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Abstract

The performance of ML models degrades when the training population is different
from that seen under operation. Towards assessing distributional robustness, we
study the worst-case performance of a model over all subpopulations of a given
size, defined with respect to core attributes Z. This notion of robustness can con-
sider arbitrary (continuous) attributes Z, and automatically accounts for complex
intersectionality in disadvantaged groups. We develop a scalable yet principled
two-stage estimation procedure that can evaluate the robustness of state-of-the-art
models. We prove that our procedure enjoys several finite-sample convergence
guarantees, including dimension-free convergence. Instead of overly conservative
notions based on Rademacher complexities, our evaluation error depends on the
dimension of Z only through the out-of-sample error in estimating the performance
conditional on Z. On real datasets, we demonstrate that our method certifies the
robustness of a model and prevents deployment of unreliable models.

1 Introduction

The training population typically does not accurately represent what the model will encounter
under operation. Model performance has been observed to substantially degrade under distribution
shift [16, 28, 69, 80, 53] in speech recognition [52], automated essay scoring [4], and wildlife
conservation [11]. Similar trends persist for state-of-the-art NLP and computer vision models [78, 74],
even on new data constructed under a near-identical process [57, 66]. Heavily engineered commercial
models are no exception [19], performing poorly on rare entities in named entity linking and examples
that require abstraction and distillation in summarization tasks [38].

A particularly problematic form of distribution shift comes from embedded power structures in
data collection. Data forms the infrastructure on which we build prediction models [30], and they
inherit socioeconomic and political inequities against marginalized communities. For example, out
of 10,000+ cancer clinical trials the National Cancer Institute funds, less than 5% of participants
were non-white [21]. Typical models replicate and perpetuate such bias, and their performance drops
significantly on underrepresented groups. Speech recognition systems work poorly for Blacks [52]
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and those with minority accents [3]. More generally, model performance degrades across demographic
attributes such as race, gender, or age, in facial recognition, video captioning, language identification,
and academic recommender systems [41, 46, 17, 72, 79, 19].

Model training typically relies on varied engineering practices. It is crucial to rigorously certify
model robustness prior to deployment for these heuristic approaches to bear fruit and transform
consequential applications. Ensuring that models perform uniformly well across subpopulations is
simultaneously critical for reliability, fairness, satisfactory user experience, and long-term business
goals. While a natural approach is to evaluate performance across a small set of groups, disadvan-
taged subpopulations are hard to define a priori because of intersectionality. The most adversely
affected are often determined by a complex combination of variables such as race, income, and
gender [19]. For example, performance on summarization tasks varies across demographic character-
istics and document specific traits such as abstractiveness, distillation, and location and dispersion of
information [38].

Motivated by these challenges, we study the worst-case subpopulation performance across all
subpopulations of a given size. This conservative notion of performance evaluates robustness to
unanticipated distribution shifts in Z, and automatically accounts for complex intersectionality by
virtue of being agnostic to demographic groupings. Formally, let Z be a set of core attributes that we
wish to guarantee uniform performance over. It may include protected demographic variables such as
race, gender, income, age, or task-specific information such as length of the prompt or metadata on
the input; notably, it can contain any continuous or discrete variables. We let X ∈ X be the input
/ covariate, and Y ∈ Y be the label. In NLP and vision applications, X is high-dimensional and
typically dim(Z)� dim(X).

We use θ(X) to denote a fixed prediction model and consider flexible and abstract losses `(θ(x); y).
Our goal is to ensure that the model θ performs well over all subpopulations defined over Z. We
evaluate model losses on a mixture component, which we call a subpopulation. Postulating a
lower bound α ∈ (0, 1] on the demographic proportion (mixture weight), we consider the set of
subpopulations of the data-generating distribution PZ

Qα := {QZ | PZ = aQZ + (1− a)Q′Z for some a ≥ α, and subpopulation Q′Z} . (1)

The demographic proportion (mixture weight) a represents how underrepresented the subpopulation
is under the data-generating distribution PZ . Before deploying the model θ, we wish to evaluate the
worst-case subpopulation performance

Wα(θ) := sup
QZ∈Qα

EZ∼QZ [E[`(θ(X), Y ) | Z]] . (2)

The worst-case subpopulation performance (2) guarantees uniform performance over subpopula-
tions (1) and has a clear interpretation that can be communicated to diverse stakeholders. The minority
proportion α can often be chosen from first principles, e.g., we wish to guarantee uniformly good
performance over subpopulations comprising at least α = 20% of the collected data. Alternatively,
it is often informative to study the threshold level of α? when α 7→ Wα(θ) crosses the maximum
level of acceptable loss. The threshold α? provides a certificate of robustness on the model θ(·),
guaranteeing that all subpopulations large than α? enjoy good performance.

