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ABSTRACT

The current methods for learning representations with auto-encoders almost ex-
clusively employ vectors as the latent representations. In this work, we propose
to employ a tensor product structure for this purpose. This way, the obtained
representations are naturally disentangled. In contrast to the conventional varia-
tions methods, which are targeted toward normally distributed features, the latent
space in our representation is distributed uniformly over a set of unit circles.
We argue that the torus structure of the latent space captures the generative fac-
tors effectively. We employ recent tools for measuring unsupervised disentangle-
ment, and in an extensive set of experiments demonstrate the advantage of our
method in terms of disentanglement, completeness, and informativeness. The code
for our proposed method is available at https://github.com/rotmanmi/
Unsupervised-Disentanglement—-Torusl

1 INTRODUCTION

Unsupervised learning methods of disentangled representations attempt to recover the explanatory
factors z of variation in the data. The recovered representation, c, is expected to be: (i) disentangled,
i.e., each element in ¢ should vary one of the generative factors in z (ii) complete in the sense that all
generative factors z can be controlled by the latent representation ¢, and (iii) informative, that is the
ability to relate via a low capacity model (e.g., a linear model) the generative factors z and the latent
representation c.

It has been shown that solving this task without further assumptions is impossible, since there is an
infinite number of bijective functions f that map between c and z = f (¢) (Locatello et al., 2019)
with all corresponding generative models having the same marginal distributions of the observations.
In this work, we propose to use representations that are a tensor product of elements, which take
values on unit circles S', claiming that this structure is suitable for the effective recovery of the
underlying modes of variation.

This claim follows from entropy considerations. One wishes to have a representation that has a low
entropy of entanglement. The entropy of entanglement is measured by evaluating the number of
non-zero eigenvalues of the Schmidt decomposition of the representation. If a representation can
be described by only one term, which is an outer product of the orthogonal basis functions, it has
the lowest possible entanglement entropy, zero. If a representation requires the use of more than one
term in the decomposition, it is entangled and its entanglement entropy can be quantified, e.g. by the
Von Neumann entropy constructed from non-zero eigenvalues.

The tensor product of n unit circles, S, takes the shape of an n-torus 7" = (S')™, and has a low
entanglement property. This representation has the advantage that it can capture the periodicity
structure of the generative factors, where each circle controls a different aspect of the original
distribution. Unlike other generative models, which rely on the Gaussian distribution as a prior, 7™ is
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a compact manifold, and therefore any function that acts on it, such as a decoder, has to interpolate
only, but not extrapolate when generating new instances.

In this work, we present the TD_VAE, a Variational Auto Encoder whose latent space resides on the
TP torus manifold. In an extensive set of experiments with four different datasets, we compare the
torus latent representations with others proposed in the literature. We show a clear advantage of the
torus representation in terms of various measures of disentanglement, completeness, informativeness
and propose a new metric, the DC-score, which assesses the combined disentanglement and com-
pleteness performance. We present a detailed quantitative and qualitative analysis that supports our
method.

2 RELATED WORK

Generative models aim to create new instances that are indistinguishable from a given distribution.
Auto encoders (Kramer, [1991) achieve this by constructing the identity function using a composition
of two components, an encoder and a decoder. The encoder is tasked with compressing the input into
a latent representation with a dimension smaller than the input’s, whereas the decoder is responsible
for reconstructing the original input from the latent space.

Such auto encoders usually overfit to their training data and are very limited when tasked with
generating new samples. Instead of mapping each input instance to a constant vector, Variational
Auto Encoders (Kingma & Welling} 2013) (VAE) map each instance to a pre-defined distribution, by
minimizing both the encoder-decoder reconstruction loss and a KL-divergence term that depends
on the prior distribution. VAE’s are capable of generating new instances by sampling a latent vector
from the predefined distribution; however, the interpretation of latent space components is typically
obscure and the mapping between them and the dataset properties may be complex.

