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ABSTRACT

Univariate high-frequency time series are dominant data sources for many medi-
cal, economic and environmental applications. In many of these domains, the time
series are tied to real-time changes in state. In the intensive care unit, for exam-
ple, changes and intracranial pressure waveforms can indicate whether a patient
is developing decreased blood perfusion to the brain during a stroke, for example.
However, most representation learning to resolve states is conducted in an of-
fline, batch-dependent manner. In high frequency time-series, high intra-state and
inter-sample variability makes offline, batch-dependent learning a relatively dif-
ficult task. Hence, we propose Spatial Resolved Temporal Networks (SpaRTeN),
a novel composite deep learning model for online, unsupervised representation
learning through a spatially constrained latent space. SpaRTeN maps waveforms
to states, and learns time-dependent representations of each state. Our key con-
tribution is that we generate clinically relevant representations of each state for
intracranial pressure waveforms.

1 INTRODUCTION

In high-frequency time series data like intracranial pressure waveforms, rapidly predicting and de-
tecting changes in state is a clinically important task. For example, if a patient in the intensive care
unit starts exhibiting intracranial pressure decompensation, it may cause bilateral blindness (Mollan
et al. (2016)). Consequently, early detection of state transitions may provide clinicians with the
tools to intervene appropriately for better outcomes. For example, at early stages, cerebral vascular
decompensation can be treated with a loop diuretic like furosemide (Llwyd et al. (2022)). Sec-
ond, a growing amount of research is indicating the need to redefine critical illness by biological
state rather than a non-specific illness syndrome (Maslove et al. (2022)). SpaRTEn takes a key step
towards individualized state definition by generating individualized state representations.
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We propose a composite differentiable unsupervised deep learning network to learn a discrete spatial
representation from a high frequency time series via temporal ensemble learning–a method called
Spatial Resolved Temporal Networks (SpaRTeN). While we demonstrate one variant of this net-
work, the overall framework can be generalized to many use cases, different network blocks and
optimization procedures. We train the network via back-propagation and generate spatial represen-
tations via forward propagation.

1.1 CONTRIBUTIONS

• We introduce SpaRTEn, a new framework for learning spatial representations from high-
frequency time series.

• We demonstrate that introduction of a latent space improves rather than harms SpaRTEn’s
ability to forecast and cluster high frequency data in real-time.

• We show that SpaRTeN can generate clinically meaningful representations of intracranial
pressure waveforms.

2 BACKGROUND

2.1 PROBLEM SETUP.

For reference, we include the mathematical notation in Appendix A.1.

We consider a function mapping a time series xt of length k, {xt−k, xt−k+1, . . . , xt} to a state st.
Furthermore, st is constrained to represent a discrete point in the positive space of integers Z2+.

st = (xt; θ) (1)

st = {(i, j); i : [0, a), j : [0, b); i, j ∈ Z+ (2)

where i and j respectively represent the x- and y-coordinates of st. i and j are constrained to be
positive integers less than the width a and height b of the latent space. This problem setup imposes
a spatial constraint on associative memories learned by Hopfield networks Ramsauer et al. (2020).
Self-organizing feature maps (SOMs) also map inputs onto two dimensional Euclidean spaces, but
are offline and constrained to inputs of fixed dimension Kohonen (1990). We choose to place st in
a two-dimensional discrete state-space (i, j), because it facilitates easy visualization of time series
corresponding to individual states, which previous methods like SOM-VAE and TFT are unable
to currently do. In contrast to past work, the dimensionality of the input does not constrain the
dimensionality of the latent space.

3 MODEL FRAMEWORK

3.1 COMPOSITE NEURAL NETWORK

A schematic overview of our composite model is depicted in Figure 1. The architecture we construct
consists of a two-block model with an S block and an R block. The first block, S, generates a mapping
from a time series xt to a state st. The second block, R, includes a spatially constrained ensemble of
sub-networks R(.) each of which corresponds to a state and makes a forecast ŷst with an arbitrary
forecast window w, {xt+1, . . . , xt+w}. We train S to maximize the probability of assigning the
time series to the most suitable sub-network in R, Despite resembling GANs, the networks are
collaborative rather than adversarial Goodfellow et al. (2014) (Equation 5) .

fS : xt → st (3)
fRst

: xt → ŷst (4)

min
R

max
S

Et∈τL(R(S(xt)) (5)

where L is an objective function, R is the ensemble of state networks, S is a function that maps a
time series to a density across the states, and t is drawn from the set of all time series τ .
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Figure 1: Schematic representation of model architecture. Blue is R-Block and green is S-Block.
Time series from the data space are forecast by the sub-networks in an R-block with a look-forward
period of k. The dimensionality of the spatial representation is a a× b. Simultaneously, an S-Block
predicts the most relevant sub-network for the time series. The predicted sub-network is used to
generate a forecast and is then back-propagated via Equation 10.

