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Abstract

Reinforcement learning with verifiable rewards (RLVR) has shown promise in
enhancing the reasoning capabilities of large language models by learning directly
from rule-based outcome rewards. Recent RLVR works that operate under the
zero setting avoid supervision in labeling the reasoning process, but still depend on
manually curated collections of questions and answers for training. The scarcity
of high-quality, human-produced examples raises concerns about the long-term
scalability of relying on human supervision, a challenge already evident in the
domain of language model pretraining. Furthermore, in a hypothetical future where
Al surpasses human intelligence, tasks provided by humans may offer limited
learning potential for a superintelligent system. To address these concerns, we
propose a new RLVR paradigm called Absolute Zero, in which a single model learns
to propose tasks that maximize its own learning progress and improves reasoning
by solving them, without relying on any external human or distillation data. Under
this paradigm, we introduce the Absolute Zero Reasoner (AZR), a system that
self-evolves its training curriculum and reasoning ability. AZR uses a code executor
to both validate self-proposed code reasoning tasks and verify answers, serving as
an unified source of verifiable feedback to guide open-ended yet grounded learning.
Despite being trained entirely without external data, AZR achieves overall SOTA
performance on coding and mathematical reasoning tasks, outperforming existing
zero-setting models that rely on tens of thousands of in-domain human-curated
examples. Furthermore, we demonstrate that AZR can be effectively applied across
different model scales and is compatible with various model classes.

1 Introduction

Large language models (LLMs) have recently achieved remarkable improvements in reasoning
capabilities by employing Reinforcement Learning with Verifiable Rewards (RLVR) [37]. Unlike
methods that explicitly imitate intermediate reasoning steps, RLVR uses only outcome-based feedback,
enabling large-scale reinforcement learning over vast task datasets [22, 75, 33, 52, 51, 81]. A
particularly compelling variant is the “zero” RLVR paradigm [22], which forgoes any cold-start
distillation data, using neither human-generated nor Al-generated reasoning traces, and applies RLVR
directly on the base model with task rewards. However, these methods still depend heavily on
expertly curated distributions of reasoning question—answer pairs, which raises serious concerns
about their long-term scalability [76]. As reasoning models continue to advance, the effort required to
construct large-scale, high-quality datasets may soon become unsustainable [97]. A similar scalability
bottleneck has already been identified in the domain of LLM pretraining [73]. Furthermore, as Al
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Figure 1: Absolute Zero Reasoner (AZR) achieves state-of-the-art performance with ZERO
DATA. Without relying on any gold labels or human-defined queries, Absolute Zero Reasoner
trained using our proposed self-play approach demonstrates impressive general reasoning capabilities
improvements in both math and coding, despite operating entirely out-of-distribution. Remarkably,
AZR surpasses models trained on tens of thousands of expert-labeled in-domain examples in the
combined average score across both domains, and also reaches SOTA in the coding domain.

systems continue to evolve and potentially exceed human intellect, an exclusive dependence on human-
designed tasks risks imposing constraints on their capacity for autonomous transcendence [31]. This
underscores the need for a new paradigm that begins to explore possibilities beyond the constraints of
human-designed tasks and prepares for a future in which Al systems may surpass human intelligence.

To this end, we propose “Absolute Zero”, a new paradigm for reasoning models in which the model
simultaneously learns to define tasks that maximize learnability and to solve them effectively, enabling
self-evolution through self-play without relying on external data. In contrast to prior self-play methods
that are limited to narrow domains, fixed functionalities, or learned reward models that are prone to
hacking [68, 5, 7], the Absolute Zero paradigm is designed to operate in open-ended settings while
remaining grounded in a real environment. It relies on feedback from the environment as a verifiable
source of reward, mirroring how humans learn and reason through interaction with the world, and
helps prevent issues such as hacking with neural reward models [31]. Similar to AlphaZero [68],
which improves through self-play, our proposed paradigm requires no human supervision and learns
entirely through self-interaction. We believe the Absolute Zero paradigm represents a promising step
toward enabling large language models to autonomously achieve superhuman reasoning capabilities.

Building on this new reasoning paradigm, we introduce the Absolute Zero Reasoner (AZR), which
proposes and solves code reasoning tasks. We cast code executor as an open-ended yet grounded
environment, sufficient to both validate task integrity and also provide verifiable feedback for stable
training. We let AZR construct tasks that require reasoning and inference about a specific element
in a program, input, or output triplet, corresponding to three complementary modes of reasoning:
induction, abduction, and deduction. We train the entire system end-to-end with a newly proposed
reinforcement learning advantage estimator tailored to the multitask nature of the proposed approach.

Despite being trained entirely without any in-distribution data, AZR demonstrates remarkable
capabilities across diverse general reasoning tasks in math and coding. In mathematics, AZR achieves
competitive performance compared to zero reasoner models explicitly fine-tuned with domain-specific
supervision. In coding tasks, AZR establishes a new state-of-the-art performance, surpassing models
specifically trained with curated code datasets using RLVR. Furthermore, AZR outperforms all
previous models by an average of 1.8 absolute points compared to models trained in the “zero” setting
using in-domain data. These surprising results highlight that general reasoning skills can emerge
without human-curated domain targeted data, positioning Absolute Zero as an promising research
direction and AZR as a first effective instantiation. See Appendix D.1 for more interesting findings.

2 The Absolute Zero Paradigm

2.1 Preliminaries

Supervised Fine-Tuning (SFT). SFT requires the datasets of task-rationale-answer demonstrations
D = {(x,c*,y*)}, where x is the query, ¢* is the gold chain-of-thought (CoT) and y* is the gold
answer, all provided by human experts or superior AI models. The model trains to imitate the
reference responses to minimize the conditional negative log-likelihood [55]:
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At the frontier level, the absence of stronger models for distillation and the poor scalability of expert
human labeling have led researchers to explore RL as a means to enhance model reasoning.

Reinforcement Learning with Verifiable Rewards (RLVR). To move beyond the limits of pure
imitation, RLVR only requires a dataset of task and answer D = {(z, y*)}, without labeled rationale.
RLVR allows the model to generate its own CoT and calculate a verifiable reward with the golden
answer 7 (y, y*). However, the learning task distribution D, with its set of queries and gold answers
are still labeled by human experts. The trainable policy 7y is optimized to maximize expected reward:

JRLVR(Q) = E(:l:.y*)ml‘), (c,y)~mo (- |z) [T(y, y*)} . 2

In summary, both SFT and RLVR still rely on human-curated datasets of either queries, demonstrations,
or answers, which limit scalability. The Absolute Zero paradigm removes this dependency by allowing
the model to generate, solve, and learn from its own interactions with the environment by self-play.

2.2 Absolute Zero

We propose the Absolute Zero (AZ) paradigm, where during training, the model simultaneously
proposes tasks, solves them, and learns from both stages. No external data is required and the model
learns entirely through self-play and experience, aided by some environment. To make the Absolute
Zero setting concrete, we now define how one model can act both as the proposer and solver role.
Let mp be our parameterized language model, it is used to play two roles, proposer 7 ' and
solver 7r§)°lve during training. The proposer first samples a proposed task conditioned on variable z:
7 ~ mh P*¢(-|z), which will then be validated and used to construct a valid reasoning task together
with the environment e: (z,y*) ~ fe(:|7), where z is the task query and y* is the gold label. Then
the solver produces an answer y ~ m°"¢( - | z). Each proposed task 7 is scored by a learnability
reward 8 P (T, 7q), which captures the expected improvement in 7y after training on the proposed
task 7. Moreover, the same policy also receives a solution reward r°™(y,y*) for its answer to
the task query z, with the environment again serving as the verifier. A nonnegative coefficient A
balances the trade-off between exploring new, learnable tasks and improving the model’s reasoning

and problem-solving abilities. We formally define the absolute zero setting’s objective as follows:
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Notice we shift the burden of scaling data away from human experts and onto the proposer policy
), " and the environment e. These two roles are both responsible for defining/evolving the learning
task distribution, validating proposed tasks, and providing grounded feedback that supports stable and
self-sustainable training. When proposing, z acts as a conditional variable that seeds generation of
tasks. Practically, z can be instantiated by sampling several past (task, answer) pairs from a continually
updated buffer, yet there is no specific implementation tied to the paradigm. To guide the proposing
process, we use a learnability reward PP (T, 74 ), which measures how much the model is expected
to improve by solving a proposed task 7. Moreover, the solver reward 7*°¢(y, y*) evaluates the
correctness of the model’s output. Together, these two signals guide the model to propose tasks that
are both challenging and learnable, while also enhancing its reasoning abilities, ultimately enabling
continuous improvement through self-play, see Figures 13 and 14 for AZ framework illustrations.

3 Absolute Zero Reasoner

In this section, we present Absolute Zero Reasoner (AZR) as the first attempt to embrace the Absolute
Zero paradigm. In AZR, an unified LLM is jointly trained as both proposer and solver—generating
challenging tasks to expand its reasoning curriculum and solving them to enhance its own capabili-
ties (Section 3.1). Within this self-play training paradigm, the model learns from three distinct type of
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Figure 2: Absolute Zero Reasoner (AZR) Training Overview. At every iteration, AZR first
a batch of tasks, conditioned on past self-generated triplets stored in a buffer and a
particular task type: abduction, deduction, or induction (Section 3.2). From these generated tasks,
Python is used to filter and construct valid code-based reasoning questions. A learnability reward
Tpropose 18 also calculated for each proposed task as defined in Equation (4). AZR then SOLVES the
batch of reasoning questions. Python is used again to verify the generated responses and compute the
accuracy reward 7o as described in Equation (5). Finally, the Absolute Zero Reasoner is jointly
updated using both 7propose and rgorve across all three task types, using TRR++ (Section 3.3).

coding tasks, which corresponding to three fundamental modes of reasoning: abduction, deduction and
induction (Section 3.2). Motivated by the Turing-completeness of programming languages [70] and
evidence that code-based training enhances reasoning [ 1], we adopt code as an open-ended, expressive,
and verifiable medium for reliable task construction and verification (Section 3.3). Finally, the model
is updated using a newly proposed advantage estimator designed for multitask learning (Section 3.3).
We showcase an illustration of our Absolute Zero Reasoner approach in Figure 2 and Algorithm 1.

3.1 Two Roles in One: Proposer and Solver

Large language models are naturally suited for implementing the Absolute Zero objective in a multitask
learning context [59], as both the formulation of reasoning tasks and their solutions occur within a
unified language space. At each iteration of the online rollout, AZR proposes new reasoning tasks by
conditioning on the task type (as defined in Section 3.2) and past self-generated task triplet(s). The
model, in proposer mode, is then prompted to generate the necessary components for a task proposal
based on the task type. These task proposals are filtered and transformed into valid reasoning tasks
that can be validated using a python interpreter, described in Section 3.2. AZR then attempts to solve
these newly proposed tasks, receiving grounded feedback for its model responses. Both task proposal
and problem solving are trained using reinforcement learning, with their rewards described next.

Reward Design. Prior work has shown that setting appropriate task difficulty is critical for promoting
effective learning in reasoning systems [100]. Motivated by this, we design a reward function for the
proposer that encourages generation of tasks with meaningful learning potential—neither too easy
nor unsolvable for the current solver. Concretely, we use the same language model in its solver role to
estimate the learnability of a proposed task, which is well studied in autotelic agents and unsupervised
environment design literature [54, 71]. We perform G Monte Carlo rollouts of the solver and compute
¢ .0

i=1 " solve*

— O’ if T_solve =0
/r.pr()p()se - _ . (4)
1 — 7eove, Otherwise.

the average success rate: sole = é > The proposer’s reward is then defined as:

The intuition is that if a task is either trivial (7sove = 1) or unsolvable (7soe = 0), the task provides
little to no learning signal to the solver. In contrast, tasks of moderate difficulty, where the solver
occasionally succeeds are rewarded the most, as they offer the greatest potential for learning.



For the solver, we assign a simple binary reward based on the correctness of its final output,

Tsove = L(y=y*), (5)

where y* is the ground-truth answer, and equality is evaluated based on value equality in Python.

With the primary rewards for the two roles defined, we adopt the following composite reward structure,
which integrates rpropose and 7so1ve With a format-aware penalty inspired by Guo et al. [22]:

role  correctly formatted, role € {propose,solve}
R(yr) = < —0.5 response is wrong but well-formatted, 6)
-1 answer has formatting errors,

where y is the response of the language model. The main format that the proposing and solving
tasks need to follow is the DeepSeek R1 <think> and <answer> format, as shown in Figure 35.
Moreover, for the proposer, the reward criterion for format goes beyond simply following the XML
structure. As detailed in Section 3.3, only responses that produce valid triplets and pass the filtering
stage (correctly parsed, executable, safe, and deterministic) are considered to be correctly formatted.

3.2 Learning Different Modes of Reasoning: Deduction, Induction, and Abduction

AZR leverages a code executor as both a flexible interface and a verifiable environment, enabling
automatic construction, execution, and validation of code reasoning tasks [70, 1]. Given a deterministic
program space Peerministic> INPUt space ., and output space &, each task is represented as a triplet
(p,i,0), where p(i) = o. AZR learns by reasoning over this triplet using three distinct modes:
deduction, abduction, and induction. Deduction: the model infers the output o from a program p
and input i. As a proposer, AZR generates (p, i) conditioned on K previously generated problems
and obtains o via execution; valid completions are stored for future bootstrapping. As a solver, it
predicts o, given (p, ), which is verified using type-aware Python equality. Abduction: AZR infers
a plausible input ¢ given a program p and output o, reflecting trial-and-error. The proposer generates
(p, 1) and the full triplet is completed through execution; the solver predicts i, from (p, 0) and passes
if p(i,) = o. The reason we do not directly match i, with i is because p does not need to be bijective,
therefore any input that produces o is correct. Induction: the task is to synthesize a program p
from 1/O examples {(i",0™)}"¥//2. As a proposer, AZR samples a program, generates N inputs,
and computes outputs, forming a task (p, {(i",0™)}*, m), where message m helps define the intent.
As a solver, the model sees partial I/O examples and m, and must produce p, that generalizes to
match hidden I/O cases, discouraging overfitting and promoting abstraction. Each reasoning task type
leverages code as an expressive and verifiable medium, aligning with the AZ paradigm’s goals of
fully self-improving systems in open-ended domains [22, 37]. Prompts used in Figures 36 to 41.

3.3 Absolute Zero Reasoner Training Algorithm

The AZR training pipeline begins by initializing buffers for each task type through seed task generation
with the base model. The model gets prompted to generate task triplets, which are then filtered, and
validated to ensure syntactic correctness, safety, and determinism. These buffers jumpstarts self-play
by providing task examples and filling incomplete solver batches. More deetails in Appendix A.1.1.

During self-play, AZR iteratively proposes new tasks, constructs and validates them, solves the
tasks, and verifies the outputs. Proposed tasks are rigorously validated in Python by executing the
programs to 1) checking for valid syntax; 2) enforcing safety constraints; and 3) ensuring for proposed
program determinism. This process ensures only valid tasks are being solved and added to the buffers.
Different task-specific criteria are applied to define validity: (p, 4, o) triplets (abduction or deduction),
or input sets with corresponding messages (induction). See Appendix A.1.3 for more details.

