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Abstract

Joint-Embedding Self Supervised Learning (JE-
SSL) has seen a rapid development, with the emer-
gence of many method variations but only few
principled guidelines that would help practition-
ers to successfully deploy them. The main reason
for that pitfall comes from JE-SSL’s core principle
of not employing any input reconstruction there-
fore lacking visual cues of unsuccessful training.
Adding non informative loss values to that, it be-
comes difficult to deploy SSL on a new dataset for
which no labels can help to judge the quality of the
learned representation. In this study, we develop a
simple unsupervised criterion that is indicative of
the quality of the learned JE-SSL representations:
their effective rank. Albeit simple and computa-
tionally friendly, this method —coined RankMe—
allows one to assess the performance of JE-SSL
representations, even on different downstream
datasets, without requiring any labels. A further
benefit of RankMe is that it does not have any
training or hyper-parameters to tune. Through
thorough empirical experiments involving hun-
dreds of training episodes, we demonstrate how
RankMe can be used for hyperparameter selec-
tion with nearly no reduction in final performance
compared to the current selection method that in-
volve a dataset’s labels. We hope that RankMe
will facilitate the deployment of JE-SSL towards
domains that do not have the opportunity to rely
on labels for representations’ quality assessment.
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1. Introduction
Self-supervised learning (SSL) has shown great progress to
learn informative data representations in recent years (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b; Grill
et al., 2020; Lee et al., 2021; Caron et al., 2020; Zbon-
tar et al., 2021; Bardes et al., 2021; Tomasev et al., 2022;
Caron et al., 2021; Chen et al., 2021; Li et al., 2022b; Zhou
et al., 2022a;b; HaoChen et al., 2021; He et al., 2022), catch-
ing up to supervised baselines and even surpassing them
in few-shot learning, i.e., when evaluating the SSL model
from only a few labeled examples. Although various SSL
families of losses have emerged, most are variants of the
joint-embedding (JE) framework with a siamese network
architecture (Bromley et al., 1994), denoted as JE-SSL for
short. The only technicality we ought to introduce to make
our study precise is the fact that JE-SSL has introduced
some different notations to denote an input’s representation.
In short, JE-SSL often composes a backbone or encoder
network e.g., a ResNet50 and a projector network e.g., a
multilayer perceptron. This projector is only employed dur-
ing training, and we refer to its outputs as embeddings, while
the actual inputs’ representation employed for downstream
tasks are obtained at the encoder’s output.

Although downstream tasks performance of JE-SSL repre-
sentations might seem impressive, one pondering fact should
be noted: all existing methods, hyperparameters, models —
and thus performances — are obtained by manual search
involving the labels of the considered datasets. In words,
JE-SSL is tuned by monitoring the supervised performance
of the model at hand. Therefore, successfully deploying a
SSL model on a new dataset relies on the strong assumption
of having labels on that dataset to tune the SSL method e.g.
through a linear classifier feeding on the JE-SSL represen-
tations (Misra & Maaten, 2020). This quality assessment
strategy was also extended to the use of nonlinear classifiers,
e.g., a k-nn classifier (Wu et al., 2018; Zhuang et al., 2019).
Hence, although labels are not directly employed to compute
the weight updates, they are used as a proxy. This limitation
prevents the deployment of JE-SSL in challenging domains
where the number of available labelled examples is limited.
Adding to the challenge, one milestone of JE-SSL is to
move away from reconstruction based learning; hence with-
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out labels and without visual cues, tuning JE-SSL methods
on unlabeled datasets remains challenging. This led to the
application of feature inversion methods e.g. Deep Image
Prior (Ulyanov et al., 2018) or conditional diffusion mod-
els (Bordes et al., 2021) to be deployed onto learned JE-SSL
representation to try to visualize the learned features. Those
alternative visualization solutions however suffer from their
own limitations e.g. bias of the used method, or compu-
tational cost. More importantly, those feature inversion
strategies have been designed for natural images i.e. it is not
clear how such methods would perform on different data
modalities.

In this study we propose RankMe to assess a model’s
performance without having access to any labels; a sim-
ple method that does not require any training or tuning.
RankMe accurately predicts a model’s performance both on
In-Distribution (ID), i.e., same data distribution as used dur-
ing the JE-SSL training, and on Out-Of-Distribution (OOD),
i.e., different data distribution onto which the learned model
is deployed onto. We highlight this crucial property at the
top of Figure 1. The strength of RankMe lies in the fact
that it is solely based on the singular values distribution of
the learned embeddings which is not only simple to obtain
but also easy to interpret. In fact, RankMe’s motivation
hinges on Cover’s theorem (Cover, 1965) that states how
increasing the rank of a linear classifier’s input increases its
training performance, and three simple hypotheses that thor-
oughly validate empirically at the end of our study. Since
RankMe provides a step towards (unlabeled) JE-SSL by al-
lowing practitioners to cross-validate hyperparameters and
select models without resorting to labels or feature inversion
methods, we hope that it will allow JE-SSL to move away
from using labels as part of their design search strategy. We
summarize our contributions below:

1. We introduce RankMe (Equation (1)) and motivate its
construction from first principles (Section 5) e.g. Cover’s
theorem

2. We demonstrate that RankMe’s ability to inform about
JE-SSL downstream performances is consistent across
methods, e.g. VICReg, SimCLR, DINO, and their vari-
ants, and across architectures, e.g. using a projector net-
work and/or a nonlinear evaluation method (see Figure 2
and Section 3.3)

3. We demonstrate that RankMe enables hyperparameter
cross-validation for JE-SSL methods; RankMe is able to
retrieve and sometimes surpass most of the performance
previously found by manual –and label-guided– search
while not employing any labels, on both in domain and
out of domain datasets (Figure 1 and Tables 1 and 2)

We provide a hyperparameter free numerically stable imple-
mentation of RankMe in Section 3.1 and pseudo-code for
cross-validation in Figure 4. Through extensive experiments

involving 11 datasets and 110 models over 5 methods, we
demonstrate that in the linear and nonlinear probing regime,
RankMe is able to tell apart successful and sub-optimal JE-
SSL training, even on different downstream tasks without
having access to labels or downstream task data samples.

2. Background
Joint embedding self-supervised learning (JE-SSL). In
JE-SSL, two main families of method can be distinguished:
contrastive and non-contrastive. Contrastive methods (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b; 2021; Yeh
et al., 2021) mostly rely on the InfoNCE criterion (Oord
et al., 2018) except for (HaoChen et al., 2021) which uses
squared similarities between the embedding. A clustering
variant of contrastive learning has also emerged (Caron
et al., 2018; 2020; 2021) and can be thought of as con-
trastive methods, but between cluster centroids instead of
samples. Non-contrastive methods (Grill et al., 2020; Chen
& He, 2020; Caron et al., 2021; Bardes et al., 2021; Zbontar
et al., 2021; Ermolov et al., 2021; Li et al., 2022c) aim at
bringing together embeddings of positive samples, similar
to contrastive learning. However, a key difference with
contrastive learning lies in how those methods prevent a
representational collapse. In the former, the criterion ex-
plicitly pushes away negative samples, i.e., all samples that
are not positive, from each other. In the latter, the criterion
does not prevent collapse by distinguishing positive and
negative samples, but instead considers the embeddings as
a whole and encourages information content maximization
e.g., by regularizing the empirical covariance matrix of the
embeddings. Such a categorization is not needed for our
development, and we thus refer to any of the above method
as JE-SSL.

Known Observations About Representations’ Spectrum
in JE-SSL. The phenomenon of learning rank-deficient or
dimensional collapsed, embeddings in JE-SSL has recently
been studied from both a theoretical and empirical point of
view. The empirical emergence of dimensional collapse was
studied in (Hua et al., 2021) where they proposed the use
of a whitening batch normalization layer to help alleviate it.
In (Jing et al., 2022), a focus on contrastive approaches in a
linear setting enabled a better understanding of dimensional
collapse and the role of augmentations in its emergence.
Performance in a low label regime of a partially collapsed
encoder can also be improved by forcing the whitening of
its output, as shown in (He & Ozay, 2022). Furthermore, it
was shown in (Balestriero & LeCun, 2022) how dimensional
collapse is a phenomenon that should not necessarily happen
in theory and how its emergence is mostly due to practical
concerns. Interestingly, we will see through the lens of
RankMe that dimensional collapse is tightly linked with the
quality of the representation. In supervised learning, the
collapse of the embeddings was also studied and found to
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Dataset Method Labels VICReg SimCLR DINO

cov. inv. LR WD temp. LR. WD. t-temp. s-temp.

ImageNet
ImageNet Oracle ✓ 68.2 68.2 68.6 68.0 68.5 68.5 68.3 72.3 72.4
α-ReQ X 67.9 67.5 59.5 67.8 63.5 68.1 32.3 71.7 66.2
RankMe X 67.8 67.9 68.2 67.8 67.1 68.0 68.3 72.2 72.4

OOD
ImageNet Oracle ✓ 68.7 68.7 68.9 68.8 68.7 68.7 68.8 71.9 72.5
α-ReQ X 68.1 67.8 63.8 68.4 65.1 68.2 68.6 71.8 68.5
RankMe X 67.7 68.3 68.7 68.4 67.6 68.4 68.8 71.8 72.5

Figure 1. Top: Performance of JE-SSL representations (encoder output) in y-axis against the embeddings (projector output) RankMe
values in x-axis on ImageNet-1k. Except for some degenerate solutions at full-rank, RankMe values correlate well with in-distribution
(left column) and out-of-distribution (right columns) classification performance. Bottom: Hyperparameter selection using the common
supervised linear probe strategy, α-ReQ the proposed unsupervised RankMe strategy. Values in bold represent the best performance
between RankMe and α-ReQ. OOD indicates the average performance over all the considered datasets other than ImageNet. Without
any label, optimization or parameters, RankMe is able to recover most of the performance obtained by using ImageNet validation set,
highlighting its strength as a hyperparameter selection tool. RankMe also outperforms α-ReQ on average and does not suffer from as big
performance drops in worst cases.

be detrimental to performances (Ganea et al., 2019).

As such, existing studies have started to prescribe informally
the choice of representations that have a lesser collapse; yet
no formal study on the ability of this recipe to actually
identify successfully trained models, nor how to quantify
the amount of collapse to improve representations as been
proposed; this is the goal of our study.

3. RankMe Consistently Predicts Downstream
performances From Representations

The goal of this section is to introduce and motivate RankMe
while providing a numerically stable implementation. We
defer a theoretical justification to Section 5. To ease no-
tations, we refer to the (train) dataset used to obtain the
JE-SSL model as source dataset, and the test set on the
same dataset or a different OOD dataset as target dataset.

3.1. RankMe: A Simple Method and Its Implementation

The most crucial step of RankMe is the estimation of the
embeddings’ rank. A trivial solution could be to check at the
number of nonzero singular values. Denoting by σk the kth

singular value of the (N ×K) embedding matrix Z, this
would lead to rank(Z) =

∑min(N,K)
k=1 1{σk>0}. However,

such a definition is too rigid for practical scenarios. For
example, round-off error alone could have a dramatic
impact on the rank estimate. Instead, alternative and robust
rank definitions have emerged (Press et al., 2007) such
as rank(Z) =

∑min(N,K)
k=1 1{σk>maxi σi×max(M,N)×ϵ},

where ϵ is a small constant dependent on the data type,
typically 10−7 for float32. An alternative measure
of rank comes from a probabilistic viewpoint where the
singular values are normalized to sum to 1 and the Shannon
Entropy (Shannon, 1948) is used, which corresponds to our
definition of RankMe from Equation (1). We thus introduce
RankMe formally as the following smooth rank measure,
originally introduced in (Roy & Vetterli, 2007),

RankMe(Z) = exp

−min(N,K)∑
k=1

pk log pk

 , (1)

with pk =
σk(Z)

∥σ(Z)∥1
+ ϵ, (2)
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where Z is the source dataset’s embeddings. As opposed to
the classical rank, the chosen Equation (1) does not rely on
specifying the exact threshold at which the singular value
is treated as nonzero. Throughout our study, we employ
Equation (1), and provide the matching analysis with the
classical rank in the appendix. Another benefit of RankMe’s
Equation (1) is in its quantification of the whitening of the
embeddings in addition to their rank, which is known to
simplify optimization of (non)linear probes put on top of
them (Santurkar et al., 2018). Lastly, although Equation (1)
is defined with the full embedding matrix Z, we observe that
not all of the samples need to be used to have an accurate
estimate of RankMe. In practice, we use 25600 samples as
ablation studies provided in Appendix G and Figure S11 in-
dicate that this provides a highly accurate estimate. RankMe
should however only be used to compare different runs of
a given method, since the embeddings’ rank is not the only
factor that affects performance.