Sub-networks can have a primary objective (Lobjective) of forecasting, classification, or reconstruc-
tion if we assign yt to be the forecasting window, a labeled class or xt, respectively. However, to
further impose structure, we introduce a secondary loss for time series inspired by contrastive loss
and self-organizing maps, the distance-weighted contrastive loss (LDWCL). The secondary objec-
tive ensures that a state learned by a sub-network in the R-block is unique. This provides a distinct
advantage over previous methods that can embed similar states with different embeddings — states
with unique embeddings improve interpretation (A.2), which we show via ablation studies (A.6).
For a single input, we define the loss function for to be

LRst
= Lobjective(yt, Rst(xt; θRst

)) + α× LDWCL(Rst(xt; θRst
), R(xt; θR)) (6)

LDWCL(Rst , R) = − log
eRst

Ez∼Z

[
esim(Rz,Rst ) × ||st − z||2

] (7)

Ls = ∥S(xt)− L(R(xt))∥2 (8)

where α is a learned hyper-parameter to modulate the relative effects of the two losses. For the
examples in this paper, we consider the primary objective to be forecasting. The S block has a
separate loss function Ls, contingent on its objective, which is to predict the spatial state occupied
by the next time step. S outputs a density function across the state-space domain, define by Z, and
the target for the S-block is the best sub-network in the R-block. While an L1 or L2 norm may
better capture the information about the density of the spatial networks, we can improve stability
by treating the objective as a classification problem and minimize the negative log likelihood (A.4).
Training details are further discussed in (Figure 1, A.7).

4 APPLICATION

For our applications, we focus on three distinct tasks involving high frequency time series — online
forecasting, zero-shot clustering and clinically significant representation learning. First, we bench-
mark on standard time series data, using SOTA approaches on standard datasets. Second, we apply
these results to intracranial pressure waveforms. We benchmark against SOTA online forecasting
models with convolutional approaches such as N-Beats (Oreshkin et al. (2019b)) and attention based
methods like Temporal Fusion Transformers (Lim et al. (2019)) and Autoformers (Wu et al. (2021)).
N-Beats is a time series model that convolves on trends and seasonality. Temporal Fusion Trans-
formers uses a discrete attention mechanism. Finally, autoformers adds an auto-correlation block
to a transformer base. SpaRTEn outperforms on three out of the four datasets drawn from the UCI
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repository with utilizing simple LSTM subnetworks and a latent space dimensionality of 3×3 (Table
1).

Zero-shot clustering is an unsupervised method that involves classifying the time series the first time
it is seen without information corresponding to a label. We demonstrate that SpaRTeN can generate
prototypical waveforms, that can be utilized by K-Nearest Neighbors to perform state-of-the-art for
zero-shot clustering methods. We benchmark on traditional clustering techniques such as KNN with
random subsets (Rand), Gaussian Mixture Modeling (GMM) and Spectral Clustering (SC). Ablation
studies show that LDWCL, the S, and appropriate hyper-parameter selection are crucial to learning
meaningful representations (A.6). Silhouette score is calculated by

s(i) =
b(i)− a(i)

max{a(i)− b(i)}
(9)

where a(i) is the intra-cluster distance, and b(i) is the mean nearest-cluster difference. Clusters are
assigned by SRTN . Visual representations are the average of all waveforms of given length k that
belong to any given cluster.

Table 1: Benchmarking SpaRTEn against Online Forecasting and Clustering
Models (RMSE) Models (Silhouette)

Dataset LSTM N-Beats TFT Auto SRTN Rand SC GMM SRTN

Electricity 2.93 2.84 2.49 6.61 1.57 0.023 0.005 0.024 0.028
Traffic 32.10 3.1 15.1 3.34 1.58 0.22 0.09 0.12 0.24
Stock 0.13 0.10 0.11 1.24 0.67 0.012 0.005 0.011 0.026
Retail 13.76 14.16 13.9 4.98 1.59 0.011 0.002 0.010 0.027

4.1 TIME IS BRAIN: CLINICALLY RELEVANT REPRESENTATION LEARNING

We demonstrate the practical application of SpaRTEn on intracranial pressure waveforms from the
MIMIC-III data-set. Intracranial pressure waveforms are a good example for this assessment be-
cause identifying underlying states may provide insight into an appropriate treatment regimen to
avoid an acute neurological injury (Desai et al. (2019)). A good interpretable representation of
states should be a) able to demonstrate distinct properties within each state, and b) cluster wave-
forms within a given time series into a given state. We highlight SpaRTEn’s visualized states and
demonstrate the relevant clinical vignettes for each state (Figure 2d). States are visualized by aver-
aging waveforms with equal length windows from a given ICU stay.