In order to increase the latent space interoperability, various modifications of the original VAE were
introduced. These variants try to achieve a factorization of the latent space components with each
component corresponding to a specific simple characteristic of the dataset. In 5-VAE (Higgins et al.,
2016), the weight of the KL-divergence term is increased w.r.t. the reconstruction term, which results
in better factorization of the latent space. However, this introduces a new hyper-parameter and departs
from the theoretical derivation of the ELBO term. For example, large /3 parameters may prevent the
conditional distribution from modeling the data faithfully. DIP-VAE (Kumar et al.,|2017)) introduces a
regularizer that constrains the covariance matrix of the posterior distribution. This term is added to the
original VAE loss function, along with two hyper-parameters, and helps achieve better factorization.
Factor-VAE (Kim & Mnih, 2018)) adds a Total Correlation (TC) approximation penalty over the
produced latent codes and introduces an additional hyper-parameter.

2.1 DISENTANGLEMENT METRICS

In order to evaluate the expressiveness of different generative models, a plethora of disentanglement
definitions and metrics were suggested in the literature (Do & Tranl 2019} [Eastwood & Williams),
2018)), see |Locatello et al.[|(2019) for a comprehensive review. In this work, we adopt the defini-
tions and metrics introduced in |[Eastwood & Williams| (2018)) which provides a successful set of
disentanglement metrics.

The authors of |[Eastwood & Williams| (2018) introduce three metrics, Disentanglement, Completeness
and Informativeness (DCI), to quantify the disentanglement properties of the latent space and its
ability to characterize the generative factors of a dataset. Given a dataset that was generated using
a set of K generative factors, 2’ € RE | and that it is required to learn latent codes, ¢ € RP of
D-dimensional representation. Ideally, in an interpretable representation, each generative factor
z; would correspond to only one latent code ¢,. It is also beneficial if the mapping is linear, as
the correlation between generative factors and codes can then be easily assessed. Generating new
instances that are indistinguishable from the original dataset distribution requires that the latent codes
cover the whole range of the generative factors. Furthermore, such a representation provides the
ability to modify a specific property of a generated instance by directly tuning the corresponding
latent code.
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The DCI metrics aim to quantify the relationship between codes and generating factors by having a
single number that characterizes the relative importance of each codeﬁ Cq, in predicting a factor, z;,
which in turn defines an importance matrix I?,;. To construct the importance matrix, K regressors
are trained to find a mapping between z; and ¢, 2; = f;(€). In this work, we follow Eastwood &
Williams| (2018)) and infer the importance matrix using a lasso linear regressor’s weights, W,,, by
Ria = ‘VVm|

Once the importance matrix R,; is obtained, the DCI metrics can be defined explicitly. The disen-
tanglement is given by

D
rank (R)
D= S, g
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High disentanglement means that each entry of the latent vector ¢ corresponds to only one element in
Z (in a linear sense), that is, each code element, c,, affects one generating factor. The disentanglement

metric defined above differs from |Eastwood & Williams|(2018)) by a correction factor %K(R). When
the rank of R is equal to the generative factor’s dimension, this correction equals 1, and does not
affect the metric. However, it does make a difference when the number of codes is smaller than
what is needed to account for all generating factors. Typically, one assumes that there are at least as
many expressive codes as the number of factors. When this is not the case, it means that even if we
have disentanglement among the expressive codes, their number is not sufficient, and our correction
accounts for this. Note that the correction has no influence if there are irrelevant code elements in
addition to a sufficient number of expressive ones. The p factors handle cases where some of the code
dependence on the factors is very weak (namely irrelevant codes), while other codes depend mainly
on one factor and hence should not be of equal importance.

The completeness is defined by

= 7Raj
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In contrast to the disentanglement metric, which considers a weighted mean over the generative

factors, motivated by the fact that irrelevant units in ¢ should be ignored, here all codes are treated
equally.
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A situation in which each factor z; is explained by only one element of the code ¢, results in high
completeness.

The informativeness is the MSE between the ground-truth factors, z, and the predicted values, f; (@,

K
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Disentanglement and completeness values range between zero and one, where one is the best value,
while the best value for informativeness is zero.

