
Scalable Bayesian Low-Rank Adaptation of Large Language Models via
Stochastic Variational Subspace Inference

Colin Samplawski1 Adam D. Cobb1 Manoj Acharya1 Ramneet Kaur1 Susmit Jha1

1Neuro-Symbolic Computing and Intelligence Research Group, Computer Science Laboratory, SRI International

Abstract

Despite their widespread use, large language mod-
els (LLMs) are known to hallucinate incorrect in-
formation and be poorly calibrated. This makes the
uncertainty quantification of these models of criti-
cal importance, especially in high-stakes domains,
such as autonomy and healthcare. Prior work has
made Bayesian deep learning-based approaches
to this problem more tractable by performing in-
ference over the low-rank adaptation (LoRA) pa-
rameters of a fine-tuned model. While effective,
these approaches struggle to scale to larger LLMs
due to requiring further additional parameters com-
pared to LoRA. In this work we present Scalable
Bayesian Low-Rank Adaptation via Stochastic
Variational Subspace Inference (ScalaBL). We per-
form Bayesian inference in an r-dimensional sub-
space, for LoRA rank r. By repurposing the LoRA
parameters as projection matrices, we are able
to map samples from this subspace into the full
weight space of the LLM. This allows us to learn
all the parameters of our approach using stochastic
variational inference. Despite the low dimensional-
ity of our subspace, we are able to achieve compet-
itive performance with state-of-the-art approaches
while only requiring ∼1000 additional parameters.
Furthermore, it allows us to scale up to the largest
Bayesian LLM to date, with four times as a many
base parameters as prior work.

1 INTRODUCTION

The use of large language models (LLMs) have become
ubiquitous across many domains ranging from healthcare
[Clusmann et al., 2023], scientific discovery Zhang et al.
[2024], cyber-physical systems [Cobb et al., 2023], code
generation [Jiang et al., 2024], and general everyday use

[Anil et al., 2023]. Therefore, ensuring that these models are
reliable and trustworthy has never been more vital. However,
it is well known that LLMs output incorrect information in
the form of "hallucinations" [Huang et al., 2024] and are
often poorly calibrated [Zhu et al., 2023, Spiess et al., 2024].
One direction of research aimed at solving these issues
considers quantifying the uncertainty of LLM outputs. A
variety of post-hoc approaches have been proposed for this
task, such as verbalized confidence [Tian et al., 2023, Xiong
et al., 2023], quantifying token level uncertainty [Kuhn et al.,
2023, Farquhar et al., 2024], or conformal prediction [Kaur
et al., 2024].

In contrast, Bayesian deep learning (BDL) provides a prin-
cipled approach to the uncertainty quantification of deep
models. In this family of approaches, uncertainty quantifi-
cation is performed by directly inferring a distribution over
the weights of the model [Gal and Ghahramani, 2016, Blun-
dell et al., 2015, Lakshminarayanan et al., 2017]. Here we
estimate a model’s predictive uncertainty for a test instance
x, denoted P (y|x,D), by using Bayes’ Rule to marginalize
over the parameter posterior distribution, denoted P (W|D),
via the following integral:

P (y|x,D) =
∫

P (y|x,W)P (W|D)dW (1)

where D is a training (or fine-tuning) dataset, and W are
the model parameters. However, when scaling such tech-
niques to LLMs, providing a good approximation of this
intractable integral becomes increasingly challenging due
to the large dimensionality of W. For this reason, recent
work has considered performing Bayesian inference over the
smaller subset of parameters learned in popular parameter
efficient fine-tuning (PEFT) approaches [Fu et al., 2023].

In the widely-used low-rank adaptation (LoRA) technique
of Hu et al. [2022], only a small subset of parameters are up-
dated, saving considerable resources compared to updating
the entire parameter set, while still enjoying most of the per-
formance of the base model. Conveniently, the low dimen-
sionality of these parameters additionally makes them well

Figure 1: Visual depiction of prior work and our approach for a single layer. Blocks shaded red denote parameters which are
trained and blue blocks denote frozen parameters. White blocks with hatching denote parameters which are sampled from
learned variational distributions.

suited for BDL techniques. However, Yang et al. [2024a] and
Wang et al. [2024] have shown that directly applying BDL
techniques such as Deep Ensembles [Lakshminarayanan
et al., 2017] or Monte Carlo Dropout [Gal and Ghahramani,
2016] over LoRA only leads to a marginal improvement on
uncertainty quantification metrics compared to straightfor-
ward fine-tuning approaches such as maximum likelihood
estimation (MLE) or Maximum a Posteriori (MAP).

The first success in this space came from Yang et al. [2024a]
who perform a Laplace approximation of the parameter
posterior after MAP fine-tuning. The state-of-the-art ap-
proach of Wang et al. [2024] instead uses stochastic varia-
tional inference in a technique they call Bayesian LoRA by
Backprop (BLoB). Although this approach performs better
than any previous approach, it comes at the cost of needing
∼40% more parameters than LoRA. This can be a major
memory bottleneck in high-stakes, resource-constrained de-
ployments where computing the Bayesian model average
already stresses the available memory budget [Vadera et al.,
2022].

In this work, we introduce Scalable Bayesian Low Rank
Adaptation via Stochastic Variational Subspace Inference
(ScalaBL). As shown in Figure 1, we perform Bayesian
inference inside a much smaller subspace of the full weight
space W with dimensionality equal to the LoRA rank r.
We show how we can repurpose the LoRA parameters A
and B as projection matrices which map samples from the
low dimensional subspace into the full weight space W. We
then learn the parameters of our approach using stochastic
variational inference.

A major benefit of our approach is that it requires learning
only 2r additional variational parameters for each LoRA
layer, compared to the rd parameters required by BLoB,
where d is the embedding dimension of the LLM. For ex-

ample, when fine-tuning an LLM with 7 billion parameters
where d = 3584 using a rank of r = 8, BLoB requires mil-
lions of additional parameters, while ScalaBL requires only
∼1000. Furthermore, so long as the rank r remains constant,
our approach requires the same number of additional param-
eters per layer regardless of the embedding dimension of
the base LLM. As a result, we are able to scale our approach
to a 32 billion base parameter model where d = 5120, com-
pared to the 7 billion parameter models considered by the
prior work of Yang et al. [2024a] and Wang et al. [2024].
Through extensive experimentation, we show that ScalaBL
has competitive or superior performance compared to these
state-of-the-art baselines on a suite of commonsense reason-
ing benchmarks in both in- and out-of-distribution settings.

We highlight our main contributions as follows:

• We propose ScalaBL, a Bayesian LoRA approach which
performs stochastic variational inference inside a low di-
mensional subspace.

• ScalaBL enjoys considerable parameter efficiency com-
pared to prior work and requires∼2000× fewer additional
parameters.

• ScalaBL achieves competitive or superior performance to
state-of-the-art approaches in terms of uncertainty quan-
tification metrics, while requiring fewer parameters.

• Our work is the first to scale a Bayesian LoRA approach
to a pre-trained model of 32 billion base parameters, com-
pared to the 7 billion parameter models of prior work.

The structure of the paper is as follows. In Section 2, we
discuss relevant prior work that our approach builds on.
In Section 3.1, we demonstrate our approach for building
a parameter-efficient subspace and in Section 3.2, we dis-
cuss how to train a probabilistic model in this subspace
using stochastic variational inference. In Section 4, we pro-
vide results of our extensive experiments. Finally, in Sec-

tions 5 and 6, we discuss limitations and conclude. Ad-
ditional details and experimental results are included in
the Appendix. Our code is available at github.com/
SRI-CSL/BayesAdapt.