Qualitative analyses are produced by clinicians with expertise in ICU care. Future work should en-
sure consistency via empirical clinical validation. At point (0,0), the waveform is both stable and
relatively constant, providing a strong baseline for what non-pathological activity should look like.
At point (0, 1) we start seeing evidence of pathological neuro-vascular activity - the mean change
in the intracranial pressure is relatively small, unlike the variation, which is relatively large. ICP
variability is part of the response to injuries like trauma (Svedung Wettervik et al. (2020)). Fol-
lowing trauma, high intracranial pressure variability represents a hyper-active vasogenic, regulatory
response. In contrast, at point (0, 2), intracranial pressure waveform has a U-shaped, which indicates
a slower, hypo-reactive compensatory response to changes in intracranial pressure. A hypo-reactive
intracranial pressure is associated with worse performance on the Glasgow Coma Scale (Tian et al.
(2013)). A physician may try to shift a patient’s state from (0, 2) to (0, 1) in order to improve out-
comes by increasing the tone of the sympathetic nervous system (Schmidt et al. (2018)). SpaRTEn’s
other representations clinically correlate to hemorrhage, decompensation and hypertension (A.8)

SpaRTeN representations quantitatively capture variations within the data, and qualitatively provide
key clinical insights into waveform patterns. Future work should seek to include multi-modal time
series and improve size, algorithm and optimization details (A.9).
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Figure 2: Qualitatively and quantitatively evaluating model representations. a) Raw waveforms
of Intra-cranial Pressure with high intra-sample variability. b) Bootstrapped (10x) results of silhou-
ette score across different sized samples demonstrates that SpaRTeN outperforms other clustering
methods. 95% Confidence intervals reported in the figure, but may be too small to see. c) Clusters
generated by SpaRTeN represent distinct trends within the time series. d) Clinical interpretation of
each of the waveforms.

5 REPRODUCIBILITY STATEMENT

All experiments were performed with PyTorch. The code for the algorithm is attached in the sup-
plementary material.

6 ETHICS STATEMENT

Experiments with publicly available de-identified data from the MIMIC-III Waveform Database
were conducted with IRB approval. All other datasets that we used are also publicly available. This
work is not expected to lead to negative societal implications.
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Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar Rätsch.
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A APPENDIX

A.1 MATHEMATICAL NOTATION

Table 2: Mathematical Notation
Symbol Meaning
xt A time series from t− k to t. {xt−k, xt−k+1, . . . , xt}. k is the look-back period.
yt A time series from t+ 1 to t+ w. {xt+1, . . . xt+w}. w is the forecast window.
st The state of a time series at time-point t.

Corresponds to (i, j), a coordinate within the latent space.
Within S, the range of possible states

ŷts Prediction of yt given state s
T Total length of time series.
i The x-coordinate of a state. Constraint: i < a
j The y-coordinate of a state. Constraint: i < b
Z The latent space of states. Constrained to {Z2+ : [0, a), [0, b)}
a The width of the latent space.
b The height of the latent space.
fS fS : Xt → st. The S-block.
fR fR : (s,Xt)→ yt;∀s ∈ S. The R-Block.
Rs A network in the R-block. Maps Xt → ŷts given s
θf Parameter of function f .
L Loss function.
sim A metric of similarity. Normalized dot produce or cosine similarity, for example.

A.2 DISTANCE-WEIGHTED CONTRASTIVE LOSS

We adapt contrastive loss and self-organizing maps in the second term to the distance-weighted
contrastive loss (DWCL). For a single sample,

LDWCL(Rst , R) = − log
eRst

Ez∼Z

[
esim(Rz,Rst ) × ||st − z||2

] (10)

where z is a state drawn from the set of all states Z, sim is a metric of similarity between Rz and
Rst , such as a normalized dot product or cosine-similarity.

This loss pushes sub-networks to have distinct predictions. The distance-weighted contrastive loss
for univariate time series learns similar and dissimilar pairs in a self-supervised manner. During each
forward propagation step, the predictions are generated by each forecasting network in the R-block.
After the predictions are generated by each network in the R block, the distance-weighted contrastive
loss is created by calculating the difference in the predictions between each of the network in the
R-block and network selected by the S block, and weighting it by Euclidean distance of the network
and the selected sub-network. Similar pairs can be thought of networks that are closer to the selected
network in euclidean space, and dissimilar pairs are those that are further apart in Euclidean space.

