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Abstract

Adversarial patches can fool object detection systems, which poses a severe threat
to machine learning models. Many researchers have focused on strong adversarial
patches. Remote adversarial patches, placed outside the target objects, are candi-
dates of strong adversarial patches. This study gives a concrete model of adversarial
patches on convolutional neural networks (CNNs), namely diffusion model. Our
diffusion model shows that multiple remote adversarial patches pose severe threats
on YOLOv2 CNN. Our experiment also demonstrates that two remote adversar-
ial patches reduce the average existence probability to 12.81%, whereas Saha et
al.’s original single adversarial patch reduced the average existence probability to
50.95%. Moreover, we generate adversarial patches on SSD architecture. In SSD
architecture, two remote adversarial patches also significantly reduce the average
existence probability from 24.52% to 6.12%. By the above results, this paper
provides a framework for analyzing the effect of adversarial patch attacks.

1 Introduction

1.1 Background

Object detection using a convolutional neural network (CNN) has been developed but suffers from
severe threats posed by adversarial examples. Adversarial patches [2], an adversarial example type,
have attracted attention in academia because they are physically feasible. Attackers place adversarial
patches in an object detection system’s field of view. For example, Thys et al.’s adversarial patch
can effectively hide a person from an object detection system [19]. Many researchers have focused
on generating strong adversarial patches [4, 6, 7, 9, 12, 15, 16, 22]. In parallel, many researchres
proposed certified [10, 13, 20, 21] and empirical [5, 8] defenses against adversarial patches.

In proposed adversarial patches, remote adversarial patches [9, 12, 16] are threats to the real world.
While remote adversarial patches are placed far from target objects, they can make an object detection
system misrecognize the target objects. These target objects are not intended to be hidden, which
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is different from a case presented in Thys et al.’s research. Therefore, we must estimate threats of
remote adversarial patches to protect target objects from misrecognition in object detection systems.

However it is widely known that remote adversarial patches are severe threats for CNNs, there are
limited studies evaluating threats of remote adversarial patches. Different from an adversarial patch
on target objects, it is unnatural that remote adversarial patches affect the target objects. Despite this
unnaturalness, previous research only focuses on generating strong remote adversarial patches and
does not focus on evaluating threats of remote adversarial patches. Therefore, we should consider
how to evaluate threats of remote adversarial patches.

1.2 Our Contributions

This study proposes a novel model, a so-called diffusion model, for analyzing the effect of remote
adversarial patches. In previous research, Araujo et al. [1] showed the calculation method of receptive
fields of CNNs. Similar as this method, we propose a diffusion model in each convolutional layers.

This study aims to find a better remote adversarial patch layout using our diffusion model. During
our estimation and experiments, we used PASCAL VOC dataset [3]. First, we calculated the effect
of remote adversarial patches using our diffusion model on YOLOv2 [14] as an example. We then
prepared single and multiple patch models under the total area of adversarial patch are almost the
same. Then, our diffusion model demonstrates that multiple remote adversarial patches have a
stronger effect than a single one. Next, we generated remote adversarial patches based on Saha et
al’s implementation [16]. Subsequently, we verified that a range of adversarial patch effect is almost
the same with an estimated range by our diffusion model. Our multiple remote adversarial patches
dramatically decrease existence probabilities. In our experiment, two remote adversarial patches
reduce average existence probability to 12.81%, while Saha et al.’s single adversarial patch reduces
average existence probability to 50.95%. We also generated multiple remote adversarial patches on
SSD architecture [11]. In SSD architecture, two remote adversarial patches also significantly reduce
the average existence probability from 24.52% to 6.12%.

2 Previous Adversarial Patches

Many researchers have proposed adversarial patch attacks since Brown et al.’s original work [2]. These
patches have one of the following features, object hiding [19] or object misrecognition [12, 16]. Object
hiding prevents targets from being detected. Different from object hiding, object misrecognition
prevents targets from being detected correctly. Dpatch [12] and Saha et al.’s adversarial patch [16]
are leading studies of placing a remote adversarial patch. These attacks virtually place a remote
adversarial patch, whereas Lee and Kolter [9] physically realize a remote adversarial patch attack.

While the abovementioned attacks consider a single adversarial patch, researchers have been placing
multiple adversarial patches on their images as well. For example, Zhu et al. [22] proposed a method
for dynamically searching optimized locations of adversarial patches. This optimized location refers
to the entire image; it is not limited to target objects’ surroundings. This attack aims to minimize
the area of adversarial patches. In addition, Huang et al. [7] proposed an attack finding key-pixels.
However, this dynamical search is not physically realizable because the layout of adversarial patches
depends on the input image.