We develop a principled and scalable procedure for estimating the worst-case subpopulation perfor-
mance (2) and the certificate of robustness α?. A key technical challenge is that for each data point,
we observe the loss `(θ(X);Y ) but never observe the conditional risk evaluated at the attribute Z

µ(Z) := E[`(θ(X);Y ) | Z]. (3)

In Section 2, we propose a two-stage estimation approach where we compute an estimate ĥ1(·) of
the conditional risk µ(·). Then, we compute a plug-in estimate of the worst-case subpopulation
performance under ĥ1(·) using a dual reformulation of the worst-case problem (2). We show several
theoretical guarantees for our estimator of the worst-case subpopulation performance (2). Our first
finite-sample result (Section 3.1) shows convergence at the rate Op

(√
Compn(H)/n

)
, where Compn

denotes a notion of complexity for the model class estimating the conditional risk (3).

In some applications, it may be natural to define Z using images or natural languages describing the
input and use deep networks to predict the conditional risk (3). As the complexity term Compn(H)
becomes prohibitively large in this case [10, 86], our second result (Section 3.2) shows data-dependent
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dimension-free concentration of our two-stage estimator: our bound only depends on the complexity
of the model class H through the out-of-sample error for estimating the conditional risk (3). This
error can be made small using overparameterized deep networks, allowing us to estimate the condi-
tional risk (3) using even the largest deep networks and still obtain a theoretically principled upper
confidence bound on the worst-case subpopulation performance. Leveraging these guarantees, we
develop principled procedures for estimating the certificates of robustness α? in Section 3.3.

In Section 4, we demonstrate the effectiveness of our procedure on real data. By evaluating model
robustness under subpopulation shifts, our methods allow the selection of robust models before
deployment as we illustrate using the recently proposed CLIP model [62].

Related work. The long line of works on distributionally robust optimization (DRO) aims to train
models to perform well under distribution shifts. Previous approaches considered finite-dimensional
worst-case regions such as constraint sets [29, 39, 5] and those based on notions of distances for
probability measures such as f -divergences [12, 13, 56, 55, 60, 33, 32], Levy-Prokhorov [34],
Wasserstein distances [35, 73, 15, 37, 14, 82], and integral probability metrics based on reproducing
kernels [77, 87]. The distribution shifts considered in these approaches are often contrived and
difficult to interpret and often result in overly conservative models. Furthermore, these approaches do
not currently scale to modern large-scale NLP or vision applications.

Our work is most closely related to Duchi et al. [31], who proposed algorithms for training models
with respect to the worst-case subpopulation performance (2), which is a more ambitious goal
than our narrower viewpoint of evaluating model performance pre-deployment. Their (full-batch)
training procedure requires solving a convex program with n2 variables per gradient step, which is
often prohibitively expensive. Furthermore, training with respect to the worst-case conditional risk
E[`(θ(X);Y ) | Z] do not scale to deep networks that can overfit to the training data [70]. By contrast,
our evaluation perspective aims to take advantage of the rapid progress in deep learning. We build
scalable evaluation methods that apply to arbitrary models, which allows leveraging state-of-the-art
engineered approaches for training θ(·). Our narrower focus on evaluation allows us to provide
convergence rates that scale advantageously with the dimension of Z, compared to the nonparametric
Op(n

−1/d) rates for training [31]. Recently, Jeong and Namkoong [48] studied a similar notion of
worst-case subpopulation performance in causal inference.

Our notion of worst-case subpopulation performance is also related to the by now vast literature on
fairness in ML. We give a necessarily abridged discussion and refer readers to Barocas et al. [8]
and Corbett-Davies and Goel [27] for a comprehensive treatment. A large body of work studies
equalizing a notion of performance over fixed, pre-defined demographic groups for classification
tasks [24, 36, 7, 43, 51, 84]. Kearns et al. [49, 50], Hébert-Johnson et al. [45] consider finite subgroups
defined by a structured class of functions over Z, and study methods of equalizing performance across
them. By contrast, our approach instantiates Rawls’ theory of distributive justice [64, 65], where we
consider the allocation of the loss `(·; ·) as a resource. Rawls’ difference principle maximizes the
welfare of the worst-off group and provides incentives for groups to maintain the status quo [64].
Similarly, Hashimoto et al. [44] studied negative feedback loops generated by user retention—they
use a more conservative notion of worst-case loss than ours—as poor performance on a currently
underrepresented user group can have long-term consequences.