Relation of RankMe To Existing Solutions. Performance
evaluation without labels can also be done using a pretext-
task, such as rotation prediction. This technique helped in
selecting data augmentation policies in (Reed et al., 2021).
One limitation lies in the need to select and train the clas-
sifier of the pretext-task, and on the strong assumption that
rotation were not part of the transformations one aimed to be
invariant to. Since (supervised) linear evaluation is the most
widely used evaluation method, we will focus on showing
how RankMe compares with it. In (Li et al., 2022a), it is
shown that the eigenspectrum of representations can be used
to assess performance when used in conjunction with the
loss value. This requires training an additional classifier
to predict the performance and as such is not usable as is
in a completely unsupervised fashion. Most related to us
is (Ghosh et al., 2022) where representations are evaluated
by their eigenspectrum decay, giving a baseline for unsu-
pervised hyperparameter selection. α-ReQ relies on strong
assumptions, and if they hold, then RankMe and α-ReQ
can match, but we show that we outperform it on average.
In fact the assumptions made by α-ReQ are known to not
hold in light of collapse (He & Ozay, 2022). We investigate
α-ReQ’s behavior in detail in Appendix E.

3.2. RankMe Predicts Linear Probing performance
Even on Unseen Datasets

In order to empirically validate RankMe, we compare it to
linear evaluation, which is the default evaluation method
of JE-SSL methods. Finetuning has gained in popularity
with Masked Image Modeling methods (He et al., 2021),
but this can have a significant impact on the properties of
the embeddings and alters what was learned during the
pretraining. As such, we do not focus on this evaluation.

Experimental Methods and Datasets Considered. In
order to provide a meaningful assessment of the embed-
dings rank’s impact on performance, we focus on 5 JE-
SSL methods. We use SimCLR as a representative con-
trastive method, VICReg as a representative covariance
based method, and VICReg-exp and VICReg-ctr which
were introduced in (Garrido et al., 2022). We also include
DINO (Caron et al., 2021) as a clustering approach. Ap-
plying RankMe to DINO is not as straightforward due to
the clustering layer in the projector, so embeddings have to
be taken right before the last projector layer. Confer Ap-
pendix C for more details. To make our work self-contained,
we present the methods in Appendix A. We chose to use
VICReg-exp and VICReg-ctr as they provide small mod-
ifications to VICReg and SimCLR while producing em-
beddings with different rank properties. For each method
we vary parameters that directly influence the rank of the
embeddings, whether it is the temperature used in softmax
based methods, which directly impacts the hardness of the
softmax, or the loss weights to give more or less impor-
tance to the regularizing aspect of loss functions. We also
vary optimization parameters such as the learning rate and
weight decay to provide a more complete analysis. We
provide the hyperparameters used for all experiments in
Appendix K. All approaches were trained in the same ex-
perimental setting with a ResNet-50 (He et al., 2016) back-
bone with a MLP projector having intermediate layers of
size 8192, 8192, 2048, which avoids any architectural rank
constraints. The models were trained for 100 epochs on
ImageNet with the LARS (You et al., 2017; Goyal et al.,
2017) optimizer. DINO was also trained using multi-crop.

In order to evaluate the methods, we use ImageNet (our
source dataset), as well as iNaturalist18 (Horn et al., 2018),
Places205 (Zhou et al., 2014), EuroSat (Helber et al., 2019),
SUN397 (Xiao et al., 2010), and StanfordCars (Krause et al.,
2013) to evaluate the trained models on unseen datasets.
While we focus on these datasets for our visualizations, we
also include CIFAR10, CIFAR100 (Krizhevsky et al., 2009),
Food101 (Bossard et al., 2014), VOC07 (Everingham et al.)
and CLVR-count (Johnson et al., 2017) for our hyperparam-
eter selection results, and provide matching visualizations
in Appendix D. These commonly used datasets provide a
wide range of scenarios that differ from ImageNet and pro-
vide meaningful ways to test the robustness of RankMe.
For example, iNaturalist18 consists of 8142 classes focused
on fauna and flora which requires more granularity than
similar classes on ImageNet, SUN397 focuses on scene
understanding, deviating from the single object and object-
centric images of ImageNet, and EuroSat consists of satellite
images which again differ from ImageNet. Datasets such as
iNaturalist can also allow theoretical limitations to manifest
themselves more clearly due to the number of classes being
significantly higher than the rank of learned representations.
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Figure 2. Validation of RankMe when evaluating performance on
representations. We see that having a high rank is a necessary
condition for good downstream performance.

In order to evaluate on those datasets, we rely on the VISSL
library (Goyal et al., 2021). We provide complete details on
the pretraining and evaluation setup in Appendix I.

RankMe as a prediction of linear classification accuracy.
As we can see in Figures 1 and 2, for a given method the
performance on the representations is improved by a higher
embedding rank, whether we look on ImageNet on which
the models were pretrained or on downstream datasets. This
is best seen when looking at DINO, where we notice a clear
trend across all datasets. On EuroSat, the relationship is
not clear since the performances are so close between all
models. When looking at VICReg on on StanfordCars, we
can clearly see that a high rank is only a necessary condi-
tion. Here the best performance is not achieved with the
highest rank, even if full rank embeddings still achieve good
performance. We discuss the link between rank, number
of classes, and performance in Section 5 to give some in-
sights into RankMe’s behavior in settings with few classes
such as StanfordCars. It is also very tempting to draw con-
clusions when comparing different approaches, especially
when looking at the ImageNet performance, however since
dimensional collapse is not the only performance deciding
factor one should refrain from doing so.
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Figure 3. Impact of rank on performance on other architectures and
evaluation protocols. (Left) Using a 3 layer MLP as classification
head does not alter the performance before or after the projector,
showing that RankMe can go beyond linear evaluation. (Right)
The same conclusion holds for k-NN evaluation on ImageNet,
where RankMe remains a good indicator of performance.

3.3. RankMe Also Holds for Non-linear Probing

While we have been focusing on linear evaluation, one can
wonder if the behaviors change when using a more com-
plex task-related head. We thus give some evidence that the
previously observed behaviors are similar with a non-linear
classification head. we use a simple 3 layer MLP with in-
termediate dimensions 2048, where each layer is followed
by a ReLU activation. This choice of dimensions ensures
that there are no architectural rank constraints on the embed-
dings. We focus on SUN397 for its conceptual difference
to ImageNet. The low rank of embeddings produced by
SimCLR would suggest that a non-linear classifier might
help improve performance, since it is not as theoretically
limited by the embeddings’ rank as it is in the linear setting.
However we can see in Figure 3 that the behaviors for all
methods are the same as in the linear regime. This would
suggest that RankMe is also a suitable metric to evaluate
downstream performance in a non-linear setting. We per-
form the same analysis using a k-NN classifier, following
the protocol of (Zhuang et al., 2019; Caron et al., 2020),
where we use 36 combinations of k and temperature and re-
port the best performance. We see in Figure 3 that RankMe
remains a good predictor of dowstream performance, with
curves that are similar to what was observed with a linear
classifier. Since a k-NN classifier evaluates the preservation
of the euclidean distance instead of the linear separability,
the results suggest that RankMe can extend to more evalua-
tion protocols.

4. RankMe for Label-Free Cross-Validation
We previously focused on validating RankMe by compar-
ing overall performance compared to linear evaluation. In
this section we focus on the evolution of rank and perfor-
mance when varying one hyperparameter at a time in order
to demonstrate how RankMe can be used for hyperparam-
eter selection. We focus on loss specific hyperparameters
such as the loss weights or temperature as well as hyperpa-
rameters related to optimization, such as the learning rate
and weight decay.
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Algorithm 1 Hyperparameter selection with RankMe
Require: Models f1, . . . , fN to compare, in increasing value of the hy-

perparameter
Require: Corresponding ranks r1, . . . , rN

1: fbest ← f1, rbest ← r1
2: for i = 2 to N do
3: if ri > rbest then
4: fbest ← fi, rbest ← ri
5: else if ri = rbest and (ri > ri−1 or ri > ri+1) then
6: fbest ← fi, rbest ← ri
7: return fbest 0.2 0.4 0.6 0.8

Base LR
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Figure 4. (Left) Algorithm describing how to use RankMe for hyperparameter selection. We select either the highest rank model, or if
there are multiple ones, the one with the minimal/maximal value achieving it.(Right) Visual example of the hyperparameter selection
applied to SimCLR’s temperature and learning rate. The star indicates the value that is selected using RankMe, and the triangle the one
with the ImageNet oracle. Notice the high rank of oracle selected models.

4.1. Using RankMe to select hyperparameters

As we have shown before, having a higher rank is necessary
for better performance, and using RankMe to find the best
value of an hyperparameter is as simple as choosing the
value that leads to the highest rank, as illustrated in Fig-
ure 4. Certain hyperparameters will lead to plateaus of equal
rank, and for those the value that first achieves the maximal
value of RankMe should be selected. This second part is
however only applicable when hyperparameter values can
be ordered.
Even in cases where the values cannot be compared, and
equal ranks are found in a different setting, this still makes
it possible to discard some runs and only focus on the one
that achieve the maximal rank. This further highlights how
maximal rank is only a necessary condition for good perfor-
mance. Nonetheless, when the hyperparameters are ordered
we can go one step further and use the rank alone to find a
good hyperparameter value.

4.2. Experiments
In order to demonstrate the effectiveness of RankMe for
hyperparameter selection, we apply the algorithm presented
in Figure 4 to find the best values for a given set of hyper-
parameters for VICReg, SimCLR and DINO. Our focus is
on the covariance and invariance weights in VICReg, the
temperature in SimCLR, on learning rate and weight de-
cay for both, and on the student and teacher temperatures
in DINO. We compare the performance on ImageNet as
well as the average performance on the previously discussed
OOD datasets to models selected by their ImageNet top-1
accuracy on its validation set. For per dataset performance,
confer Appendix J.

On the embeddings. As we can see in Table 1, using
RankMe we are able to retrieve most of the performance

on ImageNet, with gaps being lower than half a point on
average. It is not possible to beat the selection using Ima-
geNet’s validation, since this is the metric we are evaluating
on. However, on OOD datasets we are able to improve the
performance in certain settings, while having similar per-
formance on average. Thus, when comparing performance
after the projector, RankMe is the better approach of the
two to select the hyperparameters that will generalize best
to unseen datasets. When comparing to α-ReQ, RankMe
achieves better in domain performance, but on OOD datasets
α-ReQ performs slightly better, though with bigger worst
case performance gaps. We provide an in-depth analysis of
α-ReQ in Appendix E, where we find that the power law
prior of α-ReQ fails on the embeddings and as such those re-
sults must be interpreted with care. As pointed out in (Girish
et al., 2022), using ImageNet performance to select models
can lead to suboptimal performance in downstream tasks,
which our results further confirm and reinforces the need
for a new way of selecting hyperparameters.

On the representations. When looking at performance be-
fore the projector in Figure 1, we can see that RankMe does
not beat the models selected with ImageNet’s validation
set, even on OOD datasets. However, RankMe performs
better than α-ReQ in most settings, while not suffering from
as severe drops in the worst cases. Nevertheless, the gaps
between RankMe and the ImageNet oracle are on average
of less than half a point, which shows how competitive
RankMe can be for hyperparameter selection, despite using
no labeled data, having no parameters to tune, and being
able to be computed in a couple of minutes.

iNat-18 pretraining. To show how our results extend be-
yond ImageNet pretraining, we applied the same protocol
but pretrained our models on iNat-18. For these experiments
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Table 1. Top-1 accuracies obtained on the embeddings by doing hyperparameter selection using ImageNet validation performance, α-ReQ
or RankMe. OOD indicates the average performance over all the considered datasets other than ImageNet.

Dataset Method VICReg SimCLR DINO

cov. inv. LR WD temp. LR. WD. t-temp. s-temp.

ImageNet
ImageNet Oracle 59.7 59.7 59.7 59.7 56.9 56.9 57.1 54.6 64.8
α-ReQ 59.6 59.2 36.2 59.3 51.5 56.4 49.0 53.3 53.3
RankMe 59.6 59.7 59.7 59.5 56.5 56.0 57.1 53.3 64.8

OOD
ImageNet Oracle 55.3 55.6 55.3 55.5 54.7 54.7 54.7 55.6 60.6
α-ReQ 55.5 55.7 48.0 55.1 56.9 54.6 54.8 52.6 52.6
RankMe 55.5 55.6 55.3 55.0 56.4 54.4 54.7 52.6 60.6

Table 2. Using RankMe on networks pretrained on iNat-18. We
see than RankMe can improve OOD performance for VICReg, but
leads to a small drop for SimCLR.