Disentanglement and completeness alone do not provide sufficient information on whether a rep-
resentation factorizes properly. For example, consider the case of a representation where only one
generative factor is described by all the codes. While this representation is completely disentangled,
it is not complete, and is therefore meaningless. In order to have a meaningful representation, both
disentanglement and completeness need to be high. Thus, we introduce a new score, called the
DC-score, which accounts for both disentanglement and completeness. We define the DC-score
as the geometric mean of the two metrics, DC-score = v/DC. This way, only cases where both
scores are high will result in a high DC-score. Furthermore, the score will favor cases where both
disentanglement and completeness are comparable rather than having different values while having
the same arithmetic mean.

'throughout the paper we use a, b, ¢, ... and 4, j, k, . .. letters for indices of the codes &and the factors Z
components respectively.
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Figure 1: An example of how a tensor product of two circles, T? = S! x S!, is converted to
a flattened latent representation that can be fed into the decoder. Each point on the torus can be
described by two angles. Each angle represents an m,, tuple. The tensor product of the m,, tuples is
concatenated with their respective o = 0 component to produce the input to the decoder.

3 METHOD

Assume a pre-determined set of vectors sampled from an unknown distribution x, each vector
containing K independent factors, zZ € RX. The training dataset contains samples x; = F(Z7),
I =1,...,N that are generated using a generative function F'. In unsupervised disentanglement, the

- . N
learner has no access to Z nor to ', and receives only the set of samples, {z;},_;.

The learner has to recover a set of representation vectors ¢; that are linked to 27 in a way that is
bijective and disentangled, see Section 2.1} Furthermore, in order to generate new samples, it is also
necessary to be able to sample new representation vectors Cpew, and to obtain a generative function G
such that the new generated samples are from the same distribution of F'(Z), where Z' ~ .

In this work, we view the latent representation vector ¢ as the angles associated with a list of D two-
dimensional unit vectors m, € R?, 1 < a < D, i.e., Va, |m,|| = 1. Using theses two-dimensional
vectors we define

_ ag...aup ay...kp o ap _ 0
Uprod = VEC (vaod ) ’ U;m“od =my @ ® Mmp~ s  Vorient = (m17 to 7mD) ’ (5)

where ® is the outer product operator, «, € {0, 1} and vec is the vectorization operation (equivalent

to flattening the tensor). Define the operator V, that given my, ..., mp, concatenates vy,,oq together
With Vorient, V (M1, ..., mp) = [Uprod; Vorient)- Fig.[I]depicts the case for D = 2.
The vector v = V (myq,...,mp) resides in a vector subspace of R2D+D, defined by only a set of

D parameters. The additional D elements of v,,.;ep: are required to ensure that the mapping V' is
bijective. For example, this can be seen by examining the case of D = 2: let m; = (cos 01,sin ),
mgo = (cos by, sin6y), m) = —m; and my = —my. Then m; @ ma = m) @ mb,.

A natural way of acquiring a random point on the circle, S, is by sampling two independent
Gaussians, & ~ N (uo*, o2*). Each tuple of these vectors is then normalized to have a unit norm,

mak

mak = a . (6)
()" + (1nf)”

Assume that the elements, 5%, follow the normal distribution with a zero mean and a standard
deviation of 1, m&* ~ A (0, 1), then the vectors m,, follow the uniform distribution on .S L

For the purpose of obtaining the distribution parameters of mg*, the encoder e is applied on an
instance, x,

0 0 0 0
R w0l
e(x) = , , . 7
(@) { ut o oof uh ol } (

The reparametization trick (Kingma & Welling, 2013)) is then used to obtain a set of normally
distributed vectors. Denote by S the sampling operator, we sample the coding vector as

4
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Figure 2: Heatmap of the generative factors vs. the codes for the teapots dataset with our architecture
with six circles. The factors are ordered by azimuth and elevation angles, followed by RGB values.
The disentanglement, completeness and DC-scores are 0.67, 0.59 and 0.64, respectively. One can
clearly see the high disentanglement property where each code mostly controls only one factor and
high completeness where most factors are controlled by one code (e.g. 6y controlling z3).

where each component, (a, a,) of m,a =1...D, a = 0,1 is sampled from N (u2,02).

