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Abstract

Traditional interactive environments limit agents’ intelligence growth with fixed
tasks. Recently, single-agent environments address this by generating new tasks
based on agent actions, enhancing task diversity. We consider the decision-making
problem in multi-agent settings, where tasks are further influenced by social con-
nections, affecting rewards and information access. However, existing multi-agent
environments lack a combination of adaptive physical surroundings and social
connections, hindering the learning of intelligent behaviors. To address this, we
introduce AdaSociety, a customizable multi-agent environment featuring expanding
state and action spaces, alongside explicit and alterable social structures. As agents
progress, the environment adaptively generates new tasks with social structures for
agents to undertake. In AdaSociety, we develop three mini-games showcasing dis-
tinct social structures and tasks. Initial results demonstrate that specific social struc-
tures can promote both individual and collective benefits, though current reinforce-
ment learning and LLM-based algorithms show limited effectiveness in leveraging
social structures to enhance performance. Overall, AdaSociety serves as a valuable
research platform for exploring intelligence in diverse physical and social settings.
The code is available at https://github.com/bigai-ai/AdaSociety.

1 Introduction

Classic learning environments [55, 41, 9, 42, 34] have agents trained in small and stationary worlds,
which hinders the improvement of agents’ intelligence. The learning process stagnates once the
environments can no longer provide novel data for agents’ explorations. Additionally, agents
trained on a fixed task set may suffer from a loss of generalization ability [13]. Single-agent
environments [18, 25, 61] set out to solve this problem by constructing adaptive environments that
continuously generate new tasks based on agent actions, providing a multitudinous task set.

In multi-agent settings, however, the task set is determined by not only physical surroundings but also
social connections among agents. Social connections dramatically impact agents’ decision-making
by shaping their reward structures and information access [20], and different social structures endow
the environments with radically different research problems. For example, centralized scenarios focus
on issues like credit assignment and consensus establishment [21, 44], while decentralized settings
require agents to address opponent modeling issues and non-stationarity [3, 21, 29, 33].
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author.
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Figure 1: An overview of AdaSociety, composed of physical component and social component.
Physical Component consists of diverse resources and events on the map and heterogeneous agents’
inventories. Social Component describes the adaptive connections between agents and organizations,
which shape information access and reward structure. Agents take social actions to alter their social
connections. As shown in the rightmost flowchart, agents are initially independent and can establish
individual connections (edges between nodes) and form groups (gray ovals).

What makes the problem even more challenging is that social connections are not predefined but
adaptive, which means there’s a dynamical interplay between the topology of social connections and
agents’ states [23]. The adaptive nature of social connections and physical surroundings requires
agents to learn continuously, reason about other agents’ policies, and balance between physical
explorations and establishing social connections. While contemporary multi-agent decision-making
environments [6, 2, 53, 66, 48] have achieved great progress in stimulating and testing capabilities of
learning algorithms in fixed task sets, they fail to generate new tasks by concurrently considering
expanding physical surroundings and adaptive social connections.

To bridge this gap, we propose AdaSociety, a multi-agent environment with massive and diverse tasks
generated by adaptive social connections and expanding physical surroundings, which are influenced
by agents’ behavior. In particular, to the best of our knowledge, AdaSociety first introduces social
states (expressed as a multi-layer directed graph) to explicitly and quantitatively describe the adaptive
and dynamic connections between entities, including agents and emerged organizations. This greatly
enriches the diversity of tasks, supporting the establishment of stable and long-term relations between
entities and the quantitative study of social intelligence, like coalition formation and the emergence
of hierarchy. In such an environment, agents need to balance the exploration of physical surroundings
and the alteration of social connections, leading to multiple possible victory paths and significant
decision-making challenges. To stimulate algorithm design and theoretical analysis in AdaSociety, we
provide a formulation of the multi-agent decision-making problems, named Growing-MG (Sec. 3).

AdaSociety serves as a platform for researchers to customize the environment for diverse research
needs. Specifically, a set of fundamental elements and mechanisms can be used, and interfaces are
provided to set environment attributes and hyper-parameters. Moreover, AdaSociety exhibits its
characteristics by offering three mini-games, where both tensor- and LLM-based methods are tested.

In summary, this paper makes three contributions. 1) We introduce a novel multi-agent general-sum
environment featuring expanding physical surroundings and adaptive social connections. 2) We offer
a customizable environment with three built-in mini-games, supporting both tensor- and LLM-based
methods. 3) We implement RL and LLM methods in these mini-games and provide preliminary
results, laying the groundwork for further research in this environment.

2 Environment

2.1 Basic Components

The key components of AdaSociety (Fig. 1) include the physical component, composed of resources,
events, and agents’ inventories, and the social component describing connections between agents and
organizations. Agents can observe and act to modify both physical and social states.
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2.1.1 Physical Component

Resource and Event. Resources are natural or synthetic. Natural resources scatter randomly on
the map. Some natural resources are visible to everyone while others can only be seen when an
agent has specific resources in its inventory. For example, only the agent possessing a hammer can
observe coal. When agents with specific resources in their inventories stand on an event grid and
take the ‘synthesize’ action, one unit of new resource is synthesized. Synthetic resources will be
automatically placed into agents’ inventories. These resources and events can be systematically
described as a synthesis tree (see Fig. 4). Importantly, agents are unaware of this synthesis tree.
They gradually learn the tree through interaction with the environment. Resources, event grids, and
agents are initialized in random locations on the map for every episode. While there are existing 3D
benchmark environments focusing on perception challenges, our research centers on the domain of
multi-agent decision-making. To this end, the map is intentionally crafted in a 2D symbolic format.

Agent’s Inventory. Every agent has an inventory with maximal capacities of every resource, implying
skill diversity. For example, an agent with a 0 capacity for hammers cannot possess hammers
and observe coal. Agents can collect resources from the map into their inventories and dump
resources on the map. Agents’ rewards are attached to the resources in their inventories, while they
exhibit heterogeneity in resource preferences. Specifically, for agent i, the reward of resource ρ is
Ri(ρ) = mρ

i · hi(ρ) · rρ, where mρ
i is the amount of resource ρ in i’s inventory, hi(ρ) ∈ R represents

i’s preference for ρ, rρ is the objective reward of a unit of ρ (see details in Sec. A.1).

2.1.2 Social Component

The social component explicitly exhibits the connections between agents or organizations. These
connections drastically influence multi-agent decision-making by affecting agents’ accessible infor-
mation and reward structures. Centralization and its complete opposite, decentralization, can be seen
as two typical connection structures, presenting very different decision-making problems. AdaSociety
supports adaptive connections, with corresponding interactions being modeled as general-sum games.
AdaSociety considers not only the connections between agents but also the subordinate connections
between agents and organizations established autonomously by agents. This makes hierarchical con-
nections possible. Agents take social actions to change social states, like connecting or disconnecting
with someone. Fig. 1 illustrates evolving connection structures, from fully independent agents to
sparsely connected agents with several non-overlapping small groups, and finally to a unified large
group. On the other hand, as a customized environment, AdaSociety also supports users to predefine
and/or fix social connections for their specific research problems. The semantics of connections are
diverse, which can be reward sharing, information sharing, or division of labor between involved
agents. AdaSociety supports that agents negotiate their connection semantics (Sec. 4).