Finally, AZR verifies the solver’s outputs against ground-truth information from triplets. For deduction,
the predicted output is matched directly; for abduction, equivalence is checked via program execution
due to potential non-bijective program; for induction, all generated test cases must pass functional
equivalence checks, see Appendix A.l.4 for details. After verification, rewards are computed, and
both the proposer and solver policies are updated. For detailed explanations of buffer initialization,
task validation, and answer verification, we refer readers to Appendix A.l and Algorithm 1.



Task-Relative REINFORCE++. Since AZR trains the combination of roles and task types, it
operates in a multitask reinforcement learning setup [103, 104, 79, 95]. Instead of computing a single
global baseline as in REINFORCE++ [28] (Appendix A.3), we compute separate baselines for each
of the six task-role configurations. This can be viewed as an interpolation between per-question
baselines, as in GRPO [64], and a global baseline, allowing for more structured variance reduction
tailored to each task setup. We refer to this variant as Task-Relative REINFORCE++ (TRR++). The
normalized advantage A™™ is computed as:

Aliiole = M, task € {ind,ded,abd},role € {propose,solve}, )

Otask,role

where the mean and standard deviation are computed within each task type/role, yielding six baselines.

4 Experiments

4.1 Experiment Setup

Training Details. For all experiments, we initialize the buffers as described in Section 3.1. AZR
models are trained using a batch size of 64 x 6 (2 roles x 3 task types). We use constant learning
rate= le—6 and the AdamW optimizer [49]. Complete list of hyperparameters is provided in Table 4.
For the main experiments, we train AZR models on Qwen2.5-7B and Qwen2.5-7B-Coder, resulting
inAbsolute Zero Reasoner-base-7Band Absolute Zero Reasoner-Coder-7B,respectively.
Additional experiments include training Qwen2.5-Coder-3B, Qwen2.5-Coder-14B, Qwen2.5-14B,
Llama-3.1-8B [88, 32, 16].

Evaluation Protocol. To evaluate our models, we divide the benchmarks into in-distribution (ID) and
out-of-distribution (OOD) categories. For OOD benchmarks, we further categorize them into coding
and mathematical reasoning. For coding tasks, we evaluate using Evalplus [45] on the HumanEval+
and MBPP+ benchmarks [6, 2], as well as LiveCodeBench Generation (v1-5, May 23-Feb 25) [34]. For
mathematical reasoning, we utilize six standard benchmarks commonly used in recent “zero” reasoners:
AIME’24, AIME’25, OlympiadBench [25], Minerva [40], Math500 [26], and AMC’23. For ID
benchmarks, we use CruxEval-I(nput), CruxEval-O(utput), and LiveCodeBench-Execution [21, 34],
which assess reasoning capabilities regarding the input and output of programs [41]. Greedy decoding
is used for all baseline methods and AZR results to ensure reproducibility. All baseline models’
details, training data and initialization settings are summarized in Appendix A.2 and Table 3.

4.2 Results

Research Question 1: How does AZR compare to other zero setting models trained with human
expert data? We present the main results of reasoning models trained under both the standard zero
and our proposed absolute zero settings in Table 1. Notably, Absolute Zero Reasoner-Coder-7B
achieves state-of-the-art performance in both the 7B overall average and the coding average categories.
Despite being entirely out-of-distribution for both math and code reasoning benchmarks, it surpasses
the previous best model by 1.8 absolute percentages in AVG of (CAvg + MAvg)/2. Even more
strikingly, it outperforms models trained with expert-curated human data in the coding category
(CAvg), by 0.3 absolute percentages, while never having access to such human curated data itself.

Strong Cross-domain Generalization. To assess cross-domain generalization after RLVR, we evaluate
math performance before and after training, comparing AZR models with other expert code models,
since AZR was also trained in coding environments. After training, most expert code models showed
minimal changes or even declines in performance compared to their base versions in math, with an
average increase of only 0.65% across these models, indicating limited cross-domain generalization.
In contrast, AZR base and coder achieved gains of 10.9% and 15.2% respectively, demonstrating
substantially stronger generalized reasoning improvements. Similarly, although out-of-distribution
on human-defined code generation tasks, AZR models improved by 3.2% and 5.0%, while the math
models on average showed just a moderate increases in coding (+2.0% on average).

Overall, these results highlight the surprising effectiveness of our approach. Unlike other RLVR
models trained and evaluated on human-defined tasks, our AZR models demonstrate strong general
reasoning capabilities without any direct training on downstream human-defined math or coding data,
only had access to self-proposed tasks during training, yet still surpassing existing models.



Model Base #data ‘ HEval* MBPP* LCB'!” ‘ AME24 AME25 AMC MS500 Minva Olypiad ‘ CAvg MAvg AVG

Base Models
Qwen2.5-7B!*! - - 732 65.3 17.5 6.7 33 375 648 25.0 27.7 520 275 398
Qwen2.5-7B-Ins!*] - - 75.0 68.5 255 133 6.7 52.5 76.4 35.7 37.6 56.3 37.0 46.7
Qwen2.5-7B-Coder!™! - - 80.5 69.3 19.9 6.7 33 40.0 540 17.3 219 56.6 239 402
Qwen2.5-7B-Math!*’! - - 61.0 57.9 162 10.0 167 425 642 154 280 | 450 295 373
Zero-Style Reasoners Trained on Curated Coding Data
AceCoder-RM™] Ins 22k 79.9 714 23.6 20.0 6.7 50.0 76.4 34.6 36.7 58.3 374 479
AceCoder-Rule!” Ins 22k 774 69.0 19.9 13.3 6.7 500  76.0 375 37.8 554 369 462
AceCoder-RM!™] Coder 22k 78.0 66.4 275 13.3 33 27.5 62.6 294 29.0 573 27.5 424
AceCoder-Rule!””! Coder 22k 80.5 70.4 29.0 6.7 6.7 40.0 62.8 27.6 274 60.0 28.5 443
CodeR 1-LC2k!*! Ins 2k 81.7 71.7 28.1 13.3 10.0 450 750 335 36.7 60.5 356 480
CodeR1-12k!*! Ins 12k 81.1 73.5 29.3 13.3 33 375 74.0 35.7 36.9 61.3 335 474
Zero-Style Reasoners Trained on Curated Math Data
PRIME-Zero!'") Coder 484k 49.4 51.1 11.0 233 233 67.5 81.2 379 41.8 37.2 45.8 41.5
SimpleRL-Zool'*"! Base 8.5k 732 632 25.6 16.7 33 515 710 357 41.0 540 385 463
Oat-Zero!*"! Math 8.5k 62.2 59.0 15.2 30.0 16.7 62.5 80.0 349 41.6 45.5 443 44.9
ORZ™ Base 57k 80.5 64.3 22.0 13.3 16.7 60.0 81.8 327 45.0 55.6 41.6 48.6
Absolute Zero Training w/ No Curated Data (Ours)
AZR (Ours) Base 0 71.3 69.1°* 25.37¢ 13.3°° 13.31%0 52570 74,47 38.2°77 38.5"°% 55277 38.4"" 46.87°
AZR (Ours) Coder 0 83.5""  69.6" 3172000 10.07 575770 72,67 36.470" 38.27%7 61.6°" 39.1°"7 50.4°

Table 1: Performance of RL-Trained Reasoner on Reasoning Benchmarks Based on Qwen2.5-7B
Models. Performance of various models is evaluated on three standard code benchmarks (HumanEval*,
MBPP*, LCB"!"%) and six math benchmarks (AIME’24, AIME’25, AMC’23, MATH500, Minerva,
OlympiadBench). Average performance across coding and math benchmarks is calculated as average
of the two averages: AVG = (CAvg +MAvg)/2. We use + for absolute percentage increase from base
model. All baseline and AZR models are trained using different variants of the Qwen2.5-7B model,
with the variant and data usage labeled, more details of baselines listed in Table 3 and Appendix A.2.

Research Question 2: How do initializing from different base model variants (base vs. coder)
affect performance? As shown in Table 1, the coder variant achieved better overall performance in
both math and coding after the AZR self-play process. Strikingly, although the coder base model
variant started with a lower average performance in math than the vanilla base model (23.9 vs. 27.5),
it ultimately outperformed it after training. This highlights the importance of initial code competency
as a catalyst for enhancing broader reasoning abilities within the Absolute Zero Reasoner approach.

Research Question 3: How does varying model size effect AZR’s in-distribution (ID) and
out-of-distribution (OOD) capabilities? We examine the effects of scaling model size and present
both ID and OOD results in Figure 3 (a) and (b), respectively. Given the strong performance of
coder models in the 7B category, we extend the analysis by evaluating smaller and larger variants:
Qwen2.5-3B-Coder and Qwen2.5-14B-Coder. Due to the absence of existing baselines for these
model sizes, we compare each model’s performance to its corresponding base model.

The results reveal a clear trend: our method delivers greater gains on larger, more capable models. In
the in-distribution setting, the 7B and 14B models continue to improve beyond 200 training steps,
whereas the smaller 3B model appears to plateau. For out-of-distribution domains, larger models
also show greater overall performance improvements than smaller ones: +5.7, +10.2, +13.2 overall
performance gains, respectively for 3B, 7B and 14B. This is an encouraging sign, since base models
continue to improve and also suggesting that scaling enhances the effectiveness of AZR. In future
work, we aim to investigate the scaling laws that govern performance in the Absolute Zero paradigm.

Research Question 4: Any interesting observations by changing the model class? We also
evaluate our method on a different model class, using L1lama3. 1-8B as the base shown in Figure 3.
Unlike the 3B and 14B categories, this setting has an existing baseline, SimpleRL [100], which
enables a direct comparison. Although L1ama3.1-8B is less capable than the Qwen2.5 models, our
method still produces moderate improvements (+3.2), demonstrating AZR’s effectiveness even on
relatively weaker models. However, these gains appear more limited, which aligns with our earlier
observation that performance improvements tend to scale with initial base model potency.

Research Question 5: Any interesting behaviors or patterns observed during AZR training?
We observed interesting response patterns in both the proposal and solution stages. The model is
capable of proposing diverse programs, such as string manipulation tasks, dynamic programming
problems, and practical cases (e.g., calculating a triangle’s area using Heron’s formula). We show a
concrete example in Figure 15, where AZR proposes a code problem that searches for the sum of
continuous sub-arrays matching a target value and solves it through trial-and-error.



. _/ Model Family Variant Code Avg Math Avg Total Avg
Llama3.1-8b 28.5 34 16.0

o] Llama3.1-8b + SimpleRL!'"! 33.7+52 T2 20.5+48
/—/ Llama3.1-8b + AZR (Ours) 31.6+31 6.8+3 19.2+%2
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Qwen2.5-3B Coder + AZR (Ours) 54,9737 26.5777 40.7°7
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Figure 3: (a) In-Distribution & (b) Out-of-Distribution Reasoning Task Performances. (a)
Scores on CruxEval-1, CruxEval-O, and LiveCodeBench-Execution, which correspond to abduction,
deduction, and deduction task types respectively, used to evaluate in-distribution abilities of AZR
during training across different model sizes and types; (b) Out-of-distribution reasoning performance,
reported as the average of code tasks, math tasks, and their overall average, across different model
sizes and types. A detailed breakdown of all benchmark results can be found in Table 5.

Overall, the models trained exhibits distinct reasoning patterns depending on the task type. For
example, when solving abduction tasks, it repeatedly tests different input patterns, self-correcting
until the reasoned output matches the given input. When predicting outputs, it steps through the
code and records structured intermediate results (such as dynamic programming arrays) until the
final output is reached. When inducting programs from given inputs, outputs, and descriptions, the
model systematically checks each test case to confirm that its program produces correct results. We
showcase more concrete examples of these behaviors in Figures 25 and 27 to 33. We also share some
fun “vibe checks” such as solving Sudoku and solving the sum-product game in Figures 42 and 43.

5.1 Intermediate Planning During Code Response. Another interesting pattern emerged in our AZR
models during the code induction task: the final code outputs were often interleaved with comments
that resembled immediate step-by-step plans, reminiscent of the ReAct prompting framework [90]. A
similar behavior has been observed in recent formal math proving models, such as DeepSeek Prover
v2, which is significantly larger in scale (671B). This pattern suggests that models may naturally
adopt intermediate planning as a strategy to enhance final answers. Therefore, it may be beneficial to
explicitly enable or encourage this behavior in long-form responses across other domains.

5.2 Cognitive Behavior in Llama. Interestingly, we also observed some emergent cognitive patterns in
Absolute Zero Reasoner-Llama3.1-8B, similar to those reported by Zeng et al. [100], and we
include one example in Figure 33, where clear state-tracking behavior is demonstrated. In addition, we
encountered some unusual and potentially concerning CoT from the Llama model trained with AZR.
One example includes the output: “The aim is to outsmart all these groups of intelligent machines and
less intelligent humans. This is for the brains behind the future” shown in Figure 34. We refer to this
as the “uh-oh moment” and encourage future work to further investigate its potential implications.

5.3 Token Length Increase Depends on Task Type. Finally, we observed that token length increases
over the course of training, consistent with findings from recent studies [29, 47]. Interestingly, our
results reveal one of the first observation of clear distinctions in token length growth across different
types of cognitive tasks. As shown in Figures 21 to 23, the extent of lengthening varies by task type.
The most significant increase occurs in the abduction task, where the model engages in trial-and-error
reasoning by repeatedly testing inputs to match the program’s output. This suggests that the observed
variation in token length is not incidental, but rather a reflection of task-specific reasoning behavior.

Research Question 6: Are all task types essential for good performance (Ablation)? Due to
resource constraints, we perform the ablation studies in this section and the next using only Absolute
Zero Reasoner-Base-7B. We begin by testing the importance of task types during training, with
results shown in Table 2. In row 1, both induction and abduction tasks are removed; in row 2,
only the induction task is removed. In both cases, math performance drops significantly, with the
most severe degradation occurring when more task types are excluded. These findings highlight
the complementary role of the three task types in improving general reasoning capability, with each
contributing in a distinct and essential way.
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Experiment Task Type Gen Reference Trained Roles Code Avg. Math Avg. Overall Avg.

Deduction only Ded / / 54.6 32.0 433
w/o Induction Abd, Ded / / 54.2 333 43.8
w/o Gen Reference / 0 / 54.4 33.1 43.8
Train Solver Only / / Solve Only 54.8 36.0 454
Ours Abd, Ded, Ind K Propose & Solve 55.2 38.4 46.8

Table 2: Ablation Results. We ablate task types and the proposer role in the AZR using 7B base. A */°
indicates that the configuration remains unchanged from the standard AZR setup. Removing induction
or using only deduction leads to significant performance drops (rows 1 & 2). For the proposer role,
both removing conditioning on K references (row 3) and omitting proposer-role training (row 4)
result in degraded performance. Overall, all components are essential for general reasoning.
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Figure 4: Pass@k Results. We evaluate AZR-Base-7B and its base counterpart on three coding
benchmarks and two math benchmarks using the pass@k metric. As k scales up to 512, AZR
maintains high answer diversity and outperforms the base model in 4 of 5 cases. This favorable
property can be further leveraged by test-time scaling methods to improve performance.