The decoder G then acts on V' (my, ..., mp) to generate a new instance, Z. The requirement that the
generated instance is indistinguishable from the original distribution F' () translates to minimizing
the ELBO loss function. First, it maximizes the log-likelihood probability of  to be similar to the
training sample it reconstructs by having an 12 loss term. Second, to encourage a uniform distribution
on the torus, it contains a KL-divergence term with respect to A/ (0, 1p). The overall expression for
the loss function used during the optimization of the networks e and G is

EZUG (V <M1)> *501’2*5171@ (p (M) [lr)| )]

where (3 is a hyperparameter introduced in 3-VAE (Higgins et al.,[2016) and r; ~ A (0,1p).

As the latent representation resides on the torus, sub-vectors 21D components of m, may be described
by D angles, 8, € [0, 27] (the angles 6, are identified with the codes ¢,). In order to generate new
instances, identify, m? = cos 6, , m! = sin @, . and apply the decoder G (V' (m)) to these elements.

a

The torus topology, TP, is both compact and periodic. Since it is compact, for every sampled 6,,,
there is a nearby 6/ from the training set, thus, the network G can be viewed as an interpolator. This
is in contrast to vectors sampled over R”, in which G has to extrapolate. Furthermore, being periodic,
this topology is able to exploit a periodic structure in the generative factors. Consider a common
generative factor associated with rotations. A rotation cannot be represented by a single non-compact
variable; therefore encoding a rotation in a latent space requires the entanglement of two components.
However, on the torus, only one compact dimension can be used to identify this generative factor.

4 EXPERIMENTS

We compare our method to the leading VAE architectures from the current literature. The baseline
methods are (i) 3-VAE 2016), (ii) DIP-VAE-II (Kumar et al. [2017), and (iii)
Factor-VAE (Kim & Mnih| 2018). The code for all methods was taken from the Pytorch-VAE
repository (Subramanian, [2020) (Apache License 2.0). The network architectures for both the
encoder, decoder and the Factor-VAE’s discriminator (which we do not use) follow those in
& Williams| (2018)), see Tablem Each horizontal line in Tablemdenotes a skip-connection.

All methods were trained using ADAM (Kingma & Bal,[2014) with a learning rate of 0.0001 and
a batch size of 144. The hyperparameters used for DIP-VAE were Agiag = 10 and Aofrdiag = 1.0.
All methods were trained for a maximum number of 50 epochs, and the metrics were evaluated
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using the model that performs best on the validation set with respect to MSE. Furthermore, each
baseline method was evaluated using two latent representations sizes, D = 10, 128 for all datasets.

. 8 - . .
For our method, T8-VAE, we use 8 circles, (S*)". This results in V' € R'3°, Jeaving the number of
parameters in the decoder comparable to the other baseline methods. Each experiment was evaluated
with five different seeds and the mean value is reported.

In order to compute the DCI metrics, we used a linear lasso regressor based on the implementation of
Eastwood & Williams| (2018)) (MIT License) and Zaidi et al.|(2020) (Apache License 2.0). For each
generative factor, a lasso regressor fits between the normalized codes obtained by the encoder, e, to a
normalized factor, namely f;(¢) for each z;. For each factor, the « parameter for the regressor using
10-fold cross-validation from the set {10*6, 107°,1074,1073,1072,0.1,0.2,0.4,0.8, 1}, picking
the one with the minimal the MSE error. The weights of the lasso regressor are then used to construct
the W € RE*P matrix from which the metrics are computed as explained in section

The Fréchet Inception Distance (Heusel et al., 2017 (FID) is used to assess the quality of image
generation. Specifically, we use the implementation of |Seitzer| (2020) (Apache License 2.0) and
report the FID at the final average pooling features of the Inception3 NN (Szegedy et al.l 2016).

The teapots dataset (Moreno et al.l [2016)) contains 200, 000 64 x 64 images of camera-centered
teapots rendered using a set of 5 generative factors, azimuth that is sampled from ~ U [0, 27),
elevation that is sampled from ~ U [0, %) and three RGB channels, each sampled from U [0, 1]. All
VAEs are trained over a subset of 160, 000 (the generative factors are unknown to all architectures),
whereas the disentanglement metrics are evaluated on the remaining 40, 000 images.

