
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DPQUANT: EFFICIENT AND DIFFERENTIALLY-PRIVATE
MODEL TRAINING VIA DYNAMIC QUANTIZATION
SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially-Private SGD (DP-SGD) is a powerful technique to protect user pri-
vacy when using sensitive data to train neural networks. During training, converting
model weights and activations into low-precision formats, i.e., quantization, can
drastically reduce training times, energy consumption, and cost, and is thus a widely
used technique. In this work, we demonstrate for the first time that quantization
causes significantly higher accuracy degradation in DP-SGD compared to regular
SGD. We observe that this is caused by noise injection in DP-SGD, which amplifies
quantization variance, leading to disproportionately large accuracy degradation.
To address this challenge, we present DPQUANT, a dynamic quantization frame-
work that adaptively selects a changing subset of layers to quantize at each epoch.
Our method combines two key ideas that effectively reduce quantization variance:
(i) probabilistic sampling of the layers that rotates which layers are quantized
every epoch, and (ii) loss-aware layer prioritization, which uses a differentially
private loss sensitivity estimator to identify layers that can be quantized with min-
imal impact on model quality. This estimator consumes a negligible fraction of
the overall privacy budget, preserving DP guarantees. Empirical evaluations on
ResNet18, ResNet50, and DenseNet121 across a range of datasets demonstrate that
DPQUANT consistently outperforms static quantization baselines, achieving near
Pareto-optimal accuracy-compute trade-offs and up to 2.21× theoretical through-
put improvements on low-precision hardware, with less than 2% drop in validation
accuracy.

1 INTRODUCTION

Differentially Private Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016) enables training
neural networks on sensitive data while providing formal privacy guarantees. To improve the efficiency
of such training on modern hardware, the use of low-precision arithmetic and data formats, i.e.,
quantization, has gained widespread interest (Gholami et al., 2021; Jacob et al., 2017). Quantization
can significantly reduce the amount of computation and memory required, thus reducing the latencies,
cost, and energy consumption during training and inference, often with little to no loss in model
accuracy (Micikevicius et al., 2022). These benefits are especially important in resource-constrained
settings such as federated learning with edge devices, where support for full-precision arithmetic is
limited and compute budgets are constrained.

Modern accelerators, ranging from datacenter GPUs to mobile NPUs, are rapidly adopting ultra-
low precision formats such as FP8, INT4, or FP4. NVIDIA’s Blackwell architecture (NVIDIA
Corporation, 2024) is reported to provide 4× throughput for FP4 matrix multiplications compared to
FP16; AMD Instinct GPUs supports FP8 (Advanced Micro Devices, Inc., 2023; 2025), and Qualcomm
Hexagon supports INT4/INT8 (Qualcomm Technologies, Inc., 2024). Leveraging these compute
capabilities in model training would enable significant performance and scalability improvements.

In this work, we observe that applying low-precision quantization directly to DP-SGD training often
leads to significant accuracy degradation, as severe as a 40% drop. While non-DP training is typically
robust to quantized training, the gradient clipping and noise addition steps in DP-SGD interact poorly
with low-precision arithmetic leading to poor convergence as explained in Section 4.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our goal is to develop an automatic mechanism to effectively quantize DP-SGD, while minimizing
the impact on model accuracy and the differential privacy budget. We observe that quantizing only a
subset of layers and selectively varying this subset every epoch can preserve most of the efficiency
gains from quantization while maintaining model accuracy. DPQUANT uses two core techniques that
are implemented in a differentially private framework for dynamic quantization scheduling:

1. Probabilistic layer sampling, which rotates which layers are quantized every epoch to dis-
tribute quantization variance across the network, decreasing overall quantization variance;

2. Loss-aware prioritization, which uses a loss sensitivity estimator to selectively quantize
layers that have minimal impact on model accuracy.

We make the following contributions:

1. To our knowledge, this work is the first to demonstrate and explain the significant accuracy
degradation when employing existing quantization techniques with DP-SGD compared to
non-private SGD during model training.

2. We introduce DPQUANT, a differentially private lightweight mechanism that minimizes
quantization-induced loss by (a) probabilistically sampling which layers to quantize every
epoch and (b) prioritizing layers with lower sensitivity—while incurring only a negligible cost
to the overall privacy budget.

3. We demonstrate that DPQUANT achieves near Pareto-optimal accuracy-speed tradeoffs across a
range of compute and privacy budgets, outperforming static (fixed-layer) quantization baselines.

2 RELATED WORKS

Post-training quantization (PTQ) (Banner et al., 2019; Jacob et al., 2017; Nagel et al., 2021) aims
to accelerate inference through low-precision computations. A neural network is first trained in
full-precision and then its weights are quantized. The conversion to quantized formats typically
involves a small calibration dataset (Hubara et al., 2021; Nagel et al., 2019) to allocate quantization
bit-widths in different parts of the model and to perform bias correction. PTQ methods are orthogonal
to this work since they do not optimize training.

Quantization-aware training (QAT) (Krishnamoorthi, 2018) ameliorates the aforementioned ac-
curacy loss by training in lower precision. However, this technique requires extra analysis, such as
hardware simulation (Wang et al., 2019) and sensitivity estimation (Dong et al., 2019; Park et al.,
2018). QAT also involves quantizer updates, such as step-size tuning (Esser et al., 2020; Ding et al.,
2023) and quantizer scaling (Sakr et al., 2022), to select bit-widths (Youn et al., 2022). The in-
curred overhead during training typically cancels out any raw bit-width speedups and often increases
wall-clock training time, making them ideal for accelerating inference but not training (Chen et al.,
2024).

Gradient compression (Lin et al., 2020; Alistarh et al., 2017; Alimohammadi et al., 2023; Wen
et al., 2017; Shi et al., 2020) reduces communication costs by compressing gradients in distributed
settings, either through sparsification (Stich et al., 2018; Yu et al., 2017) or low-rank approximation
(Vogels et al., 2019; Idelbayev and Carreira-Perpinán, 2020). Notably, (Youn et al., 2023) combines
quantization and the noising mechanism to achieve differential privacy while reducing communication.
However, compression does not lower the arithmetic cost of training. In addition, these methods often
rely on assumptions such as full gradient availability or error feedback accumulation (Karimireddy
et al., 2019), which are difficult to satisfy under DP constraints.

Mixed-precision training (Choi et al., 2018; Zhou et al., 2018; Sun et al., 2020; Chmiel et al., 2024;
Micikevicius et al., 2022) aims to reduce training cost by operating on lower-precision data types, e.g.,
FP16, BF16, FP8, and FP4). While effective for standard SGD, mixed-precision training degrades
significantly under DP-SGD. To our knowledge, no prior work has explored mixed-precision training
when differential privacy mechanisms are employed.

Gradient Clipping Optimizations for DP-SGD. (Li et al., 2022; Bu et al., 2022; Lee and Kifer,
2020; Subramani et al., 2021) optimize the per-sample gradient clipping for DP-SGD by eliminating
redundant computation and increasing vectorized computation leading to better hardware utilization.
These works are orthogonal to DPQUANT.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

3.1 DIFFERENTIALLY-PRIVATE DNN TRAINING

We first recall the standard definition of differential privacy:
Definition 1 (Differential Privacy, (Dwork and Roth, 2014)). A randomized algorithm A satisfies
(ε, δ)-differential privacy if for all adjacent datasets D,D′ differing on at most one example, and for
all measurable sets S in the output space,

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Definition 2 (DP-SGD, (Abadi et al., 2016)). Differentially Private Stochastic Gradient Descent
(DP-SGD) is a variant of SGD that satisfies (ε, δ)-differential privacy by clipping and perturbing
per-example gradients. At each iteration t, the update rule is:

θt+1 ← θt − η

(
1

|B|
∑
i∈B

clip(∇L(θt, xi)) +N (0, σ2C21)

)
,

where B is a minibatch of training examples, clip(·) scales the gradient to have ℓ2 norm at most C,
and N (0, σ2C21) is Gaussian noise added to ensure privacy.