The overall computational cost is O(c(f, b) + (K − 1) × c(f)), where c(f) is the cost of forward
propagating, and c(f, b) is the cost of forward and back-propagating, and K is the total number of
blocks. Thus, computational cost scales with the number of sub-networks.

The general idea of contrastive loss is to preserve neighborhood relationships between data points
by minimizing the distance between similar points and maximizing the distance between points
of different classes Hadsell et al. (2006). The general form of the contrastive loss function is the
following:

Lcontrastive(xi, xj ; θ) =
1[yi = yj ]

2
d(fθ(xi), fθ(j)) +

1[yi ̸= yj ]

2
max(0, ϵ− d(fθ(xi), fθ(xj))

(11)
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where xi and xj are two distinct samples, f is a function that maps x → Rk, an embedding of
dimensionality k, d is a distance metric, and ϵ is the distance to the margin. In multi-class classifi-
cation problems, this can be further extended as a classification problem with K + 1 categories He
et al. (2019).

Lq = − log
esim(fθ(xt),fθ(xj))/τ∑N

k=1 e
sim(fθ(xk),fθ(xj))/τ

(12)

where sim(f(xi), f(xj)) is a metric of similarity between f(xi) and f(xj) and τ is the normaliza-
tion factor.

We can extend this to forecasting where the positive example can be thought of as the selected
sub-network, whereas the negative examples are the irrelevant sub-networks. Finally, we add a
normalized distance metric, to ensure sub-networks that are closer in euclidean space have closer
representations.

LDWCL(Ri,j , R) = − log
eRi,j

Ex,y∼Z2+

[
esim(Rx,y,Ri,j) ×

√
(x−i)2+(y−j)2∑Z2+

x,y (x−i)2+(y−j)2

]
We visualize this further in Figure 3.

Figure 3: Loss calculations for the R-matrix. (a) Is the calculation of the R-matrix predictions for
the next time step. (b) S-Block predicts the appropriate state for the next time step. (c) The similarity
block calculates similarity between the chosen state prediction and the other states. (d) The distance
block calculates the distance between each other state and the selected substates. The loss block is
the dot product of the distance and similarity block. The loss block is summed to produce the final
loss value

A.3 INDUCTIVE BIASES WITH ENSEMBLE WEIGHT SHARING

Inductive transfer learning leverages an inductive bias to improve performance on a target task and
eliminates redundant learning of patterns in data structure Zhuang et al. (2021). To generate sub-
networks with weights that represent distinct states rather than shared structure between states in
the time series, we employ an inductive transfer learning framework. This procedure increases the
gap between the sub-network posteriors, which further enhances the contrastive learning aspect of
the network. From an information theoretical perspective, the process of learning a shared posterior
can be thought of as a lossless compression of the hidden states by encoding them into a shared
embedding. In turn, non-unique learning of state-independent behavior only needs to take place
once rather than a× b times.

While mode collapse is a known problem, we find that the sharing of weights across the first few
layers leads to robust performance as seen with the paradigm of transfer learning. This is quite unlike
the mode collapse seen in the training of generative adversarial networks. Without the sharing of
weights across the first few layers, we find that learning requires significantly more samples because
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the overall structure of the time series must be learned for each unit in the R block, in addition to
learning of the relevant state. In contrast, with weight sharing, we find that learning of the overall
structure of time series can be done jointly, and the state separation can be learned by each sub-
network.

In our implementation of the SpaRTeN framework, this auxiliary network maps the hidden states of
R, which is an h × a × b embedding to a low-dimensional embedding h′, which is subsequently
appended to a dense layer of each sub-network. This procedure ensures that the shared weights are
differentiable during training. After back-propagation, weights are copied to all sub-networks. The
full training algorithm is provided in Algorithm 1.

Algorithm 1 Spatial Projection of Time Series with Temporal Ensembles
Require: {x0, . . . , xT }, where T is the length of the time series. xt represents {xt−k, . . . , xt}

where k is the look-back period, and yt is the forecast period {xt+1, . . . , xt+w} where w is the
forecast window. Assign a width and height to the latent space a, b ∈ Z+. Randomly initialize
weights of the R and S block: θR, θS ∼ N(0, 1).
for m = k to m = T − w do
xm ← {xm−k, . . . , xm}
ym ← {xm+1, . . . , xm+w}
ˆ(i, j) = S(xm; θS)

ŷm(i,j) = R(i,j)(xm; θR)∀{i : [0, a), j : [0, b)}
Update R ˆ(i,j)

via gradient descent on LDWCL(ŷm ˆ(i,j)
,ym)

Update S via gradient descent on L(S(xm), argmin
i,j

(L(ŷm(i,j),ym))

end for

A.4 ENCOURAGING SMOOTHNESS OVER TIME

The goal is to predict the development of a time series in an interpretable way. This means that we
may have a tradeoff between stable network dynamics and representation of a ground truth density.
Learning a probabilistic model in a high-dimensional continuous space can be challenging, which
necessitates the use of reductionist frameworks to improve interpretability.