The Cars3D dataset (Reed et al., [2015)) contains 183 CAD models of different cars projected into
64 x 64 image with four elevations and 24 azimuths. These three generative factors are split between
a training set of 14054 images and a validation set of 3514 images.

The 2dshapes Dataset, introduced here and released to the public (MIT License), contains 200, 000
64 x 64 images of four possible shapes, triangles, squares, pentagons and hexagons. All shapes
in the dataset are centered in the image and have a white background. The factors controlling
the images are the following: specific shape drawn from a discrete uniform distribution, a scale
value between s ~ U|[20,40], rotation angle § ~ UJ0, 2x], and color RGB values r ~ U|[0, 1],
g ~ UJ[0,1], b ~ UJ0, 1] all sampled uniformly. Since the shapes are symmetric, different angles
could correspond to the same image. The training set contains a subset of 160, 000 instances, whereas
the disentanglement metrics are evaluated on the remaining 40, 000 validation instances.

The 3dshapes dataset (Burgess & Kim, |[2018)) contains 480, 000 64 x 64 images of four possible
objects, a cylinder, a tube, a sphere and a box rendered with 8 linearly spaced scale values, 10 hues
linearly spaced, floor wall and object hue values and fifteen different orientations, which amounts to
six generative factors.

The dSprites Dataset (Matthey et al.,|2017) contains 737, 280 64 x 64 binary images of three shapes,
a square, an ellipse and a heart with six different, equally spaced scale values, 40 different orientations,
and 32 x 32 possible positions in the plane, amounting to five generative factors. 589, 824 instances
were used for training and evaluation was performed on the remaining 147, 456 validation instances.

Results Across all the datasets (Tables , our T8-VAE architecture obtains the highest DC-score,
which combines the disentanglement and completeness scores, compared with the baselines. In all of
these cases the generated images are meaningful, as can be seen from the relatively low FID scores.
Furthermore, for teapots, 2dshapes and dSprites, we also achieve the best reconstruction MSE and
FID scores. In the 3dshapes dataset we obtain the best MSE score and comparable FID scores to
(B-VAE, which achieves the highest score. Qualitative results for the influence of each circle for the
teapots and 2dshapes datasets can be seen in Fig.

For the Cars3D dataset the results are quite different, even though our DC-score is highest. The best
performing method in terms of the MSE and FID scores is DIP-VAE-II 128, which is not among the
best performing methods for the other datasets. One plausible reason is that this dataset, although
having only three generative factors, hides a much richer high-dimensional distribution. The factors
controlling the car model (183 in total) implicitly contain many characteristics of a car, which requires
a high dimensional latent space. Nonetheless, our method achieves the second best FID score for this
dataset.
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Figure 3: The latent representation of the 7%-VAE. Each S* circle corresponds to a different factor of
the dataset that is varied as the angle changes. (a) The 5 most expressive circles on the Teapot dataset.
(b) The 6 most expressive circles on the 2dshapes dataset.

Table 1: Architectures for the encoder e, the decoder GG and the discriminator used for Factor-VAE.
These architectures follow the ones in|[Eastwood & Williams| (2018]).