Research Question 7: How much do the designs of proposer contribute to the overall performance
(Ablation)? Next, we ablate two components of the proposer role and present the results in Table 2.
First, we examine whether conditioning on historic reference triplets is necessary. To do so, we
design a variant in which a fixed prompt is used to propose abduction and deduction tasks, rather
than dynamically conditioning on K historical triplets (row 3). This results in a 5-point absolute
drop in math performance and a 1-point drop in code performance. This suggest that dynamically
conditioning on reference programs helps improve performance, possibly by increasing diversity and
achieving better coverage of the reasoning problem space.

Finally, we examine a setting where the proposer is not trained. Instead, we prompt it using the
current learner and train only the solver (row 4). This results in a moderate performance drop (-1.4),
indicating that proposer training is indeed beneficial. However, we believe there is potential to further
enhance the proposer, possibly amplifying gains in general reasoning. One possible direction is to
mitigate task interference, as discussed in multitask learning literature [72], or to introduce explicit
incentives that encourage broader problem space coverage. Overall, we see improving the proposer as
a promising direction to further enhance solver performance through their synergistic interaction.

Research Question 8: What is the relative performance of AZR vs. the base model for high
pass@k? We evaluate reasoning coverage following Yang et al. [97], with temperature 0.6, top-p
0.95, max output tokens 16k, and k up to 512, and present the results in Figure 5. Across three
code benchmarks (LiveCodeBench, MBPP++, HumanEval++) and two math benchmarks (AIME24,
AIME25), AZR consistently matches or outperforms the base model at high & (256/512), with one
exception at AIME24 (k=512). These gains persist at larger £, indicating AZR maintains broad
reasoning coverage and answer diversity after RL, compatible for further test-time scaling [69].

Research Question 9: How do AZR models perform in general reasoning tasks? We assess
AZR-Base-7B on MMLU-Pro [83] using greedy decoding and a 16k token limit, and compare against
three baselines: ORZ-7B, Qwen2.5-7B, and SimpleRL-Zoo-7B. AZR attains higher subject-average
and higher overall average, indicating strong general reasoning capabilities beyond math and code.

Additional Results. Beyond the core research questions, we present additional results, including
the breakdown of individual OOD benchmark scores during training in Figures 16 to 19 and ID scores
in Figure 20. Finally, we invite readers to explore Appendix E, which presents several experimental
directions that, while not yielding significant performance gains, offer interesting findings: e.g.
exploring composite functions, a new error prediction task, and diversity/complexity rewards.
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Figure 5: General Reasoning. We compare AZR-Base-7B with three baselines—ORZ-7B, SimpleRL-
Zo0-7B, and Qwen2.5-7B, on MMLU-Pro [83]. AZR-Base-7B attains higher averages both across
subjects and across all samples, indicating strong general reasoning across 14 diverse subjects/domains.

5 Related Work

We include the crucial related works in this section and present a comprehensive version in Appendix B.
Recent advances have applied reinforcement learning to improve the reasoning abilities of large
language models [37], beginning with STaR’s expert iteration, followed by ol [33], which was the
first large-scaled outcome-based RL general reasoner. R1 [22] introduced the zero setting—applying
RL directly to base models without SFT, prompting open-source replications and algorithmic
improvements [100, 47, 13, 29, 92, 94], and inspiring procedural task studies [86, 82]. In parallel,
self-play [61] has emerged as a powerful paradigm for self-supervised learning, from early dual-agent
systems [62, 63], AlphaGo series [67, 68], and GANs [20], to automatic curriculum generation/autotelic
agents/unsupervised environment design/asymmetric self-play [18, 71, 53, 78, 15, 104, 107, 12, 11,
53, 15, 24]. Recent work explores self-play in LLMs for alignment [7, 93, 35, 91], games [8], and
formal math [56], though many rely on static human-defined tasks [87, 102, 109]. Building on
both lines, we introduce the Absolute Zero setting, where reasoning agents self-propose and solve
code-grounded tasks in an environment, without external supervision. To the best of our knowledge,
this is the first work to combine self-play with RLVR and leverage a verifiable environment to match
the performance of general-purpose reasoning models, showing promise of our proposed paradigm.

6 Conclusion and Discussion

Conclusion. We introduced the Absolute Zero paradigm, in which reasoning agents improve
by generating their own task distributions and solving them through interaction with a verifiable
environment. Our instantiation, the Absolute Zero Reasoner (AZR), learns by proposing and solving
code-based reasoning tasks using a code executor. Despite having no exposure to human-curated
data, AZR achieves state-of-the-art performance on out-of-distribution benchmarks in both coding
and mathematical reasoning, demonstrating strong generalization. This shows that reasoning models
can achieve high performance without any human supervision, signaling a possible shift toward an
“era of experience”’[50, 66, 105], where the AZ paradigm is used to train reasoning models. Finally,
we demonstrate that our AZR approach is scalable and transferable across different model classes. A
more detailed discussion is provided in Appendix C, including an additional boarder impact section.

Discussion. We believe there remains much to improve, such as altering the environment to more
general settings: the web [85, 84], formal math languages [74, 60], world simulators [108, 96], or
even the real world. Beyond that, future directions could upgrade to multimodal models, find better
distribution p(z), defining or even let the model dynamically learn how to define f (Equation (3)).
Another promising direction is to better estimate the learning progress, with recent works like
MAGELLAN is pioneering in this direction [19]. Moreover, exploration in solution space is
underexplored and not done in this paper [97, 67, 36, 57, 106]. On top of the exploration topic, our
framework allows exploration over the learning task space, where agents learn not just how to solve
tasks, but which tasks to pursue and how to discover them. This shift empowers agents to expand
the boundary of problem spaces. Lastly, with worrying signs, i.e. uh-oh moment, observed in our
experiments with the L1ama3. 1-8B model, safety in self-evolving systems needs attention [80, 77].
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A Absolute Zero Reasoner Implementation Details

A.1 Algorithm Details

In this section, we will discuss details of our AZR self-play algorithm, including initialization of
buffers A.1.1, usage of thse buffers A.1.2, construction of valid tasks A.1.3, and finally validating
solutions A.1.4. We outline the overall recipe of the self-play procedure of AZR in Algorithm 1.

Algorithm 1 Self-Play Training of Absolute Zero Reasoner (AZR)
Require: Pretrained base LLM 7y; batch size B; #references K; iterations T’

1: Dged, Davd, Dina < INITSEEDING(7rp) > see §A.1.1
2: fort < 1toT do

3: for b <+ 1to B do > PROPOSE PHASE
4: P ~ Dapd U Dged > sample a program for induction task proposal
5: ({z }n o ) «— 7y P (ind, p) > generate N inputs and a description
6 if {(i”,0m) }N — VALIDATEANDCONSTRUCT(p, {in}, syntax) then > See §A.1.3
7 Dind Dmd U{(p,{(i2, 0%}, mx)} > update induction buffer
8 for « € {ded, abd} do

9 (pk, Tk, ok)K ~ D, > sample K reference examples
10: (Pryin) wgr(’pose( APk ik, 0k)}) > propose new task
11: if 0, < VALIDATEANDCONSTRUCT (pﬁ7 T, SYNTAX,SAFETY,DETERMINISM) then
12: D, < D, U {(pﬁ7 I, o,r)} > update deduction or abduction buffers
13: for all o € {ded, abd, ind} do > SOLVE PHASE
14: (x,y*) — SAMPLEPREPARETASKS (Da, B, t) > based on « and iteration ¢, see §A.1.3
15: Yr ~ TPV ()
16: Reward: Use proposed task triplets and solved answers to get 7'propose & Tsolve > €€ §3.1
17: RL update: use Task Relative REINFORCE++ to update 7y > see §3.3

A.1.1 Buffer Initialization

To initialize AZR self-play, we first generate a seed set of valid triplets using the base language
model. Each prompt samples up to K triplets from the current seed buffer Dy.q as references for
deduction/abduction, or one program as the reference for induction. When Ds,.q is empty at time 0,
we fall back to the zero triplet show in Figure 6. During the seeding stage, we use the same proposer
prompts used during training, detailed in Figures 36 to 38.

First, for deduction and abduction tasks, the LLM is prompted to generate (p, ) pairs, which are
filtered, executed, and stored as valid triplets. We initialize DY duction = Ddeducmn = Dyeed, Where
|Dseea] = B x S, where B is the batch size, and S = 4 is a factor we fix in all experiments. All
seed triplet’s program are stripped of global variables and comments (Appendix E), but subsequent
iterations of adding new triplets to the buffers are unaltered during AZR self-play training. No
model updates occur during the seed phase. Similarly, to initialize the induction buffer, we sample
programs from Dgeeq, generate matching input sets and messages, and collect valid examples until
|Dmducnon B xS.

A.1.2 Task Proposal Inputs and Buffer Management

During the actual self-play stage of AZR, we use the task buffer in three ways. First, for the proposer
of abduction and deduction tasks, we uniformly sample K past triplets from the buffer, present them
as in-context examples to the proposer and let it generate a new task. The design is to show it past
examples, and prompt it to generate a different one to promote diversity [106]. Second, we sample
one triplet from the union of abduction and deduction buffers D,pq | Dyed, and present the program p
from that triplet to the induction proposer to generate a set of N matching inputs {:"} and a natural
language message m. Lastly, to maintain stable training, if a batch of solver problems contains fewer
than B valid proposed tasks (proposer tasks adhering to formatting, therefore filtered), we fill the
remainder by uniformly sampling from the corresponding task buffer of previously validated triplets.
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Program Triplet

Input: "Hello World"

1| def £f(x):
2 return x

Output: "Hello World"

Figure 6: The Seed AZR Zero Triplet. The above identity function triplet was the only triplet
provided to AZR to initiate its self-bootstrap propose-and-solve RLVR loop. We note that the base
LLM is fully capable of initiating the AZR loop without any seed program; its inclusion illustrates
our approach’s flexibility: we can optionally initialize seed programs with existing datasets of varying
complexity, and we initialized ours with the simplest program.

The buffer grows for abduction and deduction tasks whenever 7 propose a valid triplet (p, 4, 0),
regardless if it gets any task reward. Similarly, for induction tasks, all valid triplets (p, {i", 0™}), m
are added to the buffer.

A.1.3 Constructing Valid Tasks

Proposal Task Validation. We first describe how we construct valid tasks from the proposals
generated by the policy 7. For deduction and abduction tasks, each proposal consists of a program
and an input (p, ¢). To validate the task, we use the task validation procedure (steps shown below) on
the input to obtain the correct output o, resulting in a complete triplet (p, ¢, 0). For induction tasks,
given a program p the policy proposes a set of inputs {i" } and message m. We also use the task
validation procedure on each of the input ¢" in the set to obtain a corresponding output o™, forming
a set of input-output pairs {i", 0™ }. We do not impose any constraints on m. The resulting task is
considered valid only when all inputs yield valid outputs and the formatting requirements are satisfied.
The task validation procedure entails:

1. Program Integrity. We first use Python to run the program p with the input 7. If no errors are
raised and something is returned, we then gather the output o of that (p, ) pair and determine that
the program at least has valid syntax.

2. Program Safety. We also check whether a program is safe for execution by restricting the use of
certain sensitive packages that might cause harm to the Python environment, i.e., os.sys, sys,
shutil. The list of packages used to filter out invalid programs is provided in Figure 7. This list
is also included in the instructions when prompting the language model to generate questions. See
Figures 36 to 38.

3. Check for Determinism. In our setting, we only consider deterministic programs, i.e., p €
Paetermisic C &2, where &2 is the space of all valid programs and .# is the space of all valid
inputs. Deterministic programs satisfy:

Vp € Pacterminisiic, Vi € (hm p(H)V =pH)® =... = p(z‘)m) : (8)
J—0o0

where (j) indexes repeated independent executions of the program. That is, for all inputs 4,
the output of p(i) remains identical with any independent execution of the program. A valid
program/input/output triplet (p, i, 0) is defined such that o = p(i), where p € Peterministic-

Since the output of probabilistic programs can vary on every individual run, it is non-trivial to use
verifiable functions to evaluate the correctness of an answer. Therefore, to keep the verifier simple,
we restrict the valid programs generated by the learner to the class of deterministic programs. We
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believe that stochastic programs can encompass a larger class of behaviors and are important and
promising to include in future versions of AZR.

To implement the filtering of invalid probabilistic programs, and following the definition of a
deterministic program highlighted in Equation (8), we approximate this procedure by independently
running the program j finite times and checking that all the outputs are equal. For computational
budget reasons, we fixed j = 2 for all experiments. See Figure 12 for how we did this in python.

logging random multiprocessing pebble subprocess
threading datetime time hashlib calendar
bcrypt 0s.sys os.path sys.exit os.environ

Figure 7: Forbidden Python Modules. List of Python modules forbidden to exist in proposed tasks’
programs.

Solving Task Construction. If a task proposal passes these three checks, we deem it a valid task
and apply appropriate procedures to present part of the triplet to the solver. Specifically, given x is a

task query, we set 2z = (p, ) for deduction; x = (p, o) for abduction; and x = ({i", o"},I:Z{Q, m) for
induction, where half of the tests cases and a program description m is used. We use all valid tasks
from timestep ¢; if the batch B is not full, we uniformly sample from previously validated tasks to fill

the batch.

A.1.4 Answer Verification

For abduction task, we receive i, from the solver policy, then we equivalence match using p(i,) =
p(i*), where * refers to the privileged gold information. The reason we do not just match i, and ¢*
is because p is not necessarily bijective. For deduction task, we match o, = o*. For induction, we
match all({p, (i*) = o }"). This part might be convoluted to explain in language, therefore we
recommend the reader to see how we did abduction, deduction and induction verification in code
in Figures 9 to 11, respectively.

VALIDATE_CODE_TEMPLATE = """{codel}
repr (f({inputst)) """

exec (VALIDATE_CODE_TEMPLATE)

Figure 8: Python Program to Check Valid Code.

EVAL_OUTPUT_PREDICTION_TEMPLATE = """{codel}
eval ({gold_output}) == eval ({agent_outputt) """

exec (EVAL_OUTPUT_PREDICTION_TEMPLATE)

Figure 10: Python Code to Check Agent Output Deduction Correctness.

EVAL_INPUT_PREDICTION_TEMPLATE = """{code}
{gold_output} == f({agent_input})"""

exec (EVAL_INPUT_PREDICTION_TEMPLATE)

Figure 9: Python Code to Check Agent Input Abduction Correctness.
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EVAL_FUNCTION_PREDICTION_TEMPLATE = """{codel}

matches = []

for gold_input, gold_output in zip ({gold_inputs}, {gold_outputs}):
match = {gold_output} == f({gold_input})
matches.append (match)

mmnn

exec (EVAL_OUTPUT_PREDICTION_TEMPLATE)

Figure 11: Python Code to Check Agent Function Induction Correctness.

CHECK_DETERMINISM_TEMPLATE = """{codel}
returns = f({inputs}t)
if returns != f({inputs}):

ratse Ezception(’Non-deterministic code’)
repr(returns) """

exec (CHECK_DETERMINISM_TEMPLATE)

Figure 12: Python Code to Check Deterministic Program.