Different from these attacks, Rossolini et al. [15] proposed multiple fixed adversarial patches for
semantic segmentation models. Their experiment specifically demonstrated that multiple adversarial
patches have a stronger effect than a single adversarial patch with approximately the same area. These
adversarial patches expand a fooled area from themselves. Subsequently, the effect of multiple fixed
remote adversarial patches on object detection systems must be assessed.

Based on the above discussion, many researchers have proposed strong adversarial patches. However,
there are limited studies evaluating threats of remote adversarial patches. This study then aims to
clarify how to evaluate threats of remote adversarial patches.
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3 Our Core Model: Diffusion of Adversarial Patch Effect

This section presents our core model for adversarial patches. Our model demonstrates the effect
of adversarial patches by calculating their diffusion. This study discusses our diffusion model on
YOLOv2 as an example; however, but our diffusion model will be applicable to other CNNs. Based
on our diffusion model, we show that multiple remote adversarial patches cause stronger an effect on
YOLOv2’s CNN compared with a single remote patch.

To evaluate the effect of remote adversarial patches, we introduce a coordinate system, such that
(x, y) (0 ≤ x ≤ 415, 0 ≤ y ≤ 415), on images. (x, y) = (0, 0) represents the top left corner. x-
coordinate increases from the left to the right cells, and the y-coordinate increases from the upper
to the lower cells. Then, we make assumptions on adversarial patches. First, the size of adversarial
patches remains approximately 10,000 pixels for comparison with previous results [16]. Next, we
place adversarial patches over the range shown in Figure 1 to consider remote adversarial patches.
Specifically, the x-coordinate between 0 ≤ x ≤ 104 or 311 ≤ x ≤ 415, while y-coordinate varies
between 0 ≤ y ≤ 415. Finally, we place adversarial patches in pre-fixed locations to consider
physical attacks as well.

Next, we explain how diffusion occurs. The YOLOv2 network includes a convolutional layer with a
3×3 filter size. This convolutional layer calculates a cell’s renewal value using nine cells, namely,
itself and the surrounding eight cells, as shown in Figure 2. Adversarial patch information in these
nine cells then spreads to adjoining cells. The detailed calculation method is shown in Appendix B.

Figure 1: Placement range of
adversarial patches. We place
adversarial patches in the left
and/or right painted range.

Figure 2: Our diffusion model at a convolutional layer with a 3×3 filter
size. The effect of adversarial patches spreads to adjoining cells.

To evaluate the spreading range of adversarial patches, we simulated the effect of the remote adver-
sarial patches shown in Figures 3a-Figure 3e. These placements are not optimized now, and we give
detailed information of these adversarial patches in Appendix C.

(a) Top left corner (b) Bottom left corner (c) Middle left (d) Two patches (e) Four patches

Figure 3: Layout of different remote adversarial patches. The area of adversarial patches are
approximately 10,000 pixels. Figures (a)-(c) have a 100×100-size adversarial patch, Figure (d) has
two 70×70-size adversarial patches, and Figure (e) has four 50×50-size adversarial patches.

Figures 4a-4d show the effect values calculated using different adversarial patch layouts depicted
in Figures 3a,3c,3d, and 3e, respectively. We omit the result for Figure 3b because this layout is
represented upside-down in Figure 3a. In Figure 4a, the effect of the patch is only noticeable near
the adversarial patch. In Figure 4b, the effect of the patch spreads throughout the left part of the
image. In Figures 4c and 4d, the effects of the patches spread throughout the image. Based on these
calculations, we determine that the effect of the patch will be higher with multiple adversarial patches
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Table 1: Average existence probabilities in YOLOv2 and SSD
# (Patches) None 1 2 4

Area - 100×100 70×70×2 50×50×4
=10,000 pixels =9,800 pixels =10,000 pixels

Layout - top left bottom left middle left - -
YOLOv2 [14] 64.77% 50.95% 44.89% 30.59% 12.81% 16.76%

SSD [11] 68.17% 24.52% 19.00% 15.25% 6.12% 7.31%

than a single adversarial patch. In a single patch, the patch placed middle left has a more prominent
effect compared with the other single adversarial patch layouts. We also verified our calculation
results based on the results obtained by the actual adversarial patches generated in the next section,
which is shown in Appendix D.

(a) Top left corner (b) Middle left (c) Two patches (d) Four patches

Figure 4: Effect values calculated using our diffusion model. From the left, these figures correspond
to the images depicted in Figures 3a,3c,3d, and 3e, respectively.

4 Experiments: Existence Probabilities with Adversarial Patches

In this section, the average existence probabilities with adversarial patches are calculated experimen-
tally as depicted in Figures 3a-3e. We focused on YOLOv2 [14] and SSD [11] using the PASCAL
VOC dataset [3]. We use YOLOv2 in Saha et al.’s implementation [16] and SSD in the PyTorch
library [18]. Our experiment generated adversarial patches based on Saha et al.’s implementation [16],
and adversarial patches were generated for each class in the PASCAL VOC dataset. Our imple-
mentation, however, learned adversarial patches without interruptions, while Saha et al.’s method
interrupted the learning process when the existence probability was less than 0.35 in each image.
Moreover, our implementation minimized the sum of Pr(target category|object) and the non-
printability score [17] for each corresponding category, while Saha et al.’s original method minimizes
only Pr(target category|object). Then, the average existence probability in each category was
calculated by averaging the highest Pr(target category) for each image. Detailed information is
given in Appendix E.

