes
states.

Under the assumed DAG, the coefficient α1 can be interpreted as an adjusted association (under
assumptions) of X on elite performance, enabling us to explore the implications of structural
interventions under these assumptions (e.g., hosting more PGA events or increasing financial support).

4 Data

We describe the sources and collection methods for our dataset in Section 4.1, including both publicly
available and manually curated variables. In Section 4.2, we detail how we transform these raw data
into structured, state-level inputs.

4.1 Raw Data

We collected data from a combination of public sources and manually curated datasets. State-level
indicators—such as total population, average solar irradiance, number of golf courses, number of
PGA and LPGA Tour events hosted in 2025, and state median household income—were obtained
from publicly accessible sources. Specifically, population figures and median household incomes
are published by the U.S. Census Bureau, while solar irradiance data is available through national
climatological datasets and solar resource atlases.

City-level median household income data, required for assessing players’ relative purchasing power, is
also publicly available from the U.S. Census Bureau’s portal (data.census.gov). Player-level data—
specifically national ranking and hometown—was sourced from juniorgolfscoreboard.com,
which maintains public profiles for 12,344 boys and 4,550 girls.

4.2 Data Preparation

To enable correlation analysis, we transformed the raw player-level data into aggregate state-level
metrics. For each U.S. state (including D.C.), we computed:

• Total number of junior players with known hometowns (“participants”)

• Number of players ranked in the national Top 50, Top 100, and Top 200

This transformation allows us to analyze how observable state-level variables (climate, income,
coaching access, etc.) correlate with both broad participation and elite performance in junior golf.

For the financial strength factor, we computed each state’s average junior player purchasing power.
This was derived from the set of hometown-level median household incomes associated with players
from each state. Let S denote a state with K players, and let Ik be the median household income of
the k-th player’s hometown, where k ∈ [1,K]. The average hometown income for the state is then
ĪS = 1

K

∑K
k=1 Ik.

To remove the association of differing price levels and income baselines across states, we normalize
this quantity by dividing it by the state’s median household income MHIS . The result is the relative
purchasing power of junior golfers in that state PPS = ĪS

MHIS
.

This normalization allows us to compare the financial standing of junior players across states in a
way that controls for interstate economic disparities. A higher PPS implies that junior players in that
state, on average, come from relatively wealthier cities compared to the state’s economic baseline. If
a state has no players, we use a trivial PPS = 1.
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Table 1: LOOCV Analysis for Participants

Category Selected Variables LOOCV R2

Boy Participants Population 0.843

Girl Participants Population, PGA 0.904

5 Results and Findings

We evaluate the predictive and explanatory power of state-level factors on junior golf participation
and elite performance for boys and girls separately. We structure the results in three parts: predictive
performance (Section 5.1 and 5.2), controlled associations (Section 5.3), and counterfactual simulation
(Section 5.4).

5.1 Predictive Performance: Participants

Our forward selection regression pipeline achieves strong predictive accuracy despite the limited
number of U.S. states (N = 51). As shown in Table 1, both models achieve a LOOCV R2 ≥ 0.8 in
predicting the number of participants.

The best-performing models consistently include population, indicating that participant count is
largely driven by state population. For boys, population is the only variable selected into the
model. Notably, solar irradiance—our proxy of climate—does not enter the model for either group.
Similarly, the number of LPGA Tour events is not selected, even for the girls’ model, suggesting
these variables have limited explanatory power for participation at the state level.

5.2 Predictive Performance: Top N Players

For Top N players, all but one model achieve a LOOCV R2 ≥ 0.5, with the sole exception being
borderline (R2 = 0.493) (Table 2). This indicates strong out-of-sample explanatory power, especially
considering the inherent noise and complexity of observational social data.

The best-performing models consistently include number of PGA Tour events and participant
count, validating their role as primary structural predictors of elite performance.

Despite having relative strong correlation with Top 50 rankings (Table 6 and 7), Purchasing Power
does not enter the final model for boys. In fact, it only appears in the model for Girls’ Top 50,
suggesting that its predictive power is limited and context-specific.

For boys, top-ranked players are consistently explained by a combination of PGA Tour event
presence and participant count. In contrast, the predictors for girls exhibit more nuanced variation:
the number of golf courses emerges as a stronger signal. This divergence points to subtle differences
in the competitive structure between boys’ and girls’ junior golf—potentially reflecting differences in
access, developmental pathways, or institutional support.