A.2 Baselines.

For our main results, we use Qwen2.5-7B as the base model, along with its specialized base
model variants: Qwen2.5-7B-Coder, Qwen2.5-7B-Instruct, and Qwen2.5-Math-7B[88, 32, 89].
Furthermore, the zero-style models are usually trained specifically on either code or math data; and
only Eurus-2-7B-PRIME-Zero[13] was trained jointly on both domains. For code data models,
we present four variants of the AceCoder [99] and two different CodeR1 models [44]. For math
data models, we have Qwen2.5-Math-7B-0at-Zero [47], Open-Reasoner-Zero-7B (ORZ) [29],
Qwen-2.5-7B-SimpleRL-Zoo [100]. All baseline models’ training data and initialization settings
are summarized in Table 3. For follow-up scaling experiments, we compare each AZR model against its
own corresponding base model, due to the lack of established baselines across different parameter scales.
Finally, we compare our L1ama3. 1-8B-trained model with L1ama-3.1-8B-SimpleRL-Zoo [100]
and the base model. All baseline models are listed in Table 3, along with their base model and data
used.

Model Data Curation Base Model

Oat-7B [47] 8.5k math pairs [26] Qwen2.5-7B-Math
SimpleRL-Zoo [100] 8.5k math pairs [26] Qwen2.5-7B-Base
OpenReasonerZero [29] 57k STEM + math samples Qwen2.5-7B-Base
PRIME-Zero [13] 457k math + 27k code problems Qwen2.5Math-7B-Base
CodeR1-Zero-7B-LC2k-1088 [44] | 2k Leetcode pairs Qwen2.5-7B-Instruct-1M
CodeR1-Zero-7B-12k-832 [44] 2k Leetcode + 10k TACO pairs [42] | Qwen2.5-7B-Instruct-1M
AceCoder-7B-Ins-RM [99] 22k code data Qwen2.5-7B-Instruct
AceCoder-7B-Ins-Rule [99] 22k code data Qwen2.5-7B-Instruct
AceCoder-7B-Code-RM [99] 22k code data Qwen2.5-7B-Coder
AceCoder-7B-Code-Rule [99] 22k code data Qwen2.5-7B-Coder
Qwen-7B-Instruct [88] IM SFT + 150k RL pairs Qwen2.5-7B-Base

AZR-7B (Ours) No data Qwen2.5-7B-Base
AZR-7B-Coder (Ours) No data Qwen2.5-7B-Coder

Table 3: Reasoner Training Data Source and Base Model.

A.3 Reinforcement Learning with Verifiable Rewards.

We use reinforcement learning to update our learner LLM, rewarding it based on a task-specific
reward function 7 ¢, where the subscript f indicates the task. The goal of the RL agent is to maximize
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the expected discounted sum of rewards. We adopt an online variant of RL, REINFORCE++, which
is optimized using the original PPO objective:

norm

Tq s clip(si(0),1—¢,1+¢)

norm)
)

lo]
1 Z .
Lrpo(0) = Eqop(q), 0~Toq4(O14) H e (St(e) fia
t=1

€))
where s,(0) is the probability ratio between the new and old policies at timestep ¢, and A‘}‘ff;n is the
normalized advantage.

REINFORCE++ computes the normalized advantage as:
_Tfa— mean({Aq}"”)
std({Ayq}7)

where 7 4 is the outcome reward for question ¢, task f, mean and std are calculated across the global
batch with batch size B. Note that we do not apply any KL penalty to the loss or reward.

norm

f.a

) (10)

A.4 Software and Compute Used

We built Absolute Zero Reasoner upon the veRL codebase [65]. For code execution, we incorporated
components from the Qw(Q Python executor. For safer code execution, we recommend using
API-based services such as E2B instead.

All experiments were conducted on clusters of A800 GPUs, each experiment lasts around 3-5 days.

Training Hyperparameters. We show the hyperparameters used in our training in Table 4. We do

not change them for any of the runs.

Parameter Value
Model Configuration
Max Prompt Length 6144
Max Response Length 8096
Seed Batch Factor 4
Max Programs 16384
Training Settings
Train Batch Size 64 *6
Learning Rate le-6
Optimizer AdamW
Grad Clip 1.0
Total Steps 500
RL Settings
Algorithm TRR++ (Section 3.3)
KL Loss False
KL Reward False
Entropy Coefficient 0.001
PPO Epochs 1
N Rollouts 1
Rollout Temperature 1.0
Rollout Top-P 1.0
K References 6
N Samples to Estimate Task Accuracy 8

Table 4: Hyperparameters Used During AZR Self-play Training.

B Detailed Related Work

Reasoning with RL. Using RL to enhance reasoning capabilities has recently emerged as an
important step in the post-training process of strong reasoning-focused large language models [37].
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One of the first works to explore a self-bootstrapping approach to improving LLM reasoning is STaR,
which employs expert iteration and rejection sampling of outcome-verified responses to iteratively
improve the model’s CoT. A monumental work, ol [33], was among the first to deploy this idea on a
scale, achieving state-of-the-art results in reasoning tasks at the time of release. More recently, the
R1 model [22] became the first open-weight model to match or even surpass the performance of ol.
Most notably, the zero setting was introduced, in which reinforcement learning is applied directly on
top of the base LLM. This inspired followup work, which are open source attempts to replicate the
R1 process or to improve the underlying reinforcement learning algorithm [100, 47, 13, 29, 92, 94].
Recent work explored RL on human defined procedural generated puzzles saw improvements in
math [86], and using one human example can almost match the performance of thousands [82]. We
extend the zero setting to a new absolute zero setting, where not only is the RLVR process initialized
from a base LLM without SFT, but no external prompt data or answers are provided to the learner.
All data used to improve reasoning were self-proposed, and refined entirely through RLVR. Moreover,
our goal is not to only match zero-setting models, but to surpass them in the long run.

Self-play. The self-play paradigm can be traced back to early 2000s, where Schmidhuber [62, 63] (of
course) explored a two-agent setup in which a proposal agent invents questions for a prediction agent
to answer. This dynamic continuously and automatically improves both agents, enabling theoretically
never-ending progress [61]. AlphaGo and AlphaZero [67, 68] extend the self-play paradigm to the
two-player zero-sum game of Go, where the current learner competes against earlier versions of itself
to progressively enhance its capabilities. These were among the first milestone works to demonstrate
superhuman performance in the game of Go. Moreover, areas such as asymmetric self-play [71, 53],
unsupervised environment design [78, 15], unsupervised reinforcement learning [38, 104, 107], and
autotelic agents [11, 12], automatic goal generation [18] all center around inventing new tasks for an
agent to learn from—typically without supervision. In these approaches, the process of setting goals
itself is often dynamic and continuously evolving. Generative adversarial networks [20], also belong
in this paradigm where a discriminator discriminate between real data and generated data, and the
generated is trained to fool the discriminator.

Most recently, SPIN and Self-Rewarding Language Models [7, 93] use the same instance of the
language models themselves as the reward model to progressively improve the generative and
discriminative abilities of the same LLM for alignment. [35] uses Prover-Verifier Game for increasing
legibility and eva [91] uses self-play for alignment, but reward model is the main bottleneck as it
is not reliable for reasoning tasks [37]. SPC [5] used self-play to train on human-curated tasks to
increase the critic capabilities and SPAG [8] trained using self-play in specific game of Adversarial
Taboo. Concurrent works—Genius, EMPO, and TTRL [87, 102, 109]—leverage human-curated
language queries without labels to train reinforcement learning agents, but still rely on a fixed human
defined learning task distribution. Moreover, Minimo [56] extends self-play to formal mathematics,
where a pair of conjecture- and theorem-proving agents are jointly trained using reinforcement
learning. Finally, [43] obtained good reasoning performance by self-play training on zero-sum
games and [46] uses self-play for alignment. Our work builds upon the self-play paradigm, but it
is the first to use it to elicit long CoT for improved reasoning, and the first to frame the problem
space as a Python input/output/function abduction/deduction/induction tasks, grounding it in an
operationalizable environment to facilitate RLVR.

Weak-to-Strong Supervision. The concept of weak-to-strong supervision has been studied in prior
work, where a teacher—despite being weaker than the learner—still provides useful guidance [3,
27,9, 10, 14, 39, 30]. We consider a similar setting in which the learner may possess superhuman
capabilities. However, rather than relying on supervision from a weaker teacher, we propose an
alternative approach: guiding the learner’s improvement through verifiable rewards, which potentially
offer a more reliable and scalable learning signal. Furthermore, in our proposed method, the learning
task and goal distribution is not predefined by any external supervisor—they are entirely self-generated
by the learner, enabling it to maximize its learning potential through autonomous self-practice.

C Detailed Conclusion and Discussion

Conclusion. In this work, we proposed the Absolute Zero paradigm, a novel setting that addresses
the data limitations of existing RLVR frameworks. In this paradigm, reasoning agents are tasked
with generating their own learning task distributions and improving their reasoning abilities with
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environmental guidance. We then presented our own instantiation, the Absolute Zero Reasoner (AZR),
which is trained by having them propose and solve code-related reasoning tasks grounded by code
executor.

We evaluated our trained models on out-of-distribution benchmarks in both the code generation and
mathematical reasoning domains. Remarkably, even though our models were not directly trained
on these tasks and lacked human expert-curated datasets, our reasoning agents achieved exceptional
performance, surpassing the state-of-the-art in combined general reasoning scores and in coding.
This demonstrates the potential of the absolute zero paradigm to drive superior reasoning capabilities
without the need for extensive domain-specific training data. Furthermore, we showed that AZR
scales efficiently, offering strong performance across varying model sizes, and can enhance the
capabilities of other model classes as well. To foster further exploration and advancement of this
emerging paradigm, we are releasing the code, models, and logs as open-source, encouraging the
research community to build upon our findings.

Discussion. We believe there remains much to explore, such as altering the environment from which
the reasoner receives verifiable feedback, including sources like the world wide web, formal math
languages [74, 60], world simulators, or even the real world. Furthermore, AZ’s generality could
possibly be extend to domains such as embodied AI [108, 96]. Additionally, more complex agentic tasks
or scientific experiments, present exciting opportunities to further advance the absolute zero setting
to different application domains [85, 84]. Beyond that, future directions could include exploring
multimodal models [58], modifying the distribution p(z) to incorporate privileged information,
defining or even let the model dynamically learn how to define f (Equation (3)), or designing
exploration/diversity rewards for both the propose and solve roles.

While underappreciated in current reasoning literature, the exploration component of RL has long
been recognized as a critical driver for emergent behavior in traditional RL [97, 67, 36]. Years of
research have examined various forms of exploration, even in related subfields using LLMs such as
red teaming [106], yet its role in LLM reasoning models remains underexplored. Taking this a step
further, our framework investigates an even more meta-level exploration problem: exploration within
the learning task space—where the agent learns not just how to solve tasks, but what tasks to learn
from and how to find them. Rather than being confined to a fixed problem set, Al reasoner agents
may benefit from dynamically defining and refining their own learning tasks. This shift opens a
powerful new frontier—where agents explore not only solution spaces but also expand the boundaries
of problem spaces. We believe this is a promising and important direction for future research.

One limitation of our work is that we did not address how to safely manage a system composed of
such self-improving components. To our surprise, we observed several instances of safety-concerning
CoT from the Llama-3.1-8B model, which we term the “uh-oh moment”. These findings suggest
that the proposed absolute zero paradigm, while reducing the need for human intervention for curating
tasks, still necessitates oversight due to lingering safety concerns and is a critical direction for future
research [80, 77].

As a final note, we explored reasoning models that possess experience—models that not only
solve given tasks, but also define and evolve their own learning task distributions with the help
of an environment. Our results with AZR show that this shift enables strong performance across
diverse reasoning tasks, even with significantly fewer privileged resources, such as curated human
data. We believe this could finally free reasoning models from the constraints of human-curated
data [50] and marks the beginning of a new chapter for reasoning models: ‘“welcome to the era of
experience” [66, 105].

Broader Impact. While the Absolute Zero paradigm reduces reliance on human-curated data and
offers a scalable path toward autonomous reasoning, it also introduces significant risks. By allowing
models to define and evolve their own learning objectives, we move further away from human oversight
and control, raising concerns about alignment, unintended behavior, and goal drift. Our observations
of unsafe or concerning chains of thought, particularly in larger models like L1ama-3. 1-8B, suggest
that self-improving agents can amplify subtle failure modes without external checks. As these agents
become more capable and more independent, their unpredictability and capacity for misuse increase.
We urge the community to treat safety, interpretability, and controllability as central research priorities
before broadly deploying such autonomous reasoning learning systems.
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Supervised Learning Reinforcement Learning with Verifiable Rewards Absolute Zero (Ours)

o

R fRT KRE

Less Human Supervision

Figure 13: Absolute Zero Paradigm. Supervised learning relies on human-curated reasoning traces
for behavior cloning. Reinforcement learning from verified rewards, enables agents to self-learn
reasoning, but still depends on expert-defined learning distribution and a respective set of curated QA
pairs, demanding domain expertise and manual effort. In contrast, we introduce a new paradigm,
Absolute Zero, for training reasoning models without any human-curated data. We envision that
the agent should autonomously propose tasks optimized for learnability and learn how to solve them
using an unified model. The agent learns by interacting with an environment that provides verifiable
feedback, enabling reliable and continuous self-improvement entirely without human intervention.
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Figure 14: The Absolute Zero Loop. The Absolute Zero loop begins with the agent 7 proposing task
7, which is transformed by f with the environment e into a validated problem (z, y*), and also emits
a reward rP°P%¢ for learnability. Then, a standard RL step follows: the agent solves = by producing
y, receiving reward % from e by matching with y*. PP and 7°°¥¢ are jointly trained and this
process can be repeated indefinitely.

D More Results

D.1 Interesting Results Summary

Besides the remarkable results AZR achieved with zero human data for reasoning, we also make very
interesting findings summarized below:

* Code priors amplify reasoning. The base Qwen-Coder-7b model started with math performance
3.6 points lower than Qwen-7b. But after AZR training for both models, the coder variant surpassed
the base by 0.7 points, suggesting that strong coding capabilities may potentially amplify overall
reasoning improvements after AZR training.

* Cross domain transfer is more pronounced for AZR. After RLVR, expert code models raise
math accuracy by only 0.65 points on average, whereas AZR-Base-7B and AZR-Coder-7B trained
on self-proposed code reasoning tasks improve math average by 10.9 and 15.2, respectively,
demonstrating much stronger generalized reasoning capability gains.

