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ABSTRACT

Differentially-Private SGD (DP-SGD) is a powerful technique to protect user pri-
vacy when using sensitive data to train neural networks. During training, converting
model weights and activations into low-precision formats, i.e., quantization, can
drastically reduce training times, energy consumption, and cost, and is thus a widely
used technique. In this work, we demonstrate for the first time that quantization
causes significantly higher accuracy degradation in DP-SGD compared to regular
SGD. We observe that this is caused by noise injection in DP-SGD, which amplifies
quantization variance, leading to disproportionately large accuracy degradation.
To address this challenge, we present DPQUANT, a dynamic quantization frame-
work that adaptively selects a changing subset of layers to quantize at each epoch.
Our method combines two key ideas that effectively reduce quantization variance:
(i) probabilistic sampling of the layers that rotates which layers are quantized
every epoch, and (ii) loss-aware layer prioritization, which uses a differentially
private loss sensitivity estimator to identify layers that can be quantized with min-
imal impact on model quality. This estimator consumes a negligible fraction of
the overall privacy budget, preserving DP guarantees. Empirical evaluations on
ResNet18, ResNet50, and DenseNet121 across a range of datasets demonstrate that
DPQUANT consistently outperforms static quantization baselines, achieving near
Pareto-optimal accuracy-compute trade-offs and up to 2.21× theoretical through-
put improvements on low-precision hardware, with less than 2% drop in validation
accuracy.

1 INTRODUCTION

Differentially Private Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016) enables training
neural networks on sensitive data while providing formal privacy guarantees. To improve the efficiency
of such training on modern hardware, the use of low-precision arithmetic and data formats, i.e.,
quantization, has gained widespread interest (Gholami et al., 2021; Jacob et al., 2017). Quantization
can significantly reduce the amount of computation and memory required, thus reducing the latencies,
cost, and energy consumption during training and inference, often with little to no loss in model
accuracy (Micikevicius et al., 2022). These benefits are especially important in resource-constrained
settings such as federated learning with edge devices, where support for full-precision arithmetic is
limited and compute budgets are constrained.

Modern accelerators, ranging from datacenter GPUs to mobile NPUs, are rapidly adopting ultra-
low precision formats such as FP8, INT4, or FP4. NVIDIA’s Blackwell architecture (NVIDIA
Corporation, 2024) is reported to provide 4× throughput for FP4 matrix multiplications compared to
FP16; AMD Instinct GPUs supports FP8 (Advanced Micro Devices, Inc., 2023; 2025), and Qualcomm
Hexagon supports INT4/INT8 (Qualcomm Technologies, Inc., 2024). Leveraging these compute
capabilities in model training would enable significant performance and scalability improvements.

In this work, we observe that applying low-precision quantization directly to DP-SGD training often
leads to significant accuracy degradation, as severe as a 40% drop. While non-DP training is typically
robust to quantized training, the gradient clipping and noise addition steps in DP-SGD interact poorly
with low-precision arithmetic leading to poor convergence as explained in Section 4.
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Our goal is to develop an automatic mechanism to effectively quantize DP-SGD, while minimizing
the impact on model accuracy and the differential privacy budget. We observe that quantizing only a
subset of layers and selectively varying this subset every epoch can preserve most of the efficiency
gains from quantization while maintaining model accuracy. DPQUANT uses two core techniques that
are implemented in a differentially private framework for dynamic quantization scheduling:

1. Probabilistic layer sampling, which rotates which layers are quantized every epoch to dis-
tribute quantization variance across the network, decreasing overall quantization variance;

2. Loss-aware prioritization, which uses a loss sensitivity estimator to selectively quantize
layers that have minimal impact on model accuracy.

We make the following contributions:

1. To our knowledge, this work is the first to demonstrate and explain the significant accuracy
degradation when employing existing quantization techniques with DP-SGD compared to
non-private SGD during model training.

2. We introduce DPQUANT, a differentially private lightweight mechanism that minimizes
quantization-induced loss by (a) probabilistically sampling which layers to quantize every
epoch and (b) prioritizing layers with lower sensitivity—while incurring only a negligible cost
to the overall privacy budget.

3. We demonstrate that DPQUANT achieves near Pareto-optimal accuracy-speed tradeoffs across a
range of compute and privacy budgets, outperforming static (fixed-layer) quantization baselines.

2 RELATED WORKS

Post-training quantization (PTQ) (Banner et al., 2019; Jacob et al., 2017; Nagel et al., 2021) aims
to accelerate inference through low-precision computations. A neural network is first trained in
full-precision and then its weights are quantized. The conversion to quantized formats typically
involves a small calibration dataset (Hubara et al., 2021; Nagel et al., 2019) to allocate quantization
bit-widths in different parts of the model and to perform bias correction. PTQ methods are orthogonal
to this work since they do not optimize training.

Quantization-aware training (QAT) (Krishnamoorthi, 2018) ameliorates the aforementioned ac-
curacy loss by training in lower precision. However, this technique requires extra analysis, such as
hardware simulation (Wang et al., 2019) and sensitivity estimation (Dong et al., 2019; Park et al.,
2018). QAT also involves quantizer updates, such as step-size tuning (Esser et al., 2020; Ding et al.,
2023) and quantizer scaling (Sakr et al., 2022), to select bit-widths (Youn et al., 2022). The in-
curred overhead during training typically cancels out any raw bit-width speedups and often increases
wall-clock training time, making them ideal for accelerating inference but not training (Chen et al.,
2024).

Gradient compression (Lin et al., 2020; Alistarh et al., 2017; Alimohammadi et al., 2023; Wen
et al., 2017; Shi et al., 2020) reduces communication costs by compressing gradients in distributed
settings, either through sparsification (Stich et al., 2018; Yu et al., 2017) or low-rank approximation
(Vogels et al., 2019; Idelbayev and Carreira-Perpinán, 2020). Notably, (Youn et al., 2023) combines
quantization and the noising mechanism to achieve differential privacy while reducing communication.
However, compression does not lower the arithmetic cost of training. In addition, these methods often
rely on assumptions such as full gradient availability or error feedback accumulation (Karimireddy
et al., 2019), which are difficult to satisfy under DP constraints.