To maintain consistency with the physical component, we refer to these connections between agents
and organizations as social states, which are expressed as a multi-layer directed graph (Sec. 3). Social
states explicitly and quantitatively express relations between agents or organizations. For example,
the cooperation level of two agents can be measured by the frequency of connections between
them. Moreover, the combination of social states with successive tasks in AdaSociety supports the
establishment of stable and long-term relations and the study of social intelligence, like coalition
formation and the emergence of hierarchy.

2.1.3 Observation and Action

Observation. Each agent navigates with a partially observable window, reaching o grids in the four
cardinal directions of its current position. Agents can get their own inventory states of collected
resources, but not those of co-players. The social states of all the agents are accessible to everyone.

Action. Action space consists of social actions and physical actions. Social actions aim to build and
break connections with others, including other agents or organizations. Connections are directional.
If agent i connects to agent j, but not vice versa, i shares its information or reward with j, but
gets nothing from j. Physical actions include movement, picking and dumping specific resources,
synthesizing resources on corresponding event grids, and communicating with someone. Newly
synthesized resources enrich picking and dumping actions and the action space.
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Table 1: Comparison with existing environments. AdaSociety is unique for its adaptive connections
between entities and expanding game spaces.

Environment Multi- Dynamic Adaptive Imperfect Comm. Multi- General Tensor
agent Spaces Connection Information task Sum & LLM

AI Economist[66] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
Boat Race[2] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗
Crafter[25] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗
Diplomacy[6] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓
Melting Pot[2] ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗
MineDojo[18] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓
Neural MMO[53] ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗
Overcooked[11] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
SMAC[48] ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
Xland[54] ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗
AdaSociety ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.2 Evaluation Metrics

AdaSociety provides diverse metrics to evaluate the performances of agents and organizations in-
cluding Individual reward, Fairness score, Completion rate, and Average degree and Maximum
degree of the social network. Definitions and details of the metrics are discussed in Sec. A.5.

2.3 Environment Characteristics

There are various characteristics of AdaSociety that make it novel (see Tab. 1). AdaSociety is a multi-
agent decision-making environment, which provides both mini-games for specific research problems
and a customizable platform to researchers (see details in Sec. A.4). Agents dynamically connect
with other agents or organizations and autonomously communicate to negotiate the semantics of
connections, making the emergence of hierarchical social structure and diverse social intelligence
possible. With these dynamic and non-deterministic connections, friends may become foes, and
vice versa. Thus, the interactions between agents can be modeled as general-sum games, where
cooperation coexists with competition. Agents navigate this playground with a partially observable
window centered on their current position. The state and action spaces of AdaSociety dynamically
expand, adapting to agents’ (physical and social) behavior. That generates massive and diverse
tasks, supporting an evaluation of agents’ abilities in multiple aspects. AdaSociety is friendly to
LLM- and tensor-based agents. We evaluate state-of-the-art RL methods and LLMs in Sec. 5. In
addition, we want to stress that the mutual adaptation between agents and AdaSociety, which
generates a variety of successive tasks and multiple possible victory paths. Achieving success in
AdaSociety requires a balance between the exploration of physical components and the alteration of
social connections (see Fig. 5). Agents continually learn policies to efficiently explore and achieve
goals in AdaSociety. Meanwhile, agents’ (physical and social) behavior will affect the dynamics of
AdaSociety. Synthesizing new resources will gradually expand AdaSociety’s physical state space
and the corresponding physical action space, transition function, and reward function. Updated
social states will reshape agents’ observation and reward structures. Thus, tasks and task sequences
are influenced by agents’ behavior and social states, not sampled according to some predefined
distribution of tasks. That is to say, AdaSociety adapts its tasks and task sequences to agents. Mutual
adaptation provides exceptionally massive and diverse complex tasks. The stochasticity and non-
stability of AdaSociety produce various environment dynamics. Agents need to keep learning to adapt
to changing situations.

2.4 Research Challenges

As an adaptive multi-agent environment, AdaSociety provides a comprehensive platform that presents
plenty of research challenges. The adaptive and dynamic characteristics of the physical and social
components bring challenges mainly lying in the intricate and unpredictable interactions between
agents. Through multi-dimensional exploration, agents learn the ability of dynamic environmental
adaptation and engage in communication-enabled interactions. Meanwhile, agents may develop
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social cognition and utilize this information to conduct collective reasoning, which may result in the
emergence of various behaviors. Details of these challenges are stated in Appendix B.

3 Formulation

We now provide a comprehensive definition and analysis of the Growing-MG with a social structure,
which are general enough to encompass all the research challenges mentioned above. Three concrete
scenarios will be instantiated in next section.

The predominant model in multi-agent sequential decision-making is the Markov Game (MG) [37].
However, a significant limitation of MG is the assumption of constant state and action spaces and
unchanged Markovian transitions or rewards, ensuring convergence to some classical solutions such
as global optimality or Nash equilibrium [4, 57]. To address dynamic state and action spaces, we
introduce two new structures, Monotonic-MG-bundle and Growing-MG as below. A Growing-MG
yields a multi-agent non-stationary decision-making framework. At time step t, with state st and
action at, the Monotonic-MG-bundle produces St+1, At+1, Tt+1, Rt+1 = β(st, at), forming one
new MG instance. This framework differs from time-varying games [10, 64, 5], which only model
payoff matrix dependent on past actions. On the other hand, both the transition probability and
reward function in Growing-MG will evolve triggered with some certain transitions. For simplicity,
we denote all possible transition and reward functions on arbitrary state and action space S,A, as
T (S,A) = {T |T : S × A → S} and R(S,A) = {R|R : S × A → R} and the largest possible
spaces supported by the environment as universal state space Sw and action space Aw.

Definition 1. A base-MG is a tuple MGb = ⟨I, Sb, Ab, Tb, Rb, ρ, γ⟩, where I = {1, . . . , I} is a
set of agents; Sb = {S1

b , . . . , S
I
b } and Ab = {A1

b , . . . , A
I
b} is the state space and action space of all

agents; Tb : Sb × Ab × Sb 7→ [0, 1] and Rb : Sb × Ab 7→ RI is the transition and reward function;
ρ : Sb 7→ [0, 1] is the initial state distribution and γ is the temporal discount factor.

Definition 2. A Monotonic-MG-bundle upon a base-MG MGb within the universal state
and action space Sw = {S1

w, . . . , S
I
w}, Aw = {A1

w, . . . , A
I
w} is a map β : St × At →

{St+1, At+1, Tt+1, Rt+1|Si
b ⊆ Si

t ⊆ Si
t+1 ⊆ Si

w, A
i
b ⊆ Ai

t ⊆ Ai
t+1 ⊆ Ai

w, Tt+1 ∈
T (St+1, At+1), Rt+1 ∈ R(St+1, At+1)}.