3.2 QUANTIZATION AND MIXED PRECISION TRAINING

Modern hardware accelerators such as NVIDIA GPUs, Google TPUs, and Qualcomm Hexagon NPUs
provide dedicated support for low-precision arithmetic, including fp16, bfloat16, and increasingly
lower bitwidth formats like fp8, fp6, and fp4. These formats enable faster matrix multiplications
and convolutions by reducing arithmetic complexity, memory usage, and data transfer costs. Lower
precision reduces both the number of transistors required per operation and the bandwidth needed for
memory and interconnects, resulting in substantial speedups and energy savings.

While prior work has demonstrated that full training in low-bit formats (e.g., fp4) can retain accuracy
under standard SGD, extending these techniques to differentially private training remains challenging.
The clipping and noise injection steps in DP-SGD amplify quantization errors and increase gradient
variance, making DP training more sensitive to precision loss. Fully quantized DP-SGD thus often
results in severe degradation unless carefully tuned.

4 DEGRADATION OF DP-SGD FROM QUANTIZATION

5 10 15 20

number of quantized layers

−4

−2

0

ac
cu

ra
cy

d
iff

er
en

ce

non-dp

dp

(a) Accuracy loss due to quantiza-
tion between DP and non-DP SGD

−10 0 10

log2(grad/noise)

0.00

0.05

0.10

0.15

epoch 10

epoch 20

epoch 30

epoch 40

epoch 50

(b) Distribution of gradient/noise ra-
tios in conv1 of ResNet18 – Gradi-
ent mostly dominated by noise

SGD SGD+Noise DP-SGD
0.0

0.1

0.2

0.3

U
n

n
oi

se
d

G
ra

d
ie

n
t

N
or

m

(c) Distribution of gradient norms
between SGD, SGD and only noise
injection, and full DP-SGD

Figure 1: Comparing quantized SGD vs DP-SGD ResNet18 training on the GTSRB dataset

Figure 1 presents a case study of ResNet18 trained on GTSRB, where the forward and backward
convolution operators are quantized to evaluate the effects of quantized training. Figure 1a shows the
accuracy loss compared to the unquantized baseline for different degrees of quantization (in terms of
the number of layers quantized), and the error bars represent the results when different subsets of
layers are chosen for quantization, both for DP and non-DP training. For the non-DP SGD baseline,
fully-quantized training results in only a modest accuracy drop of around 1%. In contrast, DP-SGD

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

experiences a much greater degradation, up to 5%. Furthermore, the variance in performance due to
different layers being quantized is substantially higher under DP-SGD. We observe similar trends in
other neural networks and datasets (included in Appendix A.5).

We hypothesize that the increased sensitivity to quantization can be attributed to noise injection in
DP-SGD as follows. In iteration t in the DP-SGD training, the gradients gt is first clipped to obtain ḡt

where ||ḡt||2 ≤ C (section 3.1). Next, noise nt ∼ N (0, σ2C21) is sampled, and finally the weights
are updated using the sum of the noise and clipped gradient:

wt+1 = wt − η (ḡt + nt) (1)
We assume the noise scale is σ ∈ (0.5, 10) (Abadi et al., 2016; De et al., 2022), in line with common
configurations reported in the DP-SGD literature. Since the standard deviation of the injected noise nt

is equal to the 2-norm of the clipped gradients, the∞-norm of the noise nt (i.e. its largest component)
is roughly on the same order as ||g||2. Since in higher dimensions ||ḡ||2 ≫ ||ḡ||∞ due to the 2-norm
growing much faster than the∞-norm, combining we have:

∥nt∥∞ ≈ ∥ḡt∥2 ≫ ∥ḡt∥∞ (2)
This relation is also demonstrated empirically in Figure 1b, where on average the magnitude of the
clipped gradient elements of ḡ is 25 times smaller than that of the injected noise n.

The weight update (Equation 1) with noisy gradient updates amplify the norms of raw gradients in
subsequent iterations. To show this, we first write the weight update as:

∆wt = wt+1 −wt = −η (ḡt + nt) (3)
The weight update ∆wt ≈ η nt due to nt being much larger in norm than ḡt, and thus:

∥∆wt∥∞ ≈ η ∥nt∥∞ = O(||ḡt||2) (4)
where the asymptotic equality holds due to Equation 2. Assuming L-Lipschitz-smoothness of the
loss with respect to the gradients:

∥gt+1 − gt∥∞ ≤ L ||wt+1 −wt||∞ = L ∥∆wt∥∞ (5)
We now show that the∞-norm of the raw gradients (i.e. before clipping and noising) of the next
iteration is bounded by ∥|ḡt||2 using the inverse triangle inequality with Equation 4 and 5:

||gt+1||∞ ≥ ||gt+1 − gt||∞ − ||gt||∞ = O(||gt||2) (6)
Equation 6 shows that elements of the raw gradients in the next iteration are bound by the much
larger O(||ḡt||2) rather than the usual O(||ḡ||∞) in normal SGD. As a result, we expect elements of
the raw gradients in DP-SGD to be larger in magnitude than in non-DP training.

Notably, the batch size has a negligible effect on norms, even though a larger batch size leads to a
smaller variance of the stochastic gradients. Therefore, we omit it in this analysis; we include further
discussions and empirical evaluations of this in appendix A.1.

To show this empirically, we plot the norms of intermediate gradients under both SGD and DP-SGD
using the same hyperparameters in Figure 1c, where the DP-SGD intermediate raw gradients are 2×
larger in the average and worst case. This phenomenon has also been observed in prior work (Du
et al., 2022), showing a even larger gap than what we observe in gradient norms later in training.

We now demonstrate that the much larger raw gradients under DP-SGD result in much higher
quantization variance.
Proposition 1. Let q : Rn → Rn be an unbiased (i.e. E[q(x)] = x) and scale invariant (i.e.
q(λx) = λq(x)) quantizer. Assume q(x) quantizes values onto some finite grid. Let x be sampled
from a absolutely continuous distribution. Then the quantizer variance Var(q(x)) = Θ(||x||2∞).
Proof: See Appendix A.8.

Using Prop. 1, we can more precisely express the variance of the quantization as follows:
(under DP-SGD) Var

(
q(gt+1) |gt+1

)
= O

(
∥gt+1∥2∞

)
= O

(
∥gt∥22

)
(under SGD) Var

(
q(gt+1) |gt+1

)
= O

(
∥gt∥2∞

)
The quantization variance above is in addition to the existing variance of the stochastic gradients, as
well as noise injected by DP-SGD. In higher dimensions, ∥gt∥2 ≫ ∥gt∥∞, quantization contributes
much more variance to the gradients, hence leads to slower and less reliable convergence (Johnson
and Zhang, 2013) and accuracy degradation. To address this challenge, we aim to reduce the
quantized-induced variance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 DPQUANT: OUR PROPOSED SOLUTION

5.1 PART I: PROBABILISTIC LAYER SAMPLING

Each time we perform randomized and unbiased quantization on a layer, we introduce additional
variance to its gradient updates. While this added variance might be acceptable in standard training,
it results in a significant performance degradation under DP-SGD, where gradient stability is already
challenged by injected noise.

Quantization Policy

Statistics

p1 p2 pnBaseline

d1 d2 dn

....

....

Randomization + Privatization

Update statistics

Query optimal policy

Quantized DP-SGD iteration

Training

Measure

Loss

Compute

Difference

Analysis

Figure 2: DPQUANT system overview

Suppose a layer is quantized with probability p, we let
gfp to denote its full precision gradients and gquant to be
its gradients computed under quantization. By Section 4,
quantization incurs additional variance, hence Var(gfp) ≤
Var(gquant). The expected gradient variance is:

E (Var(g)) = (1−p)Var(gfp)+pVar(gquant) ≤ Var(gquant)

From this it follows that whenever p < 1 – that is, when
only a subset of layers is quantized at each epoch—the
average quantization-induced variance is strictly lower
than in full quantization. Furthermore, by rotating which
layers are quantized every epoch, no single layer repeat-
edly incurs the full quantization variance, and hence their
expected variance remains smaller than Var(gquant).