2 PRIOR WORK

In this section we discuss prior work which our approach
builds upon.

2.1 LOW-RANK ADAPTATION

The low-rank adaptation (LoRA) approach of Hu et al.
[2022] has become a standard technique for fine-tuning
LLMs in a tractable way. Consider a linear layer inside a
pretrained LLM which has weights W0 ∈ Rn×d, where
d is the embedding dimension of the model and n is the
output dimension of the layer. A forward pass through the
layer for a batch of b input features x ∈ Rb×d is given by
y = xWT

0 . In LoRA, rather than updating all of the model
parameters, W0, we instead keep these parameters fixed
and learn a new pair of low-rank parameters A ∈ Rr×d and
B ∈ Rn×r, such that:

y = xWT
0 + x(BA)T (2)

The value r ≪ min(n, d) is commonly known as the LoRA
rank. In this way, only r(n + d) parameters need to be
learned rather than nd, leading to considerable resource
savings with minimal performance penalty.

2.2 LAPLACE LORA

The approach of Yang et al. [2024a] is the first example
in the literature of applying uncertainty quantification tech-
niques to LoRA layers by applying a Laplace approximation
to the low-rank parameters. They treat a fine-tuned MAP
estimate as the mean of a multivariate Gaussian distribution
with covariance derived from the inverse Hessian. How-
ever, even when restricting the Laplace approximation to
the LoRA parameters, evaluation of the Hessian is infea-
sible. Therefore Yang et al. [2024a] add structure to the
Hessian by using a Kronecker factorization [Ritter et al.,
2018, Daxberger et al., 2021]. These Kronecker factors are
still memory intensive, so Yang et al. [2024a] are forced
to perform a further approximation via an iterative trun-
cated singular value decomposition approach. The Laplace
approximation is performed post-hoc after fine-tuning the
LoRA parameters. An additional limitation is that at test
time, they need to backpropagate through the model to build
the approximated covariance matrix. This limits the scal-
ability and use of their approach in resource-constrained
environments.

2.3 BLOB

The current state-of-the-art approach in this space is
Bayesian Low-Rank Adaptation by Backpropagation
(BLoB). BLoB moves away from the two stage approach of
Laplace LoRA and instead performs stochastic variational
inference over the LoRA parameters A. More specifically,
they follow the Bayes by Backprop approach introduced by
Blundell et al. [2015]. That is, they recast A as the means
of a low rank Gaussian distribution, denoted Aµ and learn
a set of variance parameters Aσ . Using the reparameteriza-
tion trick [Kingma and Welling, 2013], they project samples
from this low rank distribution into the full weight space:

Wt = W0 +B(Aµ +Aσ · ϵt) (3)

where ϵt ∼ N (0, 1). Wang et al. [2024] show empirically
that their approach leads to better performance than Laplace
LoRA. However, a notable upside of the Laplace approx-
imation is that it does not require learning any additional
parameters. Due to the variance parameters Aσ, BLoB re-
quires learning 1.4× more parameters than the base LoRA
fine-tuning process. Even for smaller 7 billion parameters
models, this can be millions of additional parameters.

2.4 BAYESIAN SUBSPACE INFERENCE

Rather than trying to approximate the parameter posterior
directly, Izmailov et al. [2020] purpose to perform Bayesian
inference in a much smaller k-dimensional subspace of the
full parameter space defined by vectors z ∈ Rk. They then
learn a model P (z|D), and a projection matrix P. This
allows them to project samples into full weight space:

Wt = W0 +Pzt (4)
zt ∼ P (z|D) (5)

As highlighted by Izmailov et al. [2020], this model is not
a reparameterization of the original parameter posterior as
the projection into the full parameter space is not invert-
ible. However, it has the upside that performing Bayesian
inference in the subspace enables the use of many com-
mon Bayesian inference techniques that would otherwise
be intractable. To the best of our knowledge, such subspace
inference techniques have never been applied to LLMs.

3 METHODS

In this section we provide the details of our proposed ap-
proach. We first show how we construct an r-dimensional
subspace of the full weight space W and then discuss how
we train a probabilistic model in this subspace using stochas-
tic variational inference.

github.com/SRI-CSL/BayesAdapt
github.com/SRI-CSL/BayesAdapt

Algorithm 1 ScalaBL Training Procedure

Require: Pretrained weights W0 ∈ Rn×d, fine-tuning dataset D, prior distribution P (s)
Require: Number of training epochs E, batch size B, learning rate η
Require: KL divergence weight β, variance initialization parameter ρ

1: Z ∼ U(−
√

1
d ,
√

1
d) ▷ Sample random matrix

2: _, sµ,A← SVD(Z) ▷ Initialize using SVD
3: B← 0 ▷ Initialize as in LoRA
4: sσ ∼ U(ρ√

2
, ρ) ▷ Initialize as in BLoB

5: for epoch e← 1 . . . E do
6: for batch Dt ∼ D do
7: ϵt ∼ N (0, 1) ▷ Sample noise
8: Wt ←W0 +Bdiag(sµ + sσ · ϵt)A ▷ Reparameterization trick (Equation 13)
9: Lt ← − 1

B logP (Dt|Wt) + βDKL(N (sµ,diag(sσ))||P (s)) ▷ Compute ELBO
10: θ ← [sµ, sσ,,A,B] ▷ Collect trainable parameters
11: θ ← θ − η ∂Lt

∂θ ▷ Compute gradient and update parameters
12: end for
13: end for

3.1 SUBSPACE CONSTRUCTION

To begin, consider a LoRA layer with rank r, initial weights
W0, and low rank factors A and B. We would like to gen-
erate an r-dimensional subspace defined by vectors s ∈ Rr

which can be projected into the full weight space W. We
retain B and use it as a projection matrix as in LoRA, allow-
ing us to focus on building a subspace over A. It is tempting
to follow Izmailov et al. [2020] and learn a simple linear
projection matrix P, resulting in the following subspace:

Slin = {W|W = W0 +BPs} (6)

However, A is an r×d matrix, so the product Ps would need
to be a vector of length rd which then could be reshaped.
This means that P would need to have dimensionality rd×r,
and since we would take P to be a matrix of learnable
parameters, this choice of subspace would eliminate any
parameter savings of LoRA.

To motivate a more parameter efficient subspace construc-
tion, consider the truncated Singular Value Decomposition
(SVD) of A:

Udiag(s)V = SVD(A) (7)

where s ∈ Rr is the vector of singular values, U ∈
Rr×r,V ∈ Rr×d are the left and right singular vectors,
and diag(·) is the diagonal embedding operator. Using U
and V as projection matrices naturally defines the following
subspace:

SSVD = {W|W = W0 +BUdiag(s)V} (8)

We notice that BU is a product of linear parameter matrices,
which has the same representational power as B alone. Fur-
thermore since the dimensionality of V is equal to that of A,

we simply rename V to be A. This results in the following
subspace:

SScalaBL = {W|W = W0 +B diag(s)A} (9)
= {W|W = f(s)} (10)

where f is a projection function which is defined for
notational convenance. Intuitively, we are repurposeing
the LoRA parameters as projection matrices for an r-
dimensional subspace that sits “in-between” A and B.