Previous work in Markov chain modeling penalized state transitions via an additional smoothness
term Fortuin et al. (2018). Other methods have focused on incorporating quantile outputs to maxi-
mize the signal-to-noise ratio Lim et al. (2021).

We find that by converting an L2-norm-based loss function to cross-entropy loss, we can improve
the stability of both the S-block representations, and by extension, the R-block ensemble:

LS = −
Z2+:[a,b]∑

i,j

argmin
i,j

(Ri,j(xt)− xt+1)
2 × log σ(S(xt)) (13)

where Z2+ is a discrete two-dimensional space of integers in [a, b], the sum is over all the coordinates
in the space, Ri,j(xt) is the prediction of the next time step by the network based on the previous
time step, xt+1 is the next step. σ represents soft-max function, and S(xt) is the predicted state of
the next time step. If S fails to provide strong initial gradients, as in the case with L2-norm, then the
instability of the network prevents a single sub-network from learning the characteristics of a given
state (Figure 4). In turn, this causes the S-block to be increasingly volatile, which can in turn further
destabilize the R-block.
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Figure 4: Losses and associated states for L2-norm and negative log-likelihood. (a) L2-norm loss
is significantly smaller and signal-to-noise ratio is smaller than (c) negative log likelihood (NLL)
loss. The corresponding states calculated by the (b) L2 loss are far more unstable than the states
calculated by the (d) negative log likelihood S-block.

A.5 BENCHMARKS

We benchmark against the UCI electricity, UCI traffic dataset, the five-min sub-sampled realized
volatility from the Oxford stocks dataset, and the kaggle retail dataset Asuncion & Newman (2007).
We benchmark on long short-term memory networks (LSTMs), N-Beats, and temporal fusion trans-
formers on an online forecasting task. We report root mean squared error (RMSE) Oreshkin et al.
(2019a); Lim et al. (2021).

Table 3: RMSE of benchmarks on an online forecasting task
Datasets

Model Electricity Traffic Stocks Retail

LSTM 2.93 32.10 0.13 13.76
N-Beats 2.84 3.10 0.10 14.16
TFT 2.49 15.10 0.11 13.87
Autoformer 6.61 3.34 1.24 4.98
SpaRTEn 1.57 1.58 0.67 1.59

Second, we benchmark the representations learned via SpaRTEn via a clustering metric, silhouette
score. We benchmark on the same datasets above, and compare against standard models such as k-
means applied to random sampling as a baseline; spectral clustering, which imposed a graph-based
approach to clustering and is typically used for sequential genomic data; and, a Gaussian mixture
model. We show that the silhouette score for the SpaRTeN representations far exceeds other modes
of clustering.
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Table 4: Silhouette score of benchmarks on an unsupervised clustering task
Datasets

Model Electricity Traffic Stocks Retail

Random 0.023 0.22 0.012 0.011
Spectral 0.005 0.09 0.005 0.002
GMM 0.024 0.12 0.011 0.010
SpaRTEn 0.028 0.24 0.026 0.027

A.6 ABLATION STUDIES

In this section, we run four different ablation studies. The baseline model contains a latent space
of dimension 3 × 3, a negative log-likelihood loss, an S-Block and an R-Block. We perform three
distinct experiments.

First, we ablate the S-Block. Ablation of the S-Block significantly decreases the performance of the
model. We anticipate this is because the spread of patterns included in the time series analysis are
subject to oversquashing Alon & Yahav (2020).

Second, we over-parameterize the latent space to a 10 × 10. We show that this slightly decreases
the performance, but not by much in the online forecasting task across three of the four datasets.
Because there are no constraints on how many coordinates the network needs to use, this may simply
be the result of self-regularization where the network voluntarily learns a representation that under-
utilizes an over-parameterized space. Nevertheless, over-specification of the latent space harms the
clustering ability of SpaRTEn.

Third, we ablate the distance-weighted contrastive loss. The distance-weighted contrastive loss was
implemented to improve clustering. We see that eliminating the distance-weighted contrastive loss
can reduce online forecasting performance and clustering performance.