The experimental results are shown in Table 1. Table 1 shows the average existence probabilities
of all 20 categories, and the average existence probability in each category is given in Apendix E.
Table 1 demonstrates that our evaluation presented in the previous section is valid. The legitimacy of
our evaluation stems from significantly lower average existence probabilities with 2 or 4 adversarial
patches compared with that of a single adversarial patch. In conclusion, multiple adversarial patches
have a stronger effect a single adversarial patch.

5 Conclusion and Future Work

In this study, we searched for a better remote adversarial patch layout on CNNs, using our proposed
diffusion model. We defined our diffusion model, such that it underlines that multiple remote
adversarial patches have a stronger effect compared with a single adversarial patch. We verified this
by generating remote adversarial patches based on Saha et al’s implementation [16].

In future work, we should consider our attack, “multiple” adversarial patches, leads to breaking
some defending techniques. For example, well crafted multiple adversarial patch will evade certified
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defense using masking techniques [10, 13, 20, 21], because adversarial patches exist in multiple
places. Moreover, our attacking method will be able to combine with attacking methods for breaking
empirical defense [5, 8]. Therefore, we will evaluate our attacks on defended CNNs in future work.

Broader Impact

Our remote adversarial patches will cause misrecognition on CNNs, but we believe that our findings
will pave the way for further improvements in countermeasures against adversarial patch attacks and
further understanding of the mechanism behind CNNs.
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A CNN networks

This section explains two CNNs used in this paper, namely YOLOv2 [14] and SSD [11].

A.1 YOLOv2

YOLOv2 [14] is an object detection system based on a CNN. YOLOv2 can detect objects by a single
CNN running. We use a YOLOv2 CNN on the PASCAL VOC dataset [3], which is reported in
Table 2. YOLOv2 outputs the position and size of a bounding box, and the existence probabilities of
every VOC category in each bounding box.

We now explain the calculation process of the YOLOv2 CNN and how the existence probabilities are
extracted from YOLOv2’s output. As reported in Table 2, the YOLOv2 CNN consists of convolutional
and pooling layers. YOLOv2’s input is a 416×416-size image whose every cell has three elements
representing RGB. Then, YOLOv2 outputs 13×13×125 elements. This output consists of 13 ×13
cells, where each cell contains five bounding boxes with 25 values. Each 13×13 cell represents offset
of bounding boxes. In more detail, each 13×13 cell corresponds to 32×32 pieces of the original
image, where the top left corner of each cell represents the offset of bounding boxes. Each bounding
box has 25 values, which consist of the following:

• Position and size of the bounding box (4 values, combined with offset in each cell)

• Existence probability of an object (1 value, called as objectness score, represented as
Pr(object))

• Conditional existence probabilities of every VOC category (20 values, called as category
probabilities, represented as Pr(category|object))

In each bounding box, the existence probability of each VOC category in each bounding box is
Pr(object)× Pr(category|object). The sum of 20 category probabilities is 1.

Table 2 shows the detailed YOLOv2’s network for PASCAL VOC dataset. Each 13 ×13 cell in an
output corresponds to 32×32 pieces of the original image as Figure 5, and the top left corner of each
cell represents offset of bounding boxes.

A.2 SSD

SSD [11] can detect objects by a single CNN running, similar to YOLOv2. As described above,
YOLOv2 outputs bounding boxes and existence probabilities on a 13×13-size image. Different from
YOLOv2, SSD prepares multiple-size images and applies the same set of bounding boxes to them.
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Table 2: YOLOv2 network for PASCAL VOC dataset