Mixed-precision training (Choi et al., 2018; Zhou et al., 2018; Sun et al., 2020; Chmiel et al., 2024;
Micikevicius et al., 2022) aims to reduce training cost by operating on lower-precision data types, e.g.,
FP16, BF16, FP8, and FP4). While effective for standard SGD, mixed-precision training degrades
significantly under DP-SGD. To our knowledge, no prior work has explored mixed-precision training
when differential privacy mechanisms are employed.

Gradient Clipping Optimizations for DP-SGD. (Li et al., 2022; Bu et al., 2022; Lee and Kifer,
2020; Subramani et al., 2021) optimize the per-sample gradient clipping for DP-SGD by eliminating
redundant computation and increasing vectorized computation leading to better hardware utilization.
These works are orthogonal to DPQUANT.
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3 PRELIMINARIES

3.1 DIFFERENTIALLY-PRIVATE DNN TRAINING

We first recall the standard definition of differential privacy:
Definition 1 (Differential Privacy, (Dwork and Roth, 2014)). A randomized algorithm A satisfies
(ε, δ)-differential privacy if for all adjacent datasets D,D′ differing on at most one example, and for
all measurable sets S in the output space,

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Definition 2 (DP-SGD, (Abadi et al., 2016)). Differentially Private Stochastic Gradient Descent
(DP-SGD) is a variant of SGD that satisfies (ε, δ)-differential privacy by clipping and perturbing
per-example gradients. At each iteration t, the update rule is:

θt+1 ← θt − η

(
1

|B|
∑
i∈B

clip(∇L(θt, xi)) +N (0, σ2C21)

)
,

where B is a minibatch of training examples, clip(·) scales the gradient to have ℓ2 norm at most C,
and N (0, σ2C21) is Gaussian noise added to ensure privacy.

3.2 QUANTIZATION AND MIXED PRECISION TRAINING

Modern hardware accelerators such as NVIDIA GPUs, Google TPUs, and Qualcomm Hexagon NPUs
provide dedicated support for low-precision arithmetic, including fp16, bfloat16, and increasingly
lower bitwidth formats like fp8, fp6, and fp4. These formats enable faster matrix multiplications
and convolutions by reducing arithmetic complexity, memory usage, and data transfer costs. Lower
precision reduces both the number of transistors required per operation and the bandwidth needed for
memory and interconnects, resulting in substantial speedups and energy savings.

While prior work has demonstrated that full training in low-bit formats (e.g., fp4) can retain accuracy
under standard SGD, extending these techniques to differentially private training remains challenging.
The clipping and noise injection steps in DP-SGD amplify quantization errors and increase gradient
variance, making DP training more sensitive to precision loss. Fully quantized DP-SGD thus often
results in severe degradation unless carefully tuned.

4 DEGRADATION OF DP-SGD FROM QUANTIZATION
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Figure 1: Comparing quantized SGD vs DP-SGD ResNet18 training on the GTSRB dataset

Figure 1 presents a case study of ResNet18 trained on GTSRB, where the forward and backward
convolution operators are quantized to evaluate the effects of quantized training. Figure 1a shows the
accuracy loss compared to the unquantized baseline for different degrees of quantization (in terms of
the number of layers quantized), and the error bars represent the results when different subsets of
layers are chosen for quantization, both for DP and non-DP training. For the non-DP SGD baseline,
fully-quantized training results in only a modest accuracy drop of around 1%. In contrast, DP-SGD
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experiences a much greater degradation, up to 5%. Furthermore, the variance in performance due to
different layers being quantized is substantially higher under DP-SGD. We observe similar trends in
other neural networks and datasets (included in Appendix A.5).

We hypothesize that the increased sensitivity to quantization can be attributed to noise injection in
DP-SGD as follows. In iteration t in the DP-SGD training, the gradients gt is first clipped to obtain ḡt

where ||ḡt||2 ≤ C (section 3.1). Next, noise nt ∼ N (0, σ2C21) is sampled, and finally the weights
are updated using the sum of the noise and clipped gradient:

wt+1 = wt − η (ḡt + nt) (1)
We assume the noise scale is σ ∈ (0.5, 10) (Abadi et al., 2016; De et al., 2022), in line with common
configurations reported in the DP-SGD literature. Since the standard deviation of the injected noise nt

is equal to the 2-norm of the clipped gradients, the∞-norm of the noise nt (i.e. its largest component)
is roughly on the same order as ||g||2. Since in higher dimensions ||ḡ||2 ≫ ||ḡ||∞ due to the 2-norm
growing much faster than the∞-norm, combining we have:

∥nt∥∞ ≈ ∥ḡt∥2 ≫ ∥ḡt∥∞ (2)
This relation is also demonstrated empirically in Figure 1b, where on average the magnitude of the
clipped gradient elements of ḡ is 25 times smaller than that of the injected noise n.

The weight update (Equation 1) with noisy gradient updates amplify the norms of raw gradients in
subsequent iterations. To show this, we first write the weight update as:

∆wt = wt+1 −wt = −η (ḡt + nt) (3)
The weight update ∆wt ≈ η nt due to nt being much larger in norm than ḡt, and thus:

∥∆wt∥∞ ≈ η ∥nt∥∞ = O(||ḡt||2) (4)
where the asymptotic equality holds due to Equation 2. Assuming L-Lipschitz-smoothness of the
loss with respect to the gradients:

∥gt+1 − gt∥∞ ≤ L ||wt+1 −wt||∞ = L ∥∆wt∥∞ (5)
We now show that the∞-norm of the raw gradients (i.e. before clipping and noising) of the next
iteration is bounded by ∥|ḡt||2 using the inverse triangle inequality with Equation 4 and 5:

||gt+1||∞ ≥ ||gt+1 − gt||∞ − ||gt||∞ = O(||gt||2) (6)
Equation 6 shows that elements of the raw gradients in the next iteration are bound by the much
larger O(||ḡt||2) rather than the usual O(||ḡ||∞) in normal SGD. As a result, we expect elements of
the raw gradients in DP-SGD to be larger in magnitude than in non-DP training.