Table 2: LOOCV Analysis for Top N Players

Category Selected Variables LOOCV R2

Boys’ Top 50 PGA, Participants 0.500
Boys’ Top 100 PGA, Participants 0.765
Boys’ Top 200 PGA, Participants 0.887

Girls’ Top 50 PGA, Purchasing Power 0.493
Girls’ Top 100 Participants, Golf Courses 0.594
Girls’ Top 200 Participants, Golf Courses, PGA 0.751
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Table 3: Control Analysis. Each cell list the controlled association βX (and its p-value) of X controlling
on Participants, where X ∈ {PGA, Solar,PurchasingPower}. Numbers crossed out means not statistically
significant.

Category PGA Solar Purchasing Power

Boys’ Top 50 βPGA = 0.824, p = 7.04e− 3 (((((p = 0.802 βPP = 4.28, p = 4.14e− 4
Boys’ Top 100 βPGA = 1.68, p = 2.43e− 5 (((((p = 0.268 (((((p = 0.258
Boys’ Top 200 βPGA = 3.54, p = 4.19e− 8 (((((p = 0.321 (((((p = 0.590

Girls’ Top 50 βPGA = 1.15, p = 4.78e− 3 (((((p = 0.623 βPP = 1.19, p = 0.0273
Girls’ Top 100 βPGA = 1.85, p = 7.794− 3 (((((p = 0.976 (((((p = 0.563
Girls’ Top 200 βPGA = 3.37, p = 1.09e− 3 (((((p = 0.757 (((((p = 0.134

5.3 Controlled Associations

To better understand inter-variable dependencies, we analyze sequential regression residuals (Table
3):

• For both genders, the coefficient # PGA Tour events remains statistically significant when
controlling for participation, with adjusted association βPGA ≈ 0.824 − 3.54, p < 0.01,
suggesting that elite infrastructure contributes predictive value beyond simple scale effects.

• Climate (solar irradiance) loses statistical significance after controlling for participation,
indicating that its association is likely mediated through participation, not direct performance
gains.

• Purchasing power (average hometown MHI normalized by state MHI) is statistically
significant for Top 50 players, but the strength of the association is notably larger for
boys (βPP = 4.28, p = 4.14e − 4) than girls (βPP = 1.19, p = 0.0273). This suggests a
gendered disparity in how financial advantage translates to elite outcomes.

These results support a multi-pathway model of cumulative advantage, with infrastructure and
participation as dominant channels, and financial capacity playing a narrower, top-end role—
especially for boys.

Interestingly, Purchasing Power did not enter the predictive model selected by forward-selection and
LOOCV, suggesting that—within the full pool of predictors—it does not offer substantial additional
explanatory power for cross-validated prediction. However, when analyzed independently using the
DAG-guided model controlling for participant count, it exhibits a statistically significant and strong
association, particularly for boys’ Top 50 rankings.

This divergence is not contradictory: predictive modeling selects variables that improve generaliza-
tion in the presence of multicollinearity, whereas exploratory causal modeling helps highlight the
conditional association of a theoretically motivated variable. In small-N settings with correlated
predictors, a meaningful structural factor can be masked in a predictive pipeline. This reinforces the
value of using both approaches in tandem.

Non-significant predictors, such as LPGA Tour events and state-level median income, are detailed in
Appendix Table 8 and 9.

5.4 Counterfactual Simulation

To illustrate implications of these adjusted associations, we simulate counterfactual scenarios for both
policymakers and parents.

For Policy Makers: To illustrate policy implications, we simulate counterfactual scenarios using the
fitted regression models (parameters in Table 3):

• Adding a PGA Tour event in an average state is projected to increase Top 50 player count
by approximately 84.05%− 117.3%, controlling for participation. It has a comparable
impact on Top 200 player count by approximately 85.94%− 90.27%.
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• Boosting participation by 20% (e.g., through grassroots programs or school golf teams)
predicts a 15.38%− 17.64% increase in Top 200 players for boys and 14.35%− 18.16%
for girls.