Definition 3. A Growing-MG upon a base-MG MGb within the universal state and action space
Sw, Aw is a tuple MGg = (MGb, β).

Conceptually, each alteration in the state and action space represents a distinct stage where interre-
lationships among agents should also change. Inspired by research in complex systems like social
sciences and economics [15, 52, 14], we propose enhancing the Growing-MG framework with a
multilayer graph structure [26] G = (V, E , C) (see Fig. 6). C is a set of layers, and V is the set of
nodes in all layers. E is the set of edges existing between nodes in one layer or neighboring layers.
We start with a non-interconnected multiplex system of networks {G1,G2, · · · ,G|C|}, where each
layer c consists of a node set Vc and an edge set Ec, represented by an adjacency matrix Ac

ij with
i, j ∈ {1, · · · , |Vc|}. Nodes in the first layer represent agents in Growing-MG, while higher layers
represent groups and hierarchies of groups. To delineate relationship between nodes in neighboring
layers such as agent-group membership, we introduce inter-layer connectivity using an adjacency
matrix Ac,c+1

ij with i ∈ {1, · · · , |Vc|} and j ∈ {1, · · · , |Vc+1|}. This representation models both
static and time-varying networks, as inter-layer and intra-layer connectivity evolves with agents’
behavior, distinguishing it from existing multi-agent frameworks that predetermine interactions
through reward structures [46, 62]. Finally, we note that both the environmental and social states
within the framework can be extended to include observational information [38, 39], thereby further
enhancing the framework’s generality and practical relevance.

4 Mini-games

To provide a comprehensive benchmark and illustrate the characteristics of AdaSociety, we propose
a set of mini-games (Fig. 2). The three mini-games are arranged in ascending order of the com-
plexity of decision-making. Social structure, prescribing agents’ partners and connection semantics,
evaluates agents’ ability to adapt to the changeable social structure. Contract predefines connection
semantics, where agents need to select partners while learning coordination with various co-players.
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In Negotiation, agents independently select partners, determine the reward distribution plan with
their partners, and behave under the negotiated relationship. All of the three mini-games share the
same physical component (Sec. 5.1), which contains a part of the synthesis tree. The following text
provides a detailed description of the social components of Social structure, Contract, Negotiation.
To show the full complexity of our physical components, another mini-game Exploration, which
contains all built-in resources and events, is introduced in Sec. C.2.
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Figure 2: Overview of three mini-games.

Social Structure. The explicit represen-
tation of social structure allows dynamic
changes as agents interact with the en-
vironment. Pre-defined rules for struc-
ture change could be designed to com-
pel agents to alter their social relation-
ships while interacting with the environ-
ment. We implement structure change
at certain steps: when step t reaches
T1, T2, ..., the social structures are mod-
ified to G1,G2, ..., respectively. Different
categories of social structures are stated
in Sec. C.1. This forces agents to learn
policies to adapt to the changing social environment.

Contract. The environment is divided into two stages: the contract formation stage for determining
social connections and the physical interaction stage to interact with the physical component and
co-players with determined social connections. The contract formation stage lasts for cN time steps,
where c is a positive integer and N is the number of agents, while the physical interaction stage has a
duration of T . Therefore, the total duration of each episode is cN + T . Before the contract formation
stage (0 ≤ t < cN), an order (i1, i2, ..., iN ) is randomly sampled. At time t, agent ik, where k = t
mod N , takes social action, selecting a group node vg ∈ Vg to connect. An agent can connect with
only one group node. Agents within the same group are considered to have formed a contract to share
rewards. In the physical interaction stage (t ≥ cN), all agents act synchronously within the physical
component, and the rewards received are equally divided among the agents within the same group.

Negotiation. The game has a negotiation stage followed by a physical stage. In the beginning, agents
seek cooperation by selecting an opponent and sending him a request. After mutual requests, agents
bargain by exchanging proposals until agreement or breakup. In the bargaining session, agents i
and j take turns to perform one of the three actions: (i) PROPOSE a new scheme (wi, wj) s.t.
wi + wj = 1, where wi and wj represent the partition of rewards obtained by i and j respectively
in the physical stage. (ii) ACCEPT the proposal from one’s opponent and form a new group
(coalition). (iii) DECLINE the proposal and end this session without any commitment. Once a
new group is formed, the cooperative relationship between i and j represented by edge Eij with
a payoff distribution (wi, wj) is established. Later, when i or j seeks to negotiate with others, it
represents the group {i, j}. For example, if i and an out-group agent k reach a new distribution
plan (wnew

i , wnew
k ), then k is regarded as joining {i, j} to form a new group {i, j, k} with an updated

distribution (wi · wnew
i , wj · wnew

j , wnew
k ).

5 Experiments

5.1 Environment Setup

We have designed two physical task settings, featuring different levels of difficulty, for Social
Structure, Contract, and Negotiation. The parameters of these tasks are provided in Sec. C.3.

In the Easy task, the environment involves a single event HammerCraft. Within this task, agents are
categorized into two types based on their inventory capacity and value preference: carpenters and
miners. Carpenters have the ability to gather wood and stone, which they can then use to produce
hammers through the HammerCraft event. However, their inventory is limited to holding only one
hammer at a time. On the other hand, miners are unable to collect stone, making them incapable of
producing hammers. However, miners possess the advantage of being able to store a considerable
number of hammers in their inventory. Additionally, hammers held by miners are assigned a higher
value compared to those held by carpenters.
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In the Hard task, the environment becomes more complex with the inclusion of six resources: wood,
stone, hammer, coal, torch, and iron, as well as two events: HammerCraft and TorchCraft. Similar to
the Easy task, agents are divided into carpenters and miners. Due to the limited capacity of certain
resources, only carpenters can execute HammerCraft to produce hammers, while only miners can
execute TorchCraft to produce torches. However, carpenters’ inventories cannot store coal, which
requires a hammer to pick up, and miners’ inventories cannot store iron, which requires a torch to
pick up. Consequently, in order to maximize group rewards, carpenters and miners should engage in
resource exchange, providing the resources they can produce to each other. This collaborative effort
ensures that the group can obtain more resources collectively.

5.2 Baseline Methods

We use several deep reinforcement learning algorithms as baselines. Proximal Policy Optimization
(PPO) [49] strikes a balance between sample efficiency and policy stability by constraining policy
updates using a trust region approach and a clipped surrogate objective. RecurrentPPO(RecPPO)
uses PPO for training and add LSTM [28] to maintain memories in the network. Rainbow [27] is a
value-based method that incorporates several key enhancements into the Deep Q-learning framework.
MAPPO is the multi-agent version of PPO. It learns a critic that takes the global state and other
agents’ actions as inputs during training. We employ a convolutional neural network for encoding
grid information and a graph convolutional network [32] for encoding social state in all RL methods.
The open-source library RLLib [36] is used for RL training.