Notably, the batch size has a negligible effect on norms, even though a larger batch size leads to a
smaller variance of the stochastic gradients. Therefore, we omit it in this analysis; we include further
discussions and empirical evaluations of this in appendix A.1.

To show this empirically, we plot the norms of intermediate gradients under both SGD and DP-SGD
using the same hyperparameters in Figure 1c, where the DP-SGD intermediate raw gradients are 2×
larger in the average and worst case. This phenomenon has also been observed in prior work (Du
et al., 2022), showing a even larger gap than what we observe in gradient norms later in training.

We now demonstrate that the much larger raw gradients under DP-SGD result in much higher
quantization variance.
Proposition 1. Let q : Rn → Rn be an unbiased (i.e. E[q(x)] = x) and scale invariant (i.e.
q(λx) = λq(x)) quantizer. Assume q(x) quantizes values onto some finite grid. Let x be sampled
from a absolutely continuous distribution. Then the quantizer variance Var(q(x)) = Θ(||x||2∞).
Proof: See Appendix A.8.

Using Prop. 1, we can more precisely express the variance of the quantization as follows:
(under DP-SGD) Var

(
q(gt+1) |gt+1

)
= O

(
∥gt+1∥2∞

)
= O

(
∥gt∥22

)
(under SGD) Var

(
q(gt+1) |gt+1

)
= O

(
∥gt∥2∞

)
The quantization variance above is in addition to the existing variance of the stochastic gradients, as
well as noise injected by DP-SGD. In higher dimensions, ∥gt∥2 ≫ ∥gt∥∞, quantization contributes
much more variance to the gradients, hence leads to slower and less reliable convergence (Johnson
and Zhang, 2013) and accuracy degradation. To address this challenge, we aim to reduce the
quantized-induced variance.
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5 DPQUANT: OUR PROPOSED SOLUTION

5.1 PART I: PROBABILISTIC LAYER SAMPLING

Each time we perform randomized and unbiased quantization on a layer, we introduce additional
variance to its gradient updates. While this added variance might be acceptable in standard training,
it results in a significant performance degradation under DP-SGD, where gradient stability is already
challenged by injected noise.

Quantization Policy 

Statistics

p1 p2 pnBaseline

d1 d2 dn

....

....

Randomization + Privatization

Update statistics

Query optimal policy

Quantized DP-SGD iteration

Training

Measure

Loss

Compute

Difference

Analysis

Figure 2: DPQUANT system overview

Suppose a layer is quantized with probability p, we let
gfp to denote its full precision gradients and gquant to be
its gradients computed under quantization. By Section 4,
quantization incurs additional variance, hence Var(gfp) ≤
Var(gquant). The expected gradient variance is:

E (Var(g)) = (1−p)Var(gfp)+pVar(gquant) ≤ Var(gquant)

From this it follows that whenever p < 1 – that is, when
only a subset of layers is quantized at each epoch—the
average quantization-induced variance is strictly lower
than in full quantization. Furthermore, by rotating which
layers are quantized every epoch, no single layer repeat-
edly incurs the full quantization variance, and hence their
expected variance remains smaller than Var(gquant).

5.2 PART II: LOSS-AWARE LAYER PRIORITIZATION

Not all layers contribute equally to model performance.
Intuitively, we prefer to retain higher precision in layers
that have a greater impact on the loss or accuracy. Given
a constrained quantization budget, our goal is to prioritize
quantization in lower-impact layers, thereby minimizing
the overall loss in model quality.

We define a quantization policy p to be the set of layers to compute under quantization. We define
R(p) as the expected loss increase incurred by applying quantization policy p instead of full precision:

R(p) := ED

[
L
(
Mp(D)

)
− L

(
Mfp32(D)

)]
.

Our goal is to find policies that minimally increases loss (or equivalently, a policy p with small R(p)).
We note that a key challenge in evaluating R(p) for a given policy p is that the expectation is taken
over the full private dataset D. This makes direct computation both expensive and incompatible with
tight privacy guarantees. To address this, we instead estimate R(p) by subsampling D and running a
limited number of DP-SGD iterations under policy p to obtain a proxy loss, then the same training
iterations is done to obtain the baseline full-precision loss, and the difference is used as an empirical
estimate of the loss impact.

Since this quantity is computed on the private training dataset D, any estimation of R(·) must be
performed in a differentially private manner, and therefore consumes part of the overall privacy
budget. Any computation using the private data incurs a privacy cost that must be accounted for to
ensure that the privacy budget is not exceeded. We outline how DPQUANT privatizes and accounts
for loss measurement in Section 5.4.

5.3 DYNAMIC LAYER SELECTION FOR QUANTIZED DP-SGD TRAINING

Building on the insights from the previous sections, we design a dynamic layer selection strategy for
quantized DP-SGD that combines: (i) probabilistic sampling of quantized layers to reduce variance
(Section 5.1), and (ii) loss-aware prioritization to preserve performance by avoiding quantization of
high-impact layers (Section 5.2).

5
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Let R(li) denote the estimated quantization loss impact of layer i. We define the probability of
selecting layer i for quantization as:

pi :=
exp(−βR(li))∑n
j=1 exp(−βR(lj))

, for i = 1, . . . , n,

where β > 0 is a scaling parameter that controls how strongly we prioritize low-impact layers.

As outlined in Figure 2, to quantize k out of n layers at each epoch, we sample a subset without
replacement according to the distribution {pi}. This allows us to adaptively choose the least sensitive
layers for quantization, while still randomly rotating layers with similar loss impact to minimize
variance over time. This selection procedure is detailed in Appendix A.13. DPQUANT provides a set
of tunable parameters that govern the frequency of the analysis, as well as other privacy parameters.