• Increasing purchasing power by 10% (e.g., through targeted financial aid) is projected to
increase Top 50 representation by 43.66% for boys and 12.14% for girls.

These simulations highlight that hosting elite tournaments is associated with the largest gains,
with notably higher numbers of top-ranked juniors. Broadening participation through grassroots
access produces more modest but consistent gains across both genders. Financial support, while
less impactful on average, has a strong association for boys at the Top 50 level and a smaller but
still positive association for girls. Together, these results suggest that structural investments deliver
the highest aggregate returns, while targeted financial aid may help unlock elite potential in specific
groups.

For Parents: While the counterfactual simulations are framed from the perspective of policymakers
(e.g., adding PGA events), the same regression coefficients can be interpreted at the individual level.
For example, a parent relocating their junior golfer to a state with one additional PGA Tour event,
or one with 20% more junior participants, would experience similar predicted gains in top-player
odds—assuming all else is equal. Likewise, increasing household income by 10% improves relative
purchasing power, and can be interpreted similarly to receiving targeted financial aid. Nonetheless,
these interpretations rely on the assumption that the player’s competitive position remains consistent
after relocation—an assumption that may not hold in all cases.

6 Discussion

Our findings have several practical implications for parents, coaches, and policymakers.

First, parents should not be discouraged if their child develops an interest in golf while living in
a state without a strong golf tradition. Given that population emerged as the leading predictor of
participation for both boys and girls, it is natural that children in more populous states are more likely
to be drawn into the sport. Moreover, the number of participants in a state consistently ranked
among the top two predictors of elite performance. This suggests that all players have almost equal
chances of reaching the top.

Second, access to elite training institutions and facilities holds the highest predictive power for
producing top-ranked juniors. States hosting PGA Tour events tend to have clusters of championship-
level courses and associated high-caliber coaching resources, which create cumulative advantages
for player development. While relocating to such states may offer tangible advantages, it is not the
only pathway to accessing elite training and coaching opportunities. Advances in technology—such
as launch monitor systems (e.g., TrackMan) and high-definition swing analysis—combined with
structured remote coaching can help mitigate geographic disadvantages.

Third, financial strength demonstrated only modest predictive power, and only for players in the
Top 50. For policymakers, tournament organizers, and grant programs such as the AJGA ACE Grant,
this finding offers guidance: targeted financial assistance could yield the highest return on investment
when focused on juniors with the potential to break into the top tier. Such targeted support could help
talented players overcome the last barriers to national prominence, particularly in contexts where
financial constraints might otherwise limit competitive opportunities.

7 Conclusion

In this study, we modeled how structural factors relate to junior golf performance across U.S.
states. Our exploratory simulations suggest that, under these assumptions, hosting PGA Tour
events is associated with the largest gains in elite player production, while participation programs
deliver smaller but consistent improvements. Targeted financial support shows a sizeable conditional
association for boys at the Top 50 level and a smaller positive association for girls. These results
should be interpreted as assumption-dependent rather than definitive, but they illustrate how structured
modeling can generate actionable insights and guide further research on equity and resource allocation
in youth sports.
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8 AI Agent Setup

All analyses and interactions in this study were conducted using ChatGPT-5 equipped with the
Deep Research capability. No customized orchestration pipelines or external tool integrations
were employed. While Deep Research was available, it was selectively invoked depending on the
complexity and openness of each query. To maintain conceptual coherence within the primary
research thread, we instantiated separate chat sessions for auxiliary prompts (e.g., “Explain what
Foo is” or “How to apply Foo to my data”). This deliberate branching strategy was intended to
minimize contextual interference and preserve a consistent line of reasoning across iterative exchanges.
Although a formal A/B evaluation has not been performed, our qualitative experience suggests that
such compartmentalization enhances session stability and epistemic continuity.
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Table 4: The Pearson correlation coefficients between each candidate factor and the number of boy participants
in each state, along with associated p-values for the correlation, and p-value for the forward selection. Numbers
crossed out means not statistically significant.

# Boy Participant Population # PGA # Courses # LPGA Solar State Income

Correlation 0.930 0.864 0.817 0.535 0.299 −0.0521
p-value corr 0 0 0 5.27e− 4 0.0332 ���0.716

p-value fwd sel 0 0.0135 0.0389 ���0.186 7.67e− 3

Table 5: The Pearson correlation coefficients between each candidate factor and the number of girl participants
in each state, along with associated p-values for the correlation, and p-value for the forward selection. Numbers
crossed out means not statistically significant.