3.2 VARIATIONAL SUBSPACE INFERENCE

Next we build a probabilistic model in this subspace with
data likelihood given by:

P (D|s) = P (D|W = f(s)) (11)

We set our variational approximation over s as an r-
dimensional diagonal Gaussian distribution:

qθ(s) = N (s|sµ,diag(sσ)) (12)

with mean and variance parameters θ = [sµ, sσ]. To learn
these variational parameters we use stochastic variational
inference. At training step t, we use the reparameterization
trick [Kingma and Welling, 2013] to generate a sample from
qθ(s) and project into the full weight space:

Wt = W0 +Bdiag(sµ + sσ · ϵt)A (13)

where ϵt ∼ N (0, 1). We then maximize the evidence lower
bound (ELBO) [Jordan et al., 1999] for each batch Dt:

Lt = logP (Dt|Wt)− βDKL(qθ(s)||P (s)) (14)

Here the first term is the data likelihood under the LLM
using the weight sample Wt. The second term regularizes

Dataset Citation # Classes Train Samples Test Samples
Winogrande-Small (WG-S) Sakaguchi et al. [2021] 2 0.64K 1.27K
Winogrande-Medium (WG-M) Sakaguchi et al. [2021] 2 2.56K 1.27K
ARC-Easy (ARC-E) Clark et al. [2018] 4 2.25K 0.57K
ARC-Challenge (ARC-C) Clark et al. [2018] 4 1.12K 0.30K
OpenBookQA (OBQA) Mihaylov et al. [2018] 4 4.96K 0.50K
BoolQ Clark et al. [2019] 2 2.49K 3.27K
MMLU-Chemistry Hendrycks et al. [2021] 4 - 0.10K
MMLU-Phyics Hendrycks et al. [2021] 4 - 0.10K

Table 1: Commonsense Reasoning Datasets used in experiments. We note that the MMLU datasets are used only in the
out-of-distribution experiments and therefore have no training samples.

qθ(s) against a prior P (s), where β is a scalar hyperparame-
ter which controls the regularization strength [Higgins et al.,
2017]. Our full training approach is shown in Algorithm 1.

At test-time, we draw N samples from qθ(s), project them
into the full weight space, and compute a Bayesian model
average:

Esn∼qθ(s)[P (y|x, sn)] ≈
1

N

N∑
n=1

P (y|x, f(sn)) (15)

We maintain A and B as learnable parameters as in LoRA.
We then additionally need to learn just 2r variational param-
eters sµ and sσ. We note that BLoB can also be cast as a
form of subspace inference where the LoRA layer itself de-
fines the subspace of W. This is a much higher dimensional
subspace than the one used in ScalaBL, so performing vari-
ational inference results in needing to learn rd additional
parameters per LoRA layer.

4 EXPERIMENTS

In this section we provide experimental comparisons be-
tween ScalaBL, several standard baselines, and current state-
of-the-art approaches.

4.1 DATASETS

Following the experimental protocol of Yang et al. [2024a]
and Wang et al. [2024] we fine-tune and evaluate our ap-
proach using a suite of commonsense reasoning datasets
shown in Table 1. These datasets are posed as multiple
choice questions. Given an input prompt with a question,
we elicit the LLM’s softmax distribution over the next to-
ken. We then select the logits for each possible answer
(e.g. A,B,C,D) and renormalize. In this way, we transform
these commonsense reasoning tasks into a classification
task. This makes it straightforward to compute standard
uncertainty metrics. In particular, we report classification ac-
curacy (ACC), expected calibration error (ECE) [Guo et al.,
2017], and the negative log likelihood (NLL) of the correct

class. See Appendix Section 7.1 for further details on these
metrics.

4.2 BASELINES

We compare against a suite of standard baselines. First we
consider the standard LoRA training procedure with and
without weight decay regularization (labeled MLE and MAP
respectively). Next we compare against the standard BDL
baselines of Deep Ensembles [Lakshminarayanan et al.,
2017], and Monte Carlo Dropout [Gal and Ghahramani,
2016]. Finally, we present results against the two most re-
cent state-of-the-art approaches: the Laplace approximation
approach of Yang et al. [2024a] and BLoB [Wang et al.,
2024].

4.3 IMPLEMENTATION DETAILS

We build our approach using the bayesian-peft library
of Wang et al. [2024]. This provides implementations of
the standard baselines as well as BLoB. For the Laplace
approximation we use the official code provided by Yang
et al. [2024a]. In contrast to Yang et al. [2024a] and Wang
et al. [2024], we present results on the newer Qwen2.5
[Yang et al., 2024b] family of models, rather than the older
Llama-2-7b model [Touvron et al., 2023] of prior work.
For the sake of comparison, results using Llama-2-7b
are provided in Appendix Section 8.5.

Following Yang et al. [2024a] and Wang et al. [2024], we
apply LoRA to the query and value parameters of each
self-attention layer as well as the softmax output head of
the LLM using rank of r = 8. We follow the training pro-
cedure and hyperparameters of BLoB. All approaches are
trained for 5000 steps using the AdamW optimizer. Train-
ing was performed using a batch size of 4 for the 7 billion
parameter models and a batch size of 2 for the 32 billion
parameter model. In contrast to Wang et al. [2024], we train
all approaches using 16-bit precision for the frozen model
parameters instead of using 8-bit quantization. The learn-
able model parameters remain 32-bit. All experiments were

Table 2: In-distribution experiment using Qwen2.5-7B. We report the mean and standard deviation of test set performance
using 8 training seeds. Bold and underlined results denote the best and second best mean performance on each metric/dataset.

Metric Method Params (M) WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (↑)

MLE 3.768 78.86±0.8 89.53±0.4 95.60±0.2 82.30±0.7 92.25±0.9 89.06±0.2

MAP 3.768 78.94±0.8 88.98±0.8 95.73±0.3 82.09±0.7 91.72±0.7 89.04±0.1

MC-Dropout 3.768 78.57±0.4 89.44±0.3 95.77±0.4 82.72±1.0 91.80±0.6 88.99±0.1

Ensemble 11.305 79.09±0.4 89.44±0.5 95.73±0.1 83.23±0.4 92.70±0.6 89.13±0.1

Laplace 3.768 77.28±0.6 85.25±1.3 95.34±0.5 81.99±0.7 91.68±0.4 87.77±0.1

BLoB 5.403 78.66±0.7 89.53±0.8 96.54±0.3 82.30±0.3 91.72±0.7 89.05±0.2

ScalaBL (ours) 3.769 78.64±0.4 90.16±0.8 96.26±0.1 81.42±0.3 90.90±0.5 88.48±0.1

ECE (↓)

MLE 3.768 20.14±0.9 10.11±0.5 4.17±0.2 16.10±0.6 6.40±0.8 3.79±0.1

MAP 3.768 19.99±0.9 10.54±0.7 4.08±0.2 16.42±0.8 6.61±0.6 3.81±0.1

MC-Dropout 3.768 20.15±0.3 10.06±0.4 4.01±0.3 15.46±0.8 6.60±0.4 3.88±0.1

Ensemble 11.305 19.06±0.4 10.13±0.4 3.75±0.1 13.65±0.8 4.96±0.6 2.61±0.1

Laplace 3.768 13.32±3.6 37.90±2.1 33.80±3.8 4.81±0.7 1.90±0.4 1.18±0.2

BLoB 5.403 7.88±0.3 4.03±1.0 1.60±0.4 5.08±0.4 2.16±0.5 1.40±0.3

ScalaBL (ours) 3.769 8.88±0.5 5.03±0.9 1.78±0.2 3.64±0.2 2.43±0.7 1.96±0.3

NLL (↓)

MLE 3.768 1.94±0.3 1.05±0.1 0.44±0.0 1.20±0.1 0.38±0.1 0.25±0.0

MAP 3.768 1.88±0.2 1.05±0.1 0.43±0.0 1.27±0.2 0.39±0.0 0.25±0.0

MC-Dropout 3.768 1.90±0.2 1.02±0.1 0.43±0.0 1.07±0.0 0.36±0.0 0.25±0.0

Ensemble 11.305 1.33±0.1 0.75±0.0 0.25±0.0 0.74±0.0 0.27±0.0 0.24±0.0

Laplace 3.768 0.55±0.0 0.80±0.1 0.51±0.1 0.44±0.0 0.23±0.0 0.29±0.0

BLoB 5.403 0.51±0.0 0.30±0.0 0.10±0.0 0.39±0.0 0.21±0.0 0.23±0.0

ScalaBL (ours) 3.769 0.51±0.0 0.31±0.0 0.11±0.0 0.40±0.0 0.23±0.0 0.24±0.0

performed on a single 80GB NVIDIA A100 GPU.