Our diagnostics complement the recent approaches to benchmarking under distribution shifts [80, 66,
74, 53, 71, 78, 57] as our procedure does not require out-of-distribution data. Since good performance
on a particular distribution shift does not necessitate robustness, we evaluate models using the
worst-case subpopulation performance (2).

2 Approach

We begin by contrasting our approach to standard alternatives that consider pre-defined, fixed demo-
graphic groups [59]. Identifying disadvantaged subgroups a priori is often challenging as they are
determined by intersections of multiple demographic variables. To illustrate such complex intersec-
tionality, consider a drug dosage prediction problem for Warfarin [26], a common anti-coagulant
(blood thinner). Taking the best prediction model for the optimal dosage on this dataset based on
genetic, demographic and clinical factors [26], we present the squared error on the root dosage. In
Figure 1, when age and race are considered simultaneously instead of separately, subpopulation
performance vary significantly across intersectional groups.
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Figure 1. Conditional risk µ(Z) = E[(Y − θ(X))2 | Z]. Here Z = age on the left panel, Z = race in
the center, and Z = (age, race) on the right. A = Asian, B = Black, U = Unknown, W = White.

The worst-case subpopulation performance (2) automatically accounts for latent intersectionality.
It is agnostic to demographic groupings and allows considering infinitely many subpopulations
that represent at least α-fraction of the training population P . By allowing the modeler to select
arbitrary protected attributes Z, we are able to consider potentially complex subpopulations. For
example, Z can even be defined with respect to a natural language description of the input X . The
choice of Z—and subsequent worst-case subpopulation performance (2) of the conditional risk
µ(Z) = E[`(θ(X);Y ) | Z]—interpolates between the most conservative notion of subpopulations
(when Z = (X,Y )) and simple counterparts defined over a single variable.

The choice of the subpopulation size α should be informed by domain knowledge—desired robustness
of the system—and the dataset size relative to the complexity of Z. Often, proxy groups can be used
for selecting α. If we wish to ensure good performance over patients of all races aged 50 years or
older, we can choose α to be the proportion of the least represented (race, age ≥ 50) group—this
leads to α = 5% in the Warfarin data. The corresponding worst-case subpopulation performance (2)
guarantees good performance over all groups of similar size.

When it is challenging to commit to a specific subpopulation size, it may be natural to postulate a
maximum level of acceptable loss ¯̀. To measure the robustness of a model, we define the smallest
subpopulation size α?(θ) for which the worst-case subpopulation performance is acceptable

α?(θ) := inf{α : Wα(θ) ≤ ¯̀}. (4)

This provides a certificate of robustness: if α?(θ) is large, then θ is brittle against even majority
subpopulations; if it is sufficiently small, then θ performs well on underrepresented subpopulations.

We now derive estimators for the worst-case subpopulation performance (2) and the certificate of
robustness (4), based on i.i.d. observations (Xi, Yi, Zi)

n
i=1 ∼ P . We assume our observations are

independent from the data used to train the model θ(·).

Dual reformulation The worst-case subpopulation performance (2) is unwieldy as it involves an
infinite dimensional optimization problem over probabilities. Instead, we use its dual reformulation
for tractable estimation. We denote [·]+ = max(·, 0), and abuse notation by letting Wα(h) be the
worst-case subpopulation performance for h(Z) (so that Wα(θ) = Wα(µ)).
Lemma 1 (Shapiro et al. [75, Example 6.19] and Rockafellar and Uryasev [67]). If E[h(Z)+] <∞,

Wα(h) := sup
QZ∈Qα

EZ∼QZ [h(Z)] = inf
η∈R

{
1

α
EP [h(Z)− η]+ + η

}
. (5)

The dual optimum is attained at the (1 − α)-quantile of the h(Z) [68, Theorem 10]. The dual (5)
hence shows Wα(θ) is a tail-average of µ(Z), a popular risk measure known as the conditional
value-at-risk (CVaR) in portfolio optimization [67].