Encoder

Decoder

Discriminator

3 x 3 64 conv

FCd — 8192

FC d — 1000

BN, ReLU, 3 x 3 64 conv
BN, ReLLU, 3 x 3 128 conv

BN, ReLLU, 3 x 3512 conv
BN, ReLU, 3 x 3 512 conv

BN, LeakyReLU 0.2
FC 1000 — 1000

BN, ReLLU, 3 x 3 128 conv
BN, ReLU, 3 x 3 256 conv

BN, ReLU, 3 x 3 256 conv
BN, ReLU, 3 x 3 256 conv

BN, LeakyReLU 0.2
FC 1000 — 1000

BN, ReLU, 3 x 3 256 conv
BN, ReLLU, 3 x 3512 conv

BN, ReLU, 3 x 3 128 conv
BN, ReLLU, 3 x 3 128 conv

BN, LeakyReLU 0.2
FC 1000 — 2

BN, ReLLU, 3 x 3 512 conv
BN, ReLLU, 3 x 3 512 conv

BN, ReLU, 3 x 3 64 conv
BN, ReLU, 3 x 3 64 conv

FC 8192 — d BN, ReLU, 3 x 3 3 conv, tanh

Dependence on 5 and on D  In order to examine the sensitivity of our method to different tori
dimensions, as well as the influence of the 3 parameter on KL-divergence, we examined the DC-score
and reconstruction error on the Teapot dataset, using four topologies, T4, T°, T and T, and using
five different 3 coefficients, 0, 1, 3, 6,9 (0 corresponds to no KL-divergence). As can be seen in Fig.[d]
removing the KL-divergence completely, leads to a decrease in the reconstruction error; however, the
DC-score also decreases. The T*-VAE exhibits the worst reconstruction error - not surprisingly, as it
can only encode four generative factors, whereas there are five generative factors in the dataset. Both
the T°-VAE, T%-VAE and T®-VAE have the capacity of encoding all generative factors, however, the
encoder of the T8-VAE should ignore three of the circles whereas the encoders of the 7°-VAE and
T6-VAE should ignore at most one circle. Thus, when increasing (3, the induced angles on T8 tend to
a more uniform distribution, which entangles between themselves. This does not happen in T°-VAE
and TS-VAE, since there is at most one extra component that can be entangled.

Heatmap analysis Disentanglement results can be qualitatively evaluated through a visual inspection
of the 2d heatmaps of the generative factors z; vs. the codes ¢, (the angles 6, in our case). In
Figure 2] we show an example of the heatmap results for using our method with D = 6, namely using
a T-VAE. The disentanglement and completeness properties are clearly seen in the 2, zg, 23, 24
dependence on 05, 62, 0y, 01 respectively, while we see worse completeness for the zg factor. Such
images help us better understand cases where one of the scores is high and the other is low, or whether
a specific regressor is suited for capturing the functional dependence.
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Figure 4: The performance dependence on the latent torus and /5 parameter of the KL-divergence
term with five generating factors.(a) The accumulated DC-score. (b) The reconstruction error. (c) The
FID score. We see a clear advantage for a latent space of at least the same dimension as the number

of generating factors.

Table 2: Results on all the datasets.

Dataset Method DC-Score D C 7 MSE FID
B-VAE 10 0.1796 0.1902 0.1702 0.0263 0.0178 154.9922
B-VAE 128 0.1286 0.1715 0.0964 0.0123 0.0187 159.7412
DIP-VAE-II 10 0.1226 0.2480 0.0676 0.0534 0.0186 151.7267
teapots DIP-VAE-II 128  0.0966 0.1592 0.0593 0.0180 0.0063 62.8249
Factor-VAE 10 0.2526 0.2183 03119 0.0601 0.0167 110.7673
Factor-VAE 128  0.3891 0.3564 0.4761 0.0586 0.0061 70.9153
T8-VAE 0.6230 0.6558 0.5919 0.0332 0.0012 15.7170
B-VAE 10 0.2898 0.2913 0.2883 0.0335 0.0145 143.7522
B-VAE 128 0.1733 0.2748 0.1093 0.0216 0.0165 178.0128
DIP-VAE-II 10 0.1701 0.2525 0.1342 0.0650 0.0224 221.5138
2d shapes DIP-VAE-II 128  0.1125 0.2354 0.0543 0.0378 0.0131 78.1923
Factor-VAE 10 0.1875 0.2104 0.1676  0.0660 0.0214 122.2750
Factor-VAE 128  0.5165 0.3935 0.6847 0.0844 0.0062 86.3864
T8-VAE 0.7021 0.7274 0.6777 0.0321 0.0009 17.3992
B-VAE 10 0.5121 0.5319 0.4934 0.0420 0.0020 18.3127
B-VAE 128 0.1219 0.1739  0.0854 0.0070 0.0023 20.0576
DIP-VAE-II 10 0.0838 0.2211 0.0329 0.0867 0.0046 186.8153
3dShapes DIP-VAE-II 128 0.1052 0.1799 0.0617 0.0185 0.0115 267.8511
Factor-VAE 10 0.1759 0.2195 0.1418 0.0738 0.3748 139.5286
Factor-VAE 128  0.1884 0.2166 0.1641 0.0236 0.0024  62.3407
T8-VAE 0.7112 0.8301 0.6140 0.0731 0.0009 22.2525
B-VAE 10 0.1962 0.2917 0.1321 0.0897 0.1152 393.0866
B-VAE 128 0.1447 0.2469 0.0848 0.0709 0.1153 384.6031
DIP-VAE-II 10 0.2090 0.3979 0.1106 0.0789 0.0629 259.0138
Cars3D DIP-VAE-II 128  0.1226 0.2261 0.0665 0.0492 0.0206 191.8091
Factor-VAE 10 0.2551 0.3800 0.1729 0.0961 0.0817 274.6059
Factor-VAE 128  0.3630 0.6047 0.2351 0.0892 0.0738 315.6645
T8-VAE 0.4623 0.5984 0.3571 0.0783 0.0465 242.2127
B-VAE 10 0.2047 0.2600 0.1613 0.0843 0.0116 77.3847
B-VAE 128 0.1160 0.1837 0.0733 0.0548 0.0125 77.4040
DIP-VAE-II 10 0.1886 0.2673 0.1335 0.0897 0.0209 134.6068
dSprites DIP-VAE-II 128  0.1065 0.2237 0.0509 0.0645 0.0218 168.3634
Factor-VAE 10 0.3020 0.2619 0.3908 0.0932 0.1529 153.1589
Factor-VAE 128  0.1654 0.2373 0.1154 0.0571 0.0419 101.6020
T8-VAE 0.3396 0.3681 0.3161 0.0767 0.0066 65.7015
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5 DISCUSSION