For ScalaBL, we use the same KL weighting schedule as
BLoB with an maximum value of β = 0.1 We do not use
the Flipout technique [Wen et al., 2018] that was utilized by
BLoB as we found that it did not noticeably effect perfor-
mance. This simplifies the complexity of the implementation
of our approach compared to BLoB. As in BLoB, we use
a standard N (0, Ir) as the prior P (s). We initialize sµ and
A by performing an SVD on a randomly initialized matrix.
This is a fast operation due to the low rank nature of the
LoRA matrices. Like in BLoB, the variance parameters sσ
were initialized as small uniformly random values. We use
a log parametrization for sσ to ensure the variance remain
positive. Following the intuition that sµ is analogous to the
singular values of A, we ensure their positivity using a log
parametrization as well.

For the variational approaches, BLoB and ScalaBL, we
present our main results using N = 10 posterior weight
samples during evaluation, which Wang et al. [2024] found
to give the best performance. The effect of this hyperparam-
eter is explored further in Appendix Section 8.1. Similarly,
we perform 10 forward passes for the MC-Dropout baseline.
For Deep Ensembles, we use an ensemble size of 3.

4.4 IN-DISTRIBUTION RESULTS

In Table 2 we present test set results for a standard in-
distribution setting using the Qwen2.5-7B LLM. We first
notice that a straightforward MLE fine-tuning approach
leads to high accuracy across all datasets, but often overfits
as evidenced by the poor ECE results. The MAP result is
equivalent to MLE with a weight decay penalty of 10−2,
which marginally improves final calibration. We see minor
improvements in ECE and NLL when moving to Monte
Carlo Dropout and Deep Ensembles, with Deep Ensem-
bles performing the best of the standard baselines, albeit at
significantly higher resource cost.

Validating the results of Yang et al. [2024a] and Wang
et al. [2024], we see that the more recent state-of-the-art
approaches out perform the baselines in terms of ECE
and NLL, with minimal reduction in classification ac-
curacy. Furthermore, we see that ScalaBL consistently
achieves performance that is competitive with BLoB, and
even achieves state-of-the-art performance on Winogrande-
Medium dataset in terms of ECE.

Unsurprisingly, BLoB often performs the best out of all
methods and regularly outperforms ScalaBL by a small mar-
gin. However, BLoB has strictly greater representational
power than ScalaBL or Laplace due to its higher parame-
ter count. Compared to MLE, BLoB requires an additional

Table 3: Out-of-distribution experiment using Qwen2.5-7B. We report the mean and standard deviation of test set
performance using 8 training seeds. Bold and underlined results denote the best and second best mean performance on each
metric/dataset.

Metric Method Params (M) OBQA ARC-C ARC-E Chemistry Physics

ACC (↑)

MLE 3.768 92.25±0.9 90.88±0.7 95.64±0.5 53.00±1.3 53.00±1.5

MAP 3.768 91.72±0.7 90.20±0.9 95.53±0.6 53.50±0.9 53.25±3.1

MC-Dropout 3.768 91.80±0.6 90.37±0.5 95.51±0.4 52.75±1.3 51.00±2.1

Ensemble 11.305 92.70±0.6 90.84±0.6 95.71±0.5 53.25±1.0 53.88±1.2

Laplace 3.768 91.68±0.4 90.51±0.7 95.61±0.4 48.75±1.8 50.74±2.3

BLoB 5.403 91.72±0.7 92.49±0.5 96.07±0.5 54.69±1.4 53.65±2.8

ScalaBL (ours) 3.769 90.90±0.5 91.06±1.1 95.74±0.5 52.60±1.8 53.13±1.5

ECE (↓)

MLE 3.768 6.40±0.8 7.72±0.6 3.48±0.4 23.29±2.2 23.22±3.2

MAP 3.768 6.61±0.6 7.89±0.9 3.31±0.2 22.90±1.9 21.52±4.4

MC-Dropout 3.768 6.60±0.4 7.63±0.8 3.38±0.2 23.74±1.6 21.61±2.1

Ensemble 11.305 4.96±0.6 6.18±0.6 2.63±0.4 19.49±1.4 17.33±2.0

Laplace 3.768 1.90±0.4 4.75±0.7 1.99±0.4 14.31±2.1 11.94±4.5

BLoB 5.403 2.16±0.5 4.46±0.5 2.35±0.4 16.21±2.2 16.93±2.4

ScalaBL (ours) 3.769 2.43±0.7 4.41±0.7 1.92±0.4 16.94±1.8 16.29±1.8

NLL (↓)

MLE 3.768 0.38±0.1 0.44±0.0 0.23±0.0 1.53±0.1 1.18±0.1

MAP 3.768 0.39±0.0 0.46±0.0 0.22±0.0 1.52±0.1 1.19±0.1

MC-Dropout 3.768 0.36±0.0 0.43±0.0 0.21±0.0 1.50±0.1 1.19±0.0

Ensemble 11.305 0.27±0.0 0.33±0.0 0.17±0.0 1.29±0.0 1.07±0.0

Laplace 3.768 0.23±0.0 0.32±0.0 0.15±0.0 1.11±0.0 1.03±0.0

BLoB 5.403 0.21±0.0 0.28±0.0 0.15±0.0 1.32±0.1 0.99±0.0

ScalaBL (ours) 3.769 0.23±0.0 0.27±0.0 0.14±0.0 1.26±0.0 0.96±0.0

∼1.4× as many parameters, while ScalaBL requires only
∼1.0001× as many. For this choice of LLM and rank, this
results in BLoB adding ∼1.6 million parameters on top of
MLE, while ScalaBL adds only 912. With that in mind,
ScalaBL achieves very competitive performance at much
lower cost compared to BLoB. For example, on the ARC-
Challenge dataset, BLoB sees ∼1.3× better ECE perfor-
mance than ScalaBL with similar accuracy. However, BLoB
requires 1792× more additional parameters than ScalaBL.

4.5 OUT-OF-DISTRIBUTION RESULTS

Next we consider an out-of-distribution experiment where
models are trained on the OpenBookQA (OBQA) dataset
which consists of grade school level, multiple choice science
questions. First we evaluate this tuned model on the ARC
datasets, which also consists of grade school level multiple
choices, representing a smaller distribution shift. Next we
investigate a larger distribution shift by evaluating on the
more challenging MMLU-Chemistry and MMLU-Physics
datasets which consist of undergraduate level chemistry and
physics multiple choice questions, respectively. The results
of this experiment for all methods are displayed in Table 3.

We again notice that the recent state-of-the-art approaches
outperform the standard baselines in terms of uncertainty

quantification with comparable accuracy. We see that all
methods experience worse calibration when tested under
large distribution shift. We additionally point out the poor
accuracy of the Laplace method on the MMLU datasets. We
see strong performance of our proposed method, with Scal-
aBL out competing BLoB and Laplace on several datasets in
terms of ECE. Under a both small and large amounts of dis-
tribution shift, ScalaBL achieves comparable performance
to BLoB across all metrics.