5.4 PRIVACY ACCOUNTING

Our method begins by measuring loss differences on each user’s private dataset. Specifically, we
compute L(M(D)) which requires inspecting raw data and inherently risks exposing sensitive
information if released directly. Without these privacy-preserving measures, simply publishing the
loss-difference measurements compromises the privacy guarantee DP-SGD provides.
Definition 3 (Sampled Gaussian Mechanism (SGM), (Mironov et al., 2019)). Let f be a function that
maps subsets of a dataset S to Rd. The Sampled Gaussian Mechanism, denoted SGq,σ, is defined
with sampling rate 0 < q ≤ 1 and noise parameter σ > 0 as:

SGq,σ(S) := f ({x ∈ S : x is independently sampled with probability q}) +N (0, σ2Id),

where each element in S is independently included with probability q, and N (0, σ2Id) denotes
d-dimensional isotropic Gaussian noise with variance σ2 per coordinate.

To protect privacy, we frame this loss computation as a Sampled Gaussian Mechanism (SGM): we
draw a random subsample of D, clip the resulting loss value to bound sensitivity, and then add
Gaussian noise of scale σ. These operations correspond to step 3 of Algorithm 1.

Algorithm 1 COMPUTELOSSIMPACT

1: Input: P (policies), B (batches), R (iterations), α (decay), C (norm), σ (noise)
2: Let p0 be the baseline policy (no quantization)
3: Initialize a map for average losses, ℓ̄
4: for each p ∈ P ∪ {p0} do ▷ (1) Compute avg. loss for baseline and all policies
5: total_loss← 0
6: for i = 1 to R do
7: RESTOREMODEL()
8: for each (x, y) ∈ B do
9: With policy p, run DPSGD-UPDATE(M, loss(M(x), y))

10: end for
11: total_loss← total_loss + 1

|B|
∑

(x,y)∈B loss(M(x), y)

12: end for
13: ℓ̄[p]← total_loss/R
14: end for
15: R[p]← ℓ̄[p]− ℓ̄[p0] for all p ∈ P ▷ (2) Compute loss differences from baseline
16: R← [R[p1], . . . , R[pk]]

17: R̂← R ·min
(
1, C

∥R∥2

)
+N (0, σ2C21) ▷ (3) Privatize differences

18: UPDATEPRIVACY( rate= |B|/|D|, steps=1, noise_scale=σ)
19: for each p ∈ P do ▷ (4) Update Exponential Moving Average (EMA)
20: L[p]← (1− α) · L[p] + α · R̂[p]
21: end for
22: return L

Proposition 2. Algorithm 1 is a Sampled Gaussian Mechanism (SGM) with sample rate q = |B|/|D|
and noise scale σ = σmeasure. Proof: See Appendix A.9.
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To account for the privacy cost we incur by performing the analysis in Algorithm 1, we rely on
Opacus’s privacy accountants (Yousefpour et al., 2022). This is for two reasons: First, these
accountants measure the cumulative privacy loss of SGMs (Makni et al., 2025), where by Prop. 2 we
can reuse its implementation. Second, by leveraging the advanced composition theorem (Abadi et al.,
2016), we obtain a much tighter upper bound on the total privacy expenditure incurred by both the
DP-SGD training process and any subsequent analyses performed under the same privacy budget.
We explain this in more detail in Appendix A.12.
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Figure 3: Privacy cost of analysis for ResNet18/GTSRB; performing analysis every 2 epochs

In Figure 3, we report the cumulative privacy loss from both the analysis and training components
across various configurations. Our results empirically demonstrate that the privacy cost of analysis is
negligible compared to training, and does not meaningfully affect the quality of the resulting model.

6 EVALUATION

Models and Datasets. We evaluate our approach on commonly used neural networks for differentially
private training (Jagielski et al., 2020; De et al., 2022): ResNet18 (He et al., 2015), ResNet50 and
DenseNet121 (Huang et al., 2018) from in the torchvision (maintainers and contributors, 2016)
library. We also test BERT (Devlin et al., 2019). These models are trained on the Extended
MNIST (Cohen et al., 2017), German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp
et al., 2011), CIFAR-10 (Krizhevsky, 2009) and SNLI (Bowman et al., 2015) datasets.

Implementation. DPQUANT is implemented on top of Opacus (Yousefpour et al., 2022), a DP
training framework which provides Poisson sampling, gradient clipping, and noising. The DPQUANT
parameters can be found in Appendix A.2.

Low Precision Format. For low precision computations, we used the LUQ-FP4(Chmiel et al., 2024)
format, the highest-performing 4-bit quantization format. LUQ-FP4 uses a 4-bit representation of
floating point numbers, consisting of 1 sign and 3 exponent bits. In Appendix A.7, we evaluate
DPQUANT on other low-precision formats including FP8 and 4-bit uniform quantization.

6.1 QUANTIZATION-QUALITY TRADE-OFF

Quantizing more layers proportionally increases the speed of training. However, it also increases the
accuracy degradation in DP-SGD training. Thus, there is a speed-accuracy trade-off depending on
the number of layers quantized. For a given number of quantized layers, the resulting model accuracy
can significantly vary depending on which layers are quantized at any given epoch. DPQUANT aims
to automatically identify the subset of layers for each epoch that provides the best accuracy, assuming
a certain number of layers are quantized. We refer to the desired number of quantized layers as
“computational budget” because it determines the speed and compute resources needed.

In Figure 4, we sampled ≈ 50 random subsets of layers to execute in fp4. We plotted the empirical
Pareto front using these sampled measurements, in addition to the resulting validation accuracy when
using DPQUANT’s scheduling technique for a given computational budget.

We make two observations. First, we note that randomly selecting the quantized layers can lead to
significant loss in accuracy, as much as 40%. Second, DPQUANT generates scheduling configurations
that provide validation accuracy close to the Pareto-front for all evaluated networks and datasets.
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Figure 4: Comparing policies generated by DPQUANT to the speed-accuracy Pareto front

6.2 SENSITIVITY TO PRIVACY BUDGET

Model Dataset
Percent

Quantized
ε = 4 ε = 8

Baseline ε Ours ε Baseline ε Ours ε

ResNet18

EMNIST
0.5 81.27 ± 1.29 3.14 82.16 3.04 –
0.75 80.51 ± 0.37 3.01 80.09 3.04 –
0.9 78.82 ± 0.30 3.01 79.03 3.04 –

GTSRB
0.5 42.34 ± 5.53 4.01 49.09 3.99 69.06 ± 5.63 8.01 76.75 7.99
0.75 39.98 ± 3.99 4.01 42.62 3.96 63.62 ± 5.59 8.01 70.07 7.99
0.9 37.94 ± 2.23 4.01 39.48 3.99 57.49 ± 4.46 8.01 67.67 7.99