# Girl Participant Population # PGA # Courses # LPGA Solar State Income

Correlation 0.936 0.926 0.760 0.537 0.292 −0.0103
p-value corr 0 0 1.01e− 10 4.92e− 5 0.0375 ���0.943

p-value fwd sel 0 1.50e− 7 ���0.455 ���0.0810 0.0160

A Participation and Nonsignificant Factors

Table 4 and 5 list the results for boys and girls participants, respectively. Table 6, 7, 8, and 9 list the
factors for boys and girls top players, respectively.

B Responsible AI Statement

Our research was conducted with a commitment to ethical principles in AI and data science, as
outlined in the NeurIPS Code of Ethics. Key measures include:

• Privacy Protection & Consent: All data sources used are publicly available and aggregated
at the state or city level. No personally identifiable information (PII) was collected or
analyzed. Player data includes only hometown locations, not names or identities.

• Bias Awareness & Fairness: We acknowledge potential biases in demographic and par-
ticipation variables—such as financial inequality or regional disparities affecting access to
junior golf resources. We explicitly interpret our findings as descriptive of systemic patterns
rather than prescriptive assessments of individual ability, and include a section discussing
structural inequities and gender differences uncovered in the analysis.

• Transparency & Reproducibility: The modeling pipeline, including forward selection,
LOOCV evaluation, and causal adjustment via DAGs, is fully documented in the paper.

Table 6: The Pearson correlation coefficients between each candidate factor and the number of top 50, 100,
200 boy players in each state, along with associated p-values for the correlation, and p-value for the forward
selection. Numbers crossed out means not statistically significant. To save space, number of LPGA tour, solar
irradiance, and state median household income are omitted and moved to Table 8

Boy Top N Metrics # PGA # Participants Population # Course Pur Pw

Correlation 0.806 0.802 0.726 0.627 0.755
50 p-value corr 0 0 1.66e− 9 8.54e− 7 1.60e− 10

p-value fwd sel 0 5.78e− 3 ���0.823 ���0.414 8.01e− 3

Correlation 0.895 0.882 0.818 0.667 0.364
100 p-value corr 0 0 0 8.92e− 8 8.55e− 3

p-value fwd sel 0 1.79e− 4 0.0332 ���0.375 ���0.0621

Correlation 0.929 0.910 0.856 0.656 0.321
200 p-value corr 0 0 0 1.70e− 7 0.0217

p-value fwd sel 0 5.17e− 6 0.0391 ���0.0542 ���0.111
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Table 7: The Pearson correlation coefficients between each candidate factor and the number of top 50, 100,
200 girl players in each state, along with associated p-values for the correlation, and p-value for the forward
selection. Numbers crossed out means not statistically significant. To save space, number of LPGA tour, solar
irradiance, and state median household income are omitted and moved to Table 9

Girl Top N Metrics # Participants # PGA Population # Course Pur Pw

Correlation 0.850 0.864 0.746 0.482 0.430
50 p-value corr 0 0 3.28− 10 3.47e− 4 1.65e− 3

p-value fwd sel 0.0359 0 0.0232 0.0103 7.62e− 3

Correlation 0.885 0.885 0.787 0.513 0.296
100 p-value corr 0 0 0 1.19e− 4 0.0350

p-value fwd sel 0 3.89e− 3 0.0310 1.01e− 3 ���0.395

Correlation 0.922 0.919 0.842 0.581 0.292
200 p-value corr 0 0 0 7.89e− 6 0.0376

p-value fwd sel 0 5.44e− 4 ���0.121 9.71e− 4 ���0.339

Table 8: The Pearson correlation coefficients between each candidate factor and the number of top 50, 100,
200 boy players in each state, along with associated p-values for the correlation, and p-value for the forward
selection. Numbers crossed out means not statistically significant. Only show number of LPGA tour, solar
irradiance, and state median household income which are omitted in Table 6