Dataset Method Cov. temp.

iNat-18

iNat-18 Oracle 36.96 28.60
ImageNet Oracle 35.63 28.60
α-ReQ 25.43 22.94
RankMe 36.89 27.14

OOD

iNat-18 Oracle 60.70 58.23
ImageNet Oracle 60.65 58.23
α-ReQ 56.51 56.30
RankMe 60.91 57.34

we only compare for SimCLR’s temperature and VICReg’s
covariance weight. Due to the high number of classes of
iNat-18, we chose a projector with output dimension 8192.
Since the rank cannot be higher than 2048, we apply a
threshold to not choose the highest rank but the highest re-
alistically possible. See Appendix B for more details. We
also compare RankMe to the performance on ImageNet,
to imitate a practical setting where we do not have labels
for our source dataset, but have access to labels for another
related one. As we can see in Table 2, for VICReg’s covari-
ance weight, RankMe leads to performance similar to the
iNat-18 oracle on iNat-18, but slightly outperforms it on
OOD datasets. It also beats the ImageNet oracle and α-ReQ
by a significant margin. On SimCLR’s temperature, we
notice a small drop in performance for RankMe compared
to the oracles, but it still outperforms α-ReQ by a significant
margin in all settings. These results further reinforce the use
of RankMe in general settings, even beyond ImageNet.

Finetuning based benchmarks. While we have studied
how RankMe is able to perform hyperparameter selection
when targeting linear evaluation, finetuning based evalu-
ations are also popular for tasks such as semi-supervised
classification or object detection. Even though this setup
alters the pretrained weight and thus can change the rank
of the representations, our goal is to see whether RankMe
can still be used when targeting these evaluations. We com-

Table 3. Using RankMe on finetuning based benchmarks. The Ima-
geNet oracle is the linear evaluation oracle. In the semi-supervised
setting we report the top-1 accuracy and report the AP50 for object
detection. We see that in the semi-supervised setting on ImageNet
RankMe only leads to small drops in performance compared to
the task or full ImageNet Oracle. For object detection we even see
matching or increased performance over the ImageNet oracle.

Dataset Method Cov. temp.

ImageNet-1%

Task Oracle 39.7 34.6
ImageNet Oracle 39.7 31.3
α-ReQ 39.2 27.3
RankMe 38.7 30.9

ImageNet-10%

Task Oracle 62.7 62.6
ImageNet Oracle 62.6 62.6
α-ReQ 62.7 59.1
RankMe 62.7 61.8

VOC07+12 (AP50)

Task Oracle 79.7 81.8
ImageNet Oracle 78.2 81.0
α-ReQ 79.0 80.3
RankMe 79.7 81.0

pare against the task oracle, α-ReQ and to the ImageNet
linear evaluation oracle, which allows us to see if linear
accuracy on ImageNet is correlated for these benchmarks.
We evaluate all methods on ImageNet 1% and 10% for semi-
supervised classification, as well as on PascalVOC07+12
for object detection, following the protocol of (Bardes et al.,
2021). As we can see in Table 3, RankMe is able to retrieve
most of the performance of the task oracle, except in the
case of SimCLR’s temperature on ImageNet-1% where all
methods lag behind the task oracle. This also shows that the
linear performance on the full ImageNet dataset is not per-
fectly correlated with the performance in a few shot setting.
There is no clear winner between α-ReQ and RankMe in
these finetuning-based evaluations, but we can see smaller
drops in performance for RankMe, similarly as in previous
experiments. Nevertheless, these results suggest that even
in a setting where the applicability of RankMe is not guar-
anteed due to the finetuning, it can still be a good method to
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Figure 5. Validation of the hypotheses motivating RankMe.(Left, Middle Left) Embeddings’ rank transfers from source to target datasets.
The estimates use 25600 images from the respective datasets.(Middle Right) Train and test accuracy are highly correlated across
datasets.(Right) An increase in performance on embeddings leads to an increase in performance on representations.

select hyperparameters in an unsupervised fashion.

5. RankMe: From Theory to Implementation
Our goal is to build a theoretically grounded intuition into
the construction of RankMe. To that hand, we first quantify
approximation and classification errors of learned embed-
dings as a function of their rank, and then motivate how
embeddings’ rank can be sufficient to compare test perfor-
mance of JE-SSL models’s representations.

From Source Embeddings’s Rank to Target Representa-
tions performance. We first build some intuition in the re-
gression settings. In this case, the Eckart-Young-Mirsky the-
orem (Eckart & Young, 1936) ties the best-case and worst-
case approximation error of any target matrix Y ∈ RN×C

from a rank-R matrix P ∈ RN×C to the singular values of
Y that run from R to the rank of Y when ordered in de-
creasing order. Without loss of generality, we only consider
the case C > N in this study, i.e., we have more samples
than dimensions. Formally, this provides a lower bound on

∥Y − P ∥2F ≥
C∑

r=R+1

σ2
r(Y ),

which is tight for P of rank R, and with σk the operator
returning the kth singular value of its argument, ordered in
decreasing order. This result, on which RankMe relies on,
demonstrates that a necessary (but not sufficient) condition
for an approximation P to well approximate Y is to have at
least the same rank as Y . A similar result can be obtained in
classification by considering multiple one-vs-all classifiers.
In practice, however, we commonly employ a linear probe
network on top of given embeddings Z to best adapt them
to the target Y , i.e., P = ZW + 1bT . However, a linear
transformation is not able to increase the rank of the input
matrix since

rank(P ) ≤ min(rank(Z), rank(W )) + 1.

We directly obtain that minW ,b ∥Y − ZW − 1bT ∥2F ≥∑C
r=R+1 σ

2
r(Y ). In short, the approximation lower bound

is not improved by allowing linear transformation of the
embeddings. Further supporting the above, we ought to
recall Cover’s theorem (Cover, 1965) stating that the prob-
ability of a randomly labeled set of points being linearly
separable only increases if N is reduced or R is increased.
We combine those results below.

Proposition 5.1. The maximum training accuracy of given
embeddings in linear regression or classification increases
with their rank. For classification, it plateaus when the rank
surpasses the number of classes.

By noticing that RankMe provides a smooth measure of the
embeddings’ rank we can lean on Proposition 5.1 to see that
given two models, the one with greater RankMe value will
have greater training performance. This is only guaranteed
for different models of the same method, since embedding
rank is not necessarily the only factor that affects perfor-
mance.
The above result is however not too practical yet since what
we are truly interested in are (i) performance on unseen
samples, i.e., on the test set and out-of-distribution tasks,
and (ii) performance on the representations and not the em-
beddings since it is common to ablate the projector network
of JE-SSL models. Below, we validate three key hypotheses
which, when verified, imply that we can extend the impact
of RankMe such that (OOD) test performance of JE-SSL
representations are increased when RankMe’s value on their
train set embeddings is increased.

Validating RankMe’s Hypotheses. The development of
RankMe is theoretically grounded when it comes to guar-
anteeing improved source dataset embeddings performance.
To empirically extend it to target dataset representations
performance we need to verify three hypotheses: (i) linear
probes do not overfit, (ii) embeddings and representations
performance are monotonically linked, and (iii) source and
(OOD) target embeddings ranks are monotonically linked.
Due to the different nature of datasets used for downstream
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tasks, there is no inherent reason for the rank of embeddings
to transfer in a monotonic way to them. However, if the
source dataset is diverse enough and target datasets have
some semantic overlap with the source dataset, then we have

rank(Ztarget) ∝ rank(Zsource). (3)

We observe in Section 3.2 and Figure 5 that the rank of
JE-SSL representations scales linearly between different
input distributions e.g. going from a source task such as
Imagenet (Deng et al., 2009) to a target task such as iNat-
uralist. This is further confirmed by Pearson correlation
coefficients greater than 0.99. Interestingly, we observe that
the StanfordCars dataset suffers from a less distinctive linear
scaling due to the dataset distribution having a small overlap
with ImageNet. This indicates that as long as the source
dataset is relatively diverse, then using RankMe to select a
model with greater embeddings’ rank will also correspond
to selecting a model with greater embeddings’ rank on the
target dataset.
Furthermore, as the train performance increases, so does
the test performance. We validate this in the middle right of
Figure 5. As a result, using RankMe to select a model with
greater train performance is enough to also select a model
with greater test performance.
Finally, we report on the right of Figure 5 that the per-
formance on embeddings and representations scales almost
monotonically. These results are supported by visualizations
of embeddings and representations from feature inversion
models (Bordes et al., 2021). Hence, using RankMe to se-
lect the model maximizing the performance on the former
also selects a model maximizing performance on the latter.
With these hypotheses validated empirically, we can confi-
dently say that RankMe computed on the embeddings of the
source dataset is a predictor of representations’ performance
on target datasets, reinforcing our experimental insights.

6. Conclusion
We have shown how the phenomenon of dimensional col-
lapse in self-supervised learning can be used as a powerful
metric to evaluate models. By using a theoretically moti-
vated analogue of the rank of embeddings, we show that
the performance on downstream datasets can easily be as-
sessed by only looking at the training dataset, without any
labels, training, or parameters. While our work focuses
on linear classification, we show promising results in non-
linear classification that raise the question of how general
this simple metric can be. Furthermore, its competitive-
ness with traditional oracle based hyperparameter selection
methods makes it a promising tool in settings where labels
are scarce, such as in the case of large uncurated datasets.
As such, this work makes a step towards completely label-
less self-supervised learning, as most existing approaches’
hyperparameters are tuned with the help of ImageNet’s val-
idation set. Further work will explore the use of RankMe

in more varied scenarios, to further legitimize its use in
designing better self-supervised approaches.
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A. Background
In order to make our work as self-contained as possible, we recall the loss functions of the methods we study. For conciseness,
we refer to the outputs of the encoder as representations and the outputs of the projection head as embeddings, which we
denote by zi ∈ Rd. We first briefly recall that the SimCLR loss is given by

L = −
∑

(i,j)∈P

eCoSim(zi,zj)∑N
k=1 1{k ̸=i}eCoSim(zi,zk)

,

with P the set of all positive pairs in the current mini-batch or dataset that comprise N exemplars.

VICReg’s loss is defined with three components. The variances loss v acts as a norm regularizer for the dimensions, and the
covariance loss aims at decorrelating dimensions in the embeddings. They are respectively defined as

v(Z) =
1

d

d∑
i=1

max

(
0, 1−

√
Var(Z·,i)

)
and c(Z) =

1

d

∑
i ̸=j

Cov(Z)2.

Both of these loss are combined with an invariance loss that matches positives pairs, giving a final loss of

L = λ
∑

(i,j)∈P

∥zi − zj∥22 + µ c(Z) + ν v(Z).

VICReg-exp is defined similarly, but with the exponential covariance loss defined as

cexp(Z) =
1

d

∑
i

log

∑
j ̸=i

eCov(Z)i,j/τ

 . (4)

VICReg-ctr is then VICReg-exp but applied to ZT , making it a contrastive approach and conceptually similar to SimCLR.
These methods give us different scenarios of collapse and allow us to make a more general study of the rank of representations
as a powerful metric.

B. Visualizations on iNaturalist-18
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Figure S1. RankMe applied to iNaturalist18 pretrainings. The vertical line indicates the rank constraint placed by the representation size,
and so any rank above should be counted as 2048.

As we can see in Figure S1, RankMe produces curves with the same trend as on ImageNet, for both SimCLR and VICReg.
We can see that VICReg leads to ranks that go beyond 2048, but the dimension of the manifold formed by the embeddings
cannot be higher than 2048 due to the dimension of the representations. As such, for any practical purpose we clip the value
of RankMe at 2048.
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C. Applicability to cluster based methods
While we have studied the applicability of RankMe on contrastive methods, cluster based methods such as DINO have
become extremely popular, and since the definition of embeddings is not as clear cut in them, a thorough analysis is required.
We will proceed in two steps:

• Show that dimensional collapse happens right before the clustering layer, and on the prototypes

• Show that RankMe is a good measure of performance on DINO
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Figure S2. DINO’s projection head can be split in two parts, a classical projector and a clustering layer (Left). Collapse happens before
the clustering layer and not on the clustering prototypes (Right).

As we can see in figure S2, DINO’s projector can be interpreted as both a classical projector and a clustering layer, whose
weights are clustering prototypes. This interpretation comes from the softmax that is applied on the output of the projection
head which can be interpreted as an InfoNCE between the embeddings and the clustering prototypes that make up the
clustering layer. We see that both the embeddings and the clustering prototypes are collapsed, though at different levels.
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Dataset Method DINO
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ImageNet
ImageNet Oracle 72.3 72.4
α-ReQ 71.7 66.2
RankMe-embs 72.2 72.4
RankMe-prots 72.3 72.4

OOD
ImageNet Oracle 71.9 72.5
α-ReQ 71.8 68.5
RankMe-embs 71.8 72.5
RankMe-prots 71.9 72.5

Figure S3. RankMe is able to measure DINO’s performance on its source dataset (Left). DINO’s hyperparameters can be selected by
using RankMe, even by doing so directly on the prototypes (Right).

As we can see in Figure S3, the phenomenon of dimensional collapse is highly visible in DINO, which enables the use
RankMe to find optimal hyperparameter values. While in Figure 1 we applied RankMe to the embeddings to be consistent
with other methods, we see that it can be applied directly to the prototypes, yielding very similar results and matching
the ImageNet oracle here. The main advantage coming from using prototypes is that they are already computed during
training, and as such the application of RankMe does not require computing any embeddings. This makes RankMe even
more appealing for clustering based methods where such technique can be applied.
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D. Complete visualizations on all datasets
While we previously focused on certain datasets for their interesting natures, we provide additional visualizations for the
remaining datasets, as well as for performance on the embeddings.