Algorithm 1 Two-stage procedure for estimating worst-case subpopulation performance (2)

1: INPUT: Subpopulation size α, model classH, samples S1 and S2

2: On S1, solve ĥ1 ∈ argminh∈H
1
|S1|

∑
i∈S1

(`(θ(Xi);Yi)− h(Zi))
2.

3: On S2, compute the plug-in estimator Ŵα(ĥ1) = infη

{
1

α|S2|
∑
i∈S2

[
ĥ1(Zi)− η

]
+
+ η

}
.
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Two-stage procedure A key remaining challenge in estimating Wα(θ) is that we can only observe
losses `(θ(Xi);Yi) and never observe the conditional risk µ(·) (3). We propose a two-stage procedure
(Algorithm 1), where we split the sample into two sets S1 and S2. On the first sample S1, we fit an
estimator ĥ1(Z) of the conditional risk µ(Z), using any model classH (class of mappings Z → R),
by solving an empirical approximation to the loss minimization problem

minimize
h∈H

E
[
(`(θ(X);Y )− h(Z))

2
]
. (6)

We denote by h? a minimizer of (6); for a sufficiently rich model class H, the minimizer is given
by µ(Z) = E[`(θ(X);Y ) | Z]. The loss minimization formulation (6) allows the use of any ML
estimator, as well as standard tools for model selection (e.g. cross validation). In the second stage,
on S2 we construct a plug-in estimator for the dual form (5), under the estimated conditional risk
ĥ1(·). In practice, we switch the roles of S1 and S2 and average the resulting estimates to leverage
the entire sample.

To estimate the threshold subpopulation size α?(θ), we simply take the plug-in estimator

α̂ := inf{α : Ŵα(ĥ1) ≤ ¯̀}. (7)

Since α 7→ Ŵα(ĥ1) is decreasing, the threshold can be efficiently found by a simple bisection search.

3 Convergence guarantees

To rigorously verify the robustness of a model prior to deployment, we present convergence guarantees
for our estimator (Algorithm 1). In Section 3.1, we first give finite-sample convergence at the rate
Op(

√
Compn(H)/n), where Compn(H) is the localized Rademacher complexity [9] of the model

class H for estimating the conditional risk µ(Z). In some situations, it may be appropriate to
define subpopulations (Z) over features of an image, or natural language descriptions. For such
high-dimensional variables Z and complex model classesH such as deep networks, the complexity
measure Compn is often prohibitively conservative and renders the resulting concentration guarantee
meaningless. In Section 3.2, we provide a finite-sample, data-dependent convergence result that
depends only on the out-of-sample error for estimating µ(·). In particular, the out-of-sample error can
grow smaller asH gets richer, and as a result of hyperparameter tuning and model selection, it is often
very small for overparameterized models such as deep networks. This allows us to construct valid
finite-sample upper confidence bounds for the worst-case subpopulation performance (2) even when
Z is defined over high-dimensional features andH represent deep networks. Finally, in Section 3.3,
we provide convergence guarantees for our estimator (7) for the certificate of robustness (4). By
building on previous guarantees, we are again able to obtain both types of results.

We restrict attention to nonnegative and bounded losses.
Assumption 1. There is a B such that `(θ(X);Y ) ∈ [0, B], and h(Z) ∈ [0, B] a.s. for all h ∈ H.

Throughout, we do not stipulate well-specification, meaning that we allow the conditional risk
µ(·) = E[`(θ(X);Y ) | ·] not to be in the model classH.

3.1 Concentration using the localized Rademacher complexity

To characterize the finite-sample convergence behavior of our estimator Ŵα(θ), we begin by decom-
posing the error into two terms relating to the two stages in Algorithm 1. Recalling the notation in
Eq. (5) (so that Wα(µ) = Wα(θ)), we have

Wα(µ)− Ŵα(ĥ1) = Wα(µ)−Wα(ĥ1)︸ ︷︷ ︸
(a): first stage

+Wα(ĥ1)− Ŵα(ĥ1)︸ ︷︷ ︸
(b): second stage

. (8)

To bound term (b), we prove concentration guarantees for estimators of the dual (5) (see Proposition 4
in Appendix A.1). To bound term (a), we use a localized notion of the Rademacher complexity.