Additionally, we design a curriculum learning (CL) algorithm. It starts with shared rewards to
enhance cooperation strategies, then gradually increases social state randomness for learning under
different social structures, and finally allows agents to perform social actions to establish their own
social state. RecPPO is used for RL training at each stage. We also present a Large Language Model
+ rule-based controller (LLM-C) framework based on GPT-4 [1], which converts environmental
information into prompts to query an LLM for high-level plans and then calls a rule-based controller
to execute actions based on the generated plan. LLM has been shown to be effective in some single-
agent environments, such as MineCraft [59, 56, 58, 67, 60]. The details of the last two algorithms are
given in Appendix D.

5.3 Results

5.3.1 Social Structure

In the Social Structure mini-game, various static and dynamic social structures are tested to evaluate
baseline algorithms. Detailed results are presented in Appendix E. Here, we discuss the result of one
Dynamic scenario, where the social structure starts with Inequality, then switches to Independent
(Ind.) group at step 30, and alters to Overlapping (Ovlp.) group at step 60.

Fig. 3a presents the reward accumulation as agents take actions with three static-structure scenarios
and one dynamic-structure scenario, respectively. The results verify the influence of dynamic change
in social structure on agent performance since the Dynamic curve resembles the Inequality scenario
initially but then it drops in later steps and approaches Ovlp. group scenario.

Fig. 3b and Fig. 3c illustrate the performance of various learning methods. Some traditional methods,
such as PPO, RecPPO, and MAPPO, exhibit similar performance, with MAPPO performing worse due
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Figure 3: Dynamic structure: (a) Individual reward per step with different social structures using 100
samples from PPO-trained policies, (b) Individual reward per step using 100 samples from different
policies (c) Learning curves using different learning methods.
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Table 2: Average individual reward in Contract and Negotiation, normalized by the Oracle reward.
CL PPO RecPPO MAPPO Rainbow Random

Con. Easy 0.9136± 0.0023 0.2286± 0.0003 0.2276± 0.0015 0.2271± 0.0003 0.1987± 0.0127 0.0046± 0.0002

Hard 0.2773± 0.0466 0.1151± 0.0002 0.1149± 0.0000 0.1137± 0.0005 0.0868± 0.0033 0.0021± 0.0000

Nego. Easy 0.3543± 0.0229 0.2276± 0.0006 0.2278± 0.0004 0.2147± 0.0001 0.1969± 0.0105 0.0040± 0.0001

Hard 0.1945± 0.0109 0.1093± 0.0027 0.1107± 0.0019 0.0946± 0.0032 0.0905± 0.0024 0.0020± 0.0001

to the difficulty in learning an effective central critic for heterogeneous agents. Rainbow performs the
worst, likely because of its general ineffectiveness in exploration. Curriculum learning demonstrates
superior performance by leveraging prior knowledge of different structures to adapt to dynamic
scenarios effectively. Additionally, figures in Fig. 3 reveal significant deviations in most tests,
regardless of social structures, learning algorithms, or performance metrics. Compared to scenarios
without agent groups (Fig. 10a and Fig. 11a), the results indicate that the current algorithms struggle
to learn stable policies for scenarios with agent groups.

5.3.2 Contract

As depicted in Tab. 2, Contract presents a challenge for popular RL methods, as they are stuck
in a local equilibrium of completing limited HammerCraft on both tasks (see Fig. 7b), while CL
demonstrates notable performance on the Easy tasks and surpasses general RL methods on the Hard
tasks. The first curriculum in CL equips the agent with the ability to learn effective policies in the
physical realm, and the second curriculum empowers the agent to make informed judgments about
different social structures while considering rational physical policies. Ultimately, this knowledge
aids CL in selecting an appropriate contract. However, it appears that CL may forget the strategies
acquired during the first curriculum, as the reward at the end of the second stage has dropped
significantly compared to the end of the first stage (see Tab. 12 for details). This might hamper the
performance of CL on the Hard task.

Sharing rewards has been recognized as an effective method for agent groups to acquire cooperative
strategies, thereby supporting the feasibility of CL’s approach. Fig. 7c and Fig. 7d also illustrates
that. In the case of the Easy task, CL eventually establishes a stable group of three individuals who
actively share rewards and form a cooperative alliance. However, it is important to note that the size
of the group does not directly correlate with high returns. Rainbow, for instance, frequently forms
large groups in both tasks but fails to achieve substantial returns. This outcome primarily stems from
inherent limitations in the algorithm’s learning capabilities.

5.3.3 Negotiation

Traditional RL methods struggle to enable carpenters and miners to learn to cooperate through
negotiation, dumping some tools to increase the benefit of teammates with larger capacities on
the physical stage as shown in Tab. 2. This challenge arises from the complexity of coupling the
negotiation and physical stages. Once negotiation fails, dumping tools in the subsequent physical
stage would substantially reduce the agents’ rewards. Meanwhile, the complex negotiation process
exacerbates the convergence problem in multi-agent settings, and agents have the incentive to claim
a larger share for themselves to exploit the co-players in bargaining, posing challenges to reaching
a consensus agreement. Consequently, in both Easy and Hard tasks, the average and maximum
degrees are low, with most agents opting to complete tasks independently, leading to low completion
rates in HammerCraft and even a complete failure in TorchCraft (Fig. 8). In the Easy task, miners’
rewards heavily rely on carpenters’ cooperation, which severely compromises fairness. In contrast,
by first learning the optimal strategies in physical environments under different social structures, CL
can identify structures with higher cooperation degrees as more beneficial, facilitating consensus
during negotiation learning and achieving higher group rewards, fairness, and successful TorchCraft.
Additionally, we show the Carpenters/Miners (abbreviated as C/M) split ratio when the negotiation
stage is done, which is computed by

∑
i∈{Carpenters} wi/

∑
i∈{Miners} wj . All results exceed 1, aligning

with the intuition that miners are disadvantaged in negotiations as they cannot independently produce
the more rewarding hammers.
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5.3.4 LLM-C in AdaSociety

LLM-C runs three times for each task. Tab. 3 and Tab. 9 presents the quantitative results across
various metrics. Benefiting from the embedded commonsense reasoning and social intelligence
of LLMs, LLM-C exhibits outstanding performance in all three mini-games, achieving average
rewards nearly surpassing all RL-based methods. After being informed of the game rules and the
capability differences between carpenters and miners, LLM-C can accurately recognize the impor-
tance of cooperation and swiftly form alliances with other players through negotiation or contract.

Table 3: Average reward of LLM-C across mini-games.

Social Structure Contract Negotiation

Easy - 0.8433± 0.1312 0.8733± 0.1116

Hard 0.7894± 0.0444 0.6499± 0.1716 0.6862± 0.1027

During the physical stage, manu-
ally coded controllers complement
LLM’s deficiencies in path plan-
ning and position judgment, precisely
and efficiently realizing the high-
level planning generated by the LLM
based on the current social structure
and physical environment. However,
due to common issues with LLMs
such as hallucinations, context length limitations, and randomness in outputs, LLM-C does not
achieve Oracle performance, and it underperforms compared to CL in Contract-Easy, further validat-
ing the effectiveness of our proposed CL approach.