4.6 SCALING TO LARGER MODELS

A limitation of the prior work of Yang et al. [2024a] and
Wang et al. [2024] is their use of relatively small LLMs
with only 7 billion parameters. This makes it unclear if
their experimental conclusions generalize to the much larger
model sizes which are currently in use [Anil et al., 2023].
For this reason we consider scaling our approach to the
largest Bayesian LLM to date, Qwen2.5-32B, with four
times as many base parameters as prior work. We conduct
the same in-distribution experiments as before and present
test set results in Table 4. We note that we do not report
results using the Laplace baseline as its post-hoc procedure
exceeded the memory availability of our 80GB A100 GPU
even when using 8-bit parameters and test time batch size
of 1, underscoring the poor scalability of this method.

Table 4: In-distribution experiment using Qwen2.5-32B. We report the mean and standard deviation of test set performance
using 3 training seeds. Bold and underlined results denote the best and second best mean performance on each metric/dataset.

Metric Method Params (M) Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (↑)

MLE 9.646 86.45±0.6 93.90±0.9 98.80±0.3 90.90±0.3 96.93±0.6 91.42±0.1

MAP 9.646 86.73±0.8 93.85±1.0 98.83±0.4 91.00±0.1 96.93±0.7 91.47±0.1

MC-Dropout 9.646 86.81±0.5 94.18±0.4 98.71±0.5 90.63±0.7 96.60±0.7 91.42±0.0

Ensemble 28.938 86.99±0.4 94.97±0.3 98.65±0.3 91.42±0.2 96.93±0.6 91.11±0.1

BLoB 14.930 84.92±0.4 94.07±0.4 98.65±0.5 90.71±0.3 96.53±0.3 90.57±0.2

ScalaBL (ours) 9.648 84.73±0.4 93.74±0.7 98.65±0.2 90.07±0.1 96.33±0.2 90.99±0.1

ECE (↓)

MLE 9.646 12.85±0.7 5.88±0.8 1.04±0.3 7.11±0.4 2.18±0.4 1.66±0.1

MAP 9.646 12.48±0.9 5.97±0.7 0.96±0.4 6.83±0.4 2.03±0.6 1.66±0.2

MC-Dropout 9.646 12.22±0.5 5.38±0.3 1.22±0.2 7.50±0.2 2.50±0.3 1.50±0.1

Ensemble 28.938 11.20±0.6 4.89±0.2 0.98±0.4 5.02±0.1 1.85±0.3 0.74±0.1

BLoB 14.930 7.49±0.3 5.07±0.3 1.11±0.3 6.18±0.5 2.51±0.5 1.39±0.1

ScalaBL (ours) 9.648 10.92±0.3 5.03±0.6 1.06±0.1 5.91±0.2 2.32±0.6 1.40±0.2

NLL (↓)

MLE 9.646 1.08±0.1 0.49±0.1 0.06±0.0 0.35±0.0 0.13±0.0 0.18±0.0

MAP 9.646 1.05±0.0 0.53±0.0 0.06±0.0 0.33±0.0 0.13±0.0 0.18±0.0

MC-Dropout 9.646 0.99±0.0 0.50±0.0 0.07±0.0 0.36±0.0 0.14±0.0 0.18±0.0

Ensemble 28.938 0.67±0.0 0.30±0.0 0.04±0.0 0.25±0.0 0.11±0.0 0.18±0.0

BLoB 14.930 0.44±0.0 0.40±0.0 0.06±0.0 0.30±0.0 0.12±0.0 0.17±0.0

ScalaBL (ours) 9.648 0.65±0.0 0.32±0.0 0.05±0.0 0.30±0.0 0.12±0.0 0.18±0.0

In contrast to earlier results, standard baselines are much
more competitive when using a larger base model. We see
that even simple techniques, such as MLE or MAP, lead to
models which are much better calibrated than their smaller
counterparts. This phenomenon has been noticed in prior
work [Xiong et al., 2023, Spiess et al., 2024]. Furthermore,
we see that Deep Ensembles is often the best performing
approach across all three metrics. However, this comes at
significantly higher resource usage.

We observe that our proposed approach, ScalaBL, continues
to show competitive performance against the baselines, in-
cluding BLoB. It often performs the second best in terms of
ECE and NLL, while experiencing a similar classification
performance as BLoB. When using a larger base model, the
efficiency and scalability of our method is even more pro-
nounced. Moving from Qwen2.5-7B to Qwen2.5-32B
increases the model’s embedding dimension from 3584 to
5120 and adds an additional 12 layers. Since the number
of variance parameters in BLoB scales with the embed-
ding dimension, it now requires an additional ∼5.2 million
parameters compared to MLE. By contrast ScalaBL’s ad-
ditional parameter count scales only with r which was not
changed for this larger model. For this reason, ScalaBL only
requires adding an additional 2064 parameters. In fact, for
this choice of LLM and rank, BLoB requires adding 2560×
more parameters than ScalaBL for similar performance. For
this reason we feel that ScalaBL is the only method that
is capable of scaling to current frontier models, which are
already over a trillion base parameters Anil et al. [2023].

5 LIMITATIONS

Regardless of the parameter efficiency of ScalaBL, comput-
ing the Bayesian model average over the projected weight
samples has the same runtime cost as BLoB. A limitation
that this work shares with Yang et al. [2024a] and Wang
et al. [2024] is that we only consider multiple choice classifi-
cation datasets for evaluation. This underscores the need for
uncertainty quantification of open-ended LLM generations
in future work.

6 CONCLUSION

In this work we presented Scalable Bayesian Low Rank
Adaptation via Stochastic Variational Subspace Inference
(ScalaBL). We perform Bayesian inference over an r-
dimensional subspace and repurpose the A and B parame-
ters of a LoRA as projection matrices which map samples
from this low dimensional subspace into the full weight
space W of an LLM. We showed how we can learn all the
parameters of our approach using stochastic variational in-
ference. Due to the small dimensionality of our subspace,
we enjoy considerable parameter efficiency compared to
prior work, while still achieving competitive performance
with state-of-the-art approaches on a variety of common-
sense reasoning benchmarks. For this reason our work is
the first to scale a Bayesian LoRA approach to a 32 billion
model, while requiring several orders of magnitude fewer
additional parameters than prior work.

Acknowledgements

This material is based upon work supported by the United
States Air Force and DARPA under Contract No. FA8750-
23-C-0519 and HR0011-24-9-0424, and the U.S. Army Re-
search Laboratory under Cooperative Research Agreement
W911NF-17-2-0196 and Defense Logistics Agency (DLA)
and the Advanced Research Projects Agency for Health
(ARPA-H) under Contract Number SP4701-23-C-0073. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force,
DARPA, the U.S. Army Research Laboratory, ARPA-H or
the United States Government.

References

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M Dai, Anja Hauth, Katie Millican, et al.
Gemini: A family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In International Conference on Machine Learning, 2015.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom
Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural
yes/no questions. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 2924–
2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering?
try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Jan Clusmann, Fiona R Kolbinger, Hannah Sophie Muti,
Zunamys I Carrero, Jan-Niklas Eckardt, Narmin Ghaffari
Laleh, Chiara Maria Lavinia Löffler, Sophie-Caroline
Schwarzkopf, Michaela Unger, Gregory P Veldhuizen,
et al. The future landscape of large language models in
medicine. Communications medicine, 3(1):141, 2023.