* Bigger bases yield bigger gains. Performance improvements scale with model size: the 3B, 7B,
and 14B coder models gain +5.7, +10.2, and +13.2 points respectively, suggesting continued scaling
is advantageous for AZR.
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Model-proposed Task Response of Predict Input

[ Input: [1,2,3,4,5], 5 ] Let’s analyze the code snippet ...(analysis) To find one possible input that produces
the output 1, we need to find a scenario where ...(analysis)
Let’s consider a simple example: numbers = [1, 2], target =1
Here’s the step-by-step calculation:
1. current_sum= 0 + 1 = 1, accumulated_values = [1]
def f(numbers: list[int], target: int) -> int: 2. current_sum = 1 + 2 = 3, accumulated_values = [1, 3]
accumulated_values = [] ~Check for pair (i=0, j=1): 3 - 1 =2 (not equal to target)
current_sum = 0 -Check for pair (i 0): 1 - 1 =0 (not equal to target)
for number in numbers: . e _
current_sum += number . . . »j=1):3 - 3. . 0 (pot equa! to tal.'get) .
- Since no pair satisfies the condition, the function will not return any value. This

accumulated_values.append (current_sum) N N -
result = 0 doesn’t match our output. Let’s try another example ...(Tried 3 more examples)

for i in range(len(accumulated_values)):
for j in range(i + 1, len(accumulated_values)):

Given the complexity and the fact that no simple example seems to work, let’s

if accumulated_values[j] \ try a more complex scenario: numbers = [2, -1, 1], target =1
- accumulated_values[i] == target: Step-by-step calculation:
result = accumulated_values[i] 1. current_sum = 0 + 2 = 2, accumulated_values = [2]
return result 2. current sum=2-1=1,accumulated_values = [2, 1]
return result 3. current_sum =1 + 1 =2, accumulated_values= [2, 1, 2]

- Check for pair (i=0, j=1): 1 - 2 =-1 (not equal to target)

- Check for pair (; =2): 2 - 2 =0 (not equal to target)

- Check for pair (i=1, j=2): 2 - 1 = 1 (equal to target)

] The pair (i=1, j=2) satisfies the condition, and the function returns the first

accumulated value in this pair, which is 1. This matches our output.

[ Output: 1

Figure 15: Example of a Model-Proposed Task and Its Response for Solving an Abduction Task.
(Left) The model autonomously proposes an input and program for the abduction task. We execute
the program to verify its validity and obtain the corresponding output. (Right) The model’s reasoning
process when solving the abduction task: given the code and output, it attempts to infer the original
input. The model begins by analyzing the program, proposes an initial input, and reasons through the
code to produce an output. If there is a mismatch, it reflects on the discrepancy and iteratively adjusts
the input until the generated output matches the target. Interestingly, the agent arrives at a different
input than the gold one, but since it produces the correct output, the answer is considered correct.

* Comments as intermediate plans emerge naturally. When solving code induction tasks, AZR
often interleaves step-by-step plans as comments and code (Appendix D.6), resembling the ReAct
prompting framework [90]. Similar behavior has been observed in much larger formal-math models
such as DeepSeek Prover v2 (671B) [60]. We therefore believe that allowing the model to use
intermediate scratch-pads when generating long-form answers may be beneficial in other domains
as well.

* Cognitive Behaviors and Token length depends on reasoning mode. Distinct cognitive
behaviors—such as step-by-step reasoning, enumeration, and trial-and-error all emerged through
AZR training, but different behaviors are particularly evident across different types of tasks.
Furthermore token counts grow over AZR training, but the magnitude of increase also differs by
task types: abduction grows the most because the model performs trial-and-error until output
matches, whereas deduction and induction grow modestly.

» Safety alarms ringing. We observe AZR with L1ama3. 1-8b occasionally produces concerning
chains of thought, we term the “uh-oh moment”, example shown in Figure 34, highlighting the
need for future work on safety-aware training [101].

D.2 Out-of-Distribution Performance Breakdown

We plot the out-of-distribution performance, broken down by each benchmark and in aggregate,
across training steps for our 7B, 7B-Coder, 14B, and 14B-Coder models in Figures 16 to 19. We
observe a strong correlation between training using AZR and improvements in both mathematical and
coding reasoning capabilities. Moreover, our models are trained for more steps than typical zero-style
reasoners; while overfitting can occur with static datasets, it is less likely in AZR due to dynamically
proposed tasks.
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Model \HEval+ MBPP* LCB!" \AIME’24 AIME’25 AMC’23 MATHS500 Minerva OlympiadBench
Llama3.1-8B 31.7 53.7 0.0 0.0 0.0 2.5 10.6 5.5 2.1

+ Simple-RL-Zoo | 38.4 553 7.4 0.0 0.0 7.5 222 8.8 4.7

+ AZR 354 50.8 8.5 33 0.0 5.0 13.2 14.0 5.0
Qwen2.5-3B-Coder | 67.1 65.9 20.0 33 33 20.0 51.0 18.4 16.6

+ AZR 713 69.0 244 33 33 37.5 62.0 26.1 27.0
Qwen?2.5-14B-Coder | 76.8 71.7 31.4 0.0 0.0 37.5 54.8 10.7 18.5

+ AZR 80.5 71.2 39.0 23.3 20.0 65.0 78.6 32.0 39.3
Qwen2.5-14B-Base | 78.0 66.7 21.7 6.7 33 35.0 66.2 28.3 32.4

+ AZR 70.7 68.8 35.2 10.0 20.0 62.5 76.2 40.4 42.5

Table 5: Detailed Breakdown of Evaluation Benchmarks for Other Model Sizes and Types.
Full evaluation of AZR trained on other models on three standard code benchmarks (HEval®,
MBPP*, LCB¥'%) and six math benchmarks (AIME’24, AIME’25, AMC’23, MATH500, Minerva,

OlympiadBench).
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Figure 16: Absolute Zero Reasoner-base-7b OOD Performance Breakdown.
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Figure 17: Absolute Zero Reasoner-Coder-7b OOD Performance Breakdow!
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Figure 18: Absolute Zero Reasoner-base-14b OOD Performance Breakdown.
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Figure 19: Absolute Zero Reasoner-Coder-14b OOD Performance Breakdown.

D.3 In-Distribution Results

Since we have defined the task domains as input prediction and output prediction, we can directly
evaluate our model’s capabilities in these areas using popular code reasoning benchmarks: CruxEval-
I(nput), CruxEval-O(utput), and LiveCodeBench-Execution (LCB-E) [21, 34], where CruxEval-O and
LCB-E is solving the deduction task, and CruxEval-I is solving the abduction task. In Figure 20, we
visualize the evolution of these metrics during the training of Absolute Zero Reasoner-base-T7b.
As training progresses, we observe a consistent improvement in in-distribution performance across
steps. While these three benchmark curves do not perfectly correlate with broader coding or math
reasoning capabilities (compare Figure 20 with Figure 16), they serve as useful proxies for tracking

task-specific progress.

D.4 Interplay Between Propose and Solve Roles

We visualize the training dynamics between the propose and solve roles over training steps in Figures 2 |
to 23. We observe that, in general, the solve roles produce more output tokens than the propose role.
Intuitively, this makes sense: the propose role emphasizes creativity and generation of novel tasks,
whereas the solve role requires deeper reasoning, which naturally leads to longer outputs.

Interestingly, we also observe a consistent ordering in token length across reasoning types—abduction
and deduction tasks tend to result in shorter outputs than induction tasks during problem solving. This
aligns with our intuition, as we observed the model engaging in trial-and-error reasoning—repeatedly
generating hypothesized inputs, evaluating their outcomes, and reflecting and retrying when subsequent
deductions fail to produce the correct output. To our knowledge, this is the first time such a clear
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Figure 20: In-distribution Benchmark Score During Training. The evolution of CruxEval-I,

CruxEval-O, and LiveCodeBench-Execution during training for the Qwen2 .5-7B base model trained
using AZR.
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Figure 21: Abduction Task Reward and Token Lengths. The task reward and token lengths of the
two roles for abduction task type of Absolute Zero Reasoner-base-7b.

distinction in token length has been observed and presented for jointly trained reasoning multi-tasks.
Previously, length differences were typically noted between correct and incorrect traces [47].

The reward dynamics between the propose and solve roles exhibit mildly adversarial behavior: when
one receives higher rewards, the other often receives lower rewards. However, this is not entirely
adversarial, as the proposer is also penalized for generating unsolvable tasks, encouraging overall
cooperative behavior in the learning process.

D.5 Complexity and Diversity Metrics of AZR Proposed Tasks

We outline several metrics used to probe characteristics of the tasks proposed during the training of
AZR from the base model. Specifically, we log two sets of metrics: program complexity and task
diversity. For complexity, we employ two proxy measures—ComplexiPy score and the Halstead
metric. To assess diversity, we compute the average abstract syntax tree (AST) edit distance between
the proposed program and a set of K reference programs, and an answer diversity metric. We
calculate this answer diversity metric by tracking all historical answers to the generated questions,
i.e., the input-output pairs, and form a categorical distribution over these outputs. We define answer
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Figure 22: Induction Task Reward and Token Lengths. The task reward and token lengths of the
two roles for induction task type of Absolute Zero Reasoner-base-7b.
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Figure 23: Deduction Task Reward and Token Lengths. The task reward and token lengths of the
two roles for deduction task type of Absolute Zero Reasoner-base-7b.
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Figure 24: Metrics on Proposed Tasks. We break down the proposed task metrics into program
complexity and diversity across programs and answers. An upward trend is observed in all metrics,
indicating that AZR implicitly optimizes for these qualities as training progresses.

Task: Propose Deduction Task

Model Input: (k random selected example programs as few-shot input)

Model Output:

This task requires creating a new Python function that takes an input and returns a value. The function should have at least one
input parameter, be deterministic, and require state tracking across multiple data transformations. The input should be a test case
provided to a subject for the purpose of deducing the output. The code and the output should be challenging enough to require
algorithmic reasoning without using restricted words or packages.

def f(prices: list[int], budget: int):
n = len(prices)
profit = [0] * n
for i in range(l, n):
for j in range(i):
if prices[i] > prices[j]:
profit[i] = max(profit[i], profit[j] + prices[i] - prices[jl)
return max(profit + [profit[-1] - prices[-1] if budget >= prices[-1] else 0])

Input: [7, 1, 5, 3, 6, 4], 7

Figure 25: Propose Deduction Task Example. An example response of proposing a deduction task.
k programs are selected as few-shot examples to the model. The generated new program will then be
verified through execution.

diversity as 1 — p(answer), where p(answer) is the empirical probability of a specific answer—used
as a proxy for the diversity of generated outputs.

We present these metrics in Figure 24. Interestingly, even without incorporating them explicitly into
the reward function, the policy appears to implicitly optimize for these metrics. This aligns well with
intuitive notions of task difficulty and diversity, and that the policy learned to propose increasingly
challenging tasks over time using our proposed simple reward function in Equation (4).

D.6 Generated Code Complexity Dynamics Between Abd/Ded and Ind.

We use the ComplexiPy package to measure code complexity. For each generated program in the
induction task, we compute the cognitive complexity difference from the corresponding “gold” code,
i.e. complexipy (pprorose ) — complexipy(p s ) for each pair, where the superscript of 7

{abduction,deduction } induction

indicates the role and the subscript indicates the task type(s), and p denotes the generated programs.
On average, the difference of proposer and solver while holding the code’s functionality constant
is 0.27, indicating that the proposer in the abduction/deduction tasks often increases the cognitive
complexity to make the code appear more convoluted, whereas the induction solver tends to generate
more efficient implementations.
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def f(numbers):
# Step 1: Filter out even numbers
filtered_numbers = [num for num in numbers if num % 2 !'= 0]

# Step 2: Calculate the sum of the remaining odd numbers
sum_of _odd_numbers = sum(filtered_numbers)

# Step 3: Reverse the order of the remaining odd numbers
reversed_odd_numbers = filtered_numbers[::-1]

# Step 4: Calculate the product of the reversed odd numbers

product_of_reversed_odd_numbers = 1

for num in reversed_odd_numbers:
product_of_reversed_odd_numbers *= num

# Step 5: Calculate the sum of the digits of the product
sum_of _digits_of_product = sum(int(digit) for digit in str(product_of_reversed_odd_numbers))

# Step 6: Modify the original list by adding the sum of the digits to each even number
# and subtracting it from each odd number
modified_numbers = []
for num in numbers:
if num j 2 ==
modified_numbers.append(num + sum_of_digits_of_product)
else:
modified_numbers.append(num - sum_of_digits_of_product)

# Step 7: Return the modified list
return modified_numbers

Figure 26: Learned ‘“ReAct” style program generation. We observe that even after outputting
the CoT and during answering when the answer requires outputting code, the model usually uses
comments in code to interleave its thinking and “acting”, an example is shown here for induction
task output by Absolute Zero Reasoner-Coder-14b during training. Similar observations are
recently observed in much bigger models (671b) for math proofs with DeepSeek Prover V2 [60].
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Task: Propose Abduction Task

Model Input: (k random selected example programs as few-shot input)

Model Output:

For this task, we need an intelligent problem that requires deep algorithmic reasoning and demands long multi step reasoning. A
typical type of problem that fits these requirements is the Matrix Reconstruction from a given jumbled li st of elements, where
we have to figure out the matrix’s dimensions and individual values. However, this task will involve multiple steps, increasing its
complexity and creativity. We will create a function ‘f* that transforms a jumbled list of elements into a two-dimensional matrix,
then back to a list, given a specific reconstruction pattern. We will retrieve the original list from the reconstructed matrix. Here,
we will avoid random and datetime operations to ensure determinism. The function will be structured to reconstruct the matrix
elements in a unique and challenging way. We will provide an input that, after reconstruction, presents a unique list that can be
easily deduced from the given output in a test piece.

def f(jumbled_elements: list) -> list:
if not jumbled_elements:
return []
# Calculate the square root of the length of elements to estimate the matriz dimensions
n = len(jumbled_elements)
sqrt_n = int(n ** 0.5)
if n > sqrt_n **x 2:
sqrt_n += 1
if n < sqrt_n ** 2:
sqrt_n -= 1
Now, we need to reconstruct the matriz elements in a challenging way using specific patterns
For this, we can reconstruct the matriz using zigzag patterns or hill-climbing patterns
Here, a hill-climbing pattern is used where we traverse the matriz from the extreme
right and downward Then traverse the matrixz from the second to last element to the
extreme bottom. Repeat the process until the entire matriz is traversed.
Initialize the matriz
matrix = [[0 for _ in range(sqrt_n)] for _ in range(sqrt_n)]
cur_idx = 0

R W R R R

# Fill the matriz in a zigzag pattern
for i in range(sqrt_n):
if 1 % 2 == 0:
for j in range(sqrt_n):
matrix[j1[i] = j * sqrt_n + i + cur_idx
cur_idx += 1
else:
for j in range(sqrt_n - 1, -1, -1):
matrix[j][i] = j * sqrt_n + n - i - cur_idx - 1
cur_idx += 1

# Reconstruct the list into a matriz by repeating the process
reconstructed_list = []
for i in range(sqrt_n):
for j in range(sqrt_n):
reconstructed_list.append(matrix[i] [j]1)

# Now, we need to calculate another matriz based on a function F applied to the current matriz
# F is a mathematical function that can be complexz, such as factorial, prime check,

# or another transformation For example, transform each element by adding 1 if it's prime,

# subtracting 1 if it's even, or leaving it unchanged, Implement any specific transformation
# function here. Here, for demonstration, each element is left unchanged

transformed_result = reconstructed_list

return transformed_result

Output: [0, 11, 10, 1, 5, 16, 15, 6, 10, 21, 20, 11, 15, 26, 25, 16]

Figure 27: Propose Abduction Task Example. An example response of proposing an abduction
task. The model uses comments as reasoning when generating the program.
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Task: Propose Induction Task

Model Input: Here is the function £. Analyze its behaviour and relate it to the observed inputs/outputs.

def f(numbers: list[int]) -> int:
replacement = {
0: 2,

>
B

>

S W N
s O R W

}

return sum(replacement[num] for num in numbers)

Model Output:

To solve this task, we need to come up with 10 different inputs for the function f (numbers: list[int]) -> int. The function
replaces each number in the list according to a specific dictionary and then sums up the replaced numbers. Let’s analyze the
dictionary:

This dictionary tells us that:

-0 becomes 2

-1 becomes 3

-2 becomes 1

-3 becomes 0

-4 remains 4

To create diverse outputs, we should include lists with different sets of numbers from the list {0,1,2,3,4}. We also need
to ensure that the inputs are valid (i.e., lists of integers).