Boy Top N Metrics # LPGA Solar State Income

Correlation 0.542 0.260 −0.142
50 p-value corr 4.02e− 5 ���0.0651 ���0.319

p-value fwd sel ���0.505

Correlation 0.533 0.335 −0.111
100 p-value corr 5.61e− 5 0.0161 ���0.437

p-value fwd sel ���0.198 ���0.138

Correlation 0.479 0.329 −0.125
200 p-value corr 3.82e− 4 0.0186 ���0.382

p-value fwd sel ���0.202 ���0.115

Table 9: The Pearson correlation coefficients between each candidate factor and the number of top 50, 100, 200
girl players in each state, along with associated p-values for the correlation, and p-value for the forward selection.
Numbers crossed out means not statistically significant. Only show number of LPGA tour, solar irradiance, and
state median household income which are omitted in Table 7

Girl Top N Metrics # LPGA Solar State Income

Correlation 0.431 0.208 0.102
50 p-value corr 1.61e− 3 ���0.143 ���0.478

p-value fwd sel ���0.320

Correlation 0.424 0.257 0.0615
100 p-value corr 1.91e− 3 ((((0.06911 ���0.668

p-value fwd sel ���0.465

Correlation 0.447 0.253 0.0432
200 p-value corr 1.02e− 3 ���0.0737 ���0.763

p-value fwd sel ���0.356
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We based our implementation exclusively on open-source libraries (pandas, NumPy, SciPy,
scikit-learn, statsmodels). We will publicly release the code along with detailed instructions,
and make the manually curated dataset (including hometown median household income
estimates) available post-review to support reproducing the results.

• Responsible Data Release: The curated dataset will exclude any personal identifiers and
will be shared under a permissive license. A data documentation template (i.e., a Datasheet
for Datasets) will accompany the release to clarify the data’s provenance, limitations, and
intended use.

• Societal Impact Considerations: We discuss both positive impacts—such as guiding
equitable resource allocation and training support—and potential negatives, including the
risk of reinforcing geographic segregation or socioeconomic stratification. We emphasize
that relocation or intervention strategies should account for broader social contexts and
should be implemented with care.

By adhering to these standards, we aim to ensure that our research is ethically rigorous, transparent,
and socially responsible.

C Reproducibility Statement

All methods and models used in this paper are fully specified in the main text, including the use of
forward-selection regression, leave-one-out cross-validation (LOOCV), and sequential regression
with back-door adjustment. We implemented the entire modeling pipeline using standard, open-source
Python libraries: pandas, numpy, scipy, scikit-learn, and statsmodels. These tools were selected for
their reliability and widespread adoption in reproducible data science.

We will publicly release all code upon publication, along with detailed instructions for reproducing
our experiments, tables, and figures. In addition, we will share the manually curated dataset—which
includes state-level variables and city-level median household income estimates for junior golfers’
hometowns. These materials will be accompanied by metadata and documentation to ensure that
other researchers can verify and build on our findings. Together, these efforts are intended to support
full transparency and enable faithful replication of all results.

D Limitations

This study is subject to several limitations, stemming from both data constraints and methodological
assumptions.

Data Accessibility and Granularity: While the analysis leverages a sizable dataset of junior golfers,
several important variables—such as coaching quality, frequency of play, and family support—are
unobservable and had to be approximated using proxies like PGA Tour presence or income at the city
level. In addition, player-level income was estimated based on hometown median household income,
which may not accurately reflect individual circumstances.

Manual Data Curation: Due to platform limitations (e.g., authentication gating on juniorgolfs-
coreboard.com and anti-bot restrictions on data.census.gov), key components of the dataset were
manually curated. This includes more than 400 entries of city-level income data, which increases the
risk of transcription errors and limits reproducibility.

Causal Assumptions: The causal inferences in Section 3.4 rely on assumed DAG structure and
conditional independence assumptions that are not empirically validated. While we apply standard
back-door adjustments using well-motivated covariates, the analysis does not rule out unmeasured
confounding or feedback loops. The causal estimates should therefore be interpreted as exploratory
rather than definitive.

Limited Sample Size: With only 51 observations at the state level, statistical power is inherently
limited. While we mitigate overfitting using LOOCV and forward selection, the small sample size
restricts our ability to detect weaker effects and generalize findings to finer-grained geographies (e.g.,
city or school district level).