5.2 PART II: LOSS-AWARE LAYER PRIORITIZATION

Not all layers contribute equally to model performance.
Intuitively, we prefer to retain higher precision in layers
that have a greater impact on the loss or accuracy. Given
a constrained quantization budget, our goal is to prioritize
quantization in lower-impact layers, thereby minimizing
the overall loss in model quality.

We define a quantization policy p to be the set of layers to compute under quantization. We define
R(p) as the expected loss increase incurred by applying quantization policy p instead of full precision:

R(p) := ED

[
L
(
Mp(D)

)
− L

(
Mfp32(D)

)]
.

Our goal is to find policies that minimally increases loss (or equivalently, a policy p with small R(p)).
We note that a key challenge in evaluating R(p) for a given policy p is that the expectation is taken
over the full private dataset D. This makes direct computation both expensive and incompatible with
tight privacy guarantees. To address this, we instead estimate R(p) by subsampling D and running a
limited number of DP-SGD iterations under policy p to obtain a proxy loss, then the same training
iterations is done to obtain the baseline full-precision loss, and the difference is used as an empirical
estimate of the loss impact.

Since this quantity is computed on the private training dataset D, any estimation of R(·) must be
performed in a differentially private manner, and therefore consumes part of the overall privacy
budget. Any computation using the private data incurs a privacy cost that must be accounted for to
ensure that the privacy budget is not exceeded. We outline how DPQUANT privatizes and accounts
for loss measurement in Section 5.4.

5.3 DYNAMIC LAYER SELECTION FOR QUANTIZED DP-SGD TRAINING

Building on the insights from the previous sections, we design a dynamic layer selection strategy for
quantized DP-SGD that combines: (i) probabilistic sampling of quantized layers to reduce variance
(Section 5.1), and (ii) loss-aware prioritization to preserve performance by avoiding quantization of
high-impact layers (Section 5.2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Let R(li) denote the estimated quantization loss impact of layer i. We define the probability of
selecting layer i for quantization as:

pi :=
exp(−βR(li))∑n
j=1 exp(−βR(lj))

, for i = 1, . . . , n,

where β > 0 is a scaling parameter that controls how strongly we prioritize low-impact layers.

As outlined in Figure 2, to quantize k out of n layers at each epoch, we sample a subset without
replacement according to the distribution {pi}. This allows us to adaptively choose the least sensitive
layers for quantization, while still randomly rotating layers with similar loss impact to minimize
variance over time. This selection procedure is detailed in Appendix A.13. DPQUANT provides a set
of tunable parameters that govern the frequency of the analysis, as well as other privacy parameters.

5.4 PRIVACY ACCOUNTING

Our method begins by measuring loss differences on each user’s private dataset. Specifically, we
compute L(M(D)) which requires inspecting raw data and inherently risks exposing sensitive
information if released directly. Without these privacy-preserving measures, simply publishing the
loss-difference measurements compromises the privacy guarantee DP-SGD provides.
Definition 3 (Sampled Gaussian Mechanism (SGM), (Mironov et al., 2019)). Let f be a function that
maps subsets of a dataset S to Rd. The Sampled Gaussian Mechanism, denoted SGq,σ, is defined
with sampling rate 0 < q ≤ 1 and noise parameter σ > 0 as:

SGq,σ(S) := f ({x ∈ S : x is independently sampled with probability q}) +N (0, σ2Id),

where each element in S is independently included with probability q, and N (0, σ2Id) denotes
d-dimensional isotropic Gaussian noise with variance σ2 per coordinate.

To protect privacy, we frame this loss computation as a Sampled Gaussian Mechanism (SGM): we
draw a random subsample of D, clip the resulting loss value to bound sensitivity, and then add
Gaussian noise of scale σ. These operations correspond to step 3 of Algorithm 1.

Algorithm 1 COMPUTELOSSIMPACT

1: Input: P (policies), B (batches), R (iterations), α (decay), C (norm), σ (noise)
2: Let p0 be the baseline policy (no quantization)
3: Initialize a map for average losses, ℓ̄
4: for each p ∈ P ∪ {p0} do ▷ (1) Compute avg. loss for baseline and all policies
5: total_loss← 0
6: for i = 1 to R do
7: RESTOREMODEL()
8: for each (x, y) ∈ B do
9: With policy p, run DPSGD-UPDATE(M, loss(M(x), y))

10: end for
11: total_loss← total_loss + 1

|B|
∑

(x,y)∈B loss(M(x), y)

12: end for
13: ℓ̄[p]← total_loss/R
14: end for
15: R[p]← ℓ̄[p]− ℓ̄[p0] for all p ∈ P ▷ (2) Compute loss differences from baseline
16: R← [R[p1], . . . , R[pk]]

17: R̂← R ·min
(
1, C

∥R∥2

)
+N (0, σ2C21) ▷ (3) Privatize differences

18: UPDATEPRIVACY(rate= |B|/|D|, steps=1, noise_scale=σ)
19: for each p ∈ P do ▷ (4) Update Exponential Moving Average (EMA)
20: L[p]← (1− α) · L[p] + α · R̂[p]
21: end for
22: return L

Proposition 2. Algorithm 1 is a Sampled Gaussian Mechanism (SGM) with sample rate q = |B|/|D|
and noise scale σ = σmeasure. Proof: See Appendix A.9.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To account for the privacy cost we incur by performing the analysis in Algorithm 1, we rely on
Opacus’s privacy accountants (Yousefpour et al., 2022). This is for two reasons: First, these
accountants measure the cumulative privacy loss of SGMs (Makni et al., 2025), where by Prop. 2 we
can reuse its implementation. Second, by leveraging the advanced composition theorem (Abadi et al.,
2016), we obtain a much tighter upper bound on the total privacy expenditure incurred by both the
DP-SGD training process and any subsequent analyses performed under the same privacy budget.
We explain this in more detail in Appendix A.12.

0 10 20 30 40 50 60

epoch

2

4

6

8

10

ε
(p

ri
va

cy
co

n
su

m
ed

)

no analysis

σ = 0.5

σ = 0.6

σ = 0.75

σ = 1.0

(a) privacy consumption of analysis + training

2 4 6 8 10

baseline privacy spent ε

0.00

0.05

0.10

0.15

p
o
rt

io
n

o
f

p
ri

va
cy

b
u

d
g
et

σ = 0.5

σ = 0.6

σ = 0.75

σ = 1.0

(b) Fraction of privacy spent on analysis

Figure 3: Privacy cost of analysis for ResNet18/GTSRB; performing analysis every 2 epochs

In Figure 3, we report the cumulative privacy loss from both the analysis and training components
across various configurations. Our results empirically demonstrate that the privacy cost of analysis is
negligible compared to training, and does not meaningfully affect the quality of the resulting model.

6 EVALUATION

Models and Datasets. We evaluate our approach on commonly used neural networks for differentially
private training (Jagielski et al., 2020; De et al., 2022): ResNet18 (He et al., 2015), ResNet50 and
DenseNet121 (Huang et al., 2018) from in the torchvision (maintainers and contributors, 2016)
library. We also test BERT (Devlin et al., 2019). These models are trained on the Extended
MNIST (Cohen et al., 2017), German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp
et al., 2011), CIFAR-10 (Krizhevsky, 2009) and SNLI (Bowman et al., 2015) datasets.

Implementation. DPQUANT is implemented on top of Opacus (Yousefpour et al., 2022), a DP
training framework which provides Poisson sampling, gradient clipping, and noising. The DPQUANT
parameters can be found in Appendix A.2.