As we can see in Figures S4 and S5, we find similar behaviors as before, apart from Food101 where performance are almost
identical for all methods. This reinforces the previous validation of RankMe. The relative simplicity of the datasets targeted
here makes the theoretical limitations of rank-deficient embeddings harder to see, even though we still see that a high rank
helps generalization.

14



RankMe

8 32 128 512 2048
Embedding rank ImageNet

0

20

40

60

To
p-

1 
em

be
dd

in
gs

ImageNet

VICReg
VICReg-exp
VICReg-ctr
SimCLR
DINO

8 32 128 512 2048
Embedding rank ImageNet

0

5

10

15

20 iNat18

8 32 128 512 2048
Embedding rank ImageNet

10

20

30

40
Places205

8 32 128 512 2048
Embedding rank ImageNet

60

70

80

90

To
p-

1 
em

be
dd

in
gs

EuroSat

8 32 128 512 2048
Embedding rank ImageNet

10

20

30

40

50

60 SUN397

8 32 128 512 2048
Embedding rank ImageNet

5

10

15

20
Cars

8 32 128 512 2048
Embedding rank ImageNet

75.00

75.01

75.02

75.03

To
p-

1 
em

be
dd

in
gs

FOOD101

8 32 128 512 2048
Embedding rank ImageNet

40

50

60

70

80
VOC07

8 32 128 512 2048
Embedding rank ImageNet

20

30

40

50 CLEVR-count

8 32 128 512 2048
Embedding rank ImageNet

50

60

70

80

To
p-

1 
em

be
dd

in
gs

CIFAR-10

8 32 128 512 2048
Embedding rank ImageNet

20

30

40

50

60
CIFAR-100

Figure S4. Link between embedding rank and downstream performance on the embeddings.
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Figure S5. Link between embedding rank and downstream performance on the representations.
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E. Detailed results for α-ReQ
In order to further study the performance of α-ReQ, we reproduce our plots for RankMe using α-ReQ instead of the rank of
embeddings. We compare both the intended use of α-ReQ in Figure S6, as well as applying it on the embeddings to measure
performance on the representations, which we found was necessary for RankMe in Figure S7. We do not include DINO in
those plots for readability, as it would force us to change the x-axis scale, making the results harder to interpret.

As we can see in Figure S6, there are no clear link visible between the value of α-ReQ and downstream performance.
Especially, we are unable to see the tendency of performance to increase as α tends to one. Nonetheless α-ReQ was still
able to lead to good performance when used for hyperparameter selection.

When applying α-ReQ as we would RankMe, we can see in Figure S7 that there is again no trend of performance increase
when α tends to one. On the contrary we even find that performance tends to get better with a lower α, as is most visible
on StanfordCars, iNaturalist18 or ImageNet for example. α going towards zero means that the singular values of the
embeddings tends to a uniform distribution, in line with the goal of RankMe.

As we can see in Figures S8 and S9, the power-law prior of α-ReQ holds well in the case of non-collapsed embeddings,
but when we apply it on collapsed ones, this assumptions fails. It even provides a poor approximation of the main rank
"plateau" with the highest singular values as can be seen on the right of Figure S9. This further confirms the findings of
(He & Ozay, 2022), and shows that when applying α-ReQ directly on the embeddings one must be careful since the core
assumptions of the method is violated.
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Figure S6. Link between α-ReQ measured on the representations and performance on the representations.
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Figure S7. Link between α-ReQ measured on the embeddings and performance on the representations.
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Figure S8. Validation of the power-law prior on un-collapsed representations.(Left) Overall visualization. (Right) Zoom on the high
singular values.
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Figure S9. The power-law prior does not hold on collapsed representations.(Left) Overall visualization. (Right) Zoom on the high
singular values.
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F. Comparison of the rank estimators
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Figure S10. Relationship between the two rank estimators, Pearson correlation coefficient of 0.99. Outliers indicate embeddings with
singular values to the threshold, showing how the entropic rank takes into account this information.

Since we do not rely on the classical threshold-based rank estimator, it is important to verify how well our entropy based
one correlates with it. As we can see in Figure S10, both estimates discussed previously correlate extremely well, showing
that using one or the other should not lead to significant differences, as validated in Appendix H. Nonetheless, the entropic
estimator takes into account the degree of whitening of the embeddings, which links better to theoretical results.

G. Convergence of the rank estimators

0 20 40
Number of data points in thousands

0.4

0.6

0.8

1.0

M
ax

 r
an

k 
ra

tio

Entropic Rank

vicreg
simclr

0 20 40
Number of data points in thousands

0.4

0.6

0.8

1.0
Classical Rank

vicreg
simclr

Figure S11. Convergence of the rank estimators on ImageNet as a function of the number of samples for 2048 dimensional outputs, as
indicated by the vertical line.

As we can see in Figure S11, the rank estimates converge extremely quickly, especially for VICReg. For both VICReg and
SimCLR, 10000 samples are enough to obtain more than 95% of the final rank. It is worth noting that the entropic rank
estimator converges more slowly than the classical rank estimator, as it is more sensitive to the singular values. The fact
that the rank can be approximated with few samples is encouraging for its use during training and not only as a measure of
performance after pretraining.
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Figure S12. Reproduction of Figure 5 with the classical rank estimator. Embeddings’ rank transfers from source to target datasets. The
estimates used 25600 images from the respective datasets.

8 32 128 512 2048
Embedding rank ImageNet

0

20

40

60

To
p-

1 
em

be
dd

in
gs

ImageNet

VICReg
VICReg-exp
VICReg-ctr
SimCLR
DINO

8 32 128 512 2048
Embedding rank ImageNet

0

5

10

15

20 iNat18

8 32 128 512 2048
Embedding rank ImageNet

10

20

30

40

To
p-

1 
em

be
dd

in
gs

Places205

8 32 128 512 2048
Embedding rank ImageNet

60

70

80

90
EuroSat

8 32 128 512 2048
Embedding rank ImageNet

10

20

30

40

50

60

To
p-

1 
em

be
dd

in
gs

SUN397

8 32 128 512 2048
Embedding rank ImageNet

5

10

15

20
Cars

8 32 128 512 2048
Embedding rank ImageNet

50

55

60

65

70

To
p-

1 
re

pr
es

en
ta

tio
ns

ImageNet

VICReg
VICReg-exp
VICReg-ctr
SimCLR
DINO

8 32 128 512 2048
Embedding rank ImageNet

25

30

35

40

45 iNat18

8 32 128 512 2048
Embedding rank ImageNet

46

48

50

52

54

To
p-

1 
re

pr
es

en
ta

tio
ns

Places205

8 32 128 512 2048
Embedding rank ImageNet

95.5

96.0

96.5

EuroSat

8 32 128 512 2048
Embedding rank ImageNet

62

64

66

68

70

72

To
p-

1 
re

pr
es

en
ta

tio
ns

SUN397

8 32 128 512 2048
Embedding rank ImageNet

40

45

50

55

60

65 Cars

Figure S13. Reproduction of Figure 2 with the classical rank estimator.(Left) Validation of RankMe on embeddings, a higher ImageNet
rank leads to improved performance across methods and datasets.(Right) Validation of RankMe on representations, where the link is even
clearer, reinforcing RankMe’s practical use.

H. Reproduction of figures with the classical rank estimator
As can be seen in Figures S12 and S13, the results that we obtain using the classical threshold-based rank estimator are
extremely similar to the ones with the entropic estimator. The exact values do differ, but the behaviors stay the same. One of
the main differences is illustrated in Figure S13, where we can see that the target rank is almost identical to the source one
when we previously saw a drop of around 50%. This can be explained by the fact that some features may be less present in
the target dataset, reducing the associated singular values, and thus the entropic rank.
All of this shows that using one or the other will lead to similar results in practical scenarios.
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I. Detailed training and evaluation procedures
I.1. Pretraining

Table S1. Image augmentation parameters, taken from (Grill et al., 2020).

Parameter View 1 View 2

Random crop probability 1.0 1.0
Horizontal flip probability 0.5 0.5
Color jittering probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 0.4 0.4
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Grayscale probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability. 0.0 0.2

All pretrainings were done with ResNet-50 backbones. The projector used is a MLP with intermediate dimensions
8192, 8192, 2048 (8192, 8192, 2048, 32768 for DINO). VICReg, VICReg-ctr, VICReg-exp and SimCLR were trained with
the LARS optimizer using a momentum of 0.9, weight decay 10−6 and varying learning rates depending on the method.
VICReg used 0.3 base learning rate, SimCLR 0.5 or 0.6 depending on the experiment, VICReg-exp 0.6 and VICReg-ctr 0.6.
DINO was trained with AdamW (Loshchilov & Hutter, 2017) using a learning rate of 0.00025, using multi-crop 6 additional
crops of size 96× 96. The learning rate is then computed as lr = base_lr ∗ batch_size/256. We do a 10-epochs linear
warmup and then use cosine annealing. we use batch sizes of 2048 for SimCLR and 1024 for other methods. SimCLR and
VICReg-ctr also use a default temperature of 0.15, and 0.1 for VICReg-exp.
we use the image augmentation strategy from (Grill et al., 2020) illustrated in Table S1. For the pretrainings on iNaturalist-18,
we use the same protocol but with a 300 epoch pretraining to account for its smaller size compared to ImageNet.

I.2. Evaluation

Table S2. Optimization parameters used to evaluate on downstream datasets

Dataset Optimizer Weight decay Momentum Learning rate Epochs

ImageNet SGD (w/ Nesterov) 0.00004 0.9 0.3 30
iNaturalist18 SGD (w/ Nesterov) 0.0005 0.9 0.01 84
Places205 SGD (w/ Nesterov) 0.0005 0.9 0.01 14
EuroSat SGD (w/ Nesterov) 0.0005 0.9 0.01 28
Sun397 SGD (w/ Nesterov) 0.0005 0.9 0.01 28
StanfordCars SGD (w/ Nesterov) 0.0005 0.9 0.1 28
CIFAR10 SGD (w/ Nesterov) 0.0005 0.9 0.01 28
CIFAR100 SGD (w/ Nesterov) 0.0005 0.9 0.01 28
CLEVR-count SGD (w/ Nesterov) 0.0005 0.9 0.01 50
Food101 SGD (w/ Nesterov) 0.0005 0.9 0.01 28
VOC07 N/A, see in text

For all datasets except StanfordCars, we use the standard protocol in VISSL. On StanfordCars we mostly tuned the learning
rate. The parameters that we use are described in Table S2. For data augmentation, we use random resized crops and random
horizontal flips during training, and center crop for evaluation. For VOC07, we follow the common protocol using SVMs, as
used in (Bardes et al., 2021). We use the default VISSL settings for this evaluation.
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J. Detailed tables for hyperparameter selection

Table S3. Top-1 accuracies computed on representations when tuning hyperparameters with ImageNet validation performance, RankMe
or with α-ReQ.

Dataset Method VICReg SimCLR DINO

cov. inv. LR WD temp. LR. WD. t-temp. s-temp.