Model Simplicity and Scope: We adopt linear regression models for interpretability and stability,
but this excludes non-linear relationships or interaction effects that may exist between factors (e.g.,
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income × population). Future work could explore richer models such as causal forests or Bayesian
networks, if more granular data becomes available.

These limitations highlight the trade-offs involved in studying complex social phenomena with
incomplete data, and underscore the importance of combining statistical evidence with domain
expertise.
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Agents4Science AI Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by AI. This can also involve whether the idea
was proposed by researchers or by AI.
Answer: [C]
Explanation: The initial research question—exploring whether cumulative advantages exist
in junior golf beyond the known Relative Age Effect—was proposed by the human author.
In response, the AI generated most of the candidate hypotheses, including climate, financial
access, coaching infrastructure, and tournament exposure. The human author reviewed these
and contributed two key additions: (1) introducing state-level population as a baseline or
null hypothesis, and (2) suggesting PGA Tour presence as a proxy for access to elite-level
training infrastructure. While the AI carried out the majority of the mapping from abstract
factors to observable variables, the human author also proposed using city-level median
household income to represent a junior player’s relative financial standing. Overall, the
hypothesis development process was a collaborative effort, with AI driving hypothesis
generation and variable formulation, and the human author contributing domain-specific
insight and critical validation.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.
Answer: [C]
Explanation: The human author designed the overall analysis strategy and executed the initial
experiments, including all correlation analyses and variable curation. More than 7 hours were
spent manually collecting and structuring key datasets—particularly city-level household
income and player ranking data—that could not be accessed programmatically. The human
author also implemented the full pipeline for basic statistical comparisons. AI was used
to assist in the design of advanced statistical components, including the forward-selection
regression framework, leave-one-out cross-validation (LOOCV), and causal modeling via
DAG-based adjustment. These methods were selected and carried out using the AI’s
knowledge of advanced statistical modeling, under the human author’s supervision. The
initial implementation was generated by AI, while the human author contributed substantial
effort in debugging and integrating the results into the broader workflow.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.
Answer: [B]
Explanation: AI led the execution of advanced statistical methodologies, including forward-
selection regression, leave-one-out cross-validation (LOOCV), and DAG-based causal
modeling. However, the insights generated through these methods diverged from the
initial correlation analysis conducted by the human author. This prompted careful scrutiny,
validation, and interpretation. The human author played a central role in critically evaluating
the results, cross-referencing them with the raw data, and contextualizing all conclusions
through domain-specific knowledge acquired over years of firsthand experience in junior
golf competition.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.
Answer: [C]
Explanation: The writing process was a collaborative effort between the human author and
AI. Section 1 (Introduction) was primarily written by AI, following a storyline outlined
by the human author. AI also drafted the summary of contributions based on the overall
structure and key insights defined by the human. Section 2 (Related Work) was outlined
by the human author, while AI conducted the literature review and drafted the content. In
Section 3 (Methodology), AI designed the advanced statistical methodology and authored
the majority of the corresponding sections, including those on predictive modeling and
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causal inference. Section 4 (Data) was mostly written by the human author, who also
performed extensive manual data collection. Although AI was tested for data curation tasks,
it was unable to scale to larger queries (e.g., hundreds of player hometowns). Section 5
(Results) The structure of the section was initially drafted by AI, with the human author
responsible for statistical summarization and interpretation. AI then incorporated the data
and completed the writing based on the finalized analyses. Section 6 (Discussion) was again
primarily written by AI, following a storyline outlined by the human author.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or
lead author?
Description: A few key limitations were observed during the collaboration with AI. First,
AI was unable to automate large-scale data collection tasks—such as retrieving median
household income for several hundred player hometowns—due to rate limits, authentication
requirements, and lack of robust scraping support. These tasks had to be completed manually
by the human author. Second, while the initial version of the code was generated by AI, the
human author invested significant time in integrating and debugging it to ensure correctness
and compatibility with the overall workflow. Third, in multi-turn prompting workflows
(especially with ChatGPT’s DeepResearch mode), the AI occasionally over-indexed on the
most recent instruction and lost context from earlier, well-structured outputs. The human
author had to repeatedly reiterate prior guidance or copy-paste earlier content to ensure
continuity and consistency across revisions. At times, the AI produced responses that were
entirely unrelated to the prompt, requiring manual redirection or correction by the human
author. Fourth, AI-generated citations are often fabricated or incorrect, and therefore require
manual verification using reliable academic search engines or databases.
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Agents4Science Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: Papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers and area chairs. You will be asked to also include it (after eventual revisions) with the final
version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided
a proper justification is given. In general, answering "[No] " or "[NA] " is not grounds for rejection.
While the questions are phrased in a binary way, we acknowledge that the true answer is often more
nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix.
If you answer [Yes] to a question, in the justification please point to the section(s) where related
material for the question can be found.