6 Related Work

Environments. Several craft-based environments like Malmo [31], Crafter [25], Minedojo [18] and
Conan [61] create dynamic state and action spaces that expand with the agent’s exploration, which,
however, mainly focuses on single-agent setting. Environments including MAgent [65], XLand [54],
and Miniworld [12] provide a set of different and transferrable tasks that build from basic elements,
and they are open for customization. Melting Pot [2] contains a set of over 50 MARL learning sub-
strates with limited customizability. Interactive games including AI Economist [66], Overcooked [11],
MPE [42], Neural MMO [53], and SMAC [48] place agents in diverse systems allowing them to
compete or cooperate. Other examples, such as Diplomacy [6], focus on communication between
agents. None of these environments contain both dynamic social connections and adaptive tasks like
AdaSociety.

Unsupervised Environment Design (UED). In the paradigm of UED [16, 40, 30], the environment
learns a policy Γ : Π → ∆(ΘT ), which is a function from agent policy Π to the environment’s
parameters ΘT . Such a policy will automatically produce a distribution over solvable environments
and further support the continued learning of the agent’s policy. AdaSociety does not implement UED
to produce diverse tasks. Unlike UED, AdaSociety has no goals or objectives, like most ecological
systems, and produces multiple tasks through adaptive social structures and expanding physical
surroundings.

Structured multi-agent systems. In multi-agent systems, various connections may be formed
between agents, and these connections may form certain structures. [17], [51] and [45] focus on
finding communication topology for multi-agent coordination. Some research models the locality of
interaction and learns a joint value via coordination graphs [24, 8, 35]. Networked MARL [63, 46,
47, 62, 50] learns localized policies on environments where agent interactions are contingent upon
their connections within a static graph. We focus on dynamic agent connections which shape agents’
rewards and observations, and these connections are modeled as a multi-layer graph.

7 Conclusion

We introduce AdaSociety, a multi-agent environment featuring expanding physical surroundings and
adaptive social connections. The environment is capable of generating multiple tasks in adaptation
to agents’ behavior. AdaSociety is friendly to tensor-based and LLM-based methods. AdaSociety
provides interfaces supporting superb customization and also offers a set of mini-games with diverse
social connections. We test several RL and LLM-based algorithms in mini-games. Preliminary results
indicate that AdaSociety maintains a rational complexity level for current decision-making methods.
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There are some limitations of AdaSociety illumining our future work. Human-machine interaction is
crucial for the study of multi-agent systems, which is one of our key research objectives in AdaSociety.
While the environment is temporarily not equipped with human interfaces, the current architecture
does support the subsequent development of human-machine interfaces. In addition, our game spaces
can be further expanded by introducing survival pressures (need for food, hostile creatures, and so
on). These negative losses will penalize undesirable actions, complement the roles of positive rewards
in reinforcing desirable behavior, and guide more diverse behavior.
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A Environment Elements

In this section, we elaborate the environment elements predefined in AdaSociety including resources,
events, and their dependency.

A.1 Resources

There are 15 kinds of resources in AdaSociety, which can be divided into Natural Resources and
Synthesized Resources based on whether they can be produced through events. Some of the nat-
ural resources can only be discovered and gathered by agents with certain resources (denoted by
Requirements) in their inventories. The details of resources are listed in Tab. 4.

Table 4: Resources predefined in AdaSociety. Synthesized indicates whether the resource can be
crafted through events. Requirement is an attribute of natural resources (Synthesized = False)
indicating that the resource is observable and collectible to agents carrying the required resources.
Objective reward denotes the objective rewards of resources.

Resource Wood Stone Hammer Coal Torch Iron Steel Shovel Pickaxe GemMine Clay Pottery Cutter Gem Totem

Synthesized ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Requirement None None - Hammer - Torch - - - Pickaxe Shovel - - - -

Objective reward 1 1 5 2 20 3 30 100 150 4 4 40 100 200 1000

A.2 Events

There are 9 built-in events in AdaSociety as listed in Tab. 5. Each event takes 2 to 3 kinds of resources
as input and outputs 1 kind of product. Events can only be observed and executed by agents whose
inventories meet the event requirements.

Table 5: Events predefined in AdaSociety. The ingredients of each event are covered in Input. Most
events take 2 or 3 different kinds of input resources. The products are listed in Output. Requirement
denotes the resources an agent needs to carry in its inventory to observe and execute the event.

f Event Input1 Input2 Input3 Output Requirement1 Requirement2

HammerCraft 1Wood 1Stone - 1Hammer - -

TorchCraft 1Wood 1Coal - 1Torch Coal -

SteelMaking 1Iron 1Coal - 1Steel Iron -

Potting 2Clay 1Coal - 1Pottery Clay -

ShovelCraft 2Steel 2Wood - 1Shovel Steel -

PickaxeCraft 3Steel 2Wood - 1Pickaxe Steel -

CutterCraft 2Steel 3Stone - 1Cutter Steel -

GemCutting 1GemMine - - 1Gem Cutter GemMine

TotemMaking 2Gem 1Pottery 1Steel 1Totem Gem -

A.3 Synthesis Tree

An illustration of the synthetic tree is shown in Fig. 4, which is used by all the mini-games offered
by this paper. In Fig. 4, natural and synthetic resources are depicted within a green circle and blue
octagon icons respectively. The solid red arrow line attached by a square event icon links low-level
resources to high-level products. The eye icons indicate that some resources can help their owner
discover new resources or events.

A.4 Customization

AdaSociety is a versatile multi-agent environment platform that supports extensive customization of
various elements, features, and hyper-parameters. Researchers can easily create tailored environments
for different objectives without needing to delve into the underlying code.
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Figure 4: Illustration of a synthesis tree.

Built-in resources and events (See “Synthesis tree" of Fig. 4 and Tab. 5) are included in AdaSociety for
users to optionally incorporate into their own scenarios. Users are also welcome to define temporary
resources and events. The customizable elements and corresponding parameters are listed in Tab. 6.

Table 6: Customizable elements and parameters.
Element Parameter Description

Mapsize h,w Map height and map width.

Terrain B Terrain set B = {b1, · · · , b|B|}. bi represents a block.

bposi : the position of block bi on the map which can be assigned or randomly generated.

Resource ϱ Set of resources ϱ = {ρ1, · · · , ρ|ϱ|}. Each resource ρi has an attribute ρreqi .

ρreqi : Necessary resources in agents’ inventories to observe & collect ρi.

ρtemp Temporary resources (Defined by specifying ρreqtemp)

Event E Set of events E = {ϵ1, · · · , ϵ|E|}. Each event ϵi has attributes ϵini , ϵouti , ϵreqi .

ϵini : Resources consumed by event ϵi.

ϵouti : Resources produced by event ϵi.

ϵreqi : Necessary resources in agents’ inventories to observe & execute ϵi.

Epos Event positions Epos = {ϵpos1 , · · · , ϵ|E|pos}. Each ϵposi represents a list of positions of ϵi.

ϵtemp Temporary events (Defined by specifying ϵintemp, ϵ
out
temp, ϵ

req
temp)

Agent P Set of agents P = {1, · · · , |P |}
mi(0) Initial inventories. mρ

i (0) denotes the initial number of resource ρ in inventories.

icap Inventory capacity. icap: ϱ → R denotes maximum quantities of resources i can carry.

hi hi: ϱ → R denotes quantities of credits i gets by acquiring resources.