Low Precision Format. For low precision computations, we used the LUQ-FP4(Chmiel et al., 2024)
format, the highest-performing 4-bit quantization format. LUQ-FP4 uses a 4-bit representation of
floating point numbers, consisting of 1 sign and 3 exponent bits. In Appendix A.7, we evaluate
DPQUANT on other low-precision formats including FP8 and 4-bit uniform quantization.

6.1 QUANTIZATION-QUALITY TRADE-OFF

Quantizing more layers proportionally increases the speed of training. However, it also increases the
accuracy degradation in DP-SGD training. Thus, there is a speed-accuracy trade-off depending on
the number of layers quantized. For a given number of quantized layers, the resulting model accuracy
can significantly vary depending on which layers are quantized at any given epoch. DPQUANT aims
to automatically identify the subset of layers for each epoch that provides the best accuracy, assuming
a certain number of layers are quantized. We refer to the desired number of quantized layers as
“computational budget” because it determines the speed and compute resources needed.

In Figure 4, we sampled ≈ 50 random subsets of layers to execute in fp4. We plotted the empirical
Pareto front using these sampled measurements, in addition to the resulting validation accuracy when
using DPQUANT’s scheduling technique for a given computational budget.

We make two observations. First, we note that randomly selecting the quantized layers can lead to
significant loss in accuracy, as much as 40%. Second, DPQUANT generates scheduling configurations
that provide validation accuracy close to the Pareto-front for all evaluated networks and datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 10 15 20

78

79

80

81

82

83

84

V
al

id
at

io
n

A
cc

u
ra

cy

ResNet18 EMNIST Scratch

random

pareto

ours

5 10 15 20

66

68

70

72

ResNet18 CIFAR10 ImageNet Weights

5 10 15 20

65

70

75

80

85

ResNet18 GTSRB ImageNet Weights

0 10 20 30 40 50

Number of Quantized Layers

50

60

70

80

90

V
al

id
at

io
n

A
cc

u
ra

cy

ResNet50 GTSRB ImageNet Weights

0 25 50 75 100

Number of Quantized Layers

62

64

66

68

70

DenseNet121 CIFAR10 ImageNet Weights

0 25 50 75 100

Number of Quantized Layers

55

60

65

70

75

80

DenseNet121 GTSRB ImageNet Weights

Figure 4: Comparing policies generated by DPQUANT to the speed-accuracy Pareto front

6.2 SENSITIVITY TO PRIVACY BUDGET

Model Dataset
Percent

Quantized
ε = 4 ε = 8

Baseline ε Ours ε Baseline ε Ours ε

ResNet18

EMNIST
0.5 81.27 ± 1.29 3.14 82.16 3.04 –
0.75 80.51 ± 0.37 3.01 80.09 3.04 –
0.9 78.82 ± 0.30 3.01 79.03 3.04 –

GTSRB
0.5 42.34 ± 5.53 4.01 49.09 3.99 69.06 ± 5.63 8.01 76.75 7.99
0.75 39.98 ± 3.99 4.01 42.62 3.96 63.62 ± 5.59 8.01 70.07 7.99
0.9 37.94 ± 2.23 4.01 39.48 3.99 57.49 ± 4.46 8.01 67.67 7.99

CIFAR-10
0.5 64.37 ± 1.42 4.06 65.39 3.94 69.26 ± 1.46 7.12 70.51 7.17
0.75 62.17 ± 0.61 4.06 63.57 3.94 67.80 ± 0.81 7.12 69.84 7.17
0.9 61.09 ± 1.66 4.06 61.22 3.94 67.21 ± 1.24 7.12 68.68 7.17

ResNet50 GTSRB
0.5 38.76 ± 8.16 4.01 42.11 3.99 75.99 ± 7.33 8.01 80.23 7.99
0.75 29.48 ± 4.72 4.01 33.67 3.99 58.13 ± 8.50 8.01 69.03 7.99
0.9 24.78 ± 2.67 4.01 29.00 3.99 47.40 ± 7.23 8.01 59.87 7.99

DenseNet121

GTSRB1
0.5 54.10 ± 5.58 4.06 55.38 3.97 65.47 ± 5.42 8.01 71.05 7.93
0.75 44.60 ± 5.06 4.06 47.36 3.97 56.14 ± 7.57 8.01 63.30 7.93
0.9 40.52 ± 2.83 4.06 44.15 3.97 51.06 ± 5.41 8.01 52.60 7.93

CIFAR-101
0.5 59.22 ± 1.15 4.03 61.08 3.97 67.96 ± 0.93 7.12 68.96 7.28
0.75 56.43 ± 1.72 4.03 60.31 3.97 64.81 ± 1.71 7.12 66.48 7.28
0.9 55.18 ± 1.38 4.03 58.89 3.97 63.03 ± 1.69 7.12 65.13 7.28

BERT SNLI 0.5 62.54 ± 4.54 7.48 67.80 7.48
0.75 52.04 ± 3.95 7.48 63.61 7.48

Table 1: Model quality across datasets and privacy levels.
We compared our method to the baseline for two privacy budgets ε = 4 and ε = 8. In Table 1 we
plotted the validation accuracy for different privacy budgets. For ResNet18/50, we obtained these
values by truncating the training at the respective privacy budgets (i.e. without additional hypermeter
tuning), and selected baseline data point with larger ε than ours wherever possible.

In most cases, DPQUANT outperforms the baseline performance by at least 1 standard deviation
whilst not exceeding the privacy budget. In particular, despite the privacy cost of analysis being
more dominating during the ε = 4 case, DPQUANT produces near-optimal quantization schedules,
demonstrating its robustness with respect to ε.

We have also evaluated DPQUANT on extremely small privacy budgets (e.g. ε = 1). In Appendix A.3
we show that DPQUANT still demonstrates the same benefits under this setting.

1Batch size decreased to improve convergence under ε = 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.3 ABLATION STUDY

10 12 14 16 18 20

Number of Quantized Layers

65

70

75

80

85

V
a
li

d
at

io
n

A
cc

u
ra

cy

+PLS

+PLS+LLP

baseline

Figure 5: Ablation study, PLS:
probabilistic layer selection, LLP:
loss-aware layer prioritization

To better understand the contributions of the two approaches,
we compared our approach (probabilistic layer sampling + loss-
aware layer prioritization) with probabilistic layer sampling (PLS)
alone. In Figure 5, we observe that PLS consistently performs
better than the baseline where the quantized layers are selected
statically. However, there is still a large gap between PLS and
the best-performing layer selections, suggesting that some crucial
layers are consistently being subjected to quantization which
significantly degrades the quality of trained models.

When PLS is combined with loss-aware layer prioritization, the
layers crucial to model training are left in full precision, even
when most of the layers are quantized. The benefits of priori-
tization begins to surface as the proportion of quantized layers
increase, as the critical layers have a larger probability of being
quantized in the randomized baselines. Furthermore, we observe that the best training outcomes are
achieved by combining both approaches. We include more details in Appendix A.6.

6.4 THEORETICAL SPEEDUP

ResNet18
EMNIST

ResNet18
CIFAR10

ResNet18
GTSRB

ResNet50
GTSRB

DenseNet121
CIFAR10

DenseNet121
GTSRB

0

5000

10000

15000

20000

25000

30000

N
or

m
al

iz
ed

It
er

at
io

n
s

1.87×
2.21×

1.88× 1.78×

2.21×

1.75×

baseline

overhead

analysis

train fp4

train fp16

Figure 6: Theoretical speedups for DPQUANT
assuming 90% of the layers are quantized.