IMPORTANT, please:

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The human author carefully reviewed the entire paper to ensure that the
claims made in the abstract and introduction accurately reflect the methods, results, and
contributions presented. The findings also align closely with the author’s domain expertise
as a junior golf player, further validating the coherence between the research question,
methodology, and reported conclusions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Section D.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is a data-driven empirical study that uses statistical and causal
analysis methods (e.g., correlation analysis, forward selection regression and back-door
adjustment). It does not present any formal theoretical results, proofs, or mathematical
theorems. All analyses are observational and based on real-world datasets, not derived from
formal mathematical derivation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All modeling steps—including variable selection, regression formulation,
cross-validation, and causal adjustment procedures—are fully described in the paper to
ensure reproducibility. The statistical methodology is clearly defined in Section 3, and the
inputs, such as per-state player counts and derived variables, are specified in Section 4.
While a portion of the dataset (specifically, city-level median household incomes for players’
hometowns) was manually curated, we intend to share this curated dataset publicly after the
review process to facilitate full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. We developed and tested all code used for the modeling pipeline, including
variable selection, LOOCV-based model evaluation, and regression-based causal analysis.
The implementation relies exclusively on widely used open-source Python packages such as
pandas, numpy, scipy.stats, scikit-learn, and statsmodels. We will open-source
the code with clear instructions for replicating all experiments and figures. In addition,
the manually curated dataset—including player hometowns and their associated city-level
median household incomes—will be made publicly available after the review process. These
materials will enable faithful reproduction of all primary results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper does not involve machine learning training pipelines, but we
fully specify all procedures used for model evaluation. In particular, we detail the use of
leave-one-out cross-validation (LOOCV) as the testing protocol for all regression models
(Section 3.2), explain the feature selection process via forward-selection, and define all
evaluation criteria (e.g., p-values, LOOCV R2). Since the analysis is purely statistical and
regression-based, there are no hyperparameters, optimizers, or random seeds involved. All
data splits and modeling assumptions are explicitly described to ensure full transparency
and reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: The paper reports statistical significance for all correlation and regression
results using p-values, which are provided in all result tables (e.g., Tables 1-8). Each p-value
is calculated using standard methods for hypothesis testing on Pearson correlation and
regression coefficients, and a 95% confidence level is applied throughout. While we do
not use error bars in visualizations, p-values serve as the primary measure of statistical
significance for all reported relationships.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not involve computationally intensive experiments or machine
learning models. All analyses were conducted using standard statistical procedures (e.g.,
correlation, linear regression) on a small dataset (51 U.S. states). These computations were
performed on a personal laptop and do not require any notable compute resources such as
GPUs, high-memory machines, or cloud infrastructure.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: The research fully adheres to the Agents4Science Code of Ethics. All data used
in this study were obtained from publicly available sources or manually curated without vio-
lating any terms of service. No personally identifiable or sensitive information was collected
or analyzed. The analysis was conducted with integrity, transparency, and respect for data
provenance. The results are reported honestly, including statistical significance, limitations,
and potential biases. Additionally, the study avoids any manipulative or misleading claims,
and all collaborative use of AI is clearly disclosed in the AI Involvement Checklist.

Guidelines:

• The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses positive societal impacts, particularly for parents, coaches,
policymakers, and grant organizations in the junior golf ecosystem. Specifically, it offers
guidance on equitable talent development strategies, resource allocation, and financial aid
targeting—helping to reduce structural barriers in youth sports. While negative societal
impacts are not anticipated, the paper avoids overgeneralization and acknowledges limita-
tions in causal interpretation to prevent misuse of the findings. The study does not involve
sensitive data, high-risk applications, or decisions that would impact individuals directly.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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