ImageNet
ImageNet Oracle 68.2 68.2 68.6 68.0 68.5 68.5 68.3 72.3 72.4
RankMe 67.8 67.9 68.2 67.8 67.1 68.0 68.3 72.2 72.4
α-ReQ 67.9 67.5 59.5 67.8 63.5 68.1 32.3 71.7 66.2

iNat18
ImageNet Oracle 38.4 38.4 38.8 38.3 39.2 39.2 38.9 45.8 46.3
RankMe 36.7 37.2 38.4 38.3 37.8 38.1 38.9 46.0 46.3
α-ReQ 37.8 36.9 28.9 38.3 34.1 38.4 38.7 45.1 39.2

Places205
ImageNet Oracle 51.2 51.2 51.8 51.3 52.4 52.4 52.6 54.3 54.4
RankMe 51.2 51.4 51.2 51.6 52.3 52.3 52.6 54.2 54.4
α-ReQ 51.1 51.4 47.8 51.6 50.7 52.3 52.6 54.4 52.8

EuroSat
ImageNet Oracle 96.2 96.2 96.3 96.2 96.5 96.5 96.4 96.6 96.6
RankMe 96.1 96.1 96.2 96.0 96.6 96.4 96.4 96.3 96.6
α-ReQ 96.1 96.1 95.1 96.0 96.4 96.6 96.2 96.8 95.9

SUN397
ImageNet Oracle 68.4 68.4 68.6 68.6 68.9 68.9 69.2 71.7 71.8
RankMe 68.6 68.3 68.4 68.8 69.1 68.5 69.2 72.1 71.8
α-ReQ 68.7 67.9 64.1 68.8 66.4 68.4 68.5 71.5 69.8

Cars
ImageNet Oracle 55.7 55.7 55.8 55.6 54.4 54.4 54.9 65.1 66.0
RankMe 51.1 54.0 55.7 55.4 51.5 53.9 54.9 65.8 66.0
α-ReQ 54.2 51.7 43.2 55.4 45.2 54.3 54.7 63.5 54.5

FOOD101
ImageNet Oracle 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
RankMe 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
α-ReQ 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0

VOC07
ImageNet Oracle 84.3 84.3 84.3 84.0 84.5 84.5 83.9 88.4 88.0
RankMe 84.1 83.8 84.3 84.0 83.8 83.9 83.9 88.3 88.0
α-ReQ 84.0 83.9 80.4 84.0 81.2 84.3 84.4 88.5 86.7

CLEVR-Count
ImageNet Oracle 55.7 55.7 56.0 56.8 51.9 51.9 53.2 56.8 59.3
RankMe 53.0 55.4 55.7 53.1 48.0 52.3 53.2 56.8 59.3
α-ReQ 52.1 55.1 50.6 53.1 44.0 50.5 51.3 59.2 54.6

CIFAR10
ImageNet Oracle 90.1 90.1 90.0 89.8 90.6 90.6 90.3 91.5 92.2
RankMe 89.5 89.8 90.1 89.7 89.4 90.6 90.3 90.5 92.2
α-ReQ 89.7 89.2 86.8 89.7 88.0 89.7 90.3 90.9 88.0

CIFAR100
ImageNet Oracle 72.3 72.3 72.8 72.2 73.8 73.8 73.7 74.3 75.6
RankMe 71.6 72.3 72.3 72.1 72.2 73.1 73.7 73.1 75.6
α-ReQ 72.4 71.0 66.2 72.1 69.5 72.5 74.0 72.8 68.2

Average
ImageNet Oracle 68.7 68.7 68.9 68.7 68.7 68.7 68.8 72.0 72.5
RankMe 67.7 68.3 68.7 68.3 67.5 68.4 68.8 71.8 72.5
α-ReQ 68.1 67.8 63.4 68.3 64.9 68.2 65.3 71.8 68.3
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Table S4. Top-1 accuracies computed on embeddings when tuning hyperparameters with ImageNet validation performance, RankMe or
with α-ReQ.

Dataset Method VICReg SimCLR DINO

cov. inv. LR WD temp. LR. WD. t-temp. s-temp.

ImageNet
ImageNet Oracle 59.7 59.7 59.7 59.7 56.9 56.9 57.1 54.6 64.8
RankMe 59.6 59.7 59.7 59.5 56.5 56.0 57.1 53.3 64.8
α-ReQ 59.6 59.2 36.2 59.3 51.5 56.4 49.0 53.3 53.3

iNat18
ImageNet Oracle 13.5 14.2 13.5 13.6 10.3 10.3 10.1 5.0 15.8
RankMe 14.2 14.2 13.5 13.4 16.7 9.9 10.1 3.6 15.8
α-ReQ 14.2 14.8 2.5 13.2 21.5 10.0 10.0 3.6 3.6

Places205
ImageNet Oracle 42.7 43.3 42.7 43.4 41.2 41.2 41.2 38.9 44.9
RankMe 43.2 43.3 42.7 42.7 43.4 40.8 41.2 36.4 44.9
α-ReQ 43.2 43.6 29.6 42.9 42.6 41.0 41.5 36.4 36.4

EuroSat
ImageNet Oracle 91.3 91.7 91.3 91.0 90.4 90.4 89.5 91.3 93.2
RankMe 91.0 91.7 91.3 91.3 92.3 89.0 89.5 89.3 93.2
α-ReQ 91.0 91.4 85.1 90.8 94.4 89.6 89.8 89.3 89.3

SUN397
ImageNet Oracle 57.3 57.0 57.3 57.3 56.4 56.4 56.2 54.5 63.7
RankMe 57.4 57.0 57.3 56.7 59.1 55.4 56.2 50.0 63.7
α-ReQ 57.4 57.4 42.5 57.2 59.9 56.2 56.2 50.0 50.0

Cars
ImageNet Oracle 12.0 12.0 12.0 11.9 14.0 14.0 13.2 10.3 22.0
RankMe 11.6 12.0 12.0 11.5 17.6 13.4 13.2 7.7 22.0
α-ReQ 11.6 12.0 7.5 11.3 21.3 13.9 13.5 7.7 7.7

FOOD101
ImageNet Oracle 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
RankMe 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
α-ReQ 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0

VOC07
ImageNet Oracle 79.5 79.2 79.5 79.7 79.7 79.7 79.7 85.3 87.0
RankMe 79.2 79.2 79.5 79.3 78.5 79.3 79.7 84.2 87.0
α-ReQ 79.2 79.2 73.1 79.6 76.8 79.5 79.9 84.2 84.2

CLEVR-Count
ImageNet Oracle 43.9 44.4 43.9 46.1 43.5 43.5 46.0 49.9 51.2
RankMe 43.9 44.4 43.9 43.0 43.0 44.8 46.0 41.9 51.2
α-ReQ 43.9 43.8 41.7 44.9 37.0 45.2 45.9 41.9 41.9

CIFAR10
ImageNet Oracle 80.4 81.2 80.4 79.7 79.3 79.3 79.8 84.3 87.0
RankMe 80.6 81.2 80.4 80.3 79.5 79.5 79.8 80.7 87.0
α-ReQ 80.6 81.0 72.5 79.6 79.2 78.5 79.4 80.7 80.7

CIFAR100
ImageNet Oracle 52.8 53.3 52.8 52.9 52.6 52.6 52.2 58.5 65.4
RankMe 53.8 53.3 52.8 52.5 54.0 52.2 52.2 53.0 65.4
α-ReQ 53.8 53.9 41.5 52.2 56.5 52.0 52.3 53.0 53.0

Average
ImageNet Oracle 55.3 55.5 55.3 55.5 54.5 54.5 54.5 55.2 60.9
RankMe 55.4 55.5 55.3 55.0 56.0 54.1 54.5 52.3 60.9
α-ReQ 55.4 55.6 46.1 55.1 56.0 54.3 53.9 52.3 52.3
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K. Complete performance tables

Table S5. Hyperparameters for all runs.

Method Run Batch size Learning rate Weight decay Loss hyperparameters

VICReg

0 1024 0.3 10−6 λ : 25, µ : 25, ν : 0.3
1 1024 0.3 10−6 λ : 25, µ : 25, ν : 0.4
2 1024 0.3 10−6 λ : 25, µ : 25, ν : 0.5
3 1024 0.3 10−6 λ : 25, µ : 25, ν : 0.6
4 1024 0.3 10−6 λ : 25, µ : 25, ν : 0.7
5 1024 0.3 10−6 λ : 25, µ : 25, ν : 0.8
6 1024 0.3 10−6 λ : 25, µ : 25, ν : 0.9
7 1024 0.3 10−6 λ : 25, µ : 25, ν : 1
8 1024 0.3 10−6 λ : 25, µ : 25, ν : 2
9 1024 0.3 10−6 λ : 25, µ : 25, ν : 4
10 1024 0.3 10−6 λ : 25, µ : 25, ν : 8
11 1024 0.3 10−6 λ : 25, µ : 25, ν : 16
12 1024 0.3 10−6 λ : 5, µ : 25, ν : 4
13 1024 0.3 10−6 λ : 10, µ : 25, ν : 4
14 1024 0.3 10−6 λ : 15, µ : 25, ν : 4
15 1024 0.3 10−6 λ : 20, µ : 25, ν : 4
16 1024 0.3 10−6 λ : 30, µ : 25, ν : 4
17 1024 0.3 10−6 λ : 35, µ : 25, ν : 4
18 1024 0.3 10−6 λ : 40, µ : 25, ν : 4
19 1024 0.3 10−6 λ : 45, µ : 25, ν : 4
20 1024 0.3 10−6 λ : 50, µ : 25, ν : 4
21 1024 0.1 10−6 λ : 25, µ : 25, ν : 4
22 1024 0.2 10−6 λ : 25, µ : 25, ν : 4
23 1024 0.3 10−6 λ : 25, µ : 25, ν : 4
24 1024 0.4 10−6 λ : 25, µ : 25, ν : 4
25 1024 0.5 10−6 λ : 25, µ : 25, ν : 4
26 1024 0.3 10−7 λ : 25, µ : 25, ν : 4
27 1024 0.3 10−6 λ : 25, µ : 25, ν : 4
28 1024 0.3 10−5 λ : 25, µ : 25, ν : 4
29 1024 0.3 10−4 λ : 25, µ : 25, ν : 4
30 1024 0.3 10−3 λ : 25, µ : 25, ν : 4
31 1024 0.3 10−2 λ : 25, µ : 25, ν : 4

VICReg-exp

0 1024 0.5 10−6 λ : 1, µ : 1, ν : 2, τ : 0.05
1 1024 0.5 10−6 λ : 1, µ : 1, ν : 2, τ : 0.07
2 1024 0.5 10−6 λ : 1, µ : 1, ν : 2, τ : 0.1
3 1024 0.5 10−6 λ : 1, µ : 1, ν : 2, τ : 0.2
4 1024 0.5 10−6 λ : 1, µ : 1, ν : 2, τ : 0.3
5 1024 0.5 10−6 λ : 1, µ : 1, ν : 2, τ : 0.4
6 1024 0.5 10−6 λ : 1, µ : 1, ν : 0.1, τ : 0.1
7 1024 0.5 10−6 λ : 1, µ : 1, ν : 0.5, τ : 0.1
8 1024 0.5 10−6 λ : 1, µ : 1, ν : 1, τ : 0.1
9 1024 0.5 10−6 λ : 1, µ : 1, ν : 4, τ : 0.1
10 1024 0.5 10−6 λ : 1, µ : 1, ν : 8, τ : 0.1
11 1024 0.5 10−6 λ : 1, µ : 1, ν : 16, τ : 0.1
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Table S6. Hyperparameters for all runs, continued.

Method Run Batch size Learning rate Weight decay Loss hyperparameters

VICReg-ctr

0 1024 0.5 10−6 λ : 1, µ : 1, ν : 1, τ : 0.05
1 1024 0.5 10−6 λ : 1, µ : 1, ν : 1, τ : 0.07
2 1024 0.5 10−6 λ : 1, µ : 1, ν : 1, τ : 0.1
3 1024 0.5 10−6 λ : 1, µ : 1, ν : 1, τ : 0.2
4 1024 0.5 10−6 λ : 1, µ : 1, ν : 1, τ : 0.3
5 1024 0.5 10−6 λ : 1, µ : 1, ν : 1, τ : 0.4
6 1024 0.5 10−6 λ : 1, µ : 1, ν : 0.1, τ : 0.1
7 1024 0.5 10−6 λ : 1, µ : 1, ν : 0.5, τ : 0.1
8 1024 0.5 10−6 λ : 1, µ : 1, ν : 2, τ : 0.1
9 1024 0.5 10−6 λ : 1, µ : 1, ν : 4, τ : 0.1
10 1024 0.5 10−6 λ : 1, µ : 1, ν : 8, τ : 0.1

SimCLR

0 2048 0.6 10−6 d : 512, τ : 0.05
1 2048 0.6 10−6 d : 512, τ : 0.07
2 2048 0.6 10−6 d : 512, τ : 0.1
3 2048 0.6 10−6 d : 512, τ : 0.2
4 2048 0.6 10−6 d : 512, τ : 0.3
5 2048 0.6 10−6 d : 512, τ : 0.4
6 2048 0.6 10−6 d : 2048, τ : 0.05
7 2048 0.6 10−6 d : 2048, τ : 0.07
8 2048 0.6 10−6 d : 2048, τ : 0.1
9 2048 0.6 10−6 d : 2048, τ : 0.2
10 2048 0.6 10−6 d : 2048, τ : 0.3
11 2048 0.6 10−6 d : 2048, τ : 0.4
12 2048 0.5 10−6 d : 2048, τ : 0.05
13 2048 0.5 10−6 d : 2048, τ : 0.07
14 2048 0.5 10−6 d : 2048, τ : 0.1
15 2048 0.5 10−6 d : 2048, τ : 0.15
16 2048 0.5 10−6 d : 2048, τ : 0.2
17 2048 0.5 10−6 d : 2048, τ : 0.3
18 2048 0.5 10−6 d : 2048, τ : 0.4
19 2048 0.5 10−7 d : 2048, τ : 0.15
20 2048 0.5 10−6 d : 2048, τ : 0.15
21 2048 0.5 10−5 d : 2048, τ : 0.15
22 2048 0.5 10−4 d : 2048, τ : 0.15
23 2048 0.5 10−3 d : 2048, τ : 0.15
24 2048 0.5 10−2 d : 2048, τ : 0.15
25 2048 0.2 10−6 d : 2048, τ : 0.15
26 2048 0.3 10−6 d : 2048, τ : 0.15
27 2048 0.4 10−6 d : 2048, τ : 0.15
28 2048 0.5 10−6 d : 2048, τ : 0.15
29 2048 0.6 10−6 d : 2048, τ : 0.15
30 2048 0.8 10−6 d : 2048, τ : 0.15
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Table S7. Hyperparameters for all runs, continued.