CIFAR-10
0.5 64.37 ± 1.42 4.06 65.39 3.94 69.26 ± 1.46 7.12 70.51 7.17
0.75 62.17 ± 0.61 4.06 63.57 3.94 67.80 ± 0.81 7.12 69.84 7.17
0.9 61.09 ± 1.66 4.06 61.22 3.94 67.21 ± 1.24 7.12 68.68 7.17

ResNet50 GTSRB
0.5 38.76 ± 8.16 4.01 42.11 3.99 75.99 ± 7.33 8.01 80.23 7.99
0.75 29.48 ± 4.72 4.01 33.67 3.99 58.13 ± 8.50 8.01 69.03 7.99
0.9 24.78 ± 2.67 4.01 29.00 3.99 47.40 ± 7.23 8.01 59.87 7.99

DenseNet121

GTSRB1
0.5 54.10 ± 5.58 4.06 55.38 3.97 65.47 ± 5.42 8.01 71.05 7.93
0.75 44.60 ± 5.06 4.06 47.36 3.97 56.14 ± 7.57 8.01 63.30 7.93
0.9 40.52 ± 2.83 4.06 44.15 3.97 51.06 ± 5.41 8.01 52.60 7.93

CIFAR-101
0.5 59.22 ± 1.15 4.03 61.08 3.97 67.96 ± 0.93 7.12 68.96 7.28
0.75 56.43 ± 1.72 4.03 60.31 3.97 64.81 ± 1.71 7.12 66.48 7.28
0.9 55.18 ± 1.38 4.03 58.89 3.97 63.03 ± 1.69 7.12 65.13 7.28

BERT SNLI 0.5 62.54 ± 4.54 7.48 67.80 7.48
0.75 52.04 ± 3.95 7.48 63.61 7.48

Table 1: Model quality across datasets and privacy levels.
We compared our method to the baseline for two privacy budgets ε = 4 and ε = 8. In Table 1 we
plotted the validation accuracy for different privacy budgets. For ResNet18/50, we obtained these
values by truncating the training at the respective privacy budgets (i.e. without additional hypermeter
tuning), and selected baseline data point with larger ε than ours wherever possible.

In most cases, DPQUANT outperforms the baseline performance by at least 1 standard deviation
whilst not exceeding the privacy budget. In particular, despite the privacy cost of analysis being
more dominating during the ε = 4 case, DPQUANT produces near-optimal quantization schedules,
demonstrating its robustness with respect to ε.

We have also evaluated DPQUANT on extremely small privacy budgets (e.g. ε = 1). In Appendix A.3
we show that DPQUANT still demonstrates the same benefits under this setting.

1Batch size decreased to improve convergence under ε = 4.
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6.3 ABLATION STUDY
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Figure 5: Ablation study, PLS:
probabilistic layer selection, LLP:
loss-aware layer prioritization

To better understand the contributions of the two approaches,
we compared our approach (probabilistic layer sampling + loss-
aware layer prioritization) with probabilistic layer sampling (PLS)
alone. In Figure 5, we observe that PLS consistently performs
better than the baseline where the quantized layers are selected
statically. However, there is still a large gap between PLS and
the best-performing layer selections, suggesting that some crucial
layers are consistently being subjected to quantization which
significantly degrades the quality of trained models.

When PLS is combined with loss-aware layer prioritization, the
layers crucial to model training are left in full precision, even
when most of the layers are quantized. The benefits of priori-
tization begins to surface as the proportion of quantized layers
increase, as the critical layers have a larger probability of being
quantized in the randomized baselines. Furthermore, we observe that the best training outcomes are
achieved by combining both approaches. We include more details in Appendix A.6.

6.4 THEORETICAL SPEEDUP
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Figure 6: Theoretical speedups for DPQUANT
assuming 90% of the layers are quantized.

As hardware with support for FP4 MatMuls
and Conv2D (e.g., NVIDIA Blackwell) are not
yet widely available, we are unable to eval-
uate the speed benefits of quantization with
DPQUANT. Instead, we use estimates from prior
work, along with performance statistics published
by NVIDIA (NVIDIA Corporation, 2024) to esti-
mate speedups. We estimate that FP4 can provide
a 4× speedup over the FP16 baseline by emulat-
ing FP4 computation on existing hardware. Sep-
arately, prior works (Sun et al., 2020; Choi et al.,
2018; Abdolrashidi et al., 2021) report a 4−7.3×
speedup when using FP4 on supported hardware.
To remain conservative, we use the lower bound
(4×) in our estimates. We assume matrix multiplications, convolutions, and element-wise operations
can be accelerated 4×, and characterize the total runtime as a linear compute cost model:

Tours = Tanalysis + (1− p+ p/4)(Ttrain baseline − Toverhead) + Tanalysis + Toverhead

where Tanalysis is the time taken by algorithm 1, and Toverhead captures the time taken by operations
that do not have performance benefits from low precision (details in appendix A.11).

We show our speedups in Figure 6. Quantized training with DPQUANT is 1.75× to 2.21× faster
than the fp16 baseline. In particular, the loss-aware prioritization mechanism in DPQUANT incurs
minimal runtime overhead, which is crucial to preserve the performance gains of fp4 computation.

7 CONCLUSION

In this paper, we introduce DPQUANT, a mechanism for efficient quantized DP-SGD training.
We make the observation that existing quantized training techniques can significantly degrade the
accuracy of models trained with DP-SGD and provided justification which demonstrated the amplified
quantization error. To address this challenge, DPQUANT employs techniques to dynamically select
layers to quantize such that impact of quantization on model accuracy is minimized. DPQUANT itself
is a differentially private mechanism that incurs only small privacy cost. We empirically demonstrate
that DPQUANT achieves near-optimal compute-to-accuracy tradeoffs during quantized training,
generalizes to different models, datasets and privacy budgets, and can provide up to 2.21× speedup
while minimally impacting accuracy. DPQUANT enables efficient and practical differentially-private
training for both centralized and distributed training deployments.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 EFFECT OF BATCH SIZE

Our analysis of quantization error in DP-SGD is independent of batch size. While larger batches
reduce stochastic gradient variance, our argument hinges on the magnitude of the final noised gradient,
which remains large regardless of batch size.