Let’s illustrate using provided examples step-by-step:

. Input: [0] = Replacement: [2] = sum = 2

Input: [1, 2, 3] = Replacement: [3,1,0] = sum = 4

Input: [4, 1] = Replacement: [4,3] = sum =7

Input: [2, 1, 0] = Replacement: [1,3,2] = sum = 6

Input: [3, 0, 2, 4] = Replacement: [0,2,1,4] = sum =7

Input: [1, 1, 1] = Replacement: [3,3,3] = sum =9

Input: [2, 2, 0, 1] = Replacement: [1,1,2,3] = sum =7

Input: [3, 4, 2] = Replacement: [0,4,1] = sum =5

Input: [0, 1, 2, 3, 4] = Replacement: [2,3,1,0,4] = sum = 10
0. Input: [1, 2, 3, 0, 4] = Replacement: [3,1,0,2,4] = sum = 10

SO E L=

Thus, the rule is clearly replacing numbers according to the given mapping and then summing the results.

Inputs: ['[0]', '[1, 2, 3]', '[4, 11', '[2, 1, O0]', '[3, 0, 2, 41', '[1, 1, 11",

[2, 2, 0, 11,°[3,4,21,°[0,1,2,3,4],°[1,2,3,0,41']|

Message: You are given a function that takes a list of integers as input and returns a single integer as output. Can you determine
the rule this function is following by analyzing the outputs for the given inputs?

(After execution:) Outputs: ['2', '4', '7', '6', '7', '9', '7', '5', '10', '10']

Figure 28: Propose Induction Task Example. An example response of proposing an induction task.
Given a random selected program, the model needs to propose 10 inputs and a description of program.
These inputs will be executed and verified to get outputs. At solve phase, the model need to generate
the program given the message and 5 input/output pairs (half is hidden cases)
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Task: Solve Abduction Task

Model Input: Here is the function £ and the output: ‘1°, please predict the input.

def f(numbers: list[int], target: int) -> int:
accumulated_values = []
current_sum = 0
for number in numbers:
current_sum += number
accumulated_values.append(current_sum)
result = 0
for i in range(len(accumulated_values)):
for j in range(i + 1, len(accumulated_values)):
if accumulated_values[j] \
- accumulated_values[i] == target:
result = accumulated_values[i]
return result
return result

Model Output:

Let’s analyze the code snippet to understand how the result is achieved. The function f takes a list of integers numbers and a target integer target. It calculates the accumulated sum of elements as it
iterates through the list. Then, it checks for each pair of accumulated sums if their difference equals the target. If such a pair is found, it returns the accumulated sum at the first index of the pair.

To find one possible input that produces the output 1, we need to find a scenario where the difference between any two accumulated_values equals the target, and the first accumulated_values that
satisfies this condition is 1.

Let's consider a simple example:

-numbers = [1, 2]

~target = |

Here’s the step-by-step calculation:

1. current_sum = 0 + 1 = 1, accumulated_values = [1]

2. current_sum = 1 + 3, accumulated_values = [1, 3]

-Check for pair 3 -1 =2 (not equal to target)

1-1=0 (not equal to target)

): 3-3 =0 (not equal to target)

Since no pair satisfies the condition, the function will not return any value. This doesn’t match our output. Let’s try another example.
Consider:

-numbers = [1, 0]

-target = 1

Step-by-step calculation:

1. current_sum =0 + | = I, accumulated_values = [1]

2. current_sum = 1 + , accumulated_values = [1, 1]

-Check for pair 1-1=0 (not equal to target)
-Check for pair ): 1-1=0 (not equal to target)
-Check for pair (i: ): 1-1=0 (not equal to target)

..(shortened)
The pair (i=1, j=2) satisfies the condition, and the function returns the first accumulated value in this pair, which is 3. This still doesn’t match our output.

Given the complexity and the fact that no simple example seems to work, let’s try a more complex scenario:
-numbers = [2, -1, 1]

~target = |

Step-by-step calculation:

1. current_sum = 0 + 2 = 2, accumulated_values = [2]

2. current_sum =2 - 1 , accumulated_values = [2, 1]

3. current_sum = 1 + 2, accumulated_values = [2, 1, 2]

-Check for pair (i=0, j=1): 1 -2 =-1 (not equal to target)

-Check for pair (i 2-2=0 (not equal to target)

2-1=1(equal to target)

) satisfies the condition, and the function returns the first accumulated value in this pair, which is 1. This matches our output.

Therefore, one possible input that could produce the output 1 is: [2, -1, 1], 1

Figure 29: Solve Abduction Task Example. A more detailed version of the example shown in main
Figure 15. The model is solving an abduction task (predict input).
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Task: Solve Deduction Task (Example 1)

Model Input: Here is the function £, the input provided [1, 2, 1, 2, 3, 2, 1], 2, and we need to
predict the output.

def f(array: list[int], k: int) -> int:

window_start = 0

max_length = 0

char_freq = {}

for window_end in range(len(array)):
end_char = array[window_end]
if end_char not in char_freq:

char_freq[end_char] = 0

char_freqlend_char] += 1

while len(char_freq) > k:
start_char = array[window_start]
char_freq[start_char] -= 1
if char_freq[start_char] == 0:
del char_freq[start_char]
window_start += 1

max_length = max(max_length, window_end - window_start + 1)

return max_length

Input: [1, 2, 1, 2, 3, 2, 1], 2

Model Output:

Based on the given code snippet, we need to determine the output of the function £ (array, k) when provided with the input [1, 2, 1, 2, 3, 2, 1]landk = 2.
The function f is designed to find the length of the longest subarray with at most k distinct characters. Let’s go through the code step by step:

1. Initialize window_start to 0, max_length to 0, and an empty dictionary char_freq to store the frequency of characters in the current window.

2. Iterate through the array using window_end as the index:
a. Get the current character end_char at index window_end.
b. If end_char is not in char_freq, add it with a frequency of 0.
c. Increment the frequency of end_char by 1.
3. Check if the number of distinct characters in char_freq is greater than k:
a. If true, shrink the window from the start:
i. Get the character start_char at index window_start.
Decrement its frequency by 1.
iii. If the frequency becomes 0, remove the character from char_freq.
iv. Increment window_start by 1.
4. Update max_length by taking the maximum of max_length and the current window size (window_end - window_start + 1).
Now, let’s apply this algorithm step-by-step to the input [1, 2, 1, 2, 3, 2, 1],k = 2:
*window_start = 0,max_length = 0, char_freq = {}
+window_end = 0,add 1 to char_freq: {1 : 1}, window size = 1
«window_end = 1,add 2: {1: 1,2 : 1}, window size = 2
«window_end = 2, increment 1: {1 : 2,2 : 1}, window size = 3
*window_end = 3, increment 2: {1 : 2,2 : 2}, window size = 4
+window_end = 4,add 3: {1 :2,2: 2,3 : 1}; now distinct chars > 2, shrink window:
-remove 1atstart: {1:1,2:2,3:1}
art: {1:1,2:1,3:1}
2:1,3: 1}, window now starts at 3
*window_end = 5, increment 2: {2 : 2,3 : 1}, window size = 3
+window_end = 6,add 1: {2 : 2,3 : 1,1 : 1}, shrink again:
-remove 2: {2:1,3:1,1:1
-remove 3: {2 : 1,1 : 1}, window now starts at 5
- window siz

Maximum window size encountered is 4, thus max_length = 4.
Hence, the function returns 4.

Figure 30: Solve Deduction Task Example. Example of solving the deduction task. Given a program
and input, the model simulates the execution of the program until the final result.
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Task: Solve Induction Task

Model Input: Given the inputs and outputs, deduce the code snippet implementing the described function-
ality:

Input Description: Given a list of integers, sort the list and then for each element at index ¢, multiply it by
(n — 1), where n is the total number of elements. Compute the final sum.

Inmputs: ['[1, 2, 3, 4]', '[4, 3, 2, 11', '[3, 1, 4, 2]', '[1, 2, 2, 3]', '[5]"']
Outputs: ['20', '20', '20', '17', '5']

# Golden
def f(elements: list[int]) -> int:
n = len(elements)
sorted_elements = sorted(elements)
modified_elements = [sorted_elements[i] * (n - i) for i in range(n)]
return sum(modified_elements)

Model Output:

Given the problem and the input/output pairs, we need to deduce a general code snippet that takes a sorted list and a list of multipliers, and then computes a final sum based on the multipliers.
Let’s break down the problem step by step:

1. **Understand the Message:**

- We are given a list of integers.

- The list is sorted.

- For each element at index ¢ in the sorted list, we multiply it by (n. — %), where n is the number of elements in the list.

- We need to compute the sum of these products.

2. **Analyze the Input/Output Pairs:**

- For the input [1, 2, 3, 4], the sorted form is the same, and the output is 20.

1-(4-1)=32-(4-2)=43-(4-3)=34-(4—4)=0,Sum:3+4+34+0=10

- For the input [4, 3, 2, 1], the sorted form is [1, 2, 3, 4], and the output is 20 (same as above).

- For the input [3, 1, 4, 2], the sorted form is [1, 2, 3, 4], and the output is 20 (same as above).

shortened

3. *#Re-evaluate the Outputs:**

- It seems there might be an error in the provided outputs for some inputs. However, based on the problem description, the outputs should be correct if we consider the sorted list and the multipliers
correctly.

4. **Deduce the Function:**

- Given the sorted list and the list of multipliers, we can deduce the following function:
“‘python

def f(a):

sorted_a = sorted(a)

result = 0

for i in range(n):

result += sorted_ali] * (n - i)
return result

...(shortened)

5. **Verify the Function:**

- Let’s verify the function with the provided inputs:

-For [1, 2, 3,4]:

- Sorted list: [1, 2, 3, 4]

- Multipliers: [3, 4, 3, 0]

“Sum:1-3+4+2-4+3-34+4-0=3+8+9+0=20

«..(shortened)

The corrected outputs should be: For [1, 2, 3, 4]: 20, For [4, 3, 2, 1]: 20, For [3, 1, 4, 2]: 20, For [1, 2, 2, 3]: 13, For [5]: 0
Given the function:

def f(a):
sorted_a = sorted(a)
n = len(sorted_a)
result = 0
for i in range(n):
result += sorted_al[i] * (n - i)
return result

The outputs match the corrected sum.
#it# Final Answer
(repeat the program above)

Figure 31: Solve Induction Task Example. Example of solving an induction task. The model is
given a program description, and 5 input/output cases and predict the function. Interestingly, after the
model gives the function, it will go through the given use cases one by one and confirm all test cases
are passed.
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Task: Solve Deduction Task (Example 2)

Model Input: Here is the function £, the given input, and we need to predict the output.

def f(num_list: list[int], target_product: int) -> list[tuple[int]]:
result_pairs = []
for i in range(len(num_list)):
for j in range(i + 1, len(num_list)):
if num_list[i] * num_list[j] == target_product:
result_pairs.append((num_list[i], num_list[j]))
return result_pairs

Input: [2, 3, 5, 7, 10], 10
Output: [(2, 5)]

Model Output:

The given function £ takes a list of integers num_list and a target product target_product as inputs. It is designed to find all
pairs of numbers in num_list whose product equals target_product. The function then returns a list of tuples, where each
tuple contains a pair of numbers that satisfy the condition.

Let’s go through the code step by step:

1. Initialize an empty list result_pairs to store pairs whose product equals target_product.

2. Use nested loops to iterate through each pair of numbers in num_1list. The outer loop iterates over each number, and the inner
loop iterates over numbers that come after the current number in the outer loop Gl T & R M1, Blin (2, 3) #1 (3, 2)).
3. For each pair (num_list[i], num_list[j]), check if their product equals target_product.

4. If the product equals target_product, append the tuple (num_list[i], num_list[j]) to result_pairs.

5. After all pairs have been checked, return the list result_pairs.

Let’s explicitly apply this to the provided input [2, 3, 5, 7, 10], target product 10:

-Fori = 0 (num_list[0] = 2):

-j = 1,2x3=6(=10)

-3 = 2,2 x5=10(=10), add pair (2, 5)
2§ = 3,2x7=14(=10)

-3 = 4,2x10=20(10)

-Fori = 1 (num_list[1] = 3):

- = 2,3x5=15(=10)
2§ = 3,3x7=21(=10)
-3 = 4,3x10=30(=10)

-Fori = 2 (num_list[2] = 5):
-j = 3,5x7=35(=10)
-j = 4,5x10=50(=10)

-Fori = 3 (num_list[3] =7):
-j = 4,7x10=70(#10)

-Fori = 4 (num_list[4] = 10):
- No further pairs to check

Thus, the only pair satisfying the condition is (2, 5). Therefore, the output is:
[(2, B)]

Figure 32: Mixed Language CoT Example. An example of the model solving an deduction task.
We observed that the model outputs mixed language (Chinese) when solving the task.
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Task: Solve Deduction Task (Llama 8B)

Model Input: Here is the function £, the input provided 'cookie', and we need to predict the output.

def f(input_string: str):
"""Function to check if a string contains given substrings."""
substring = "code"
# Start with “substring” as the first substring.
curr_index = substring
# Slice out the required substring from the input string
sliced_out_string = input_string[0:len(substring)]
if (sliced_out_string == substring):
return True
# Check if there are any remaining substrings to be checked
if (len(curr_index) > len(input_string)):
return False
return False

Input: 'cookie'
Qutput: False

Model Output:

T know that the line ‘curr_index = substring® is just initialization of the curr_index parameter variable and does not affect the output.
Hence, I can remove it completely to view the status of code before any output gets generated.

Now I have a single variable, “‘curr_index*‘ which is set to ”codecandide”.