Adam Cobb, Anirban Roy, Daniel Elenius, Frederick Heim,
Brian Swenson, Sydney Whittington, James Walker,
Theodore Bapty, Joseph Hite, Karthik Ramani, et al. Air-
craftverse: a large-scale multimodal dataset of aerial vehi-
cle designs. Advances in Neural Information Processing
Systems, 36:44524–44543, 2023.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer,
Runa Eschenhagen, Matthias Bauer, and Philipp Hen-
nig. Laplace redux-effortless bayesian deep learning.
Advances in Neural Information Processing Systems, 34:
20089–20103, 2021.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin
Gal. Detecting hallucinations in large language mod-
els using semantic entropy. Nature, 630(8017):625–630,
2024.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam,
Lidong Bing, and Nigel Collier. On the effectiveness
of parameter-efficient fine-tuning. In Proceedings of the
AAAI conference on artificial intelligence, 2023.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learn-
ing, pages 1050–1059. PMLR, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Interna-
tional conference on machine learning, pages 1321–1330.
PMLR, 2017.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Mea-
suring massive multitask language understanding. In
International Conference on Learning Representations,
2021.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. In Inter-
national Conference on Learning Representations, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language mod-
els. International Conference on Learning Representa-
tions, 2022.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua
Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallu-
cination in large language models: Principles, taxonomy,
challenges, and open questions. ACM Transactions on
Information Systems, 2024.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur
Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Subspace inference for bayesian deep learning. In Uncer-
tainty in Artificial Intelligence, pages 1169–1179. PMLR,
2020.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. A survey on large language models for
code generation. arXiv preprint arXiv:2406.00515, 2024.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola,
and Lawrence K Saul. An introduction to variational
methods for graphical models. Machine learning, 37:
183–233, 1999.

Ramneet Kaur, Colin Samplawski, Adam D Cobb, Anir-
ban Roy, Brian Matejek, Manoj Acharya, Daniel Ele-
nius, Alexander Michael Berenbeim, John A. Pavlik,
Nathaniel D. Bastian, and Susmit Jha. Addressing uncer-
tainty in llms to enhance reliability in generative ai. In
NeurIPS Safe Generative AI Workshop, 2024.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic
uncertainty: Linguistic invariances for uncertainty esti-
mation in natural language generation. In The Eleventh
International Conference on Learning Representations,
2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. Advances in neural infor-
mation processing systems, 30, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sab-
harwal. Can a suit of armor conduct electricity? a new
dataset for open book question answering. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 2381–2391, 2018.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A
scalable laplace approximation for neural networks. In
International Conference on Learning Representations,
2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM,
64(9):99–106, 2021.

Claudio Spiess, David Gros, Kunal Suresh Pai, Michael
Pradel, Md Rafiqul Islam Rabin, Amin Alipour, Susmit
Jha, Prem Devanbu, and Toufique Ahmed. Calibration
and correctness of language models for code. In 2025
IEEE/ACM 47th International Conference on Software
Engineering (ICSE), pages 495–507. IEEE Computer
Society, 2024.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma,
Rafael Rafailov, Huaxiu Yao, Chelsea Finn, and Christo-
pher D Manning. Just ask for calibration: Strategies
for eliciting calibrated confidence scores from language
models fine-tuned with human feedback. In The 2023
Conference on Empirical Methods in Natural Language
Processing, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Meet Vadera, Jinyang Li, Adam Cobb, Brian Jalaian, Tarek
Abdelzaher, and Benjamin Marlin. Ursabench: A system
for comprehensive benchmarking of bayesian deep neural
network models and inference methods. Proceedings of
Machine Learning and Systems, 4:217–237, 2022.

Yibin Wang, Haizhou Shi, Ligong Han, Dimitris Metaxas,
and Hao Wang. Blob: Bayesian low-rank adaptation by
backpropagation for large language models. Conference
on Neural Information Processing Systems, 2024.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger
Grosse. Flipout: Efficient pseudo-independent weight per-
turbations on mini-batches. In International Conference
on Learning Representations, 2018.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu,
Junxian He, and Bryan Hooi. Can llms express their
uncertainty? an empirical evaluation of confidence elici-
tation in llms. In The Twelfth International Conference
on Learning Representations, 2023.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence
Aitchison. Bayesian low-rank adaptation for large lan-
guage models. In International Conference on Learning
Representations, 2024a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. Qwen2.5 technical report.
arXiv preprint arXiv:2412.15115, 2024b.

Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang
Ji, Wei Wang, and Jiawei Han. A comprehensive survey
of scientific large language models and their applications
in scientific discovery. arXiv preprint arXiv:2406.10833,
2024.

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang,
and Zhendong Mao. On the calibration of large language
models and alignment. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages 9778–
9795, 2023.

Appendix

Colin Samplawski1 Adam D. Cobb1 Manoj Acharya1 Ramneet Kaur1 Susmit Jha1

1Neuro-Symbolic Computing and Intelligence Research Group, Computer Science Laboratory, SRI International

7 ADDITIONAL IMPLEMENTATION DETAILS

7.1 UNCERTAINTY QUANTIFICATION METRICS

In our experiments we report results on two popular metrics for measuring uncertainty quantification: negative log likelihood
(NLL) and expected calibration error (ECE). For dataset of N test instances xn with correct label yn and a probabilistic
model Pθ, NLL is defined as:

NLL =
1

N

N∑
n=1

− logPθ(yn|xn) (16)

That is, it is the expected negative log probability of the correct class under the model.

ECE measures how a model’s confidence aligns with the accuracy of its predictions. It can be computed by binning the
predictions by their confidence. We then compute a weighted average of the difference between the accuracy and confidence
within each bin:

ECE =

K∑
k=1

|Bk|
N
|acc(Bk)− conf(Bk)| (17)

where K is the number of bins and Bk is the set of samples in the k-th bin. Following Wang et al. [2024], we use K = 15 in
all experiments.

7.2 PROMPTS

Following Wang et al. [2024], the prompts used for each dataset are displayed in Table 5.

Table 5: Prompts used for each dataset.

Dataset(s) Prompt

WG-S, WG-M Select one of the choices that answer the following question: {question}
Choices: A. {option1}. B. {option2}. Answer:

ARC-E,ARC-C Select one of the choices that answer the following question: {question}
OBQA,MMLU Choices: A. {option1}. B. {option2}. C. {option3}. D. {option4}. Answer:

BoolQ Answer the question with only True or False: {question} Context: {passage}.

Method Model Size Batch Size Peak Memory Usage (GB) Total Training Time (s)
ScalaBL 7B 4 22.79 1050
BLoB 7B 4 23.47 1064

ScalaBL 32B 2 72.36 2560
BLoB 32B 2 74.04 2740

Table 6: Training-time resource usage comparison for Winogrande-Small (WG-S) dataset.

7.3 RUNTIME ANALYSIS

The main efficiency savings gained by ScalaBL over BLoB is the reduction of the number of parameters that need to be
learned. This also translates to gains in performance during training. In Table 6 we show the training resource usage for both
ScalaBL and BLoB. We see that ScalaBL has lower peak memory usage and trains slightly faster than BLoB.

8 ADDITIONAL EXPERIMENTAL RESULTS

8.1 EFFECT OF NUMBER OF SAMPLES

An important hyperparameter for any variational approach is the number of weight samples N to draw when computing
the test time Bayesian model average. Using models fine-tuned on the Winogrande-Small dataset we explore different
choices for this hyperparameter for both ScalaBL and BLoB. This is shown for all 3 metrics in Figure 2 (Top). We see that
performance across all metrics is saturated around N = 10, validating the choice of Wang et al. [2024].