Formally, for ξ1, . . . , ξn ∈ Ξ and i.i.d. random signs εi ∈ {−1, 1} (independent of ξi), recall the
standard notion of (empirical) Rademacher complexity of G ⊆ {g : Ξ→ R}

Rn(G) := Eε

[
sup
g∈G

1

n

n∑
i=1

εig(ξi)

]
.
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We say that a function ψ : R+ → R+ is sub-root [9] if it is nonnegative, nondecreasing, and
r 7→ ψ(r)/

√
r is nonincreasing for r > 0. Any (non-constant) sub-root function is continuous,

and has a unique positive fixed point. Let ψn : R+ → R+ be a sub-root upper bound on the local-
ized Rademacher complexity ψn(r) ≥ E

[
Rn

{
g ∈ G : E[g2] ≤ r

}]
. (The localized Rademacher

complexity itself is sub-root.) The fixed point of ψn characterizes generalization guarantees [9, 54].

Let h? be the best model in the model classH

h? := argmin
h∈H

E[(`(θ;X,Y )− h(Z))2].

Let ψ|S1|(r) be a subroot upper bound on the localized Rademacher complexity around h?

ψ|S1|(r) ≥ 2E
[
R|S1|

{
h ∈ H : E[(h(Z)− h?(Z))2] ≤ rB2/4

}]
. (9)

We define r?|S1| as the fixed point of ψ|S1|(r).

As we show shortly, we bound the estimation error of our procedure using the square root of the
excess risk in the first-stage problem (6)

E
[(
`(θ;X,Y )− ĥ1(Z)

)2
| S1

]
− E

[
(`(θ;X,Y )− h?(Z))

2
]

By using a refined analysis offered by localized Rademacher complexities, we are able to use a fast
rate of convergence of Op(Compn(H)/n) on the preceding excess risk. In turn, this provides the
following Op(

√
Compn(H)/n) bound on the estimation error as we prove in Appendix A.2. In the

bound, we have made explicit the approximation error term ‖h? − µ‖L2 . As the model classH grows
richer, there is tension as the approximation error term will shrink, yet the localized Rademacher
complexity ofH will grow.
Theorem 1. Let Assumption 1 hold. For some constant C > 0, with probability at least 1− 2δ,∣∣∣Wα(θ)− Ŵα(ĥ1)

∣∣∣ ≤ CB

α

(√
r?|S1| +

√
log(1/δ)

|S1|
+

√
log(2/δ)

|S2|

)
+

1

α
‖h? − µ‖L2

.

If we let S1 be (1− 1/k)-fraction of the data and S2 be the remaining 1/k-fraction for some integer
k (e.g. k = 5), we have |S1| � |S2| � n. Thus, by controlling the fixed point r?|S1| of the localized
Rademacher complexity, we are able to provide convergence of our estimator (3). For example, when
H is a bounded VC-class [81], it is known that its fixed point satisfy [9, Corollary 3.7]

r?|S1| � log(|S1|/VC(H)) · VC(H)/|S1|,

where VC(·) is the VC-dimension.

3.2 Data-dependent dimension-free concentration

In some applications, it may be natural to model Z as a high-dimensional variable. This may include
large subsets of (X,Y ), or defining Z using unstructured information such as images or natural
languages. In these instances, we may wish to use deep networks as the model classH for estimating
the conditional risk (3). We now provide an alternative concentration result that depends on the size
of model classH only through the out-of-sample error in the first-stage problem (6). We denote for
simplicity

∆S(h) :=
1

|S|
∑
i∈S

(`(θ(Xi);Yi)− h(Zi))
2. (10)

for any function h : Z → R on any data set S. We prove the following result in Appendix A.3.
Theorem 2. Let Assumption 1 hold. For some constant C > 0, with probability at least 1− 3δ,

|Wα(θ)− Ŵα(ĥ1)| ≤ 1

α

(√[
∆S2

(ĥ1)−∆S2
(h?)

]
+

+ CB

(
log(1/δ)

|S2|

)1/4

+ ‖h? − µ‖L2

)
.

Moreover, if the model classH is convex, then ‖h? − µ‖L2 can be replaced with ‖h? − µ‖L1 .
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Figure 2: Worst-case subpopulation performance Wα(θ), where W1.0(θ) = E[`(θ(X);Y )].