Method Run Batch size Learning rate Weight decay Loss hyperparameters

DINO

0 1024 2.5× 10−4 10−6 τt : 0.01,
1 1024 2.5× 10−4 10−6 τt : 0.02,
2 1024 2.5× 10−4 10−6 τt : 0.04,
3 1024 2.5× 10−4 10−6 τt : 0.06,
4 1024 2.5× 10−4 10−6 τt : 0.07,
5 1024 2.5× 10−4 10−6 τt : 0.04, τs : 0.07,
6 1024 2.5× 10−4 10−6 τt : 0.04, τs : 0.2,
7 1024 2.5× 10−4 10−6 τt : 0.04, τs : 0.3,
8 1024 2.5× 10−4 10−6 τt : 0.04, τs : 0.4,
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Table S8. Top-1 on representations in all settings.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

VICReg

0 63.90 34.12 48.77 95.94 65.96 52.56
1 65.08 35.65 49.68 96.10 66.87 54.47
2 65.67 36.97 49.73 96.02 67.33 55.76
3 66.17 37.20 50.13 96.10 67.55 56.37
4 66.40 37.42 50.15 96.34 67.99 56.86
5 66.83 38.05 50.53 96.06 68.40 57.63
6 67.30 38.13 50.96 96.20 68.08 57.83
7 67.34 38.26 50.96 96.36 68.19 58.89
8 68.00 38.68 51.28 96.36 68.46 56.90
9 68.16 38.36 51.17 96.20 68.42 55.70
10 67.91 37.75 51.14 96.14 68.75 54.21
11 67.77 36.70 51.20 96.06 68.57 51.05
12 64.12 31.37 49.83 95.56 66.17 42.56
13 66.67 34.81 50.76 95.68 67.61 47.33
14 67.49 36.91 51.40 96.10 67.95 51.72
15 67.87 37.18 51.40 96.06 68.26 54.00
16 67.99 38.71 51.11 96.16 68.68 56.05
17 67.78 38.52 50.79 96.38 68.39 57.13
18 67.25 38.08 50.85 96.34 68.69 56.29
19 66.95 37.93 50.88 96.06 67.98 57.67
20 66.51 37.79 50.11 96.10 67.74 57.23
21 59.54 28.85 47.80 95.10 64.14 43.15
22 66.36 35.47 50.32 96.04 67.45 51.64
23 68.16 38.36 51.17 96.20 68.42 55.70
24 68.56 38.80 51.75 96.30 68.60 55.75
25 62.77 31.85 48.02 95.72 64.82 43.23
26 67.79 38.25 51.57 96.04 68.84 55.38
27 67.97 38.26 51.29 96.16 68.62 55.57
28 67.87 38.43 51.51 96.08 68.52 54.53
29 63.36 38.31 51.17 96.06 68.43 55.06
30 54.52 37.92 51.32 96.10 67.99 54.82
31 40.73 37.03 50.97 96.30 68.40 52.28

VICReg-exp

0 67.74 37.53 51.44 96.36 68.41 52.12
1 67.64 38.00 51.42 96.46 68.60 54.16
2 67.84 38.25 51.07 96.44 68.12 55.94
3 65.09 36.64 49.65 96.54 67.12 56.37
4 60.67 31.22 48.04 95.80 64.28 46.96
5 57.46 26.54 46.25 96.02 62.33 41.90
6 55.12 24.73 45.68 95.44 61.82 39.71
7 64.87 36.51 49.69 96.16 66.82 55.30
8 66.84 38.25 50.85 96.24 68.34 57.12
9 68.08 38.03 51.34 96.40 69.28 53.72
10 67.80 37.20 51.57 96.46 68.61 52.15
11 66.68 35.02 50.94 96.00 67.81 47.49
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Table S9. Top-1 on representations in all settings, continued.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

VICReg-ctr

0 65.54 35.00 50.15 95.88 67.62 49.63
1 66.32 35.72 50.69 96.10 68.16 51.66
2 66.09 35.26 50.80 96.42 68.32 50.72
3 64.06 33.16 50.48 95.98 67.40 44.91
4 62.06 30.80 49.53 96.22 66.08 43.24
5 60.17 28.76 48.78 95.90 64.92 41.13
6 61.66 31.05 49.40 96.10 66.47 44.12
7 65.47 34.63 50.71 96.20 67.55 48.05
8 65.99 34.77 50.63 95.98 67.60 51.14
9 63.87 33.63 49.64 96.20 66.17 50.35
10 58.81 29.24 47.60 95.78 63.77 46.23

SimCLR

0 57.68 30.50 48.51 96.32 63.36 42.42
1 62.79 33.50 50.56 96.18 66.34 43.76
2 66.13 35.94 52.10 96.22 68.29 49.17
3 66.35 35.60 51.96 96.64 68.17 49.68
4 65.17 34.38 51.32 96.10 67.78 48.17
5 63.54 33.29 50.71 96.22 67.39 48.31
6 57.84 30.82 48.64 96.34 64.07 41.97
7 62.73 33.30 50.57 96.56 66.03 44.99
8 66.30 36.25 51.79 96.40 67.99 48.95
9 66.71 36.56 51.82 96.52 68.52 50.47
10 65.29 34.90 51.32 96.30 67.40 49.16
11 63.52 33.35 50.92 96.42 66.89 48.59
12 59.49 31.13 48.80 95.94 64.11 42.46
13 63.51 34.14 50.75 96.42 66.44 45.18
14 67.14 37.80 52.29 96.62 69.06 51.47
15 68.48 39.20 52.37 96.46 68.92 54.43
16 68.27 38.48 52.29 96.46 69.19 55.22
17 67.48 37.07 51.72 96.58 68.30 51.92
18 66.44 35.87 51.58 96.44 68.15 49.76
19 68.33 38.93 52.56 96.40 69.21 54.86
20 68.13 39.09 52.42 96.42 69.15 54.83
21 66.47 38.80 52.81 96.58 69.03 55.19
22 59.62 38.86 52.69 96.62 69.07 55.47
23 47.58 39.03 52.70 96.16 68.77 54.96
24 32.27 38.70 52.62 96.18 68.53 54.67
25 66.37 36.06 51.62 96.84 68.22 52.17
26 67.96 38.12 52.33 96.44 68.54 53.86
27 68.32 38.44 52.42 96.80 69.08 54.63
28 68.48 39.20 52.37 96.46 68.92 54.43
29 68.41 38.77 52.42 96.24 68.65 55.81
30 68.12 38.45 52.33 96.64 68.41 54.30
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Table S10. Top-1 on representations in all settings, continued.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

DINO

0 70.74 44.30 53.45 96.60 71.23 64.03
1 71.29 45.37 54.10 96.46 71.40 64.73
2 72.19 45.96 54.18 96.32 72.12 65.81
3 72.30 45.80 54.25 96.60 71.69 65.09
4 71.68 45.06 54.40 96.84 71.55 63.46
5 72.41 46.32 54.37 96.58 71.84 65.97
6 69.23 42.18 52.93 96.30 70.35 56.36
7 66.18 39.24 52.77 95.88 69.78 54.48
8 64.10 37.83 51.60 95.86 68.71 51.82
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Table S11. Top-1 on representations in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

VICReg

0 63.90 88.94 69.92 75.00 81.49 48.94
1 65.08 88.74 69.96 75.00 82.14 49.88
2 65.67 88.25 70.23 75.00 82.35 54.96
3 66.17 89.17 71.51 75.00 82.97 52.35
4 66.40 89.41 71.70 75.01 82.81 55.27
5 66.83 89.91 72.12 75.00 83.10 55.95
6 67.30 90.11 71.90 75.01 83.15 54.37
7 67.34 90.34 72.42 75.00 83.21 53.92
8 68.00 89.79 72.73 75.00 83.77 49.75
9 68.16 90.14 72.26 75.01 84.27 55.69
10 67.91 89.67 72.39 75.00 83.99 52.10
11 67.77 89.45 71.63 75.00 84.10 53.05
12 64.12 86.68 67.02 75.00 82.44 51.46
13 66.67 88.32 69.86 75.00 83.50 55.48
14 67.49 89.22 71.01 75.01 83.85 55.05
15 67.87 89.82 72.30 75.00 83.76 55.36
16 67.99 90.29 72.81 75.00 83.90 55.00
17 67.78 90.09 73.14 75.00 83.74 51.97
18 67.25 90.40 72.75 75.00 83.36 53.18
19 66.95 89.62 72.14 75.00 82.99 50.33
20 66.51 89.94 72.41 75.00 82.89 52.83
21 59.54 86.81 66.23 75.00 80.44 50.64
22 66.36 88.92 71.05 75.00 82.94 56.19
23 68.16 90.14 72.26 75.01 84.27 55.69
24 68.56 89.95 72.80 75.00 84.27 56.03
25 62.77 87.63 67.92 74.99 82.38 52.63
26 67.79 89.70 72.11 75.00 83.98 53.08
27 67.97 89.83 72.22 75.00 84.05 56.77
28 67.87 90.23 72.13 75.00 83.72 56.20
29 63.36 89.76 72.36 75.00 84.04 54.71
30 54.52 89.58 71.89 75.00 84.14 53.45
31 40.73 89.65 71.50 75.01 83.97 56.34

VICReg-exp

0 67.74 89.66 72.17 75.00 84.67 52.79
1 67.64 90.12 72.30 75.00 84.58 55.29
2 67.84 89.55 72.07 75.00 84.20 53.45
3 65.09 89.18 71.55 75.00 82.19 54.41
4 60.67 88.06 68.94 75.00 80.20 51.35
5 57.46 86.70 65.09 75.00 78.54 49.30
6 55.12 87.23 65.53 75.00 77.87 53.14
7 64.87 89.28 71.38 75.00 82.39 49.13
8 66.84 89.66 71.92 75.00 83.91 50.41
9 68.08 89.56 71.90 75.00 84.64 56.00
10 67.80 89.50 71.61 75.00 84.45 55.80
11 66.68 88.99 70.13 75.00 84.29 55.87
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Table S12. Top-1 on representations in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

VICReg-ctr

0 65.54 88.87 70.77 75.01 83.28 53.97
1 66.32 89.57 70.93 75.00 84.17 53.19
2 66.09 89.49 71.17 75.00 83.90 53.29
3 64.06 89.62 71.39 75.00 83.18 48.57
4 62.06 88.60 69.41 75.00 82.35 46.48
5 60.17 88.97 68.61 75.00 81.43 51.27
6 65.47 89.65 71.62 75.01 84.09 51.07
7 65.99 88.97 70.40 75.00 83.69 46.92
8 63.87 88.51 69.02 75.00 82.99 51.36
9 58.81 86.96 66.06 75.00 79.95 55.33

SimCLR

0 57.68 86.31 66.69 75.00 77.56 37.65
1 62.79 87.15 68.71 75.00 80.98 50.26
2 66.13 89.19 71.13 75.00 83.57 47.75
3 66.35 89.99 72.44 75.00 84.25 54.73
4 65.17 89.89 72.18 75.01 83.99 50.78
5 63.54 89.50 71.09 75.01 83.37 52.87
6 57.84 86.44 66.42 75.00 77.01 42.72
7 62.73 87.57 68.33 75.00 81.26 45.19
8 66.30 89.07 71.55 75.00 83.61 52.95
9 66.71 90.12 72.52 75.00 84.17 52.93
10 65.29 89.44 71.62 75.00 83.81 54.83
11 63.52 89.32 70.88 75.00 83.39 48.44
12 59.49 86.41 66.45 75.00 77.98 50.64
13 63.51 87.98 69.53 75.00 81.19 44.03
14 67.14 89.40 72.20 75.01 83.80 47.97
15 68.48 90.57 73.78 75.00 84.54 51.91
16 68.27 90.34 73.63 75.01 84.48 50.11
17 67.48 90.04 72.81 75.00 84.31 47.31
18 66.44 89.80 72.02 75.00 84.35 49.94
19 68.33 90.29 73.65 75.00 83.95 53.17
20 68.13 90.67 73.85 75.00 84.61 54.20
21 66.47 90.33 73.39 75.00 84.22 55.01
22 59.62 90.53 73.63 75.00 84.61 50.53
23 47.58 90.29 72.99 75.00 84.44 48.27
24 32.27 90.29 73.96 75.00 84.42 51.33
25 66.37 89.95 73.16 75.00 83.01 50.75
26 67.96 90.65 73.13 75.00 83.94 52.29
27 68.32 90.21 73.13 75.00 84.31 53.57
28 68.48 90.57 73.78 75.00 84.54 51.91
29 68.41 90.17 73.35 75.00 84.27 52.97
30 68.12 89.67 72.53 75.01 84.27 50.47
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Table S13. Top-1 on representations in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