1. In DP-SGD, the added noise’s scale is proportional to the per-example clipping constant, C,
not the batch size.

2. This noise dominates the averaged gradient signal, causing the raw gradients in subsequent
steps to have significantly larger norms than in non-DP training.

3. As shown in Proposition 1, quantization variance is proportional to the square of the
gradient’s norm (Var(q(x)) = Θ(||x||2∞)). Therefore, the larger gradients in DP-SGD lead
to much higher quantization variance, which destabilizes training and degrades accuracy.

To demonstrate this empirically, we ran the same training job with batch sizes ranging from 1024 to
8192 and measured the numerical range of the weight gradients, similar to that in figure 1c. Across
the batch sizes, there is negligible difference in the gradient ranges, which confirms our hypothesis.

Table 2: Weight gradient norm range across various batch sizes, showing the negligible impact of
batch size on the final gradient magnitudes.

Batch Size Norm Range Mean Norm Range Std
1024 0.159 0.137
2048 0.161 0.127
4096 0.158 0.116
8192 0.156 0.119

A.2 EVALUATION SETUP AND PARAMETERS

Parameter Default Description
n 60 number of epochs to train
k – layers to execute in low precision.
nsample 1 test samples for loss measurement.
ninterval 2 epochs to train before the next measurement.
R 2 repetitions during measurement.
σmeasure 0.5 Noise scale used during loss-difference privatization.
Cmeasure 0.01 Clipping norm used during loss-difference privatization.

Table 3: Configurable Hyperparameters of DPQUANT

Remark: Selecting DPQUANT parameters in practice. In our experiments, we have found
repetitions = 2 and sampling frequency = 1 to be the most optimal. Adopting these recommended
defaults, the user needs to pick:

1. one of k (number of layers to quantize) and the analysis frequency

2. clipping norm used in loss sensitivity analysis

The process of determining clipping norm for analysis is similar to that of finding the clipping
threshold C for normal DP-SGD training. We want to pick a value such that the differences between
policies are expressed.
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A.3 EVALUATION UNDER EXTREME PRIVACY BUDGETS

As shown in Figure 3, the privacy consumption of DPQUANT’s analysis accounts for a higher fraction
of the total privacy near the beginning of training. We wish to evaluate DPQUANT under more strict
privacy budgets.

In these cases, both the parameters of DP-SGD and DPQUANT need to be updated, namely the noise
scale σ and measurement noise scale σmeasure both need to be increased. Table 4 below shows that
DPQUANT achieves optimal accuracy even when ε = 1.

Table 4: Training accuracy of ResNet18 with GTSRB under the strict privacy budget (ε = 1)

Baseline Ours
Count Accuracy (%) ε Accuracy (%) ε

50% 44.14 ± 4.61 1.05 48.26 0.99
75% 40.13 ± 3.65 1.05 43.14 0.99
90% 35.20 ± 1.12 1.05 38.66 0.99

A.4 TRAINING HYPERPARAMETERS

A.4.1 IMAGE MODELS

While the learning rate might seem too high for regular SGD training, previous results Morsbach
et al. (2024); Ponomareva et al. (2023) have shown that large learning rates are more beneficial for
DP-SGD training.

Table 5: Experimental configurations (6 runs)

1 2 3 4 5 6

Model ResNet18 ResNet18 ResNet18 ResNet50 DenseNet121 DenseNet121
Dataset EMNIST CIFAR10 GTSRB GTSRB CIFAR10 GTSRB
σ 1 1 1 1 1 1
δ 10−5 10−5 10−5 10−5 10−5 10−5

Clipping norm 1 1 1 1 1 1
Batch size 1024 1024 1024 1024 512 512
Physical batch size 128 128 128 128 128 128
Weights None ImageNet ImageNet ImageNet ImageNet ImageNet
Optimizer SGD SGD SGD SGD SGD SGD
Learning rate (lr) 0.5 0.5 0.5 0.5 0.5 0.5
Epochs 30 60 60 60 60 60

A.4.2 LANGUAGE MODELS

we conducted a new NLP experiment using BERT for sequence classification on the Stanford
Natural Language Inference (SNLI) corpus. In this task, the model classifies a pair of statements
(e.g., “Children smiling and waving at camera” and “There are children present”) as “entailment,”
“contradiction,” or “neutral.”

Due to the high number of parameters in BERT, we have followed the tutorial from Opacus and
frozen 12 out of 13 BERT layers, and trained the last BERT layer and subsequent classification layers.

We have compared our method (DPQUANT) with a random static baseline (similar to section 6.1).
We use the same training parameters, trained for a single epoch, and used ε = 8 as the total privacy
budget.

In these experiments, DPQUANT outperforms the baseline in accuracy. DPQUANT consistently
avoids quantizing the last few layers (including the trainable ones) without prior information about
the importance and trainability of the layers.
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A.5 ACCURACY DEGRADATION FOR DP-SGD UNDER NAIVE QUANTIZATION

Prior works Sun et al. (2020); Chmiel et al. (2024); Micikevicius et al. (2022) have demonstrated
minimal degradation during quantized fp4/8 training compared to the full precision counterpart. We
tabulate their results below:

Table 6: Ultra-Low and LUQ vs. baseline accuracy

Model Baseline Ultra-Low Sun et al. (2020) LUQ Chmiel et al. (2024)

ResNet-18 69.7% 68.27% (-1.43%) 69.09% (-0.61%)
ResNet-50 76.5% 74.01% (-2.49%) 75.42% (-1.08%)
MobileNet-V2 71.9% 68.85% (-3.05%) 69.55% (-2.35%)
ResNext50 77.6% N/A 76.02% (-1.58%)
Transformer-base 27.5 (BLEU) 25.4 (-2.10) 27.17 (-0.33)
BERT fine-tune 87.03 (F1) N/A 85.75 (-1.28)

As demonstrated in the Figure 4, the performance degradation of DP-SGD under quantization is
much larger.