Following convention in learning theory, we refer to our data-dependent concentration guarantee
dimension-free. For overparameterized model classes H such as deep networks, the localized
Rademacher complexity in Theorem 1 becomes prohibitively large [10, 86]. In contrast, the current
result can still provide meaningful finite-sample bounds: model selection and hyperparameter tuning
provides low out-of-sample performance in practice, and the difference ∆S2(ĥ1)−∆S2(h?) can be
often made very small. Concretely, it is possible to calculate an upper bound on this term as ∆S2(h?)
is lower bounded by minh∈H∆S2(h).

3.3 Certificate of robustness

Instead of estimating the worst-case subpopulation performance for a fixed subpopulation size α, it
may be natural to posit a level of acceptable performance (upper bound ¯̀on the loss) and study α?(θ),
the smallest subpopulation size (4) over which the model θ(·) can guarantee acceptable performance.
Our plug-in estimator α̂ given in Eq. (7) enjoys similar concentration guarantees as those given in
Sections 3.1, 3.2. The following theorem—whose proof we give in Appendix A.4—states that the
true α?(θ) is either close to our estimator α̂ or it is sufficiently small, certifying the robustness of the
model against subpopulation shifts.

Theorem 3. Let Assumption 1 hold, let U(δ) > 0 be such that for any fixed α ∈ (0, 1], |Ŵα(ĥ)−
Wα(θ)| ≤ U(δ)/α with probability at least 1− δ. Then given any α ∈ (0, 1], either α?(θ) < α, or∣∣∣∣α?(θ)α̂

− 1

∣∣∣∣ ≤ U(δ)

Ê
[
ĥ(Z)− P̂−11−α∧α̂

(
ĥ(Z)

)]
+

with probability at least 1− δ, where Ê and P̂−11−α denote the expectation and the (1− α)-quantile
under the empirical probability measure induced by S2.

Our approach simultaneously provides localized Rademacher complexity bounds and dimension-free
guarantees. Our bound becomes large as α→ 0 and we conjecture this to be a fundamental difficulty
as the worst-case subpopulation performance (2) focuses on α-faction of the data.

4 Experiments

On two real datasets, we demonstrate that our diagnostic allows certifying model performance
across subpopulations. We first study a drug dosage prediction problem, where our procedure
ascertains the robustness of a linear regression model over substantially more expressive model
classes. Then, we turn to a large-scale computer vision application based on satellite images [25]
where natural distribution shifts were recently studied [53]. In both settings, we illustrate how our
worst-case subpopulation approach raises awareness on brittle models without knowledge of out-of-
distribution samples. Finally, to verify asymptotic convergence of our proposed two-stage estimator,
we present a simultion experiment on a classification task in Appendix C. For all experiments,
we use gradient boosted decision trees (package XGBoost [22]) to estimate the conditional risk
µ(Z) = E[`(θ(X);Y ) | Z].
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4.1 Warfarin

Warfarin is one of the most widely used anticoagulant, often prescribed to prevent strokes [26]. Its
optimal dosage varies substantially across genetics, demographics, and existing conditions (up to ten
times). We study a Pharmacogenetics and Pharmacogenomics Knowledge Base dataset constructed
from optimal dosages found through trial and error by clinicians. The dataset comprises of 4,788
patients (after excluding missing data) alongside features representing demographics, genetic markers,
medication history, pre-existing conditions, and reason for treatment. Consortium [26] found that a
linear model outperforms a number of more complicated modeling approaches (e.g. kernel methods,
neural networks, splines, boosting) for predicting the optimal dosage.

Such average-case performance needs to translate uniformly to different subpopulations; we need to
ensure automated medical models perform well on underrepresented groups [20, 63, 40, 2]. We wish
to evaluate and compare the worst-case subpopulation performance of different models over Z = X ,
the entire feature vector. Following Consortium [26], we take the root-dosage as our outcome Y ,
and consider the squared loss `(θ(X);Y ) = (Y − θ(X))2. In Figure 2, we observe that the linear
model closely matches the performance of more expressive models even over small subpopulations.
Moreover, the trend holds over a range of different subpopulation sizes (up to α = 5%). Our finding
instills confidence in the linear regression model: in addition to being simple and interpretable,
our diagnostic certifies its advantageous performance even on tail subpopulations. However, our
diagnostic raises some concerns about poor subpopulation performance: on α = 5% of the training
population, all models suffer prediction error six times worse than the average-case performance.