Table 5: Ablation study on benchmarked datasets
Dataset

UCI Electricity UCI Traffic Oxford Stocks Retail

Ablation RMSE Silhouette RMSE Silhouette RMSE Silhouette RMSE Silhouette
S-block 2.93 X 32.10 X 0.13 X 13.76 X
10× 10 2.58 0.019 1.58 0.15 0.57 0.005 1.61 0.001
DWCL 2.57 0.024 1.62 0.17 0.60 0.012 1.60 0.013
None 1.58 0.028 1.58 0.24 0.67 0.026 1.59 0.027

A.7 MODEL ARCHITECTURE AND TRAINING

We employ a model architecture that utilizes the SpaRTeN framework. It consists of an S block and
an R block with a spatial embedding space of Z2+ : [0, a), [0, b) (Figure 1).

Each step in training occurs in three progressive steps during forward propagation and two steps
during back-propagation (Figure 1). During forward propagation, the R block maps an input time
series to a set of forecasts a×b (Step 1 - Blue). The S block takes the input time series and generates
a spatial density over the states (Step 1 - Green).

The second step is that the spatial densities corresponding to the predicted state over the S block
is used to select the network in the R block to predict the time steps over the look-forward period
(Step 2 - Blue, Green).

During backpropagation, there are two distinct loss functions that must be accounted for. First, the
S block loss can be calculated by generating all the predictions in networks in the R blocks (Step
3 - Green). The difference between S-block prediction of the best state and the network in the R
block with the lowest error with respect to the true future values (in the case of online forecasting),
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can be calculated (LS), and the subsequently it can be either treated as a classification task with
cross-entropy loss or a mean-squared error loss with the S block trying to approximate the density
generated by the R networks.

Second, the R block loss can be calculated by utilizing the predictions generated by all the networks,
and the predictions generated by the correct network, and weighting those such that networks with
closer spatial distances to the correct network should have closer predictions, whereas, networks
that are further away from the correct network have more leeway and should have further estimates
(Step 3 - Blue). We can create inductive biases across the ensemble via weight-sharing across the
initial layers (Appendix A.3), which improves performance (Appendix A.6)

For the R-Block, we minimize sMAPE (Symmetric Mean Absolute Percentage Error) as the primary
objective in a forecasting task:

sMAPE =
1

N

N∑
i=1

2× |yi − ŷi|
|yi|+ |ŷi|

(14)

where N is the number of examples used for training. sMAPE is a metric that has been typically
reported in the past with competitions like the M4 time series forecasting competition Makridakis
et al. (2018). For the S-Block, we utilize a standard cross-entropy loss for multi-class classification.

The goal of the S-block is to translate a high-frequency time series into a spatial coordinate system
with a dimensionality of a, b. The flexibility of fully connected networks in conjunction with spatial
constraints imposed by convolutional filters biases the network towards a spatial representation of
the temporal networks.

The S-block consists of four key layers, a 1D-CNN, a fully connected network layer with (a +
2) × (b + 2) number of units, a layer that reshapes the fully connected network block into an
(a+2)× (b+2) rectangle, followed by a 3× 3 convolution with a stride length of 2, to produce an
ultimate output layer of dimension ab (Figure 5).

A discrete state space was chosen to improve the interpretability of the model sub-networks to
produce meaningful results. However, future work may replace the discrete state space output with
a representation of a density distribution or a continuous vector space.

Figure 5: Network architecture of the S-Block. The S-block consists of four key layers, a 1D-CNN,
a fully connected network layer with (a + 2) × (b + 2) number of units, a layer that reshapes the
fully connected network block into an (a+ 2)× (b+ 2) rectangle, followed by a 3× 3 convolution
with a stride length of 2, to produce an ultimate output layer of dimension width length.

In order to compare the distinct properties of each state and demonstrate the ability to cluster wave-
forms within a given state, we train the S-Block with a latent state space of 3× 3. We train a KNN
with k = 9 on the 9 (3 × 3 = 9) distinct waveforms aggregated by state, and evaluate its ability to
cluster all the waveforms on the dataset using a silhouette score, which is widely used to evaluate
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the goodness of a clustering technique. SpaRTEn outperforms all other methods used to cluster time
series on all four datasets.

We used datasets from the UCI repository: Electricity, Traffic, Oxford Stocks, and Retail. We
utilized an 80-20 train-test split. We included learning rates from 1 × 10−4 to 1.0 for the grid-
search, iterating by a factor of 2. For the intracranial pressure waveforms, we utilize a time series of
length 60,000 with an equivalent train-test ratio of 80-20.