Its important to remember that the number of parameters sampled from the variational distribution is much smaller in
ScalaBL as compared to BLoB. In Figure 2 (Bottom) we use a log scale plot to compare how many parameters each method
has to draw as we increase the number of samples that are performed.

Figure 2: Effect of number of variational samples on Winogrande-Small (WG-S). Top row: number of test time samples.
Bottom row: total number of sampled parameters. Shaded areas show the standard error over three training seeds.

Table 7: In-distribution experiment using Qwen2.5-7B using difference choices for the subpace. We report the mean and
standard deviation of test set performance using 3 training seeds.

Metric Subspace Params (M) Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (↑)
Random 2.135 73.18±0.4 89.30±0.2 95.66±0.4 74.60±0.4 86.80±0.6 86.67±0.3

SVD 3.773 78.90±0.4 89.30±0.5 96.30±0.5 81.62±0.4 91.07±0.5 88.59±0.1

ScalaBL 3.769 78.64±0.4 90.16±0.8 96.26±0.1 81.42±0.3 90.90±0.5 88.48±0.1

ECE (↓)
Random 2.135 12.96±0.2 4.75±0.7 2.08±0.2 6.72±0.8 2.89±0.4 1.30±0.2

SVD 3.773 9.93±0.2 6.01±0.5 2.34±0.3 5.43±0.4 2.57±0.6 1.31±0.1

ScalaBL 3.769 8.88±0.5 5.03±0.9 1.78±0.2 3.64±0.2 2.43±0.7 1.96±0.3

NLL (↓)
Random 2.135 0.62±0.0 0.31±0.0 0.12±0.0 0.53±0.0 0.37±0.0 0.27±0.0

SVD 3.773 0.53±0.0 0.35±0.0 0.12±0.0 0.39±0.0 0.22±0.0 0.23±0.0

ScalaBL 3.769 0.51±0.0 0.31±0.0 0.11±0.0 0.40±0.0 0.23±0.0 0.24±0.0

Table 8: In-distribution experiment using Qwen2.5-7B using difference choices for the covariance of qθ(s). We report the
mean and standard deviation of test set performance using 3 training seeds.

Metric Σ Params (M) Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (↑) Full Rank 3.773 77.93±0.3 89.30±0.5 96.48±0.2 81.88±0.5 91.73±0.6 88.74±0.1

Diagonal 3.769 78.64±0.4 90.16±0.8 96.26±0.1 81.42±0.3 90.90±0.5 88.48±0.1

ECE (↓) Full Rank 3.773 13.25±0.6 6.69±0.6 2.65±0.1 7.11±0.2 2.61±0.2 1.57±0.2

Diagonal 3.769 8.88±0.5 5.03±0.9 1.78±0.2 3.64±0.2 2.43±0.7 1.96±0.3

NLL (↓) Full Rank 3.773 0.67±0.0 0.41±0.0 0.14±0.0 0.42±0.0 0.23±0.0 0.23±0.0

Diagonal 3.769 0.51±0.0 0.31±0.0 0.11±0.0 0.40±0.0 0.23±0.0 0.24±0.0

8.2 CHOICE OF SUBSPACE

In this section we consider different choices for the subspace used in method. In Table 7, we present results using the SVD
subspace defined in Equation 8. We also include results for an experiment where the A matrix is frozen during fine-tuning.
This is similar to the random subspace approach put forward by Izmailov et al. [2020].

We first notice that difference in performance between the SVD subspace and the subspace used in ScalaBL is negligible.
This isn’t surprising as adding the extra U matrix of parameters does not change the expressive power of the model as
discussed in the main paper. An interesting upside of using the random subspace is that it further reduces the number of
parameters that need to be learned. We see that for some datasets performance is comparable the subspaces with more
parameters. However, on some datasets (such as Winogrande-Medium) there is a considerable reduction in classification
accuracy when using a random subspace.

8.3 USING A FULL RANK COVARIANCE

Following the prior work, we only considered using a diagonal covariance for qθ(s) in our experiments in the main paper.
For the approaches of Yang et al. [2024a] and Wang et al. [2024] this is a necessary limitation as instantiating a full rank
covariance with millions of dimensions would be intractable. However, the Gaussian distribution used in ScalaBL is only
r-dimensional. This makes it straightforward to consider using a full rank Gaussian by adding a few more parameters.

We parameterize a full rank covariance matrix Σ as an eigen decomposition. We treat the eigenvalues e ∈ Rr and matrix of
eigenvectors E ∈ Rr×r as learnable parameters. This adds r + r2 additional parameters to the approach. We use the QR

factorization to ensure that eigenvalues are orthogonal.

E,R = QR(Ê) (18)

Σ = Ediag(e)ET (19)

where Ê are free parameters.

We then update the reparameterization trick to use the Cholesky factor of the covariance matrix. We apply the Cholesky
factorization on-the-fly during learning.

L = Cholesky(Σ) (20)
Wt = W0 +Bdiag(sµ + Lϵt)A (21)

We compare using a diagonal and a full rank covariance matrix in Table 8. We see that using a full rank covariance leads to
very similar performance to using a diagonal one, with some datasets even exhibiting worse calibration.

8.4 EFFECT OF LORA RANK

In the prior work of Yang et al. [2024a] and Wang et al. [2024] a LoRA rank of r = 8 was used in all experiments. In the
main paper, we use this value for the rank as well. In this section we explore the effect of the LoRA on performance for
both ScalaBL and BLoB. We ran additional in-distribution experiments using Qwen2.5-7B with r = [4, 16, 32] to compare
against the results for r = 8 which are already shown in Table 2. This results are shown in Figures 3 and 4.

We first note that the x-axes of these plots show the number of total model parameters, rather than the rank. This captures the
fact that BLoB’s additional parameters grow more quickly as r increases (O(rd)) compared to ScalaBL (O(r)). We see that
BLoB often results in noticeable drops in accuracy as r increases across multiple datasets (WG-S, ARC-E, ARC-C, WG-M,
OBQA). This is then accompanied by increases in NLL. By comparison ScalaBL sees small increases in accuracy across
most datasets as r increases, albeit accompanied with small increases in ECE. Furthermore, BLoB sees larger increases in
ECE compared to ScalaBL across multiple datasets (ARC-E, ARC-C, OBQA). The only time that BLoB sees a reduction
in ECE is when the accuracy also decreases significantly (WG-S, WG-M). ScalaBL is robust to changes in r across all 3
metrics.

8.5 LLAMA2 RESULTS

For the sake of comparison with Yang et al. [2024a] and Wang et al. [2024], we present experimental results using the
older Llama-2-7b LLM in Tables 9 and 10. We note that we reran BLoB and the standard baselines using 16-bit
frozen parameters, instead of 8-bit quantized weights. The reported results for Laplace and Bayes By Backprop (BBB)
[Blundell et al., 2015] are repeated from the tables of Wang et al. [2024]. We obverse the same general trends as seen with
Qwen2.5-7B. Our proposed approach achieves competitive performance with BLoB while requiring significantly fewer
parameters.

Table 9: In-distribution experiment using Llama-2-7b. We report the mean and standard deviation of test set performance
using 3 training seeds. Bold and underlined results denote the best and second best mean performance on each metric/dataset.