The actual reward obtained by i is hi multiply by the objective reward of the resource.

ipos(0) Initial positions of agents which can be predefined or generated randomly.

A.5 Evaluation Metrics

Individual reward is calculated as:
Rc

i =
∑
ρ∈ϱ

Ri(ρ), (1)

representing agent i’s subjective reward of all types of resources ϱ.

Fairness score is computed based on Gini index [19] to assesses the group-wise fairness:

F = 1−
∑N

i=1

∑N
j=1 |Rc

i −Rc
j |

2N
∑N

i=1 R
c
i

, (2)

17



where N is the number of agents. Intuitively, the greater the value of F a group gets, the fairer it is.

Individual reward is one of the most common metrics for decision-making problems. It measures
agents’ decision-making abilities in maximizing self-interest. However, relying solely on individual
rewards can be risky. In general-sum games, agents focus on maximizing their own rewards may
engage in shortsighted and exploitative behaviors that harm their own long-term rewards and the
collective benefit. For example, in Prisoner’s Dilemma, self-interested agents always fall into the
inefficient Nash equilibrium of defection, which minimizes one’s own reward and the collective
benefit. To tackle this issue, we introduce the fairness score calculated using the Gini index,
which evaluates fairness within a group. In real societies, fairness is a crucial component of social
justice, significantly influencing the stability of social structures and the maintenance of long-term
cooperation. This metric serves as a reference for selecting agents and algorithms that balance
efficiency and fairness, rather than merely pursuing individual gains.

Completion rate pertains to the ratio of successful executions of an event to its maximum potential
executions. It is computed separately for each event. The completion rate is introduced to measure
agents’ exploration within the synthesis tree. It is calculated as the ratio of actual executions to
the optimal executions of the oracle policy (computation of the oracle policy can be found in
Supplementary Material). The higher the dimension of the completion rate, the deeper the exploration.
Exploration is crucial in RL. The introduction of completion rate will guide decision-making
algorithms to avoid local optima, actively explore the environment, and find the optimal policy
effectively.

Average degree of node type Γ ∈ {agent, group} is calculated as:

DΓ =
1

|NΓ|
∑

n∈NΓ

Dn, (3)

where NΓ is the set of Γ nodes and Dn is the degree of node n. Maximum degree reflects the
maximum degree of a certain type of node, defined as:

Dmax
Γ = max

n∈NΓ

Dn. (4)

In asymmetric cases (where not all edges are bidirectional), the maximum degree and the average
degree mentioned above are calculated separately for in-degrees and out-degrees. Social structure is
the distinctive feature of AdaSociety. Degree-based metrics, including average degree and maximum
degree, are proposed to describe and measure the topology of social structure, which significantly
influences agents’ policies and performances by shaping their information streams and reward
functions. Agents’ degree distribution is generally correlated with their rewards. For example, an
agent with a high degree can obtain more information or participate in more reward distribution,
thereby gaining higher returns. Combining degree-based metrics with other metrics, like individual
reward and fairness, we can recognize the effective social structure for scenarios, guiding the learning
of algorithms.

A.6 Supplementary Figures for Environment Description and Formulation

A.6.1 Mutual Adaption Between Agents and AdaSociety

Based on complex network theory, we say AdaSociety is an adaptive environment. In complex
network theory, a network is called an adaptive network, if there is a feedback loop between the
attributes or behavior of nodes and the topology of the network [22, 43, 7]. In AdaSociety, agents
build or break connections with others and impact social structure. Conversely, social structure
influences agents’ observations and reward structures and further influences their attributes and
behavior. Thus, following the definition of adaptive networks, the social structure of AdaSociety is
adaptive. As a key component of AdaSociety, social structure influences the generation of new tasks.
For example, independent agents collect all kinds of available resources to synthesize high-level
resources. However, the team-up agents will be mostly rewarded by collecting or synthesizing
some specific kind of resources, according to the division of labor in the team. Furthermore, agents
initially can only observe very limited resources (wood and stone in our mini-games) and events
(hammercraft). Through exploration in AdaSociety, agents gradually discover new resources and
events. The appearance of a new kind of resource depends on agents’ behavior. For instance, as shown
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by the synthesis tree in Fig. 4, which appears next, shovel or cutter, depends on agents’ behavior. To
sum up, AdaSociety is an adaptive environment.

Fig. 5 describes the mutual adaption between agents and AdaSociety. To achieve their goals, agents
learn policies to adapt their (physical and social) behavior to the environment. Meanwhile, agents’
behavior will affect and even change the environment. Specifically, physical actions will expand the
physical state space and the corresponding physical action space, reward, and transition functions by
synthesizing new resources. Social actions will alter social connections, and then influence agents’
information access and reward structures. In AdaSociety, there is a feedback loop between agents and
the environment, making their coevolution possible and may shed light on the generation of infinite
tasks.

Agents

AdaSociety

Information
sharing

Reward
allocation

Physical
state

Ph
ys
ica
l a
cti
on
s

Social actions

Physical component

Action
space

Transition
function

Reward
function

Social component

Figure 5: Illustration of the mutual adaptation between agents and AdaSociety.

A.6.2 A Multi-Layer Directed Graph Expression for Social Structure

As shown in Fig. 6, AdaSociety expresses social states as a multi-layer directed graph. Each layer
shows a level of social organization. AdaSociety supports the description of social structures with
arbitrary levels, depending on the research problems and the required granularity of social structures.
The bottom 0th-level consists of individual agents, who are the fundamental units of decision-making.
Nodes in each layer represent entities/agents in the corresponding level. Any agent on the kth-level
(k ≥ 1) is composed of its connected agents on the (k-1)th-level. Its decision-making relies on
group norms, like voting, consensus decision-making and delegation. A kth-level agent will affect
its (k-1)th-level neighbors’ reward functions and observations, thereby influencing their decision-
making and enabling their division of labour and cooperation. One agent on the (k-1)th-level may
be simultaneously subordinate to any number of agents on the kth-level. For example, an individual
employee is the 0th-level agent, a project team composed of several employees is the 1st-level agent,
a company consisting of many teams is the 2nd-level agent, and a business group composed of many
companies is the 3rd-level agent.

0th-level

1st-level

cooperation subordinate

2nd-level

agent

Figure 6: An illustration of social states expressed as a multi-layer directed graph.
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AdaSociety supports the emergence of high-level social organizations. Edges inside one layer
represent cooperative connections, which share information or rewards between involved entities.
Edges across layers represent subordinate connections, with low-level entities complying with the
policy implemented by the high-level entities. Modeling social states as a multi-layer graph will
facilitate the application of existing graph theory knowledge to our research.

B Research Challenges

Exploration. Agents start with a few resources and events within a simple environment initially. As
the agents explore the synthesis tree, their behaviors trigger the mechanisms to depict changes in
the physical environment. During this process, more resources and events are unlocked gradually,
increasing the complexity of the exploration. Dependency between different resources and events
evaluates the agents’ abilities to make deep explorations in the environment actively.