DINO

0 70.74 91.87 74.71 75.00 87.50 51.67
1 71.29 91.81 74.33 75.00 87.99 57.19
2 72.19 90.51 73.09 75.01 88.35 56.78
3 72.30 91.46 74.34 75.00 88.39 56.75
4 71.68 90.89 72.82 75.00 88.48 59.19
5 72.41 92.24 75.58 75.00 88.04 59.29
6 69.23 90.36 71.86 75.00 87.61 53.87
7 66.18 87.97 68.18 75.00 86.72 54.56
8 64.10 86.80 66.68 75.01 85.38 55.23
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Table S14. Top-1 on embeddings in all settings.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

VICReg

0 26.35 0.95 21.48 65.10 31.23 5.10
1 30.54 1.39 21.07 63.80 31.60 5.24
2 36.92 1.85 24.77 69.92 35.24 5.12
3 47.60 4.34 35.48 87.84 47.62 7.56
4 51.26 6.14 36.43 88.58 49.29 8.82
5 54.39 7.87 38.04 88.44 51.88 9.76
6 55.66 8.76 38.97 89.42 53.14 10.31
7 56.33 9.56 39.65 89.76 53.39 10.53
8 58.65 12.08 41.73 90.88 56.35 11.75
9 59.71 13.47 42.72 91.28 57.26 11.95
10 59.58 14.18 43.22 90.96 57.43 11.58
11 59.22 14.63 43.48 91.34 57.75 11.99
12 53.78 12.80 42.35 92.22 55.41 10.46
13 57.94 14.36 43.61 91.60 57.89 11.30
14 59.20 14.77 43.63 91.40 57.36 12.00
15 59.73 14.20 43.31 91.66 57.04 11.95
16 59.09 12.35 42.21 90.34 56.21 11.55
17 58.23 11.34 41.02 90.16 54.97 11.69
18 56.82 10.15 40.19 89.94 54.50 10.76
19 55.22 9.26 39.02 90.00 53.07 10.98
20 53.75 8.29 37.87 89.76 52.16 10.60
21 51.53 12.97 40.84 91.64 54.26 13.13
22 57.57 13.60 42.40 91.64 56.43 12.47
23 59.71 13.47 42.72 91.28 57.26 11.95
24 56.22 9.92 40.18 88.36 53.69 8.46
25 36.22 2.48 29.59 85.06 42.46 7.55
26 59.33 13.22 42.86 90.76 57.21 11.28
27 59.51 13.37 42.69 91.34 56.66 11.53
28 59.70 13.64 43.37 90.96 57.32 11.89
29 59.03 14.00 43.10 91.50 57.44 12.27
30 56.37 14.10 43.23 91.36 57.69 12.52
31 49.96 12.36 41.93 91.52 57.13 11.37

VICReg-exp

0 58.19 12.56 41.93 91.82 57.13 10.19
1 58.53 12.10 42.03 91.64 56.85 10.96
2 57.41 10.78 40.89 90.44 55.24 10.73
3 47.80 5.02 34.67 88.92 47.14 8.39
4 25.14 1.02 22.04 77.22 32.66 5.17
5 19.24 0.75 20.08 75.70 30.22 5.77
6 12.03 0.51 16.95 70.18 26.06 4.15
7 47.33 4.78 33.88 87.32 46.90 8.87
8 53.72 7.74 38.04 89.46 52.37 9.76
9 58.87 12.22 42.27 91.34 56.97 10.93
10 58.09 12.70 42.56 91.58 56.90 10.42
11 57.24 14.01 43.18 92.38 57.36 11.18
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Table S15. Top-1 on embeddings in all settings, continued.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

VICReg-ctr

0 50.26 10.83 38.54 89.54 52.73 11.39
1 50.99 9.81 38.43 90.06 53.90 10.53
2 48.27 7.67 36.78 88.02 51.45 10.21
3 36.77 3.20 30.01 84.12 43.85 6.68
4 25.92 1.51 23.93 77.54 36.57 4.46
5 17.69 0.70 18.19 69.00 28.30 3.73
6 26.90 1.65 24.69 75.46 36.72 4.86
7 44.31 5.81 34.82 87.84 49.23 9.25
8 49.31 8.71 37.64 89.16 51.98 10.78
9 46.43 8.38 36.11 89.44 50.27 10.25
10 38.33 6.21 32.10 86.44 44.07 8.97

SimCLR

0 43.05 20.48 37.83 94.12 55.20 22.57
1 49.69 21.28 41.82 93.48 58.23 21.38
2 54.45 17.49 42.92 91.88 57.86 16.55
3 50.24 8.36 39.22 88.42 51.94 11.58
4 45.77 6.36 36.55 87.16 48.59 10.20
5 41.14 4.81 34.04 84.76 45.36 9.10
6 43.31 20.51 38.16 94.44 55.40 23.24
7 49.60 21.51 41.93 93.88 59.05 22.43
8 54.48 17.92 43.00 92.86 59.53 18.22
9 50.72 8.65 39.64 89.44 54.47 12.96
10 43.32 5.84 36.51 87.62 50.85 11.33
11 41.15 5.02 34.26 85.52 48.16 10.87
12 44.61 21.33 39.20 94.08 56.15 22.82
13 51.54 21.50 42.64 94.40 59.87 21.30
14 56.51 16.68 43.39 92.26 59.10 17.56
15 56.89 10.35 41.21 90.38 56.37 14.04
16 54.18 7.16 39.42 87.94 54.24 11.47
17 49.19 4.98 37.12 87.14 50.85 10.33
18 44.72 3.89 35.11 86.00 48.38 9.49
19 57.06 10.12 41.18 89.52 56.20 13.19
20 56.72 10.17 41.38 90.08 56.40 13.23
21 56.14 10.26 41.47 89.12 56.74 13.18
22 48.98 10.03 41.48 89.84 56.15 13.47
23 35.92 10.03 41.33 89.74 56.38 13.87
24 28.26 9.68 41.22 86.88 56.02 13.13
25 52.65 9.98 40.47 90.20 55.38 13.72
26 55.98 9.88 40.84 89.00 55.43 13.41
27 56.43 10.03 41.04 89.60 56.23 13.89
28 56.89 10.35 41.21 90.38 56.37 14.04
29 56.65 10.30 41.40 89.22 56.42 13.79
30 56.56 10.60 41.61 90.14 56.82 13.90
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Table S16. Top-1 on embeddings in all settings, continued.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

DINO

0 19.72 2.41 30.12 88.60 44.10 5.81
1 35.64 2.85 32.72 88.78 46.07 6.59
2 53.33 3.64 36.38 89.34 50.00 7.67
3 54.63 4.97 38.86 91.32 54.48 10.31
4 53.01 6.73 40.24 91.84 56.61 9.74
5 64.79 15.84 44.95 93.24 63.68 22.04
6 10.02 0.45 15.87 80.90 23.24 2.24
7 4.28 0.18 10.19 72.30 16.56 1.98
8 2.60 0.14 6.81 61.62 12.55 1.82
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Table S17. Top-1 on embeddings in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

VICReg

0 26.35 59.23 25.84 75.00 66.15 21.75
1 30.54 60.57 25.67 75.01 67.33 19.64
2 36.92 63.77 29.67 75.00 70.94 23.72
3 47.60 75.59 44.58 75.01 75.90 41.44
4 51.26 76.88 45.26 75.01 76.85 34.20
5 54.39 78.34 49.63 75.01 77.85 40.24
6 55.66 78.71 49.89 75.01 78.17 38.37
7 56.33 78.89 50.52 75.01 78.41 39.88
8 58.65 79.57 50.95 75.01 79.46 43.13
9 59.71 80.43 52.75 75.01 79.50 43.93
10 59.58 80.59 53.80 75.02 79.19 43.87
11 59.22 80.94 53.66 75.03 78.90 44.90
12 53.78 78.96 51.83 75.03 76.17 43.71
13 57.94 81.43 53.92 75.02 78.04 45.23
14 59.20 81.04 53.88 75.03 79.18 43.75
15 59.73 81.16 53.35 75.02 79.18 44.39
16 59.09 80.46 52.82 75.02 79.20 45.92
17 58.23 79.76 51.77 75.01 79.58 36.53
18 56.82 79.20 51.10 75.01 78.62 37.81
19 55.22 78.82 50.19 75.01 78.36 38.50
20 53.75 77.87 49.34 75.01 78.07 38.62
21 51.53 78.45 51.46 75.01 75.99 49.13
22 57.57 80.67 52.87 75.02 78.53 45.93
23 59.71 80.43 52.75 75.01 79.50 43.93
24 56.22 75.80 45.73 75.02 78.90 39.71
25 36.22 72.55 41.50 75.00 73.12 41.73
26 59.33 79.58 52.25 75.02 79.61 44.89
27 59.51 80.26 52.55 75.01 79.29 42.99
28 59.70 79.74 52.92 75.02 79.67 46.11
29 59.03 81.25 54.96 75.01 80.10 43.33
30 56.37 80.81 53.55 75.01 80.11 46.97
31 49.96 80.86 53.10 75.01 79.68 47.09

VICReg-exp

0 58.19 80.80 52.30 75.01 79.73 45.89
1 58.53 80.15 53.08 75.01 80.18 43.75
2 57.41 79.22 51.69 75.01 79.39 43.92
3 47.80 76.70 45.93 75.00 76.21 43.52
4 25.14 66.91 33.49 75.00 66.12 37.21
5 19.24 65.85 29.87 75.00 62.04 34.52
6 12.03 62.48 26.06 75.00 55.71 34.17
7 47.33 76.91 46.47 75.00 76.48 41.40
8 53.72 77.99 48.65 75.00 78.72 44.80
9 58.87 80.36 53.78 75.01 80.15 43.85
10 58.09 80.64 53.47 75.01 79.98 45.68
11 57.24 81.10 54.28 75.01 79.58 43.71
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Table S18. Top-1 on embeddings in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

VICReg-ctr

0 50.26 78.76 49.34 75.00 77.89 37.61
1 50.99 78.63 49.80 75.00 78.77 43.76
2 48.27 77.86 48.75 75.00 78.48 40.49
3 36.77 73.83 40.44 75.00 72.19 38.16
4 25.92 66.81 32.82 75.00 65.32 31.63
5 17.69 63.94 25.50 75.00 58.48 31.40
6 44.31 76.82 46.43 75.00 77.16 42.48
7 49.31 77.70 48.66 75.00 78.50 40.81
8 46.43 75.51 46.54 75.00 76.97 44.25
9 38.33 71.51 40.68 75.00 72.67 41.31

SimCLR

0 43.05 75.84 52.39 75.00 71.43 46.86
1 49.69 78.32 53.20 75.00 76.19 50.11
2 54.45 79.24 51.56 75.00 78.10 49.63
3 50.24 78.36 47.70 75.00 79.07 46.29
4 45.77 75.73 44.37 75.00 77.46 46.63
5 41.14 74.04 41.88 75.00 75.03 45.47
6 43.31 75.66 53.31 75.00 71.37 41.40
7 49.60 78.36 54.79 75.00 76.47 46.46
8 54.48 80.39 55.39 75.00 78.38 49.53
9 50.72 79.32 51.01 75.00 79.27 42.25
10 43.32 76.43 48.07 75.00 77.59 44.67
11 41.15 74.75 45.06 75.00 74.79 46.56
12 44.61 76.97 53.29 75.00 72.71 47.15
13 51.54 79.20 56.45 75.00 76.80 37.03
14 56.51 79.48 53.99 75.00 78.55 43.05
15 56.89 79.35 52.58 75.00 79.73 43.51
16 54.18 78.17 49.62 75.00 79.71 43.32
17 49.19 76.59 46.98 75.00 78.61 43.48
18 44.72 76.68 45.62 74.99 76.95 42.88
19 57.06 79.83 52.19 75.00 79.73 45.97
20 56.72 79.41 53.12 75.00 80.05 45.65
21 56.14 79.46 52.25 75.00 79.64 47.19
22 48.98 79.39 52.28 75.00 79.89 45.92
23 35.92 79.52 52.15 75.00 79.74 43.86
24 28.26 79.28 51.25 75.00 79.90 45.39
25 52.65 79.30 52.85 75.00 78.74 42.71
26 55.98 79.51 52.21 75.00 79.34 44.75
27 56.43 78.52 52.04 75.00 79.55 45.19
28 56.89 79.35 52.58 75.00 79.73 43.51
29 56.65 78.98 51.80 75.00 79.82 43.69
30 56.56 78.36 51.81 74.99 79.78 44.50
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Table S19. Top-1 on embeddings in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

DINO

0 19.72 81.24 53.97 75.00 77.21 42.39
1 35.64 81.66 55.32 75.00 82.48 45.23
2 53.33 80.70 53.03 75.00 84.22 41.93
3 54.63 84.26 58.49 75.00 85.25 49.89
4 53.01 83.20 58.14 75.00 85.71 48.72
5 64.79 87.02 65.43 75.00 87.03 51.19
6 10.02 70.98 37.66 75.00 61.27 32.83
7 4.28 59.02 22.71 75.00 50.02 34.77
8 2.60 47.97 16.26 75.00 41.16 27.13
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Table S20. Rank after projector in all settings.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