Table 7: Validation accuracy for DP-SGD training: baseline vs. LUQ-FP4 (all layers quantized)

Model Dataset Pretraining Baseline LUQ-FP4 ∆

ResNet-18 EMNIST None 83.4% 77.8% -5.6%
ResNet-18 CIFAR-10 ImageNet 71.0% 65.8% -5.2%
ResNet-18 GTSRB ImageNet 85.6% 64.0% -21.6%
ResNet-50 GTSRB ImageNet 89.8% 49.0% -40.8%
DenseNet-121 CIFAR-10 ImageNet 67.0% 62.9% -4.1%
DenseNet-121 GTSRB ImageNet 82.0% 53.0% -29.0%

A.6 SENSITIVITY OF TEMPERATURE β

In our method, the temperature parameter β provides a crucial mechanism to balance two comple-
mentary strategies:

• Deterministic Selection: This approach prioritizes elements based on their loss sensitivity,
selecting those that are most impactful.

• Randomized Sampling: This approach introduces stochasticity, ensuring diversity and
exploration in the selection process.

A low β value favors randomized sampling, while a high β value makes the selection process more
deterministic and reliant on loss sensitivity. Below, we tabulate the training accuracy for different
value of β, and observe that better training outcomes can be obtained by favoring loss-based layer
selection while retaining some stochasticity. Namely, it performs strictly better than selection purely
based on random layer sampling.

Table 8: Model performance across various counts and temperature (β) values

Temperature (β)
Count 0.1 0.22 0.47 1.03 2.24 4.86 10.57 22.99 50.0

10 66.49 67.58 67.53 67.01 70.25 70.37 71.59 70.96 71.67
15 58.47 58.47 60.03 59.07 60.86 65.00 60.54 65.04 63.75
18 51.60 54.08 55.73 53.73 53.86 53.49 60.90 55.45 56.05
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A.7 EVALUATION ON OTHER QUANTIZERS

To assess the versatility of our method, DPQuant, we evaluated its performance with different
numerical precisions and quantization schemes. We conducted two primary experiments: one using
8-bit floating-point (fp8e5m2) for training to test a different bitwidth, and another using a uniform
4-bit quantizer to test a different quantization strategy.

A.7.1 FP8 QUANTIZATION

Our experiments with FP8 training show that quantized DP-SGD does not suffer a significant
performance degradation. This minimal performance gap suggests that in higher-precision settings
like FP8, the benefits of more complex techniques like layer subset selection may be less critical. We
show the results in table 9.

Table 9: Performance comparison with FP8 training.

Count Base Acc(%) Base ϵ Our Acc(%) Our ϵ

50% 67.56± 0.47 4.05 67.12 3.93
75% 67.76± 0.67 4.05 67.65 3.93
90% 67.38± 0.59 4.05 68.01 3.93

A.7.2 UNIFORM 4-BIT QUANTIZATION

Next, we evaluated a more aggressive quantization scheme using a uniform FP4 quantizer. In this
setup, the value range is discretized into 24 = 16 levels via stochastic rounding. The results reveal
a more substantial drop in accuracy for our method compared to the baseline. This outcome is
consistent with our observations of the LUQ-FP4 quantizer discussed in Section 6.2, highlighting the
inherent challenges of applying DP-SGD with very low-bitwidth uniform quantization. We show the
results in table 10.

Table 10: Performance comparison with uniform FP4 quantization.

Count Base Acc(%) Base ϵ Our Acc(%) Our ϵ

50% 63.56± 0.89 4.53 62.15 4.44
75% 57.85± 0.90 4.53 59.09 4.44
90% 55.82± 0.80 4.53 56.27 4.44

A.8 PROOF OF PROPOSITION 1

Proposition 1. Let q : Rn → Rn be an unbiased (E[q(x)] = x) and scale-invariant (q(λx) =
λ q(x)) quantizer whose outputs lie on a fixed finite grid. If x is drawn from an absolutely continuous
distribution, then

Var
(
q(x)

)
= Θ

(
∥x∥2∞

)
.

Proof. We begin by first showing the upper-bound: Var (q(x)) = O
(
||x||2∞

)
. We define M = ∥x∥∞

and v = x/M , so ∥v∥∞ = 1. By scale-invariance of q,

Var
(
q(x)

)
= Var

(
q(Mv)

)
= Var

(
M q(v)

)
= M2 Var

(
q(v)

)
.

Since q(v) ∈ [−1, 1]n, there exists a finite C such that Var(q(v)) ≤ C, giving

Var
(
q(x)

)
= M2 Var (q(v)) ≤ CM2 = C ∥x∥2∞.

Next, we show the lower-bound: Var (q(x)) = Ω
(
||x||2∞

)
. On the compact set {v : ∥v∥∞ = 1},

the continuous function v 7→ Var(q(v)) attains a minimum m ≥ 0. Because the finite quantizer grid
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has measure-zero, absolute continuity of x ensures the probabilty of v landing on the grid is 0, so
Var(q(v)) > 0 and hence m > 0. Therefore

mM2 ≤ Var
(
q(x)

)
≤ CM2,

From this we conclude Var(q(x)) = Θ(∥x∥2∞), as desired.

A.9 JUSTIFICATION OF PRIVACY GUARANTEES (THEOREM 2)

Proposition 2. Algorithm 1 is a Sampled Gaussian Mechanism (SGM) with sample rate q = |B|/|D|
and noise scale σ = σmeasure.

Proof. We first characterize Algorithm 1 as an analysis on the user’s private dataset. The function
accepts a subsampled batch of size |B| from a dataset with |D| samples.

Using this batch of user data, as well as some non-private sources of data such as the model weights,
we compute the loss differences which is vectorized in R ∈ Rp, where p is the number of available
quantization policies.

In step (3) of Algorithm 1, we clip the vector R to norm C, to which independent Gaussian noise
proportional to σ2C2 is added to obtain R̂. This is equivalent to adding noise proportional to σ2 when
the sensitivity of R̂ is 1 through a scaling argument.