4.2 Functional Map of the World (FMoW)

Satellite images can impact economic and environmental policies globally by allowing large-scale
measurements on poverty [1], population changes, deforestation, and economic growth [42]. An
automated approach allows analyzing data from remote regions at a relatively low cost and provides
continuous monitoring of land usage. Towards this goal, it is critical that the models perform
reliably across time and space. We study this problem on the Functional Map of the World (FMoW)
dataset [25], where the goal is to predict building / land use categories (62 classes) based on satellite
images. Across different models, we observe that performance remains similar either temporally or
spatially when each dimension is considered separately, but there is substantial variability across
intersections of region and year. For a standard DenseNet ERM model [47, 53] that achieves near-
state-of-the-art performance, we present these trends in Figure 3(a). In Figure 3(b), we observe
substantial variability in classwise error rates; there is a varying level of difficulty across different
classes. (We observed similar patterns for other models.)

Figure 3: For DenseNet ERM, spatiotemproal intersectionality (left) and performance by class (right)

We take the perspective of an analyst evaluating prediction models for land usage, based on data
collected during 2002-2013. The FMoW dataset provides fertile grounds for demonstrating our
method as it includes natural distribution shifts [53], both spatial and temporal. In particular, we
demonstrate model robustness on out-of-distribution samples collected in 2016-2018. On validation
data collected during 2002-2013, we first evaluate model performance on subpopulations defined
across metadata on a satellite image, which consists of (subsets of) {longitude, latitude, cloud cover,
region, year} and the label Y . Then, we observe how our procedure selects models that perform well
“in the future” without requiring out-of-distribution data.
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We examine a range of different models trained on the FMoW-WILDS training set (collected in
2002-2013, n =76,863) which fall into two broad categories. First, we consider models pre-trained
on ImageNet and finetuned on the FMoW training set. These include DenseNet models trained using
ERM and the recently proposed invariant risk minimization (IRM) framework [6]. We also study
the Dual Path Network-68 (DPN-68) model with connection paths that enable feature reusage and
feature exploration proposed by Chen et al. [23]. We use DPN-68 trained on FMoW using ERM
as reported in [58]. These models all achieve in distribution (ID) accuracy of ∼ 60% on a heldout
validation set (“ID val”, collected in 2002-2013, n =11,483).

Second, we consider models derived from the recently proposed CLIP model [62], which was trained
on large and heterogeneous data sources comprising of 40M image-text pairs using natural language
supervision and contrastive losses. The pre-training data for CLIP is 400 times bigger than ImageNet,
and Radford et al. [62] have observed that zero-shot applications of CLIP exhibits substantial relative
robustness gains over other state-of-the-art methods on natural distribution shifts of ImageNet.

However, on the FMoW in-distribution (2002–2013) validation set, zero-shot CLIP only achieves
19.3% accuracy compared to the 60% accuracy of ImageNet pre-trained models. We thus finetune it
using satellite images in the FMoW training data. While finetuning substantially improves ID accuracy
on FMoW to 70.2%, the relative robustness gains of the zero-shot CLIP model severely degrade.
To address this problem, Wortsman et al. [85] proposed a weight-space ensembling method (CLIP
WiSE-FT) where they average the network weights of the zero-shot CLIP model and its finetuned
counterpart. These ensembled networks have been observed to exhibit large Pareto improvements in
both in-distribution and out-of-distribution accuracy, including on the FMoW dataset.

Motivated by the observed robustness gains, we average the network weights θ0 of the CLIP Zeroshot
model and that of CLIP fine-tuned θ1 to generate a new network (1− λ)θ0 + λθ1, where λ ∈ [0, 1]
controls how much weight is given to the task-specific, fine-tuned model (domain expertise). We
select λ = 0.4 so that the ensembled model (CLIP WiSE-FT) achieves similar performance as
ImageNet pre-trained counterparts on the in-distribution validation data. To further make models
comparable with respect to the cross entropy loss, we calibrate the CLIP WiSE-FT model by tuning
the temperature parameter so that its average loss on the in-distribution validation set matches the
worst average loss of ImageNet pre-trained models (DenseNet ERM). See Appendix B for detailed
experimental settings and training specifications.

Figure 4. Left: Z = (all metadata); Right: Z = (all metadata, Y). Results are averaged over 50 random
seeds with error bars corresponding to a 95% confidence interval over the random runs.