A.8 CLINICAL INTERPRETATION OF INTRACRANIAL PRESSURE WAVEFORMS

At point (0,0), the waveform is both stable and relatively constant. This indicates that the in-
tracranial pressure does not require some form of intervention, and is a strong baseline for what
non-pathological activity should look like. At point (0, 1) we start seeing evidence of pathological
neuro-vascular activity - the mean change in the intracranial pressure is relatively small, unlike the
variation, which is relatively large. ICP variability is part of the response to injuries like trauma Sve-
dung Wettervik et al. (2020). Following trauma, for example, high intracranial pressure variability
is a physiological response, and suggests that some of the compensatory mechanisms are starting to
be hyper-reactive. In contrast, at point (2, 0), intracranial pressure waveform has a U-shaped, which
indicates that the net change in the intracranial pressure over this time series is zero. However, the
visibly slower dip and return to baseline suggests a relatively slow, hypo-reactive compensatory re-
sponse to changes in intracranial pressure. A hypo-reactive intracranial pressure is associated with
worse performance on the Glasgow Coma Scale Tian et al. (2013). A physician may try to shift
a patient’s state from (0, 2) to (0, 1) in order to improve outcomes by increasing the tone of the
sympathetic nervous system Schmidt et al. (2018).

In the second row, we start to see acute cerebro-vascular dysregulation. At point (1, 1), we see that
the there are signs of instability, followed by a complete over-compensation, and an acute drop in
the intracranial pressure. A patient in this state may warrant a CT scan to detect an early aneurys-
mal rupture. At point (1,1) and (1, 2), we see that there is complete dysregulation of the brain’s
vasculature with dramatic decreases and increases in intracranial pressure, respectively. These two
waveforms are adjacent to each other and highlight intracranial pressure waveforms in a pathological
state. In the context of waveform (1, 2), we might clinically witness a hemorrhage. A hemorrhage
can increase local volume of blood, and decrease intracranial pressure. If a patient is in a hem-
orrhagic state such as an intracranial hemorrhage, interventions include endotracheal intubation to
protect the airway, blood pressure management and hypertonic saline to reduce intracranial pressure
Caceres & Goldstein (2012). In (1, 1), we see a rapid decrease in intracranial pressure as might be
expected following treatment such as placement of an extra-ventricular drain Kramer (2021). No-
tably, the waveform in (1, 1) is closer to the baseline state than that in (1, 2), which makes sense
because (1, 1) involves a treatment designed to restore physiologic state.

The bottom row, namely (2, 0) and (2, 1) represents decompensation but more chronically than
acutely as was observed with (1, 1) and (1, 2). In (2, 0), we could see what chronic hypotension
could look like, whereas in (2, 1), we might see what chronic hypertension would look like. In-
tracranial hypotension is associated with headaches Luetzen et al. (2021), and can either be acute or
chronic. In (2, 1) we notice that there is some form of chronic hypertension, which can be treated
clinically with a diuretic drug. In (2, 2), we see instability with respect to intracranial pressure,
which can be a precursor to (1, 2) and (1, 1) Oernbo et al. (2022). These analyses demonstrate
that SpaRTEn is able to decipher clinically meaningful states. Moreover, utilizing these state anal-
yses to better disentangle states can improve the understanding of clinical treatment and associated
outcomes Samartsidis et al. (2018).

Table 6: Silhouette Score of representations of Intracranial Pressure Waveforms
Sample Size

Model 10 25 100 400
Spectral 0.131 ± 0.023 0.165 ± 0.008 0.109 ± 0.007 0.156 ± 0.003
Random 0.366 ± 0.018 0.275 ± 0.007 0.252 ± 0.005 0.276 ± 0.002
GMM 0.341 ± 0.019 0.345 ± 0.005 0.329 ± 0.004 0.344 ± 0.003
SpaRTeN 0.415 ± 0.020 0.422 ± 0.006 0.385 ± 0.005 0.405 ± 0.002

14



Published as a conference paper at ICLR 2022

To our knowledge, this is the first algorithm to use an online contrastive learning approach for time
series classification. While it is known that discriminative region-based zero-shot learning in images
can preserve context information Narayan et al. (2021), SpaRTeN representations quantitatively
capture variations within the data, and qualitatively provide key clinical insights into waveform
patterns.

A.9 POTENTIAL LIMITATIONS

SpaRTeN is a novel min-max framework for decoding states, and has many of the same advantages
and disadvantages as other min-max frameworks. Without sufficient gradient-based optimizations
like smoothing and replacing density-based losses with negative log-likelihood losses, the gradients
and states learned by SpaRTeN can be highly unstable (Appendix A.3). Subsequently, a collapse in
the gradients on one of the blocks can be highly detrimental to other blocks.