Algorithm 1 ceases to access private data in B after the computation of R̂, which results in all the
following steps (i.e. updating privacy accountant and EMA) post-processing Dwork and Roth (2014)
which does not impact the privacy consumption.

Furthermore, the privacy accounting step makes use of Opacus’ Yousefpour et al. (2022) privacy
accountant, which assumes2 the the noise scale σ is proportional to the clipping constant (i.e.
equivalent to adding a noise proportional to σ2C2.

A.10 LOW PRECISION SIMULATION SETUP

As FP4 hardware support is forthcoming, we employ the following simulation setup to emulate the
effect of traitning under FP4. Notably, we quantize both inputs to the conv2d forward, wgrad, and
dgrad operators as well as its output.

quantizer

weight

image

quantizer

fp32 conv2d 

forward
quantizer out

Figure 7: Quantization simulation setup

A.11 THEORETICAL SPEEDUP CALCULATION

Due to the unavailabilty of accelerators and reliable software support for FP4, we instead rely on a
performance model to estimate the theoretical throughputs of FP4 computation.

We first decompose the DP-SGD training computation into the following operations, listed in table 11.

We performed profiling on the models (on their respective datasets) stated in the paper, and we plot
the runtime decomposition in Figure 8. Using this data, we can compute the amount of “overhead”
(i.e. the time spent on operators which will not benefit from lower precision) for each model/dataset.
This is tabulated in Table 12.

2This assumption is stated in https://github.com/pytorch/opacus/blob/main/opacus/accountants/analysis/rdp.py
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Table 11: Decomposition of DP-SGD training

Computation Stage Description
Benefits

from FP4
Total Forward Time spent on the forward pass through the model, where

input data is processed layer by layer to produce the output.
✓

Total Backward Time for backpropagation, where gradients are calculated for
model parameter updates.

✓

Optimizer Clip Time for clipping gradients to a predefined threshold to en-
sure stability and prevent large updates during training.

✓

Optimizer Noise Time for adding random noise to the gradients to ensure
differential privacy by masking individual data point contri-
butions.

Optimizer Scale Time for scaling the gradients after clipping to adjust the
magnitude of the updates.

✓

Other Optimizer Time spent on other optimizer-related operations, such as
learning rate management.

Other Time Time for all other operations during the training iteration,
including data loading, synchronization, and auxiliary tasks.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time ×109

densenet121 cifar10

densenet121 gtsrb

resnet18 cifar10

resnet18 emnist

resnet18 gtsrb

resnet50 cifar10

resnet50 emnist

resnet50 gtsrb

C
on

fig

Opacus DP-SGD Training Breakdown

Total Forward

Total Backward

Optimizer Clip

Optimizer Noise

Optimizer Scale

Other Optimizer

Other Time

Figure 8: Runtime decomposition of DP-SGD training

Table 12: Breakdown of total time, good ops, bad ops, and overhead percentage for different model
configurations.

Config Total Time Ops with Speedup Overhead Ops Overhead %

DenseNet121 CIFAR10 1.15× 109 1.10× 109 5.23× 107 4.55
DenseNet121 GTSRB 1.08× 109 1.01× 109 6.74× 107 6.23
ResNet18 CIFAR10 1.82× 108 1.66× 108 1.68× 107 9.20
ResNet18 EMNIST 1.86× 108 1.49× 108 3.68× 107 19.81
ResNet18 GTSRB 1.74× 108 1.63× 108 1.04× 107 5.99
ResNet50 CIFAR10 4.31× 108 4.05× 108 2.55× 107 5.92
ResNet50 EMNIST 3.88× 108 3.36× 108 5.13× 107 13.22
ResNet50 GTSRB 4.05× 108 3.76× 108 2.87× 107 7.10
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A.12 OPACUS PRIVACY ACCOUNTING

Opacus maintains a tuple of the form (sample rate, noise scale, number of steps), which is incre-
mentally updated during training. At any point, we can query the current privacy cost in terms of
(ε, δ) by specifying a target δ and using either the rdp or prv accountant. This mechanism enables
flexible and precise tracking of privacy usage, allowing us to assess how much additional privacy is
consumed by our analysis relative to standard training.

A.13 SAMPLING OF QUANTIZED LAYERS

We outline the algorithm DPQUANT uses to select layers to compute under quantization in Algo-
rithm 2.

Algorithm 2 SELECTTARGETS

1: Input: L (EMA scores), P (set of policies), s (temperature), m (number to sample), layers
(set of layers to quantize under policy p)

2: v ← [L[p] for p ∈ P ]
3: v ← (v −min(v))/(max(v)−min(v)) ▷ Normalize
4: π ← softmax(−s · v)
5: Q← Multinomial(π, m, without replacement) ▷ Sample m policies
6: S ← ∅
7: for each p ∈ Q do
8: S ← S ∪ layers[p]
9: end for

10: return S

A.14 REMARK: VULNERABILITY TO FLOATING POINT ATTACKS

Differential privacy implementations must carefully consider the vulnerabilities highlighted by
Mironov (2012). Mironov identified that the floating-point implementation of noise sampling for
mechanisms such as Laplacian or Gaussian introduces a “porous” distribution that lacks translation
invariance. This issue is prevalent in both fp64 and fp32 arithmetic.

To ensure robustness against this vulnerability, our method has been meticulously designed. The
critical step of noise addition in our framework occurs under standard conditions, prior to the
application of our novel quantization technique. The process is as follows:

1. Gradients are maintained in full fp32 precision.
2. Noise is sampled and added to these fp32 gradients, also in fp32 precision. Only after the

noisy gradient is computed is it quantized for use in the forward/backward pass of select
layers.

3. Thus, the noise injection process maintains a vulnerability profile identical to that of standard
DP-SGD implemented in fp32. The use of lower-precision representations for computation
does not alter or exacerbate the known properties of the initial noise addition.

Additionally, our method is fully compatible with established defenses against this vulnerability. The
’snapping mechanism’ proposed by Mironov, a post-processing step applied directly to the noisy
output, would be applied to the full-precision fp32 gradients immediately after noise addition and
before quantization in our pipeline.
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