As hardware with support for FP4 MatMuls
and Conv2D (e.g., NVIDIA Blackwell) are not
yet widely available, we are unable to eval-
uate the speed benefits of quantization with
DPQUANT. Instead, we use estimates from prior
work, along with performance statistics published
by NVIDIA (NVIDIA Corporation, 2024) to esti-
mate speedups. We estimate that FP4 can provide
a 4× speedup over the FP16 baseline by emulat-
ing FP4 computation on existing hardware. Sep-
arately, prior works (Sun et al., 2020; Choi et al.,
2018; Abdolrashidi et al., 2021) report a 4−7.3×
speedup when using FP4 on supported hardware.
To remain conservative, we use the lower bound
(4×) in our estimates. We assume matrix multiplications, convolutions, and element-wise operations
can be accelerated 4×, and characterize the total runtime as a linear compute cost model:

Tours = Tanalysis + (1− p+ p/4)(Ttrain baseline − Toverhead) + Tanalysis + Toverhead

where Tanalysis is the time taken by algorithm 1, and Toverhead captures the time taken by operations
that do not have performance benefits from low precision (details in appendix A.11).

We show our speedups in Figure 6. Quantized training with DPQUANT is 1.75× to 2.21× faster
than the fp16 baseline. In particular, the loss-aware prioritization mechanism in DPQUANT incurs
minimal runtime overhead, which is crucial to preserve the performance gains of fp4 computation.

7 CONCLUSION

In this paper, we introduce DPQUANT, a mechanism for efficient quantized DP-SGD training.
We make the observation that existing quantized training techniques can significantly degrade the
accuracy of models trained with DP-SGD and provided justification which demonstrated the amplified
quantization error. To address this challenge, DPQUANT employs techniques to dynamically select
layers to quantize such that impact of quantization on model accuracy is minimized. DPQUANT itself
is a differentially private mechanism that incurs only small privacy cost. We empirically demonstrate
that DPQUANT achieves near-optimal compute-to-accuracy tradeoffs during quantized training,
generalizes to different models, datasets and privacy budgets, and can provide up to 2.21× speedup
while minimally impacting accuracy. DPQUANT enables efficient and practical differentially-private
training for both centralized and distributed training deployments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS’16. ACM, October 2016. doi:
10.1145/2976749.2978318. URL http://dx.doi.org/10.1145/2976749.2978318.

AmirAli Abdolrashidi, Lisa Wang, Shivani Agrawal, Jonathan Malmaud, Oleg Rybakov, Chas
Leichner, and Lukasz Lew. Pareto-optimal quantized resnet is mostly 4-bit. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), page 3085–3093.
IEEE, June 2021. doi: 10.1109/cvprw53098.2021.00345. URL http://dx.doi.org/10.
1109/CVPRW53098.2021.00345.

Advanced Micro Devices, Inc. AMD Instinct™ MI300X Accelerator Data Sheet:
Leading-Edge Accelerator Module for Generative AI, Training, and High-Performance
Computing. Technical report, Advanced Micro Devices, Inc., 2023. URL https:
//www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/
data-sheets/amd-instinct-mi300x-data-sheet.pdf. Accessed: 2025-05-13.

Advanced Micro Devices, Inc. Data types and precision support. https://rocm.docs.amd.
com/en/latest/reference/precision-support.html, March 2025. ROCm Docu-
mentation; Accessed: 2025-05-13.

Mohammadreza Alimohammadi, Ilia Markov, Elias Frantar, and Dan Alistarh. L-greco: Layerwise-
adaptive gradient compression for efficient and accurate deep learning, 2023. URL https:
//arxiv.org/abs/2210.17357.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding, 2017. URL https://arxiv.org/abs/
1610.02132.

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of
convolution networks for rapid-deployment, 2019. URL https://arxiv.org/abs/1810.
05723.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference, 2015. URL https://arxiv.org/abs/1508.
05326.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neural
networks with differential privacy, 2022. URL https://arxiv.org/abs/2205.10683.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Brian Chmiel, Ron Banner, Elad Hoffer, Hilla Ben Yaacov, and Daniel Soudry. Accurate neural
training with 4-bit matrix multiplications at standard formats, 2024. URL https://arxiv.
org/abs/2112.10769.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks,
2018. URL https://arxiv.org/abs/1805.06085.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an extension of
mnist to handwritten letters, 2017. URL https://arxiv.org/abs/1702.05373.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle. Unlocking high-
accuracy differentially private image classification through scale, 2022. URL https://arxiv.
org/abs/2204.13650.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

10

http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1109/CVPRW53098.2021.00345
http://dx.doi.org/10.1109/CVPRW53098.2021.00345
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/data-sheets/amd-instinct-mi300x-data-sheet.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/data-sheets/amd-instinct-mi300x-data-sheet.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/data-sheets/amd-instinct-mi300x-data-sheet.pdf
https://rocm.docs.amd.com/en/latest/reference/precision-support.html
https://rocm.docs.amd.com/en/latest/reference/precision-support.html
https://arxiv.org/abs/2210.17357
https://arxiv.org/abs/2210.17357
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1810.05723
https://arxiv.org/abs/1810.05723
https://arxiv.org/abs/1508.05326
https://arxiv.org/abs/1508.05326
https://arxiv.org/abs/2205.10683
https://arxiv.org/abs/2112.10769
https://arxiv.org/abs/2112.10769
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1702.05373
https://arxiv.org/abs/2204.13650
https://arxiv.org/abs/2204.13650
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xin Ding, Xiaoyu Liu, Zhijun Tu, Yun Zhang, Wei Li, Jie Hu, Hanting Chen, Yehui Tang, Zhiwei
Xiong, Baoqun Yin, et al. Cbq: Cross-block quantization for large language models. arXiv preprint
arXiv:2312.07950, 2023.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. Hawq: Hessian aware
quantization of neural networks with mixed-precision, 2019. URL https://arxiv.org/
abs/1905.03696.

Jian Du, Song Li, Xiangyi Chen, Siheng Chen, and Mingyi Hong. Dynamic differential-privacy
preserving sgd, 2022. URL https://arxiv.org/abs/2111.00173.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3–4):211–407, 2014. doi: 10.1561/0400000042.
URL https://www.nowpublishers.com/article/Details/TCS-042.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. Learned step size quantization, 2020. URL https://arxiv.org/abs/1902.
08153.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference, 2021. URL https:
//arxiv.org/abs/2103.13630.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, 2018. URL https://arxiv.org/abs/1608.06993.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pages
4466–4475. PMLR, 2021.

Yerlan Idelbayev and Miguel A Carreira-Perpinán. Low-rank compression of neural nets: Learning
the rank of each layer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8049–8059, 2020.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference, 2017. URL https://arxiv.org/abs/1712.05877.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private sgd?, 2020. URL https://arxiv.org/abs/2006.07709.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/
2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252–3261. PMLR, 2019.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical re-
port, University of Toronto, April 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping, 2020. URL https://arxiv.org/abs/2009.03106.

11

https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2111.00173
https://www.nowpublishers.com/article/Details/TCS-042
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/2006.07709
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/2009.03106

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners, 2022. URL https://arxiv.org/abs/2110.05679.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training, 2020. URL https://arxiv.
org/abs/1712.01887.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

Mehdi Makni, Kayhan Behdin, Gabriel Afriat, Zheng Xu, Sergei Vassilvitskii, Natalia Ponomareva,
Hussein Hazimeh, and Rahul Mazumder. An optimization framework for differentially private
sparse fine-tuning, 2025. URL https://arxiv.org/abs/2503.12822.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenth-
waite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi, Stuart
Oberman, Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep learning, 2022.
URL https://arxiv.org/abs/2209.05433.

Ilya Mironov. On significance of the least significant bits for differential privacy. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, CCS ’12, page 650–661,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450316514. doi:
10.1145/2382196.2382264. URL https://doi.org/10.1145/2382196.2382264.

Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differential privacy of the sampled gaussian
mechanism, 2019. URL https://arxiv.org/abs/1908.10530.

Felix Morsbach, Jan Reubold, and Thorsten Strufe. R+r:understanding hyperparameter effects in
dp-sgd, 2024. URL https://arxiv.org/abs/2411.02051.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1325–1334, 2019.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tij-
men Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295,
2021.

NVIDIA Corporation. Nvidia blackwell architecture technical overview, 2024. URL https://
resources.nvidia.com/en-us-blackwell-architecture. Accessed: 2025-05-
05.

Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization for training and inference
of neural networks. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 580–595, 2018.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H. Brendan
McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml:
A practical guide to machine learning with differential privacy. Journal of Artificial Intelligence
Research, 77:1113–1201, July 2023. ISSN 1076-9757. doi: 10.1613/jair.1.14649. URL http:
//dx.doi.org/10.1613/jair.1.14649.

Qualcomm Technologies, Inc. Ai hardware cores/accelerators, 2024. URL https:
//docs.qualcomm.com/bundle/publicresource/topics/80-63195-1/
AI-hardware-cores-accelerators.html. Accessed: 2025-05-05.

Charbel Sakr, Steve Dai, Rangha Venkatesan, Brian Zimmer, William Dally, and Brucek Khailany.
Optimal clipping and magnitude-aware differentiation for improved quantization-aware training.
In International Conference on Machine Learning, pages 19123–19138. PMLR, 2022.

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao Wang, Zilin Zhu, Xue Huang, Xinan Jiang,
Feihu Zhou, Zhenyu Guo, Liqiang Xie, Rui Lan, Xianbin Ouyang, Yan Zhang, Jieqian Wei, Jing
Gong, Weiliang Lin, Ping Gao, Peng Meng, Xiaomin Xu, Chenyang Guo, Bo Yang, Zhibo Chen,
Yongjian Wu, and Xiaowen Chu. Towards scalable distributed training of deep learning on public
cloud clusters, 2020. URL https://arxiv.org/abs/2010.10458.

12

https://arxiv.org/abs/2110.05679
https://arxiv.org/abs/1712.01887
https://arxiv.org/abs/1712.01887
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://arxiv.org/abs/2503.12822
https://arxiv.org/abs/2209.05433
https://doi.org/10.1145/2382196.2382264
https://arxiv.org/abs/1908.10530
https://arxiv.org/abs/2411.02051
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
http://dx.doi.org/10.1613/jair.1.14649
http://dx.doi.org/10.1613/jair.1.14649
https://docs.qualcomm.com/bundle/publicresource/topics/80-63195-1/AI-hardware-cores-accelerators.html
https://docs.qualcomm.com/bundle/publicresource/topics/80-63195-1/AI-hardware-cores-accelerators.html
https://docs.qualcomm.com/bundle/publicresource/topics/80-63195-1/AI-hardware-cores-accelerators.html
https://arxiv.org/abs/2010.10458

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: A multi-class classification competition. In The 2011 International Joint
Conference on Neural Networks, pages 1453–1460, 2011. doi: 10.1109/IJCNN.2011.6033395.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory, 2018.
URL https://arxiv.org/abs/1809.07599.

Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. Enabling fast differentially private
sgd via just-in-time compilation and vectorization, 2021. URL https://arxiv.org/abs/
2010.09063.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swa-
gath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi (Viji) Srinivasan, and Kailash
Gopalakrishnan. Ultra-low precision 4-bit training of deep neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 1796–1807. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/13b919438259814cd5be8cb45877d577-Paper.pdf.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems, 32,
2019.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision, 2019. URL https://arxiv.org/abs/1811.08886.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning, 2017. URL https:
//arxiv.org/abs/1705.07878.

Jiseok Youn, Jaehun Song, Hyung-Sin Kim, and Saewoong Bahk. Bitwidth-adaptive quantization-
aware neural network training: a meta-learning approach. In European Conference on Computer
Vision, pages 208–224. Springer, 2022.

Yeojoon Youn, Zihao Hu, Juba Ziani, and Jacob Abernethy. Randomized quantization is all you need
for differential privacy in federated learning, 2023. URL https://arxiv.org/abs/2306.
11913.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and
Ilya Mironov. Opacus: User-friendly differential privacy library in pytorch, 2022. URL https:
//arxiv.org/abs/2109.12298.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7370–7379, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients, 2018. URL https:
//arxiv.org/abs/1606.06160.

13

https://arxiv.org/abs/1809.07599
https://arxiv.org/abs/2010.09063
https://arxiv.org/abs/2010.09063
https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://arxiv.org/abs/1811.08886
https://arxiv.org/abs/1705.07878
https://arxiv.org/abs/1705.07878
https://arxiv.org/abs/2306.11913
https://arxiv.org/abs/2306.11913
https://arxiv.org/abs/2109.12298
https://arxiv.org/abs/2109.12298
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 EFFECT OF BATCH SIZE

Our analysis of quantization error in DP-SGD is independent of batch size. While larger batches
reduce stochastic gradient variance, our argument hinges on the magnitude of the final noised gradient,
which remains large regardless of batch size.

1. In DP-SGD, the added noise’s scale is proportional to the per-example clipping constant, C,
not the batch size.

2. This noise dominates the averaged gradient signal, causing the raw gradients in subsequent
steps to have significantly larger norms than in non-DP training.

3. As shown in Proposition 1, quantization variance is proportional to the square of the
gradient’s norm (Var(q(x)) = Θ(||x||2∞)). Therefore, the larger gradients in DP-SGD lead
to much higher quantization variance, which destabilizes training and degrades accuracy.

To demonstrate this empirically, we ran the same training job with batch sizes ranging from 1024 to
8192 and measured the numerical range of the weight gradients, similar to that in figure 1c. Across
the batch sizes, there is negligible difference in the gradient ranges, which confirms our hypothesis.

Table 2: Weight gradient norm range across various batch sizes, showing the negligible impact of
batch size on the final gradient magnitudes.

Batch Size Norm Range Mean Norm Range Std
1024 0.159 0.137
2048 0.161 0.127
4096 0.158 0.116
8192 0.156 0.119

A.2 EVALUATION SETUP AND PARAMETERS

Parameter Default Description
n 60 number of epochs to train
k – layers to execute in low precision.
nsample 1 test samples for loss measurement.
ninterval 2 epochs to train before the next measurement.
R 2 repetitions during measurement.
σmeasure 0.5 Noise scale used during loss-difference privatization.
Cmeasure 0.01 Clipping norm used during loss-difference privatization.

Table 3: Configurable Hyperparameters of DPQUANT

Remark: Selecting DPQUANT parameters in practice. In our experiments, we have found
repetitions = 2 and sampling frequency = 1 to be the most optimal. Adopting these recommended
defaults, the user needs to pick:

1. one of k (number of layers to quantize) and the analysis frequency

2. clipping norm used in loss sensitivity analysis

The process of determining clipping norm for analysis is similar to that of finding the clipping
threshold C for normal DP-SGD training. We want to pick a value such that the differences between
policies are expressed.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 EVALUATION UNDER EXTREME PRIVACY BUDGETS

As shown in Figure 3, the privacy consumption of DPQUANT’s analysis accounts for a higher fraction
of the total privacy near the beginning of training. We wish to evaluate DPQUANT under more strict
privacy budgets.

In these cases, both the parameters of DP-SGD and DPQUANT need to be updated, namely the noise
scale σ and measurement noise scale σmeasure both need to be increased. Table 4 below shows that
DPQUANT achieves optimal accuracy even when ε = 1.

Table 4: Training accuracy of ResNet18 with GTSRB under the strict privacy budget (ε = 1)

Baseline Ours
Count Accuracy (%) ε Accuracy (%) ε

50% 44.14 ± 4.61 1.05 48.26 0.99
75% 40.13 ± 3.65 1.05 43.14 0.99
90% 35.20 ± 1.12 1.05 38.66 0.99

A.4 TRAINING HYPERPARAMETERS

A.4.1 IMAGE MODELS

While the learning rate might seem too high for regular SGD training, previous results Morsbach
et al. (2024); Ponomareva et al. (2023) have shown that large learning rates are more beneficial for
DP-SGD training.