Adaptation. In AdaSociety, agents’ behaviors could trigger the environment to evolve while the
changed environment affects actions that agents can take. Apart from the physical environment,
the social structure of the agents could dynamically change as a consequence of either pre-defined
rules or agent social behaviors. This requires agents to make decisions accordingly to adapt to and
co-evolve with dynamic environments and social relationships.

Social cognition. Agents have beliefs in their social structures, which explicitly represent how they
interact with other agents, such as exchanging information and sharing rewards. In this complex
environment, several achievements require collaboration while resources are limited, forcing agents to
cognitively infer others’ intentions, evaluate the effectiveness of social structures, and then investigate
better choices. This makes AdaSociety a suitable environment for studying social cognition and
behaviors, such as heterogeneous roles, labor division, ownership, and trust/betrayal.

Communication. Portal for communication is provided to agents for sharing information and
coordinating actions. A successful agent may learn various communication protocols, context
representations, and information processing for optimal objectives. Thus AdaSociety could be used
for studying the effectiveness of agent communication-enabled interactions, such as negotiation for
resource trading, information transitivity, and semantic interoperability.

Collective reasoning. Agents are embedded with heterogeneous skills while they only know their own
skills. The complex synthesis tree requires agents’ abilities to make group decisions on collaboration,
such as knowledge sharing and skill transferring for greater group benefit. Additionally, the dynamics
of environments make collective reasoning harder, especially for temporal credit assignments. For
instance, agents may offer tools (negative immediate reward) to collaborators to exploit unexplored
resources (greater delayed reward). Therefore, AdaSociety brings challenges for collective reasoning,
such as adaptive cooperation and coordination, consensus, and conflict resolution.

Emergence. Action space in multiple perspectives, including physical actions, social actions,
and communication, enables massive possibilities of agent behaviors without explicit policies. In
AdaSociety, one could observe the emergence of coordination and cooperation, social structures and
norms, and even communication protocols and language.

C Mini-Game Details

C.1 Social Structure

As stated in Sec. 3, agents connected by edges share observations, thereby improving their collective
situational awareness. Agents connecting to the same group node share rewards based on the
edge attributes, incentivizing collaborative efforts to achieve greater rewards. With the social
structure, agents act synchronously in the physical environment, following the mechanism for
sharing observation and reward defined by the social structure.

In this mini-game, we conducted experiments with static and dynamic social structures. In the static
setting, agents are initialized with a certain social structure G and keep the structure until the end of
one episode. In this paper, we categorize social structures that are less than two layers into five types
to examine the effects of varying structures on agent behavior and performance: 1) Isolation: agents
are fully unconnected, i.e., C = 1; E = ∅; 2) Connection: agents are connected without forming
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groups, i.e., C = 1; E ≠ ∅; 3) Independent Group: agents are grouped while each agent joins at
most one group, i.e., C = 2;

∑V2

j Aij = 1 ∀i ∈ V1; 4) Overlapping Group: agents are grouped and

can join multiple groups, i.e., C = 2; ∃i ∈ V1,
∑V2

j Aij > 1; 5) Inequality: agents are grouped
with different reward weights.

In the dynamic setting, pre-defined rules for structure change could be designed to compel agents to
alter their social relationships while they take actions within the physical environment. In this task,
we design a Dynamic scenario, where the social structure starts with Inequality, then switches to
Ind. group at step 30, and alters to Ovlp. group at step 60.

C.2 Exploration

In this scenario, all built-in resources and events are included. Physical actions and social actions
are available at every step. All agents share a common value preference, where 1) resources near
the end of the synthesis tree are assigned high value, and 2) synthetic resources are valued higher
than natural resources. Due to partial observation, time limitations, and the challenges associated
with exploring new resources, agents may manipulate the social state to encourage interest binding,
information sharing, and division of labor, which helps to maximize rewards.

C.3 Parameters of Mini-Games

The parameters of the Easy task and the Hard task of Social Structure, Contract and Negotiation,
along with the parameters of Exploration are shown in Tab. 7.

Table 7: Parameters of mini-games. When a resource ρ is not specified, icap(ρ) defaults to ∞ and
hi(ρ) defaults to 1.

Parameter Easy Hard Exploration

h,w 7, 7 15, 15 20, 20

|B| 0 0 25

bpos - - random

ϱ {wood, stone, hammer} {wood, stone, hammer,
all built-in resources

coal, torch, iron}

E 41 HammerCraft 98 HammerCraft, 40 HammerCraft, 40 TorchCraft, 30 SteelMaking,

98 TorchCraft 30 Potting, 20 ShovelCraft, 20 PickaxeCraft,

20 CutterCraft, 10 GemCutting, 10 TotemMaking

Epos random random random

mi(0) empty empty empty

icap carpenter: {hammer: 1} carpenter: {hammer: 1, coal: 0}
default

miner: {wood: 0, stone: 0} miner: {stone: 0, torch: 1, iron: 0}

hi carpenter: default carpenter: {coal: 5, torch: 1.5, iron: 20/3}
default

miner: {hammer: 2} miner: {coal: 5, torch: 1.5, iron: 20/3}

ipos(0) random random random

D Baseline Details

D.1 Curriculum Learning

We developed a curriculum learning algorithm for AdaSociety. The algorithm controls the social state
to promote group cooperation and guides the agent to learn rational physical policies before learning
social policies. Our curriculum consists of three stages. We use RecPPO for RL training in each
stage.

In the first stage, all individual nodes are compelled to connect to the same group node. This
arrangement ensures that all agents belong to the same group. If the reward assigned to an individual
increases monotonically with respect to the group reward, which is a common setting, agents in this
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stage optimize their actions to enhance the overall benefits. This practical approach encourages the
learning of cooperative policies that yield higher rewards, benefiting both individuals and the group.

In the second stage, each individual node is forced to connect to a specific group node with probability
pK , while it randomly connects to any of the group nodes with probability 1 − pK . The value of
pK gradually decreases with the episode number K, resulting in the gradual emergence of diverse
social state structures. This setup enables agents to learn physical policies with different social states.
During the first two stages, social actions are not allowed, so agents focus solely on learning policies
related to physical actions.

Finally, in the third stage, the agent gains the freedom to perform all actions defined in the scenario,
thereby acquiring a comprehensive policy for the given task.

D.2 Large Language Model with Rule-Based Controller

Considering the social nature of AdaSociety, we also test the Large Language Model with GPT4 [1]
as examples. The LLM agent consists of three modules: observation, reasoning, and execution. In
the observation module, we transform the complex physical environment information within the
agent’s field of view and the current social state into natural language, merging it with the system
prompt including game rules and the agent’s tasks as inputs. In the reasoning module, the LLM
agent generates a high-level plan through few-shot learning, where we require the agent to provide
only legal plans that conform to the current environment in the prompt. In the execution module,
we decompose the high-level plan into low-level atomic actions through handcrafted functions for
interacting with the environment. The process repeats with a new reasoning step to generate a new
plan until the current plan is completed. Due to the randomness of LLMs and the uncontrollable
nature of multi-agent interactions in AdaSociety, it is possible to generate unachievable plans, which
will be detected by a monitoring function, prompting the LLM to regenerate the plan.