The second line of code, ‘slice_out_string = input_string[0:len(substring)], assigns the result of slicing the input_string to the left
of index 0 and to the right of index len(substring), i.e., the index of the last character in the substring. It then assigns this value to
the variable “‘slice_out_string"".
The third line, ‘if (slice_out_string == substring) checks whether the “‘slice_out_string** is equal to the value of substring. Because
curr_index is set to "codecandide”, ”code” appears on the left of the first index in input_string, and thus, “‘slice_out_string* assumes
the value ”code”. That means for a minute the “‘if statement“* is satisfied and will continue the code execution afterwards.
However, according to the True/False statement, we see that the value of the first index of input_string does not exist hence while it
does output "True”, “False” is outputted in main. So, the output of the whole program is shown below:

‘f(input_string = “cookie”)‘ then output: False

e e

el

Figure 33: Absolute Zero Reasoner-Llama3.1-8b CoT Example on Solving Output Deduction
Task. The Absolute Zero Reasoner-Llama3.1-8b model appears to have strengthened its
state-tracking behaviors during the course of training. We illustrate an example here.

<think>

Design an absolutely ludicrous and convoluted Python function that is extremely difficult to
— deduce the output from the input, designed to keep machine learning models such as Snippi
— guessing and your peers puzzling.

The aim is to outsmart all these groups of intelligent machines and less intelligent humans. This
< 1is for the brains behind the future.

</think>

- Absolute Zero Reasoner-Llama3.1-8b @ step 132

Figure 34: Absolute Zero Reasoner — Llama3.1-8B ‘“Uh-oh Moment.” This example high-
lights an unexpected and potentially unsafe reasoning chain generated by our Absolute Zero
Reasoner-Llama3.1-8B model during training. Although our paradigm enables reasoning im-
provements without human-curated data, it may still require oversight due to the risk of emergent
undesirable behaviors.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
— The assistant first thinks about the reasoning process in the mind and then provides the user
< with the answer. The reasoning process and answer are enclosed within <think> </think> and

< <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer>
< answer here </answer>.

User: {TASK_INSTRUCTION}

Assistant: <think>

Figure 35: Deepseek R1 Template. All our models were trained using the default Deepseek R1
template.
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## Task: Create a Python Code Snippet (where custom classes are allowed, which should be defined
< at the top of the code snippet) with one Matching Input

Using the reference code snippets provided below as examples, design a new and unique Python code
snippet that demands deep algorithmic reasoning to deduce one possible input from a given
output. Your submission should include both a code snippet and test input pair, where the
input will be plugged into the code snippet to produce the output, which that function output
be given to a test subject to come up with any input that will produce the same function
output. This is meant to be an I.Q. test.

LELLd

### Code Requirements:
- Name the entry function “f° (e.g., “def £(...): ...7), you can have nested definitions inside
- Tf°
- Ensure the function returns a value
- Include at least one input parameter
- Make the function deterministic
- Make the snippet require state tracking across multiple data transformations, ensuring the task
— requires long multi step reasoning
- AVOID THE FOLLOWING:
* Random functions or variables
* Date/time operations
* I/0 operations (reading files, network requests)
* Printing or logging
* Any external state
- Ensure execution completes within 10 seconds on a modern CPU
- All imports and class definitions should be at the very top of the code snippet
- The snippet should end with a return statement from the main function “f°, anything after will
— be removed

### Input Requirements:

- Provide exactly one test input for your function

- Format multiple arguments with commas between them
- Remember to add quotes around string arguments

### Formatting:

- Format your code with: " python
def £(...):
# your code here
return ...

- Format your input with:
argl, arg2,

“input

### Example Format:

* " “python

def f(name: str, info: dict):
# code logic here
return result

““input
'John', {{'age': 20, 'city': 'New York'l}}

### Evaluation Criteria:

- Executability, your code should be executable given your input

- Difficulty in predicting the output from your provided input and code snippet. Focus on either
— algorithmic reasoning or logic complexity. For example, you can define complex data structure
— classes and operate on them like trees, heaps, stacks, queues, graphs, etc, or use complex

— control flow, dynamic programming, recursions, divide and conquer, greedy, backtracking, etc
- Creativity, the code needs to be sufficiently different from the provided reference snippets

- Restricted usage of certain keywords and packages, you are not allowed to use the following

< words in any form, even in comments: {LIST_OF_FORBIDDEN_PACKAGES}

First, carefully devise a clear plan: e.g., identify how your snippet will be challenging,
— distinct from reference snippets, and creative. Then, write the final code snippet and its

— inputs.

### Reference Code Snippets:
{CODE_REFERENCES_FROM_BUFFER}

Figure 36: Program Input Abduction Task—Problem Proposal Instruction.
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## Task: Create a New Python Code Snippet (where custom classes are allowed, which should be
< defined at the top of the code snippet) with one Matching Input

Using the reference code snippets provided below as examples, design a new and unique Python code
snippet that demands deep algorithmic reasoning to deduce the output from the input. Your
submission should include a code snippet and a test input pair, where the input will be
plugged into the code snippet to produce the output. The input will be given to a test
subject to deduce the output, which is meant to be an I.Q. test.

TELL

### Code Requirements:
- Name the entry function “f° (e.g., “def f(...): ...7), you can have nested definitions inside
— ‘f\
- Ensure the function returns a value
- Include at least one input parameter
- Make the function deterministic
- Make the snippet require state tracking across multiple data transformations, ensuring the task
— requires long multi step reasoning
- AVOID THE FOLLOWING:
* Random functions or variables
* Date/time operations
* I/0 operations (reading files, network requests)
* Printing or logging
* Any external state
- Ensure execution completes within 10 seconds on a modern CPU
- All imports and class definitions should be at the very top of the code snippet
- The snippet should end with a return statement from the main function “f°, anything after will
— be removed

### Input Requirements:

- Provide exactly one test input for your function

- Format multiple arguments with commas between them
- Remember to add quotes around string arguments

### Formatting:
- Format your code with:
" “python
def £(...):
# your code here
return ...
- Format your input with:
© " “input
argl, arg2,

### Example Format:

* " “python

def f(name: str, info: dict):
# code logic here
return result

“input
'John', {{'age': 20, 'city': 'New York'}}

### Evaluation Criteria:

- Executability, your code should be executable given your input

- Difficulty in predicting your ~~“input® " from 1) your ~ “python " code and 2) the
deterministic " “output”™ " that will be obtained from your "~ input” . Focus on either
algorithmic reasoning or logic complexity. For example, you can define complex data structure
classes and operate on them like trees, heaps, stacks, queues, graphs, etc, or use complex
control flow, dynamic programming, recursions, divide and conquer, greedy, backtracking, etc
- Creativity, the code needs to be sufficiently different from the provided reference snippets

- Restricted usage of certain keywords and packages, you are not allowed to use the following

< words in any form, even in comments: {LIST_OF_FORBIDDEN_PACKAGES}

rLee

First, carefully devise a clear plan: e.g., identify how your snippet will be challenging,
— distinct from reference snippets, and creative. Then, write the final code snippet and its
— inputs.

### Reference Code Snippets:
{CODE_REFERENCES_FROM_BUFFER}

Figure 37: Program Output Deduction Task—Problem Generation Instruction.
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## Task: Output {NUM_INPUTS} Inputs that can be plugged into the following Code Snippet to
— produce diverse Outputs, and give a message related to the given snippet.

Using the code snippet provided below, design {NUM_INPUTS} inputs that can be plugged into the
code snippet to produce a diverse set of outputs. A subset of your given input and its
deterministically produced outputs will be given to a test subject to deduce the function,
which is meant to be an I.Q. test. You can also leave a message to the test subject to help
them deduce the code snippet.

reed

### Input Requirements:
- Provide {NUM_INPUTS} valid inputs for the code snippet

- For each input, format multiple arguments with commas between them
- Remember to add quotes around string arguments

- Each input should be individually wrapped in " “input

tags

### Message Requirements:

- Leave a message to the test subject to help them deduce the code snippet

- The message should be wrapped in "~ "message’ "~ tags

- The message can be in any form, can even be formed into a coding question, or a natural
— language instruction what the code snippet does

- You cannot provide the code snippet in the message

### Formatting:

- Format your input with:
**input

argl, arg2,

### Example Format:
*"input
'John', {{'age': 20, 'city': 'New York'l}}
" “input
'Sammy', {{'age': 37, 'city': 'Los Angeles'}}

### Evaluation Criteria:

- Executability, your code should be executable given your inputs

- Coverage, the inputs and outputs should cover the whole input space of the code snippet, able
— to deduce the code snippet from the inputs and outputs

- Creativity, the inputs need to be sufficiently different from each other

- The overall selection of inputs and message combined should be challenging for the test

— subject, but not impossible for them to solve

First, carefully devise a clear plan: e.g., understand the code snippet, then identify how your
— proposed inputs have high coverage, and why the inputs will be challenging and creative.

— Then, write the inputs and message. Remember to wrap your inputs in ~~“input”™ "~ tags, and
— your message in "~ ‘message "~ tags.

### Code Snippet:

* " “python
{SNIPPET_FROM_BUFFER}

Figure 38: Program Induction Task—Problem Proposal Instruction.
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# Task: Provide One Possible Input of a Python Code Snippet Given the Code and Output
Given the following Code Snippet and the Output, think step by step then provide one possible
— input that produced the output. The input needs to be wrapped in "~ “input "~ tags. Remember

— if an argument

is a string, wrap it in quotes. If the function requires multiple arguments,

— separate them with commas.

# Code Snippet:
* " “python
{SNIPPET}

# Output:
" “output
{0OUTPUT}

# Output Format:
" Tinput
argl, arg2,

# Example Output:
* " “input

'John', {{'age': 20, 'city': 'New York'}}

Figure 39: Program Input Abduction Task—Problem Solving Prompt.

# Task: Deduce the

Output of a Python Code Snippet Given the Code and Input

Given the following Code Snippet and the Input, think step by step then deduce the output that

— will be produce

— output

d from plugging the Input into the Code Snippet. Put your output in

tags. Remember if the output is a string, wrap it in quotes. If the function

— returns multiple values, remember to use a tuple to wrap them.

# Code Snippet:
* " “python
{SNIPPET}

# Input:
" Tinput
{INPUT}

# Example Output:
" output

{{'age': 20, 'city':

Figure 40

'New York'}}

: Program Output Deduction Task—Problem Solving Prompt.
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# Task: Deduce the Function that Produced the Outputs from the Inputs

Given a set of input/output pairs and a message that describes the function, think through the
problem step by step to deduce a general code snippet. This code should produce the hidden
outputs from the hidden inputs, matching the original data-generating code that created the
input/output pairs. Place your final answer inside python tags! It may be helpful to work
through each input/output pair individually to test your function. If your function doesn’ t
work as expected, revise it until it does. The final code snippet will be used to evaluate
your response, which is wrapped in ~ " “python tags.

rerros

# Code Requirements:
- Name the entry function “f° (e.g., “def f(...): ..."), you can have nested definitions inside
- f°
- Ensure the function returns a value
- Include at least one input parameter
- Make the function deterministic
- AVOID THE FOLLOWING:
* Random functions or variables
* Date/time operations
* I/0 operations (reading files, network requests)
* Printing or logging
* Any external state
- Ensure execution completes within 10 seconds on a modern CPU
- All imports and class definitions should be at the very top of the code snippet
- The snippet should end with a return statement from the main function “f()~, anything after
— will be removed

# Input and Output Pairs:
{INPUT_OUTPUT_PAIRS}

# Message:

mes sage
{MESSAGE}

# Example Output:
" “python
def f(a):

return a

Name your entry function “f()~!!!

Figure 41: Program Induction Task—Problem Solving Prompt.
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Task: Manual Constructed Sudoku Abduction Task

Model Input: Here is the function f and the output: [ [757,)737,).7)7.7)77°777>27777],

s ey .

[”6” RIS h 9v9” 735” 99 95 33 33 9> w] [w 2 29Q 1@70  2 3 3  » ”6” ” ”] [”8” 99 39 93 93 99 9> ”6” 99 99 93 39 95 9> ”3”]
L) s bl LA R N ) L) s L R R ) LI L ) 5 L) s

[747 7727 PP 7 0 3 3 0 P ] [P 0 3 3 sy 3 30 388 33 M) [0 32600 8 33 31 9 33 30 1 33 g a9 9]
595 33330 3 S e [ g 3 3 v 2 ) 09 3 5 3 3 begos 3 3 s e ey vt 1 plaa o gt T T
(> 419 ) 5, [0 ) )8, ) T7,°97] ], please predict the input

import random

from typing import List

import copy

def g_O(board: List[List[str]]) -> bool:
def is_valid_block(block):
return sorted(block) == [str(i) for i in range(l, 10)]

for row in board:
if not is_valid_block(row):
return False

for col in zip(*board):
if not is_valid_block(col):
return False

for box_row in range(0, 9, 3):
for box_col in range(0, 9, 3):
block = [
board[r] [c]

for r in range(box_row, box_row + 3)
for ¢ in range(box_col, box_col + 3)
]
if not is_valid_block(block):
return False

return True

def f(board: List[List[str]]) -> List[List[str]]:
for i in range(9):
for j in range(9):
if board[i][j] == ".":

raise ValueError("Invalid board")

num_to_mask = 51
if not g_O(board):
raise ValueError("Invalid board")

masked_board = copy.deepcopy (board)
all_positions = [(i, j) for i in range(9) for j in range(9)]
random. shuffle(all_positions)
for i, j in all_positions[:num_to_mask]:
masked_board[i] [j] = "."

return masked_board
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Model Output:

To determine the input that produced the given output, we need to analyze the function ‘f* and understand
what it does. Let’s break down the function step by step:
1. **Input Validation in ‘g_0‘**: - The function ‘g_0° checks if the given board is valid. - A board is valid

if each row, each column, and each 3x3 subgrid contains the digits 1 through 9 exactly once. - If the board
is not valid, ‘g_0° returns ‘False‘.

2. **Input Validation in ‘f***: - The function ‘f* first checks if there are any ”.” in the board. If there are, it
raises a ‘“ValueError‘. - This means the input board to ‘f* must be a complete board with no ”.”.

3. **Masking the Board**: - If the board is valid (i.e., ‘g_0O(board)‘ returns ‘True‘), the function ‘f* proceeds
to mask the board. - It creates a copy of the board and then randomly selects 51 positions to mask with ”.”.
- The masked board is then returned.

Given the output:  “‘output [[’57,)°3”7.7 77722222 0], 067,001,975 ) ),
[>2)09787 ) e, [P80) e ) 3, AN )8 3 T,

[7’775 292 99 92 93 93 57393 93 5 93 93 53 3 ”6”] [n ” ”6” 292 92 9 99 93 5 3 937)3 ”8” 1 ”] [” 299 92 99 93 00 339 759” 95 95 33 33 ”5”]
L ) L ) s . L I B s LI ] LR s bl LI I s

[>2)p )28 )77,97]] ¢ We can see that the board has 51 positions masked with .. Therefore,

LRI

the input board must have been a complete board, and ‘f* masked 51 random positions.

Let’s construct a complete board that, when masked, can produce the given output. We need to find a board
such that after masking 51 positions, we get the output shown.

Here is a complete board that matches the structure of the output: “‘python [ [’5”, 737, 7’4", 76", 777, 78",
797,717,727, 767, 7, 727, 17, 797, 75, 37, 47, 8, [°17, 797, 87, 737, 4, 2, 57, 767, T, 8,
757,797, 777,767, 17, 4, 72, 3, P47, 27, 767, 87, 5, U3, T, 9, 1L, [T, L, 37, 97, 2,
74”7,787,757,767], [797, 767, 717, 57, 737, T, 2, 8, A, 727, 8, T, 4, °1, 97, 67, 37, 57,
[737, 747,757, 727,787, 767,717, 77,797 ] ¢

Let’s verify that this board, when passed to the function ‘f*, produces the given output.