We proposed and analyzed a low entangled latent representation of the generating factors of a
distribution. The latent space has the topology of a torus which is a direct product of circles. Each
circle controls one generative factor, and moving along the circle changes the corresponding aspect
of the distribution. Our latent space construction resembles the phase space structure of a classical,
integrable physical system, whose dynamics can be described using action-angle canonical variables
as motion on a phase space torus. The dimension of the torus is the number of the system’s degrees
of freedom, and each point on it specifies the location in space and the velocity of the system at a
given instant in time. The coordinates of the point on each circle correspond to a particular periodic
cycle to which the whole motion has been decomposed. Analogously, the coordinates on each circle
of a point in the latent space torus specify one of the basic properties of an element of the dataset
to which the description of that element has been decomposed. The possible intriguing relationship
between the integrable structure of dynamical systems and its decomposition into its basic harmonic
motions and the decomposition of the dataset into its basic constituents can be valuable in relating
dynamical systems to the process of learning.

The task of unsupervised disentanglement learning is complicated by the fact that given any dis-
entanglement representation there is an infinite family of entangled representations that have the
same marginal distribution (Locatello et al.| 2019). Therefore, an inductive bias is needed for the
task. Our solution in this work is based on the concept of entanglement entropy in quantum physics.
There are non-generic states in the Hilbert space that have low entanglement, and a special class
of them are the product states, whose entanglement entropies are identically zero. We employed
these states for our disentanglement representation. It is indeed easy to see that these provide a
special representation, since any random unitary (or orthogonal) matrix acting on them will make our
representation entangled and hence destroy the disentanglement properties of our solution. Thus, in a
sense, our inductive bias is the use of the special non-generic states (of measure zero) in the Hilbert
space for our representation.

We introduced a DC-score to jointly quantify the disentanglement and completeness of the torus
latent representation and calculated it, as well as various other measures in a large set of numerical
experiments. For the comparison we used five different types of datasets. We varied the dimension
of the latent space torus and showed a clear advantage of the torus latent description compared to
others when the torus dimension is equal or greater than the number of generating factors. In order to
properly assess the cases where the number of expressive codes is lower than the number of generative
factors, we introduced a correction to the disentanglement score, and hence to our DC-score.

One limitation of our proposed low entangled representation is in scaling to datasets containing a large
number of generative factors. The dimensionality of v increases exponentially with the dimension
of the torus latent representation and is, therefore, limited in describing these situations. This can
perhaps be remedied by a different choice of embedding, e.g. working with a direct sum of tensor
products, which increases polynomially. Another limitation of the model may be in its ability to
effectively describe a property of the dataset that is not naturally encoded in a circle, but is, rather,
non-compact in nature.