VICReg

0 102.07 38.10 44.39 14.61 32.40 7.03
1 229.81 92.53 129.47 88.78 98.44 12.58
2 374.25 135.79 206.29 120.31 163.31 19.77
3 612.12 261.34 336.16 228.60 265.64 38.90
4 831.49 382.55 467.68 366.78 374.50 59.15
5 952.55 449.44 539.24 428.87 435.94 77.36
6 1033.93 493.50 587.19 477.69 478.34 88.28
7 1088.13 531.16 630.80 514.70 517.47 99.97
8 1442.63 726.28 849.29 693.16 723.53 161.76
9 1809.06 947.81 1110.80 855.76 954.83 210.06
10 1920.81 1054.70 1247.93 870.56 1075.89 258.33
11 1938.44 1087.45 1275.60 924.66 1119.33 306.90
12 1937.78 1100.54 1337.88 963.14 1172.38 382.18
13 1944.95 1095.95 1307.62 968.96 1155.65 352.50
14 1940.04 1095.91 1280.85 910.16 1126.89 324.51
15 1942.12 1049.72 1240.87 893.25 1070.12 269.96
16 1521.07 782.39 919.54 725.49 771.86 169.75
17 1278.67 637.18 757.19 606.98 627.48 128.96
18 1079.67 532.00 634.88 527.59 524.80 111.28
19 909.71 446.52 525.65 454.22 431.44 88.55
20 777.82 376.39 447.53 378.06 360.41 73.57
21 1409.29 890.97 996.12 814.00 889.66 352.57
22 1652.41 936.47 1070.40 837.76 932.17 275.04
23 1809.06 947.81 1110.80 855.76 954.83 210.06
24 1422.16 648.60 813.33 532.92 650.33 91.44
25 101.29 44.12 46.00 20.77 36.60 10.68
26 1821.80 959.98 1130.27 840.12 962.04 221.58
27 1814.64 948.47 1107.25 856.12 946.73 218.36
28 1728.89 913.31 1065.74 814.04 911.39 216.25
29 1587.36 859.56 1008.93 807.57 864.18 244.56
30 1384.68 757.81 881.53 716.36 767.14 229.93
31 974.91 508.81 613.44 508.01 526.43 143.61

VICReg-exp

0 1006.58 530.95 637.48 501.16 551.60 142.88
1 1002.17 521.34 626.39 515.00 534.56 132.72
2 922.59 473.26 564.18 475.88 472.06 119.75
3 399.09 192.27 233.31 202.71 189.78 36.95
4 63.82 30.25 36.98 21.39 30.63 7.90
5 19.47 12.49 9.57 6.33 7.96 3.58
6 9.42 7.19 5.41 3.80 4.73 2.55
7 375.38 180.63 216.71 191.99 176.94 31.86
8 636.60 314.20 380.13 341.21 312.04 66.31
9 1002.29 528.76 629.07 517.84 536.91 139.28
10 1048.58 556.24 673.46 547.15 581.30 158.24
11 1326.31 733.86 875.62 707.34 771.39 208.83
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Table S21. Rank after projector in all settings, continued.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

VICReg-ctr

0 382.33 224.68 252.33 207.81 220.68 69.48
1 278.88 163.91 183.32 154.70 160.71 50.29
2 169.33 101.44 114.49 97.89 99.84 34.97
3 48.47 32.38 34.93 32.77 31.76 12.53
4 23.22 16.72 17.90 17.70 16.63 7.38
5 12.88 10.03 10.31 10.66 9.71 5.01
6 22.96 16.87 17.77 17.30 16.55 7.61
7 96.33 62.08 68.05 60.68 60.39 22.59
8 251.52 146.09 166.32 138.75 143.81 45.73
9 309.22 177.32 204.38 170.65 175.81 53.83
10 316.89 184.83 213.74 175.10 185.91 59.07

SimCLR

0 109.07 105.65 104.65 76.13 105.64 92.59
1 164.07 148.71 149.89 100.17 148.00 113.61
2 244.34 184.32 203.04 129.53 188.30 105.89
3 150.90 94.61 116.94 83.98 102.17 40.64
4 87.69 57.78 67.23 54.62 59.79 25.36
5 63.68 42.23 48.22 40.83 43.22 18.41
6 110.59 106.83 105.83 76.97 106.82 93.98
7 165.49 149.55 150.27 103.19 148.65 113.60
8 246.56 184.69 204.24 128.96 189.86 107.43
9 164.66 102.61 128.12 95.47 112.20 43.29
10 9.88 30.27 2.74 55.46 65.08 25.57
11 63.61 42.00 48.40 40.86 43.20 18.62
12 122.60 118.57 116.93 85.13 118.16 103.25
13 197.36 173.50 176.32 116.61 173.24 128.89
14 313.67 220.05 239.53 160.52 222.80 111.73
15 299.47 172.75 209.43 140.66 183.51 61.44
16 220.63 122.46 150.73 106.96 130.16 40.02
17 128.33 71.75 90.40 65.77 78.64 26.24
18 71.75 48.95 64.25 48.65 54.84 18.93
19 301.92 173.11 211.03 147.45 185.04 60.83
20 299.75 173.05 208.52 141.84 182.21 61.56
21 299.96 173.61 209.18 144.25 181.99 61.11
22 300.90 173.89 209.47 147.78 184.45 61.40
23 300.58 174.18 207.19 142.58 184.29 60.94
24 300.83 174.63 207.18 146.11 182.27 60.50
25 11.56 15.95 31.99 144.87 13.55 3.92
26 293.13 172.80 211.66 139.57 184.94 65.02
27 295.23 173.07 208.46 139.91 181.05 62.32
28 299.47 172.75 209.43 140.66 183.51 61.44
29 298.69 172.12 206.63 142.92 181.39 60.88
30 294.42 170.26 201.98 141.29 177.39 58.94

42



RankMe

Table S22. Rank after projector in all settings, continued.

Method Run ImageNet iNat18 Places205 EuroSat SUN397 Cars

DINO

0 150.51 62.45 106.14 100.08 90.46 23.52
1 276.35 110.16 179.46 163.25 147.50 36.81
2 482.51 190.78 291.91 213.05 236.76 52.59
3 409.79 180.78 269.96 196.90 225.47 70.37
4 347.69 168.61 235.11 168.90 202.51 55.07
5 523.67 330.31 392.16 271.77 356.99 155.13
6 61.59 21.32 39.89 34.88 32.55 2.52
7 22.43 8.26 17.91 9.86 15.62 1.93
8 11.01 5.84 8.27 8.08 7.83 1.39
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Table S23. Rank after projector in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

VICReg

0 102.07 38.10 44.39 14.61 32.40 7.03
1 229.81 92.53 129.47 88.78 98.44 12.58
2 374.25 135.79 206.29 120.31 163.31 19.77
3 612.12 261.34 336.16 228.60 265.64 38.90
4 831.49 382.55 467.68 366.78 374.50 59.15
5 952.55 449.44 539.24 428.87 435.94 77.36
6 1033.93 493.50 587.19 477.69 478.34 88.28
7 1088.13 531.16 630.80 514.70 517.47 99.97
8 1442.63 726.28 849.29 693.16 723.53 161.76
9 1809.06 947.81 1110.80 855.76 954.83 210.06
10 1920.81 1054.70 1247.93 870.56 1075.89 258.33
11 1938.44 1087.45 1275.60 924.66 1119.33 306.90
12 1937.78 1100.54 1337.88 963.14 1172.38 382.18
13 1944.95 1095.95 1307.62 968.96 1155.65 352.50
14 1940.04 1095.91 1280.85 910.16 1126.89 324.51
15 1942.12 1049.72 1240.87 893.25 1070.12 269.96
16 1521.07 782.39 919.54 725.49 771.86 169.75
17 1278.67 637.18 757.19 606.98 627.48 128.96
18 1079.67 532.00 634.88 527.59 524.80 111.28
19 909.71 446.52 525.65 454.22 431.44 88.55
20 777.82 376.39 447.53 378.06 360.41 73.57
21 1409.29 890.97 996.12 814.00 889.66 352.57
22 1652.41 936.47 1070.40 837.76 932.17 275.04
23 1809.06 947.81 1110.80 855.76 954.83 210.06
24 1422.16 648.60 813.33 532.92 650.33 91.44
25 101.29 44.12 46.00 20.77 36.60 10.68
26 1821.80 959.98 1130.27 840.12 962.04 221.58
27 1814.64 948.47 1107.25 856.12 946.73 218.36
28 1728.89 913.31 1065.74 814.04 911.39 216.25
29 1587.36 859.56 1008.93 807.57 864.18 244.56
30 1384.68 757.81 881.53 716.36 767.14 229.93
31 974.91 508.81 613.44 508.01 526.43 143.61

VICReg-exp

0 1006.58 530.95 637.48 501.16 551.60 142.88
1 1002.17 521.34 626.39 515.00 534.56 132.72
2 922.59 473.26 564.18 475.88 472.06 119.75
3 399.09 192.27 233.31 202.71 189.78 36.95
4 63.82 30.25 36.98 21.39 30.63 7.90
5 19.47 12.49 9.57 6.33 7.96 3.58
6 9.42 7.19 5.41 3.80 4.73 2.55
7 375.38 180.63 216.71 191.99 176.94 31.86
8 636.60 314.20 380.13 341.21 312.04 66.31
9 1002.29 528.76 629.07 517.84 536.91 139.28
10 1048.58 556.24 673.46 547.15 581.30 158.24
11 1326.31 733.86 875.62 707.34 771.39 208.83
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Table S24. Rank after projector in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

VICReg-ctr

0 382.33 224.68 252.33 207.81 220.68 69.48
1 278.88 163.91 183.32 154.70 160.71 50.29
2 169.33 101.44 114.49 97.89 99.84 34.97
3 48.47 32.38 34.93 32.77 31.76 12.53
4 23.22 16.72 17.90 17.70 16.63 7.38
5 12.88 10.03 10.31 10.66 9.71 5.01
6 96.33 62.08 68.05 60.68 60.39 22.59
7 251.52 146.09 166.32 138.75 143.81 45.73
8 309.22 177.32 204.38 170.65 175.81 53.83
9 316.89 184.83 213.74 175.10 185.91 59.07

SimCLR

0 109.07 105.65 104.65 76.13 105.64 92.59
1 164.07 148.71 149.89 100.17 148.00 113.61
2 244.34 184.32 203.04 129.53 188.30 105.89
3 150.90 94.61 116.94 83.98 102.17 40.64
4 87.69 57.78 67.23 54.62 59.79 25.36
5 63.68 42.23 48.22 40.83 43.22 18.41
6 110.59 106.83 105.83 76.97 106.82 93.98
7 165.49 149.55 150.27 103.19 148.65 113.60
8 246.56 184.69 204.24 128.96 189.86 107.43
9 164.66 102.61 128.12 95.47 112.20 43.29
10 9.88 30.27 2.74 55.46 65.08 25.57
11 63.61 42.00 48.40 40.86 43.20 18.62
12 122.60 118.57 116.93 85.13 118.16 103.25
13 197.36 173.50 176.32 116.61 173.24 128.89
14 313.67 220.05 239.53 160.52 222.80 111.73
15 299.47 172.75 209.43 140.66 183.51 61.44
16 220.63 122.46 150.73 106.96 130.16 40.02
17 128.33 71.75 90.40 65.77 78.64 26.24
18 71.75 48.95 64.25 48.65 54.84 18.93
19 301.92 173.11 211.03 147.45 185.04 60.83
20 299.75 173.05 208.52 141.84 182.21 61.56
21 299.96 173.61 209.18 144.25 181.99 61.11
22 300.90 173.89 209.47 147.78 184.45 61.40
23 300.58 174.18 207.19 142.58 184.29 60.94
24 300.83 174.63 207.18 146.11 182.27 60.50
25 11.56 15.95 31.99 144.87 13.55 3.92
26 293.13 172.80 211.66 139.57 184.94 65.02
27 295.23 173.07 208.46 139.91 181.05 62.32
28 299.47 172.75 209.43 140.66 183.51 61.44
29 298.69 172.12 206.63 142.92 181.39 60.88
30 294.42 170.26 201.98 141.29 177.39 58.94
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Table S25. Rank after projector in all settings, continued.

Method Run ImageNet CIFAR10 CIFAR100 FOOD101 VOC07 CLEVR-count

DINO

0 150.51 62.45 106.14 100.08 90.46 23.52
1 276.35 110.16 179.46 163.25 147.50 36.81
2 482.51 190.78 291.91 213.05 236.76 52.59
3 409.79 180.78 269.96 196.90 225.47 70.37
4 347.69 168.61 235.11 168.90 202.51 55.07
5 523.67 330.31 392.16 271.77 356.99 155.13
6 61.59 21.32 39.89 34.88 32.55 2.52
7 22.43 8.26 17.91 9.86 15.62 1.93
8 11.01 5.84 8.27 8.08 7.83 1.39
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