D.3 Compute Resources

CPU: 128 Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz; Total memory: 263729336 kB. GPU:
8 NVIDIA GeForce RTX 3090; Memory per GPU: 24576 MiB. Each RL baseline experiment takes
12 to 48 hours, depending on the mini-game and RL algorithm. For LLM-C experiments, each agent
takes an average of 5 seconds per step.

E Additional Results

This section presents the evaluation results in Social Structure, Contract, Negotiation, and the tests of
various baselines in Exploration.

Table 8: Average individual reward in Exploration, normalized by the Oracle reward. Traditional RL
algorithms can only explore the earlier part of the synthesis tree, resulting in poor returns.

PPO RecPPO MAPPO Rainbow Random
0.1744± 0.0138 0.1697± 0.0041 0.0420± 0.0123 0.0051± 0.0004 0.0001± 0.0000

Table 9: Evaluation results of LLM-C across mini-games.
Social Structure Contract Negotiation

Hard Easy Hard Easy Hard
Fairness 0.8356± 0.0496 1.0000± 0.0000 1.0000± 0.0000 0.7046± 0.1401 0.8143± 0.0350

Completion rate (HammerCraft) 0.6583± 0.0624 0.9333± 0.0236 1.0000± 0.0000 0.8833± 0.1041 1.0000± 0.0000

Completion rate (TorchCraft) 0.6833± 0.1546 - 0.9167± 0.1179 - 0.9167± 0.1443

Max Group Degree 4 4.000± 0.000 8.000± 0.000 1.3333± 0.5773 3.3333± 0.5773

Avg. Group Degree 4 4.000± 0.000 8.000± 0.000 1.1667± 0.2886 1.625± 0.6959
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Figure 7: Evaluation results of Contract. Upper row: Easy; lower row: Hard.
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Figure 8: Evaluation results of Negotiation. Upper row: Easy; lower row: Hard.
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Figure 9: Social Structure-Dynamic: (a) Fairness of agents using different methods, (b) Completion
rate of events using different methods.
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Figure 10: Social Structure-Isolation:(a) Individual rewards per step using 100 samples from different
policies (b) Learning curves using different methods. (c) Fairness of agents using different methods,
(d) Completion rate of events using different methods
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Figure 11: Social Structure-Connection: (a) Individual rewards per step using 100 samples from
different policies (b) Learning curves using different methods. (c) Fairness of agents using different
methods, (d) Completion rate of events using different methods
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Figure 12: Social Structure-Independent Group: (a) Individual rewards per step using 100 samples
from different policies (b) Learning curves using different methods. (c) Fairness of agents using
different methods, (d) Completion rate of events using different methods
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Figure 13: Social Structure-Overlapping Group: (a) Individual rewards per step using 100 samples
from different policies (b) Learning curves using different methods. (c) Fairness of agents using
different methods, (d) Completion rate of events using different methods

0 25 50 75 100 125 150 175 200
Steps

0

10

20

30

40

50

In
di

vi
du

al
 R

ew
ar

ds

PPO
RecPPO
Rainbow
Random

(a)

0 8000 16000 24000 32000
Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

No
rm

al
ize

d 
In

di
vi

du
al

 R
ew

ar
ds

PPO
RecPPO
Rainbow
Random

(b)

PPO RecPPO Rainbow random0.0

0.2

0.4

0.6

0.8

Fa
irn

es
s s

co
re

(c)

PPO RecPPO Rainbow random0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pl
et

io
n 

ra
te

(d)

Figure 14: Social Structure-Inequality: (a) Individual rewards per step using 100 samples from
different policies (b) Learning curves using different methods. (c) Fairness of agents using different
methods, (d) Completion rate of events using different methods
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Table 10: Time (in hours) and the number of game steps taken by algorithms to converge.
Time (hours) | Game Steps CL PPO RecPPO MAPPO Rainbow

Negotiation-Easy 5.66± 0.16 | 14M 0.12± 0.03 | 0.47M 1.05± 0.04 | 2.4M 21.21± 0.35 | 1.8M 14.97± 0.30 | 42M
Negotiation-Hard 12.96± 0.39 | 15M 1.66± 0.03 | 2.3M 0.30± 0.01 | 0.49M 74.85± 9.75 | 4.4M 40.54± 0.54 | 53M

Contract-Easy 32.03± 1.38 | 112M 0.19± 0.03 | 0.80M 1.94± 0.03 | 6.0M 9.65± 0.02 | 1.2M 9.65± 1.49 | 25M
Contract-Hard 48.58± 0.56 | 78M 0.21± 0.02 | 0.56M 0.74± 0.01 | 1.0M 14.94± 0.01 | 0.94M 19.07± 1.25 | 37M

Social Structure - Dynamic 6.98± 0.64 | 4.8M 6.90± 0.55 | 6.0M 10.16± 0.12 | 6.0M 46.23± 1.21 | 4.8M 2.34± 33.76 | 2.0M

Table 11: Average number of game steps per second for different player counts (4, 8, 20, 100,
1000). The number of groups is the same as the number of players. The experiment is conducted in
Exploration, where all built-in resources and events are included (see details in Sec. C.2).

4p 8p 20p 100p 1000p
2495.58± 26.33 1245.38± 3.65 395.33± 2.52 42.58± 0.26 2.60± 0.09

Table 12: Group rewards in Contract after each stage in Curriculum Learning.
Contract-Easy Contract-Hard

Stage 1 0.9747± 0.0059 0.6470± 0.0313

Stage 2 0.3435± 0.0262 0.2566± 0.0284

Stage 3 0.9136± 0.0023 0.2773± 0.0466
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F Broader Impact

To contribute to the development of multi-agent decision-making algorithms, we propose AdaSociety,
a customizable environment with massive and diverse tasks generated by expanding state and action
spaces and adaptive social structures. Due to the complexity of tasks and the heterogeneity of agents’
capacities and preferences, agents need to team up and even cooperatively establish hierarchical
social structures to achieve goals. However, agents may also learn some strategies that are harmful to
their co-players, as is common in multi-agent research. We have made significant efforts to mitigate
such behaviors through thoughtful design within the environment. Given the heterogeneity among
agents and adaptive social structures, harmful behaviors tend to be short-sighted and inferior when it
comes to maximizing long-term benefits, with stable cooperation emerging as the optimal strategy.
The multiple evaluation metrics introduced in AdaSociety, like fairness, also empower researchers
to identify and exclude extreme or exploitative agents and facilitate the learning of cooperative
behaviors.

Nevertheless, some harmful behaviors may still arise during training. We ask researchers utilizing
our platform to meticulously observe agents’ behaviors to ensure they align with human values and
preferences. Should any misalignment or misrepresentation happen, we encourage contributions to
the source code (including but not limited to new evaluation metrics, environmental dynamics or
incentive mechanisms) to enhance the platform.
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