Metric Method Params (M) Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (↑)

MLE 4.483 70.78±1.2 70.16±2.8 86.97±0.6 75.26±0.6 82.53±0.4 88.02±0.2

MAP 4.483 71.10±1.1 68.81±0.2 86.62±0.5 76.45±0.7 82.80±0.2 88.05±0.2

MC-Dropout 4.483 69.99±2.7 68.13±1.0 87.68±0.4 76.05±0.7 83.07±1.2 88.43±0.3

Ensemble 13.449 71.31±0.3 71.17±1.4 88.32±0.3 76.37±0.8 83.53±0.2 87.87±0.2

BBB 6.613 56.54±0.7 68.13±1.3 85.86±0.7 73.63±2.4 82.06±0.6 87.21±0.2

Laplace 4.483 69.20±1.5 66.78±0.7 80.05±0.2 75.55±0.4 82.12±0.7 86.95±0.1

BLoB 6.613 64.93±5.1 70.02±0.9 85.80±0.6 73.71±1.4 82.47±0.4 87.62±0.2

ScalaBL (ours) 4.488 70.23±0.9 68.58±1.8 86.80±0.5 74.45±0.9 82.13±0.2 86.50±0.2

ECE (↓)

MLE 4.483 28.17±1.5 28.26±1.9 12.03±0.9 21.97±0.6 13.86±0.5 4.57±0.3

MAP 4.483 27.77±1.4 29.80±0.3 11.82±0.1 21.08±0.3 13.91±0.3 4.34±0.2

MC-Dropout 4.483 28.55±2.5 29.43±1.1 11.25±0.3 20.69±0.6 12.94±1.2 4.17±0.1

Ensemble 13.449 24.61±0.5 25.10±1.3 10.02±0.1 16.96±0.6 10.81±0.2 3.05±0.2

BBB 6.613 21.81±13.0 26.23±1.5 12.28±0.6 15.76±4.7 11.38±1.1 3.74±0.1

Laplace 4.483 4.15±1.12 16.25±2.6 33.29±0.6 7.40±0.3 8.70±1.8 1.30±0.3

BLoB 6.613 5.55±3.3 14.05±0.7 3.39±1.0 3.36±0.5 2.80±0.5 1.08±0.2

ScalaBL (ours) 4.488 9.49±1.2 9.79±1.9 3.54±0.2 4.31±0.4 3.62±0.9 1.83±0.3

NLL (↓)

MLE 4.483 2.47±0.2 2.71±0.4 0.98±0.1 1.14±0.1 0.91±0.1 0.27±0.0

MAP 4.483 2.89±0.5 3.02±0.2 1.05±0.0 1.14±0.0 0.89±0.0 0.27±0.0

MC-Dropout 4.483 3.01±0.4 3.08±0.1 1.00±0.1 1.03±0.0 0.86±0.1 0.27±0.0

Ensemble 13.449 1.47±0.0 1.93±0.1 0.74±0.0 0.73±0.0 0.64±0.0 0.25±0.0

BBB 6.613 1.40±0.6 2.23±0.0 0.91±0.0 0.84±0.2 0.66±0.1 0.31±0.0

Laplace 4.483 0.60±0.0 1.03±0.0 0.88±0.0 0.57±0.0 0.52±0.0 0.31±0.0

BLoB 6.613 0.66±0.1 0.87±0.0 0.38±0.0 0.51±0.0 0.47±0.0 0.23±0.0

ScalaBL (ours) 4.488 0.59±0.0 0.79±0.0 0.39±0.0 0.51±0.0 0.51±0.0 0.25±0.0

Table 10: Out-of-distribution experiment using Llama-2-7b. We report the mean and standard deviation of test set
performance using 3 training seeds. Bold and underlined results denote the best and second best mean performance on each
metric/dataset.

Metric Method Params (M)
Datasets

In Dist. Smaller Dist. Shift Larger Dist. Shift
OBQA ARC-C ARC-E Chemistry Physics

ACC (↑)

MLE 4.483 82.53±0.4 69.48±0.5 75.59±1.2 39.33±1.5 29.00±2.6

MAP 4.483 82.80±0.2 68.92±1.2 76.29±0.7 36.00±1.0 31.00±1.0

MC-Dropout 4.483 83.07±1.2 69.14±0.5 76.17±0.9 37.67±2.1 28.00±4.4

Ensemble 13.449 83.53±0.2 69.37±0.5 76.12±1.0 38.33±1.5 29.00±2.6

BBB 6.613 82.06±0.6 67.25±1.2 75.83±0.8 42.36±0.5 30.21±2.3

Laplace 4.483 82.12±0.7 69.14±1.2 74.94±1.0 44.10±1.3 31.60±0.5

BLoB 6.613 82.47±0.4 69.56±1.1 76.55±0.3 43.40±0.6 30.56±1.2

ScalaBL (ours) 4.484 82.13±0.2 69.48±0.5 77.46±0.3 42.00±2.6 30.33±0.6

ECE (↓)

MLE 4.483 13.86±0.5 23.07±0.9 17.41±0.9 22.56±2.5 29.36±2.3

MAP 4.483 13.91±0.3 24.10±0.9 16.93±1.0 25.96±2.0 28.30±2.5

MC-Dropout 4.483 12.94±1.2 23.44±0.7 16.84±0.7 23.78±3.0 32.71±4.0

Ensemble 13.449 10.81±0.2 19.12±1.1 13.66±0.9 15.94±1.5 20.86±2.5

BBB 6.613 11.38±1.1 19.90±0.7 13.41±0.9 15.67±1.2 26.10±4.8

Laplace 4.483 8.70±1.8 5.84±0.6 8.51±1.1 10.76±3.4 13.91±0.9

BLoB 6.613 2.80±0.5 13.82±0.5 9.65±0.7 15.39±3.4 22.66±0.7

ScalaBL (ours) 4.484 3.62±0.9 11.85±0.6 7.89±0.8 15.99±3.3 21.98±1.1

NLL (↓)

MLE 4.483 0.91±0.1 1.42±0.1 1.11±0.1 1.62±0.0 1.69±0.1

MAP 4.483 0.89±0.0 1.46±0.1 1.12±0.0 1.67±0.1 1.70±0.1

MC-Dropout 4.483 0.86±0.1 1.39±0.1 1.12±0.1 1.64±0.1 1.76±0.0

Ensemble 13.449 0.64±0.0 1.03±0.0 0.82±0.0 1.42±0.0 1.49±0.0

BBB 6.613 0.66±0.1 1.06±0.0 0.79±0.0 1.49±0.0 1.62±0.1

Laplace 4.483 0.52±0.0 0.81±0.0 0.70±0.0 1.35±0.0 1.36±0.0

BLoB 6.613 0.47±0.0 0.88±0.0 0.70±0.0 1.38±0.0 1.43±0.0

ScalaBL (ours) 4.484 0.51±0.0 0.85±0.0 0.63±0.0 1.40±0.0 1.48±0.0

Figure 3: Effect of LoRA rank r. Top: Winogrande-Small (WG-S). Middle: ARC-Easy (ARC-E). Bottom: ARC-Challenge
(ARC-C).

Figure 4: Effect of LoRA rank r. Top: Winogrande-Medium (WG-M). Middle: OpenBookQA (OBQA). Bottom: BoolQ.

	Introduction
	Prior Work
	Low-Rank Adaptation
	Laplace LoRA
	BLoB
	Bayesian Subspace Inference

	Methods
	Subspace Construction
	Variational Subspace Inference

	Experiments
	Datasets
	Baselines
	Implementation Details
	In-Distribution Results
	Out-of-Distribution Results
	Scaling to Larger Models

	Limitations
	Conclusion
	Additional Implementation Details
	Uncertainty Quantification Metrics
	Prompts
	Runtime Analysis

	Additional Experimental Results
	Effect of Number of Samples
	Choice of Subspace
	Using a Full Rank Covariance
	Effect of LoRA Rank
	Llama2 Results