Table 5: Experimental configurations (6 runs)

1 2 3 4 5 6

Model ResNet18 ResNet18 ResNet18 ResNet50 DenseNet121 DenseNet121
Dataset EMNIST CIFAR10 GTSRB GTSRB CIFAR10 GTSRB
σ 1 1 1 1 1 1
δ 10−5 10−5 10−5 10−5 10−5 10−5

Clipping norm 1 1 1 1 1 1
Batch size 1024 1024 1024 1024 512 512
Physical batch size 128 128 128 128 128 128
Weights None ImageNet ImageNet ImageNet ImageNet ImageNet
Optimizer SGD SGD SGD SGD SGD SGD
Learning rate (lr) 0.5 0.5 0.5 0.5 0.5 0.5
Epochs 30 60 60 60 60 60

A.4.2 LANGUAGE MODELS

we conducted a new NLP experiment using BERT for sequence classification on the Stanford
Natural Language Inference (SNLI) corpus. In this task, the model classifies a pair of statements
(e.g., “Children smiling and waving at camera” and “There are children present”) as “entailment,”
“contradiction,” or “neutral.”

Due to the high number of parameters in BERT, we have followed the tutorial from Opacus and
frozen 12 out of 13 BERT layers, and trained the last BERT layer and subsequent classification layers.

We have compared our method (DPQUANT) with a random static baseline (similar to section 6.1).
We use the same training parameters, trained for a single epoch, and used ε = 8 as the total privacy
budget.

In these experiments, DPQUANT outperforms the baseline in accuracy. DPQUANT consistently
avoids quantizing the last few layers (including the trainable ones) without prior information about
the importance and trainability of the layers.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 ACCURACY DEGRADATION FOR DP-SGD UNDER NAIVE QUANTIZATION

Prior works Sun et al. (2020); Chmiel et al. (2024); Micikevicius et al. (2022) have demonstrated
minimal degradation during quantized fp4/8 training compared to the full precision counterpart. We
tabulate their results below:

Table 6: Ultra-Low and LUQ vs. baseline accuracy

Model Baseline Ultra-Low Sun et al. (2020) LUQ Chmiel et al. (2024)

ResNet-18 69.7% 68.27% (-1.43%) 69.09% (-0.61%)
ResNet-50 76.5% 74.01% (-2.49%) 75.42% (-1.08%)
MobileNet-V2 71.9% 68.85% (-3.05%) 69.55% (-2.35%)
ResNext50 77.6% N/A 76.02% (-1.58%)
Transformer-base 27.5 (BLEU) 25.4 (-2.10) 27.17 (-0.33)
BERT fine-tune 87.03 (F1) N/A 85.75 (-1.28)

As demonstrated in the Figure 4, the performance degradation of DP-SGD under quantization is
much larger.

Table 7: Validation accuracy for DP-SGD training: baseline vs. LUQ-FP4 (all layers quantized)

Model Dataset Pretraining Baseline LUQ-FP4 ∆

ResNet-18 EMNIST None 83.4% 77.8% -5.6%
ResNet-18 CIFAR-10 ImageNet 71.0% 65.8% -5.2%
ResNet-18 GTSRB ImageNet 85.6% 64.0% -21.6%
ResNet-50 GTSRB ImageNet 89.8% 49.0% -40.8%
DenseNet-121 CIFAR-10 ImageNet 67.0% 62.9% -4.1%
DenseNet-121 GTSRB ImageNet 82.0% 53.0% -29.0%

A.6 SENSITIVITY OF TEMPERATURE β

In our method, the temperature parameter β provides a crucial mechanism to balance two comple-
mentary strategies:

• Deterministic Selection: This approach prioritizes elements based on their loss sensitivity,
selecting those that are most impactful.

• Randomized Sampling: This approach introduces stochasticity, ensuring diversity and
exploration in the selection process.

A low β value favors randomized sampling, while a high β value makes the selection process more
deterministic and reliant on loss sensitivity. Below, we tabulate the training accuracy for different
value of β, and observe that better training outcomes can be obtained by favoring loss-based layer
selection while retaining some stochasticity. Namely, it performs strictly better than selection purely
based on random layer sampling.

Table 8: Model performance across various counts and temperature (β) values

Temperature (β)
Count 0.1 0.22 0.47 1.03 2.24 4.86 10.57 22.99 50.0

10 66.49 67.58 67.53 67.01 70.25 70.37 71.59 70.96 71.67
15 58.47 58.47 60.03 59.07 60.86 65.00 60.54 65.04 63.75
18 51.60 54.08 55.73 53.73 53.86 53.49 60.90 55.45 56.05

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.7 EVALUATION ON OTHER QUANTIZERS

To assess the versatility of our method, DPQuant, we evaluated its performance with different
numerical precisions and quantization schemes. We conducted two primary experiments: one using
8-bit floating-point (fp8e5m2) for training to test a different bitwidth, and another using a uniform
4-bit quantizer to test a different quantization strategy.

A.7.1 FP8 QUANTIZATION

Our experiments with FP8 training show that quantized DP-SGD does not suffer a significant
performance degradation. This minimal performance gap suggests that in higher-precision settings
like FP8, the benefits of more complex techniques like layer subset selection may be less critical. We
show the results in table 9.

Table 9: Performance comparison with FP8 training.

Count Base Acc(%) Base ϵ Our Acc(%) Our ϵ

50% 67.56± 0.47 4.05 67.12 3.93
75% 67.76± 0.67 4.05 67.65 3.93
90% 67.38± 0.59 4.05 68.01 3.93

A.7.2 UNIFORM 4-BIT QUANTIZATION

Next, we evaluated a more aggressive quantization scheme using a uniform FP4 quantizer. In this
setup, the value range is discretized into 24 = 16 levels via stochastic rounding. The results reveal
a more substantial drop in accuracy for our method compared to the baseline. This outcome is
consistent with our observations of the LUQ-FP4 quantizer discussed in Section 6.2, highlighting the
inherent challenges of applying DP-SGD with very low-bitwidth uniform quantization. We show the
results in table 10.

Table 10: Performance comparison with uniform FP4 quantization.

Count Base Acc(%) Base ϵ Our Acc(%) Our ϵ

50% 63.56± 0.89 4.53 62.15 4.44
75% 57.85± 0.90 4.53 59.09 4.44
90% 55.82± 0.80 4.53 56.27 4.44

A.8 PROOF OF PROPOSITION 1

Proposition 1. Let q : Rn → Rn be an unbiased (E[q(x)] = x) and scale-invariant (q(λx) =
λ q(x)) quantizer whose outputs lie on a fixed finite grid. If x is drawn from an absolutely continuous
distribution, then

Var
(
q(x)

)
= Θ

(
∥x∥2∞

)
.

Proof. We begin by first showing the upper-bound: Var (q(x)) = O
(
||x||2∞

)
. We define M = ∥x∥∞

and v = x/M , so ∥v∥∞ = 1. By scale-invariance of q,

Var
(
q(x)

)
= Var

(
q(Mv)

)
= Var

(
M q(v)

)
= M2 Var

(
q(v)

)
.

Since q(v) ∈ [−1, 1]n, there exists a finite C such that Var(q(v)) ≤ C, giving

Var
(
q(x)

)
= M2 Var (q(v)) ≤ CM2 = C ∥x∥2∞.

Next, we show the lower-bound: Var (q(x)) = Ω
(
||x||2∞

)
. On the compact set {v : ∥v∥∞ = 1},

the continuous function v 7→ Var(q(v)) attains a minimum m ≥ 0. Because the finite quantizer grid

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

has measure-zero, absolute continuity of x ensures the probabilty of v landing on the grid is 0, so
Var(q(v)) > 0 and hence m > 0. Therefore

mM2 ≤ Var
(
q(x)

)
≤ CM2,

From this we conclude Var(q(x)) = Θ(∥x∥2∞), as desired.

A.9 JUSTIFICATION OF PRIVACY GUARANTEES (THEOREM 2)

Proposition 2. Algorithm 1 is a Sampled Gaussian Mechanism (SGM) with sample rate q = |B|/|D|
and noise scale σ = σmeasure.