Second, many datasets, especially in the ICU contain multi-modal sources of information. Currently,
models like temporal fusion transforms can better account for multi-modal trends in time series and
combine categorical with continuous variables. We anticipate further development of the SpaRTeN
framework by including R-blocks that are capable of accounting for different variable types and
data modalities may further enhance the ability of SpaRTeN to generate multi-modal archetype
waveforms, which can be subsequently used to qualitatively evaluate changing states in the clinical
setting.

Third, we selected 2D geometry because it was computationally tractable in terms of the distance-
weighted contrastive loss, and interpretable in the ICU setting. Ablation of the the distance-weighted
contrastive loss leads to poorer representation learning and clustering. Future work could explore
higher-dimensional latent spaces and hyperbolic geometry.

A.10 RELATED WORK

A.10.1 TWIN NEURAL NETWORKS

Twin neural networks contain two or more identical subnetworks He et al. (2018), and can learn
semantic similarity between different samples. Subnetworks cast as recurrent neural networks have
been used to learn and visualize time series similarities Pei et al. (2016). Like twin neural networks,
our framework employs contrastive loss with subnetworks, but does not force subnetworks to share
all the weights or even architectures.

A.10.2 TEMPORAL ENSEMBLES AND MIXTURE OF EXPERTS

Ensemble Learning refers to a family of techniques where multiple learners are trained to solve
the same problem Zhou (2009). Ensemble methods construct multiple hypotheses from these base
learner algorithms and join them to generate a prediction that generalizes much better than the in-
dividual algorithms. Ensembles with base learner LSTMs have been used on financial time series
forecasting to improve performance Sun et al. (2018). Our framework forces base learners to occupy
a Euclidean space, which can subsequently be used to generate interpretable representations. Other
online unsupervised methods with time series have developed composite or adaptive model ap-
proaches focused on anomaly detection followed by model adaptationKaraahmetoglu et al. (2020);
Savitha et al. (2020). Having distinct sub-networks for each state allows for different models to
uniquely represent distinct states.

The key advantage of utilizing the framework proposed in the paper over a mixture of experts is
the idea of state separation,which allows visualization and explainability via representation. Utiliz-
ing the novel contrastive function to promote diversity in recurrent neural networks allows for state
separation. This is particularly relevant in the medical setting - state separation allows for different
interventions. Learning these representations can allow a provider to give a drug or an economist to
change a fiscal policy. We provide the specific example of the ICU measurements, where if an indi-
vidual belongs to a state where cerebral ischemia is identified, then an intervention targeting cerebral
ischemia can be provided. Mixtures of expert models do not typically generate representations to
interpret and therefore, limits explainability in state-dependent time-series analysis.
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A.10.3 DISCRETE LATENT SPACES

Discrete latent spaces have been utilized in the past with relatively high degrees of success. For ex-
ample, VAEs can discretize the latent space with an encoder-decoder setup, and has been more heav-
ily applied to interpreted disentangling of discrete representation learning Williams et al. (2021).
There are a few key differences between the VAEs and SpaRTEn in terms of 1) generated output,
and 2) task flexibility. While VAEs generate a representation in the latent space, SpaRTEn clearly
identifies the representation in the space of the time series (Figure 1b). Generating a representation in
the same space as the time series allows for improved explainability, and therefore, intervention. For
example, if a patient has an ICP waveform that belongs to the state where there is cerebral ischemia,
then clinicians can make an intervention relevant to cerebral ischemia. Current VAE based methods
generate representations in a latent space, and the relevant clinical state must be extracted from addi-
tional data. Second, VAEs are typically constrained to reconstruction or KL-divergence based loss.
In their current implementation, they have yet to be implemented for forecasting. Finally, SpaRTEn
can take advantage of the diverse potential loss functions for the R-Block and improve individual
sub-networks.

One extension of VAEs with a spatially resolved latent space encodes time series in a self-organizing
map Fortuin et al. (2018). Self-organizing maps are an extension of discrete latent spaces that
represents an input space with fixed dimensionality as a discrete two-dimensional Euclidean space.
Each node in the two dimensional map is a single neuron, and the best matching neuron is adjusted
towards input. This model learns state transitions via Markov modeling on the self-organizing map.
We extend self-organizing maps differently, where nodes represent distinct subnetworks rather than
a decodable state, which allows distinct weights and architectures. Using a separate block to predict
the node, we can eliminate the Markov chain used in SOM-VAEs.
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