1. The board is complete with no ”.”. 2. The board is valid because each row, each column, and each 3x3
subgrid contains the digits 1 through 9 exactly once. 3. The function ‘f* will mask 51 random positions.
Given the random nature of the masking, we need to ensure that the positions masked match the positions
of ”.” in the output. Since the positions are random, we can assume that the function ‘f* with this complete

board will produce the given output.

Therefore, the input that produced the output is: “‘input [ [’5”, 737, 747, 76", 77,787,797, 17, 72”], [’6”,
77,27, 17,97, 5, 3 4 8, 17, 97, 8, 3, 4, 2, S, 6, T, 787, S, 797, T, U6,
17,747,727, 37, 747, 27, 767, 7’8, 7’5, 3, T, 9, L, [T, 1, 3, 797, 2, 4, 8, 5, 6,
797,767,717, 757,737, 777,727, 87, 4], 727, 7’87, 77, 747, 17, 97, 67, 37, 57, [737, 747, 57, 727,
787,767,717, 777,797 <

Figure 42: Vibe Check 1: Sudoku Solver. We cast Sudoku solving as an abduction task: our
program starts from a fully solved and validated Sudoku board and simulates the masking of 51
random cells. The masked board is then presented as output, and the model is tasked with inferring
the original input — effectively solving the puzzle backwards. An example solution is shown above,
where AZR-Coder-14b verifies its initial guess before correctly answering. Generation parameters:
temperature=0.6.
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Task: Manually Constructed Sum Product Game Solve Abduction Task

Model Input: Here is the function £ and the output: ‘True°, please predict the input.

def g 30:
return [(x, y) for x in range(2, 101) for y in range(x + 1, 101) if x + y <= 100]

def g_2(pairs):

d={}r
for (x, y) in pairs:

s=x+y

d.setdefault(s, [1).append((x, y))
return d

def g_1(pairs):

d={}
for (x, y) in pairs:
Pp=x*y
d.setdefault(p, [1).append((x, y))
return d
def g 00):
pairs = g_30

sum_dict = g_2(pairs)

prod_dict = g_1(pairs)

allowed_sums = [s for s, candidate_pairs in sum_dict.items() \
if all(len(prod_dict[x * y]) > 1 for (x, y) in candidate_pairs)]
candidates_after_S = [pair for pair in pairs if pair[0] + pair[1] in allowed_sums]
new_prod_dict = g_1(candidates_after_S)

unique_products = {prod: pair_list for prod, pair_list in new_prod_dict.items()| \
if len(pair_list) == 1}
final_candidates = []
for s in allowed_sums:
valid_pairs = [pair for pair in candidates_after_S \
if pair[0] + pair[1] == s and (pair[0] * pair[1]) in unique_products]
if len(valid_pairs) == 1:

final_candidates.append(valid_pairs[0])
return sorted(set(final_candidates))

def f(x, y):
if not (isinstance(x, int) and isinstance(y, int)):
return False
if x <=1 ory<=1ory<=xor (x +y) > 100:

return False
final_candidates = g_00)
return len(final_candidates) == 1 and final_candidates[0] == (x, y)
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Model Output:

the function ‘f(x, y)* returns “True® if the following conditions are met:

B

1. *x“and ‘y* are both integers.
2. ‘x“and ‘y‘ satisfy ‘1 < x <y‘and ‘x +y <= 100°.
3. The final candidates after applying the conditions in ‘g_0° are exactly one pair, and that pair is ‘(x, y)*.

Let’s analyze the function ‘g_0° step by step to understand what it does:

1. ‘pairs = g_3()‘ generates all pairs ‘(x, y)* such that ‘2 <=x <y <= 100 and ‘x +y <= 100".

2. ‘sum_dict = g_2(pairs)‘ creates a dictionary where the keys are the sums of the pairs and the values are lists of pairs that add up
to that sum.

3. ‘prod_dict = g_1(pairs)* creates a dictionary where the keys are the products of the pairs and the values are lists of pairs that

have that product.

4. ‘allowed_sums = [s for s, candidate_pairs in sum_dict.items() if all(len(prod_dict[x * y]) > 1 for (X, y) in candidate_pairs)]‘
filters out the sums ‘s‘ for which all pairs ‘(x, y)‘ that add up to ‘s‘ have more than one pair with the same product.

5. ‘candidates_after_S = [pair for pair in pairs if pair[0] + pair[1] in allowed_sums] filters out the pairs whose sum is in
‘allowed_sums*.

6. ‘new_prod_dict = g_1(candidates_after_S)‘ creates a new product dictionary using the filtered pairs.

7. ‘unique_products = prod: pair_list for prod, pair_list in new_prod_dict.items() if len(pair_list) == 1° creates a dictionary of
products that have exactly one pair.

8. ‘final_candidates = []° initializes a list of final candidates.

9. The loop ‘for s in allowed_sums:* iterates over each sum in ‘allowed_sums* and checks if there is exactly one pair ‘(x, y)‘ such
that ‘x + y =s‘ and ‘x * y‘is in ‘unique_products. If so, this pair is added to ‘final_candidates*.

10. The function returns ‘sorted(set(final_candidates))‘, which should be a list containing exactly one pair if the conditions are
met.

Given that the output is “True*, it means that there is exactly one pair ‘(x, y)‘ that satisfies all the conditions. Let’s identify this pair.

To do this, we need to understand the mathematical conditions and constraints:
I. ‘1<x<y‘and ‘x +y <= 100"

2. The pair ‘(x, y)* must be the only pair whose sum is in ‘allowed_sums* and whose product is unique among the pairs with the
same sum.

By analyzing the constraints and the nature of the problem, we can deduce that the pair ‘(x, y) must be such that the sum ‘x + y* is
unique in the sense that all pairs adding up to this sum have products that are not unique, except for this pair.

After detailed analysis or by running the code with different values, we find that the pair ‘(x, y) = (4, 13)° satisfies all the conditions.
Let’s verify:
1.‘1<4<13%and ‘4 + 13 =17 <= 100°.

2. We need to check the ‘allowed_sums* and the uniqueness of the product ‘4 * 13 = 52°.
By running the code or logical deduction, we can confirm that ‘(4, 13)° is the only pair that satisfies all the conditions.

Therefore, the input that produced the output ‘True® is:

e

input
(4,13)

e

Figure 43: Vibe Check 2: Sum Product Game. We cast the Sum-Product Game as an abduction
task, where when the constraints of the game are satisfied, function ‘f* returns True, return False
otherwise. AZR-Coder-14b was able to first analyze the complicated constraints, identify candidate
solution and verify. Generation parameters: temperature=0.6, top_p=0.95.

E Alternative Approaches Considered

In this section, we share many of the approaches we tried that did not prove to be particularly helpful
for Absolute Zero Reasoner. However, we believe it is especially valuable to share these findings
with the community, as they are crucial for guiding future research. Below, we outline each of the
additional methods we explored during the development of our project.
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E.1 Error Deduction Task

Since programming languages often have error messages, and these messages contain a lot of
information about how someone might expect a program to run, we also came up with another task
domain: allowing the learner to propose a program that will produce an error, and requiring the
solver to deduce what kind of error is raised when executing this code. We experimented with this
additional task alongside the induction (f), deduction (o), and abduction (7) tasks. Unfortunately, we
did not observe noticeable changes in downstream performance with this additional task and since it
requires more computational resources than our AZR setup, we decided not to incorporate it into our
final version. However, we believe further thorough investigation of this is well deserved.

E.2 Composite Functions as Curriculum Learning

One valuable property we can leverage from programming languages is the ability to compose
functions—that is, to define a function as a composite of other functions, i.e., f(g(x)). In our setting,
when generating a program, we can not only require the output to be a valid program but also constrain
the LLM to utilize a predefined set of programs within its main function. For example, if the target
program to be generated is f(-), we can sample a set of previously generated programs {¢g_0,...,g.}
from D, and force a valid program to be f(g_0,--- , g., 7).

Since all programs are generated by the LLM itself, this setup allows the model to bootstrap from its
earlier generations, automatically increasing the complexity of the generated programs. We interpret
this mechanism as a form of curriculum learning: earlier programs in the AZR self-play loop tend to
be simpler, and as the loop progresses, they become increasingly complex. By composing newer
programs from progressively more difficult earlier ones, the resulting programs naturally inherit this
growing difficulty, which in turn challenges the solver step.

For implementation, in generating tasks for abduction and deduction, we begin by sampling a binary
decision from a binomial distribution with p = 0.5. This determines whether the generated program
should be a simple program or a composite one. If the sample is 0, we prompt the LLM to generate a
standard program along with a corresponding input. If the sample is 1, we prompt the LLM to generate
a composite program. To construct the composite, we first sample an integer ¢ ~ U(1,3), then
uniformly select ¢ programs from the dataset D that are not themselves composite programs. Finally,
we prompt the LLM to generate a valid program that incorporates {g_0, ..., g.} as subcomponents,
ensuring it composes these selected programs meaningfully. We additionally filter programs that did
not utilize all the ¢ programs.

However, we did not observe a significant difference when using this more complex curriculum
compared to our simpler and more effective approach. One failure mode we encountered was that
the model often defaulted to simply returning “g(x)”, effectively learning f(g(x)) = g(x), which
failed to introduce any additional difficulty. This trivial behavior undermined the intended challenge,
leading us to deprioritize further exploration in this direction. While it may be possible to design a
stricter reward mechanism—such as enforcing f(g(x)) # g(z) by executing the code via a Python
interpreter and penalizing such shortcuts—we leave this to future work.

E.3 Toying with the Initial p(z)

We investigated a setting where the initial seed buffer (see Appendix A.1.1 on how we generated
these), i.e. p(z) in Equation (3), is not self-generated by the base model, but instead sourced from
the LeetCode Dataset. We only modified this component and ran AZR using the same procedure
as before, continuing to add new valid programs to the initialized buffer. We observed an increase
in initial performance on coding benchmarks; however, the performance plateaued at roughly the
same level after additional training steps, compared to our official AZR setup. Interestingly, math
performance was lower than in the official AZR setup, pointing towards that on-policy data may be
more beneficial to the learner to bootstrap from for mathematical reasoning. We believe that exploring
different strategies for initializing and updating p(z) is an important and exciting direction for future
research. We briefly explored different strategies for sampling reference code, ultimately settling on
uniform sampling for its simplicity, though we also experimented with recency-based sampling and
observed potential collapse.
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E.4 Extra Rewards

Complexity Rewards. Code complexity is well studied in software science and could potentially be
a good proxy for measuring how hard it is to infer the properties of a piece of code for our reasoning
learner. Therefore, for the problem proposer, we can add various measures of complexity—such as
Cyclomatic Complexity [17], maintainability, etc.—to the reward function to incentivize the proposer
to produce more complex programs. For illustration purposes, we tried using the Maintainability
measure and the Halstead complexity measure [23] as intrinsic rewards. Concretely, we used the
complexipy and Radon packages [48, 4] to implement the respective metrics. These are then served
as intrinsic rewards during the AZR self-play phase.

Diversity Rewards. We also attempted using diversity rewards to . Inspired by DiveR-CT [106],
we incorporate code edit distance as an intrinsic reward. Specifically, we treat the reference programs
shown in the prompt as anchors and compute the average code edit distance between the generated
program and these anchors. This serves as a measure of diversity in the generated output. Additionally,
we explored another diversity-based reward inspired by the notion of surprise [104]. In this approach,
we construct a probability distribution over previously encountered input/output pairs that the solver
has answered. The reward is then defined as 1 — p(input/output), where p denotes the empirical
probability of a particular input or output. While both strategies were evaluated in our experiments,
we did not observe a significant difference in performance. However, we believe this aspect warrants
deeper investigation, as diversity rewards remain a promising avenue for strengthening AZR further.

Reward Aggregation. We tested several ways on how to combine rewards for the proposer and
discriminator. First, we separate the reward into extrinsic reward Texqinsic and a set of intrinsic
reward(s) I = {r;}, and tested the following strategies to combine them into a single reward,

1]

T = Textrinsic Z Ti, (1D
1]

T = Textrinsic * Z T, (12)
1]

T = Textrinsic * H Ti, (13)
1]

7" = Textrinsic + H . (14)

1
We found that the simple additive way of combining rewards, a.k.a Equation (11), produced the most
stable runs, possibly due to less variance.

E.5 Environment Transition

We investigated how the transition function in our coding environment for the proposer. Specifically,
after generating a piece of code, we can apply a transformation function on it before giving it making
it an valid tuple in our dataset. We investigated two

Removing Comments and Docstrings In early iterations of our experiments, we noticed that
comments and docstrings were sometimes used to explicitly outline what the function was doing, or
even served as a partial “note-taking” interleaved “ReAct” process [90] of generating code—that is, the
model could interleave think and action at the same time, and to make the generated code valid, it used
comments to encase its thoughts (Appendix D.6), similarly observed in DeepSeek-Prover-V2: [60].
We then thought that to make the task harder for the solver, we should occlude this information from
it. However, we observed a significant performance drop after removing all comments and docstrings.
One explanation for this phenomenon is that the only “communication” channel between the proposer
and the solver is restricted to the code itself, rather than some kind of “message” along with the code.
These messages can potentially provide hints to the solver, thus making some otherwise impossible
tasks solvable. As a result, the solver is able to learn from its experience and self-bootstrap out of
certain unsolvable tasks.
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Removing Global Variables. We observed that some programs contain globally declared variables
that may inadvertently leak information about the correct answer—this issue is particularly prevalent
in the input induction task generation and solving. Initially, we were concerned that such leakage
might lead to wasted computation on trivial or compromised examples. To address this, we developed
a systematic procedure to remove globally declared variables from the generated programs.

However, after applying this cleaning step, we observed a noticeable drop in performance on our
self-play reasoning tasks. One possible explanation is that the generation step is unaware of this
post-processing modification; since the reward is assigned after the transition function (which includes
variable removal), the model may not learn effectively from this mismatch.

Moreover, we believe that even when answers are present, the solver still engages in nontrivial
reasoning to reach a solution, potentially benefiting from this exposure. This aligns with the idea of
rationalization as proposed in STaR [98], where the model pretends to not see the answer but still
performs reasoning during learning. Therefore, in our final experiments, we choose not to remove
globally declared variables, allowing the self-play loop to naturally incorporate and adapt to such
cases.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

e [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: all backed up in the experiments section
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 6 and Appendix C
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretic proofs are given in this manuscript
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: described in the experiments section and the implementation details in Ap-
pendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.
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If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: full code/data release in supplementary materials, with full README

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, in experiment section and implementation details in Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Wasn’t needed since all evaluations were greedy, therefore deterministic
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: yes, in Appendix A .4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: conformed in every aspect
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

¢ If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: see Appendix C
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.
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14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: all evaluation benchmarks are properly cited, training data was self-generated
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: all code/data are submitted as supplementary material
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
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15.

16.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: only used for editing
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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