While our torus latent representation performs better compared to other approaches, one may still
wonder why it did not achieve the perfect DC-score 1. This can be explained by the fact that the
generation of the datasets assumes a certain number of generating factors, while in fact there could
be more, some indirectly combined. For example, in a case where multiple underlying factors are
combined into one explanatory factor, the disentanglement may overshoot, thereby reducing the
obtained score.
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A GENERATIVE FACTORS HEATMAPS

In this section we provide additional heatmap examples for different tori which provide a qualitative
insight. Figures [5| and |§| present the heatmaps for our method on 7% and T*® torus topologies,
respectively, with their D, C and DC scores.

When the number of generative factors is larger than the number of torus dimensions, D, one can
expect some mixing between the generative factors and the latent codes. This can be observed for
instance for 7% in Fig.

As the dimension of the latent codes increases, see Fig. @ the D, C and DC-score metrics improve.

This effect on the disentanglement results from the prefactor %MR) in equation which depends
on the ratio of the numbers of latent codes and generative factors when the latter is larger.

Figure 5: Heatmap of the generative factors vs. the codes for the teapot dataset with our architecture
with four circles (7%). The disentanglement, completeness and DC-scores are 0.36, 0.43 and 0.39,
respectively. One can observe, for example that the second code 6; controls all three RGB values.

B ON THE CONNECTION TO QUANTUM PHYSICS

The assumption is there is a set of elementary generative factors z;,¢ = 1, .., n that are disentangled
from each other, and from which the data distribution can be constructed. The task is to learn these
elementary factors and represent them by latent codes c,,a = 1, ..., m. Ideally we would have liked
to have n = m and a bijective map f that associates to any ¢, one z; and vice versa.

We are working with a linear representation and since quantum mechanics is a linear theory it inspires
our choice of the latent space representation. In quantum mechanics states are represented by vectors
in Hilbert space and the operators that act on them are linear. In our case, the generative factors
constitute a state and so do the latent codes. The linear regressor relating them is a linear operator.

We represent each elementary factor z; as a state (qubit) in a Hilbert space |z;) € F and the complete
set of elementary factors by a state (quantum register of n qubits) in the tensor product of these
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Figure 6: Heatmap of the generative factors vs. the codes for the teapot dataset with our architecture
with eight circles (T®). The disentanglement, completeness and DC-scores are 0.69, 0.61 and 0.65,
respectively.

Hilbert spaces |21, ..., 2n) = |21) - - - |2n) € H = F ® F - - - @F. Note, that only a measure zero of
n-qubit states can be represented in such a way as a product state and the reason that we can do that
is the assumption that z; are disentangled.

Entanglement can be viewed as a measure of how far the state is from being a product state. One
way to measure it is by taking the supremum on the absolute value of the inner product of the
state with all the possible product states. Another measure is the Von-Neumann entropy that is
calculated by constructing a density matrix p as the outer product of |z1, ..., 2, ), decomposing z;
to e.g. two subsets A and B such that p € H* ® HP and tracing out part B, p* = Trgp. The
eigenvalues of p” encode the entanglement between A and B. Specifically, the Von-Neumann
entropy is Sy = —T'rp? log p* and it vanishes iff the state |21, ..., z,,) is a product state.

Returning to our case, we construct the latent space representation using a tensor product since it
should capture the above structure of the generative factors. The measure of disentanglement D,
quantifies it by the — P log P term which is the analog of the Von-Neumann entropy.

Note that there is a difference between our case and quantum mechanics: in quantum mechanics an
elementary qubit state is represented by two angles (6, ¢) while in our case and elementary latent
code is one angle parametrizing a circle of the torus.

One may inquire what would have gone wrong in our analysis if we chose that space of latent codes
to be another curved compact manifold such as a sphere. In such a case we should have covered the
manifold with local patches such that there would be a linear map between the generative factors
and the latent codes on each patch and a transition function between them. Such a representation
would be entangled and will fail, e.g. on the sphere near the pole since rotating by the azimuthal
angle would not change any property.
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