We compute estimators of Wα (Algorithm 1) on the in-distribution validation data (ID val) using
the standard cross entropy loss. In Figure 4, we summarize the estimated worst-case subpopulation
performances defined over the entire metadata, across different subpopulation sizes α. First, we note
that all models have comparable in-distribution accuracy of ∼ 60% and DenseNet IRM has the best
average-case cross entropy loss. However, the worst-case subpopulation performance of the ImageNet
pre-trained models is substantially worse compared to that of CLIP WiSE-FT. This gap grows larger
as the subpopulation size α becomes increasingly small. Evaluations on worst-case subpopulations
suggest that CLIP WiSE-FT exhibits robustness against subpopulation shifts; in contrast, average-case
evaluations will select DenseNet IRM.

We observe a drastic performance deterioration on tail subpopulations. The inclusion of label
information in Z significantly deteriorates worst-case performance, raising concerns about the
distributional robustness of all models including changes in the label distribution. In Table 1, we
present model performances on the out-of-distribution (“future”) data collected during 2016–2018.

9



ID, 2002–2013 OOD, 2016–2018
Models Accuracy Loss Accuracy Loss Africa Accuracy Africa Loss

CLIP WiSE-FT 0.61 2.78 0.56 2.84 0.38 3.08
DenseNet ERM 0.61 2.78 0.53 3.50 0.33 5.41
DenseNet IRM 0.59 2.44 0.51 2.94 0.31 4.46
DPN-68 0.61 2.75 0.53 3.55 0.31 5.61

Table 1. Model performance on ID val and OOD test sets. All models suffer a performance drop on the
OOD test set in both accuracy and average loss. The performance degradation is particularly significant
on images from Africa. On the OOD data, CLIP WiSE-FT outperforms other models both in average
accuracy/loss and worst-region accuracy/loss.

All models suffer a significant performance drop under temporal distribution shift, particularly on
images collected in Africa where predictive accuracy drops by up to 20 percentage points. CLIP
WiSE-FT exhibits the most robustness under spatiotemporal shift than any other model, as presaged
by evaluations of worst-case subpopulation performance in Figure 4.

A key advantage of our method is the flexibility in the choice of Z; the modeler can define granular
or coarse subpopulations based on this choice. As defining subpopulations over all metadata can
be conservative, we present additional results under Z =(region, year) and Z =(region, year, label
Y ) in Appendix B. Instead of incorporating labels as a category, it may be more informative to use
the semantic meaning of each class label. We generate natural language description of the labels by
concatenating each class label with engineered prompts, and pass it to the CLIP text encoder [62] to
generate a feature representation for the label. In Appendix B.3, we present evaluation results where
we take the feature vector in place of the label Y when defining Z.

5 Discussion

To ensure models perform reliably under operation, we need to rigorously certify their performance
under distribution shift prior to deployment. We study the worst-case subpopulation performance
of a model, a natural notion of model robustness that is easy to communicate with users, regulators,
and business leaders. Our approach allows flexible modeling of subpopulations over an arbitrary
variable Z and automatically accounts for complex intersectionality. We develop scalable estimation
procedures for the worst-case subpopulation performance (2) and the certificate of robustness (4) of a
model. Our convergence guarantees apply even when we use high-dimensional inputs (e.g. natural
language) to define Z. Our diagnostic may further inform data collection and model improvement by
suggesting data collection efforts and model fixes on regions of Z with high conditional risk (3).

The worst-case performance (2) over mixture components as subpopulations (1) provides a strong
guarantee over arbitrary subpopulations, but it may be overly conservative in cases when there is a
natural geometry in Z ∈ Z . Incorporating such problem-specific structures in defining a tailored
notion of subpopulation is a promising research direction towards operationalizing the concepts put
forth in this work. As an example, Srivastava et al. [76] recently studied similar notions of worst-case
performance defined over human annotations.

We focus on the narrow question of evaluating model robustness under distribution shift; our evalua-
tion perspective is thus inherently limited. Data collection systems inherit socioeconomic inequities,
and reinforce existing political power structures. This affects all aspects of the ML development
pipeline, and our diagnostic is no panacea. A notable limitation of our approach is that we do not
explicitly consider the power differential that often exists between those who deploy the prediction
system and those for whom it gets used on. Systems must be deployed with considered analysis of its
adverse impacts, and we advocate for a holistic approach towards addressing its varied implications.
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