Proof. We first characterize Algorithm 1 as an analysis on the user’s private dataset. The function
accepts a subsampled batch of size |B| from a dataset with |D| samples.

Using this batch of user data, as well as some non-private sources of data such as the model weights,
we compute the loss differences which is vectorized in R ∈ Rp, where p is the number of available
quantization policies.

In step (3) of Algorithm 1, we clip the vector R to norm C, to which independent Gaussian noise
proportional to σ2C2 is added to obtain R̂. This is equivalent to adding noise proportional to σ2 when
the sensitivity of R̂ is 1 through a scaling argument.

Algorithm 1 ceases to access private data in B after the computation of R̂, which results in all the
following steps (i.e. updating privacy accountant and EMA) post-processing Dwork and Roth (2014)
which does not impact the privacy consumption.

Furthermore, the privacy accounting step makes use of Opacus’ Yousefpour et al. (2022) privacy
accountant, which assumes2 the the noise scale σ is proportional to the clipping constant (i.e.
equivalent to adding a noise proportional to σ2C2.

A.10 LOW PRECISION SIMULATION SETUP

As FP4 hardware support is forthcoming, we employ the following simulation setup to emulate the
effect of traitning under FP4. Notably, we quantize both inputs to the conv2d forward, wgrad, and
dgrad operators as well as its output.

quantizer

weight

image

quantizer

fp32 conv2d

forward
quantizer out

Figure 7: Quantization simulation setup

A.11 THEORETICAL SPEEDUP CALCULATION

Due to the unavailabilty of accelerators and reliable software support for FP4, we instead rely on a
performance model to estimate the theoretical throughputs of FP4 computation.

We first decompose the DP-SGD training computation into the following operations, listed in table 11.

We performed profiling on the models (on their respective datasets) stated in the paper, and we plot
the runtime decomposition in Figure 8. Using this data, we can compute the amount of “overhead”
(i.e. the time spent on operators which will not benefit from lower precision) for each model/dataset.
This is tabulated in Table 12.

2This assumption is stated in https://github.com/pytorch/opacus/blob/main/opacus/accountants/analysis/rdp.py

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Decomposition of DP-SGD training

Computation Stage Description
Benefits

from FP4
Total Forward Time spent on the forward pass through the model, where

input data is processed layer by layer to produce the output.
✓

Total Backward Time for backpropagation, where gradients are calculated for
model parameter updates.

✓

Optimizer Clip Time for clipping gradients to a predefined threshold to en-
sure stability and prevent large updates during training.

✓

Optimizer Noise Time for adding random noise to the gradients to ensure
differential privacy by masking individual data point contri-
butions.

Optimizer Scale Time for scaling the gradients after clipping to adjust the
magnitude of the updates.

✓

Other Optimizer Time spent on other optimizer-related operations, such as
learning rate management.

Other Time Time for all other operations during the training iteration,
including data loading, synchronization, and auxiliary tasks.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time ×109

densenet121 cifar10

densenet121 gtsrb

resnet18 cifar10

resnet18 emnist

resnet18 gtsrb

resnet50 cifar10

resnet50 emnist

resnet50 gtsrb

C
on

fig

Opacus DP-SGD Training Breakdown

Total Forward

Total Backward

Optimizer Clip

Optimizer Noise

Optimizer Scale

Other Optimizer

Other Time

Figure 8: Runtime decomposition of DP-SGD training

Table 12: Breakdown of total time, good ops, bad ops, and overhead percentage for different model
configurations.

Config Total Time Ops with Speedup Overhead Ops Overhead %

DenseNet121 CIFAR10 1.15× 109 1.10× 109 5.23× 107 4.55
DenseNet121 GTSRB 1.08× 109 1.01× 109 6.74× 107 6.23
ResNet18 CIFAR10 1.82× 108 1.66× 108 1.68× 107 9.20
ResNet18 EMNIST 1.86× 108 1.49× 108 3.68× 107 19.81
ResNet18 GTSRB 1.74× 108 1.63× 108 1.04× 107 5.99
ResNet50 CIFAR10 4.31× 108 4.05× 108 2.55× 107 5.92
ResNet50 EMNIST 3.88× 108 3.36× 108 5.13× 107 13.22
ResNet50 GTSRB 4.05× 108 3.76× 108 2.87× 107 7.10

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.12 OPACUS PRIVACY ACCOUNTING

Opacus maintains a tuple of the form (sample rate, noise scale, number of steps), which is incre-
mentally updated during training. At any point, we can query the current privacy cost in terms of
(ε, δ) by specifying a target δ and using either the rdp or prv accountant. This mechanism enables
flexible and precise tracking of privacy usage, allowing us to assess how much additional privacy is
consumed by our analysis relative to standard training.

A.13 SAMPLING OF QUANTIZED LAYERS

We outline the algorithm DPQUANT uses to select layers to compute under quantization in Algo-
rithm 2.

Algorithm 2 SELECTTARGETS

1: Input: L (EMA scores), P (set of policies), s (temperature), m (number to sample), layers
(set of layers to quantize under policy p)

2: v ← [L[p] for p ∈ P]
3: v ← (v −min(v))/(max(v)−min(v)) ▷ Normalize
4: π ← softmax(−s · v)
5: Q← Multinomial(π, m, without replacement) ▷ Sample m policies
6: S ← ∅
7: for each p ∈ Q do
8: S ← S ∪ layers[p]
9: end for

10: return S

A.14 REMARK: VULNERABILITY TO FLOATING POINT ATTACKS

Differential privacy implementations must carefully consider the vulnerabilities highlighted by
Mironov (2012). Mironov identified that the floating-point implementation of noise sampling for
mechanisms such as Laplacian or Gaussian introduces a “porous” distribution that lacks translation
invariance. This issue is prevalent in both fp64 and fp32 arithmetic.

To ensure robustness against this vulnerability, our method has been meticulously designed. The
critical step of noise addition in our framework occurs under standard conditions, prior to the
application of our novel quantization technique. The process is as follows:

1. Gradients are maintained in full fp32 precision.
2. Noise is sampled and added to these fp32 gradients, also in fp32 precision. Only after the

noisy gradient is computed is it quantized for use in the forward/backward pass of select
layers.

3. Thus, the noise injection process maintains a vulnerability profile identical to that of standard
DP-SGD implemented in fp32. The use of lower-precision representations for computation
does not alter or exacerbate the known properties of the initial noise addition.

Additionally, our method is fully compatible with established defenses against this vulnerability. The
’snapping mechanism’ proposed by Mironov, a post-processing step applied directly to the noisy
output, would be applied to the full-precision fp32 gradients immediately after noise addition and
before quantization in our pipeline.

20

	Introduction
	Related Works
	Preliminaries
	Differentially-Private DNN Training
	Quantization and Mixed Precision Training

	Degradation of DP-SGD from Quantization
	DPQuant: Our Proposed Solution
	Part I: Probabilistic Layer Sampling
	Part II: Loss-Aware Layer Prioritization
	Dynamic Layer Selection for Quantized DP-SGD Training
	Privacy Accounting

	Evaluation
	Quantization-quality trade-off
	Sensitivity to Privacy Budget
	Ablation Study
	Theoretical Speedup

	Conclusion
	Appendix / supplemental material
	Effect of Batch Size
	Evaluation Setup and Parameters
	Evaluation under Extreme Privacy Budgets
	Training Hyperparameters
	Image Models
	Language Models

	Accuracy Degradation for DP-SGD under Naive Quantization
	Sensitivity of temperature
	Evaluation on other Quantizers
	FP8 Quantization
	Uniform 4-bit Quantization

	Proof of Proposition 1
	Justification of Privacy Guarantees (Theorem 2)
	Low Precision Simulation Setup
	Theoretical Speedup Calculation
	Opacus Privacy Accounting
	Sampling of Quantized Layers
	Remark: Vulnerability to Floating Point Attacks