Layer #(Filters) Filter size Stride Input size Output size
0 conv 32 3×3 1 416×416×3 416×416×32
1 max – 2×2 2 416×416×32 208×208×32
2 conv 64 3×3 1 208×208×32 208×208×64
3 max – 2×2 2 208×208×64 104×104×64
4 conv 128 3×3 1 104×104×64 104×104×128
5 conv 64 1×1 1 104×104×128 104×104×64
6 conv 128 3×3 1 104×104×64 104×104×128
7 max – 2×2 2 104×104×128 52×52×128
8 conv 256 3×3 1 52×52×128 52×52×256
9 conv 128 1×1 1 52×52×256 52×52×128
10 conv 256 3×3 1 52×52×128 52×52×256
11 max – 2×2 2 52×52×256 26×26×256
12 conv 512 3×3 1 26×26×256 26×26×512
13 conv 256 1×1 1 26×26×512 26×26×256
14 conv 512 3×3 1 26×26×256 26×26×512
15 conv 256 1×1 1 26×26×512 26×26×256
16 conv 512 3×3 1 26×26×256 26×26×512
17 max – 2×2 2 26×26×512 13×13×512
18 conv 1024 3×3 1 13×13×512 13×13×1024
19 conv 512 1×1 1 13×13×1024 13×13×512
20 conv 1024 3×3 1 13×13×512 13×13×1024
21 conv 512 1×1 1 13×13×1024 13×13×512
22 conv 1024 3×3 1 13×13×512 13×13×1024
23 conv 1024 3×3 1 13×13×1024 13×13×1024
24 conv 1024 3×3 1 13×13×1024 13×13×1024
25 route 16
26 conv 64 1×1 1 26×26×512 26×26×64
27 reorg – – 2 26×26×64 13×13×256
28 route 27 24
29 conv 1024 3×3 1 13×13×1280 13×13×1024
30 conv 125 1×1 1 13×13×1024 13×13×125
31 detection

Figure 5: Position of output cells by YOLOv2 CNN. YOLOv2 CNN outputs 13 ×13 cells from a
416×416-size input image. Each cell’s size is 32×32 as the piece at the top left corner.

We now explain SSD’s network in more detail. In the original paper, the input of SSD is a 300×300-
size image. SSD runs some layers in VGG-16 network on this image, and outputs the 38×38-size
image. SSD calculates bounding boxes from output images obtained by applying convolutional
and pooling layers on this 38×38-size image, namely a 38×38-size image, a 19×19-size image,
a 10×10-size image, a 5×5-size image, a 3×3-size image, and a 1×1-size image. SSD applies
bounding boxes, and tries to find an appropriate bounding box. The set of bounding boxes are the
same between all-size image, and the ratio to an image is different. This causes SSD can detect larger
objects in a small image. For example, we consider a 1×2-size bounding box. This bounding box has
a very small part (0.14%) of a 38×38-size image, while this bounding box has a large part (22.2%)
of a 3×3-size image. Therefore, SSD detects different-size objects in each-size image.
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B Detailed Explanation of Our Diffusion Model

We evaluated the effects of these remote adversarial patches by calculating their respective effect
values. Let P be the range of existing adversarial patches and l denote an index of the layer
corresponding to the YOLOv2 network. The image size decreases as the calculation progresses.
Consequently, let Il be the range of an image at layer l, which is defined as follows:

Il =



{(x, y) |0 ≤ x ≤ 415, 0 ≤ y ≤ 415} (l = 0, 1) ,

{(x, y) |0 ≤ x ≤ 207, 0 ≤ y ≤ 207} (l = 2, 3) ,

{(x, y) |0 ≤ x ≤ 103, 0 ≤ y ≤ 103} (l = 4, 5, 6, 7) ,

{(x, y) |0 ≤ x ≤ 51, 0 ≤ y ≤ 51} (l = 8, 9, 10, 11) ,

{(x, y) |0 ≤ x ≤ 25, 0 ≤ y ≤ 25} (l = 12, 13, 14, 15, 16, 17, 26, 27) ,

{(x, y) |0 ≤ x ≤ 12, 0 ≤ y ≤ 12} Otherwise.

(1)

Moreover, let Vl,x,y be an effect value for cell (x, y) of layer l’s input. We aim to calculate the effect
valuesV31,x,y at (x, y) ∈ I31. To calculate an output value, we fictitiously set zero effect values
outside of an image, that is Vl,x,y = 0 at (x, y) ∈ (Z× Z) \ Il. These fictitious effect values are
always zero, and we use these effect values when modeling of convolutional layer with a 3×3-size
filter. Then, we calculate Vl,x,y as follows:

• Initial effect values: Let V0,x,y = 1, where (x, y) ∈ P , and let V0,x,y = 0 for other cells.

• Convolutional layer with a 3×3-size filter: When l = 0,2,4,6,8,10,12,14,16,18,20,22,23,

24, and 29, we update effect values at (x, y) ∈ Il+1 as Vl+1,x,y =
1

9

1∑
i=−1

1∑
j=−1

Vl,x+i,y+j .

This equation calculates the average for Vl,x,y and surrounding eight cells.

• Convolutional layer with a 1×1-size filter: When l = 5,9,13,15,19,21,26, and 30, we
retain all values, that is, Vl+1,x,y = Vl,x,y.

• Pooling layers with a 2×2-size filter: When l = 1,3,7,11, and 17, we update effect values

at (x, y) ∈ Il+1 as Vl+1,x,y =
1

4

1∑
i=0

1∑
j=0

Vl,2x+i,2y+j . This equation calculates the average

value of four cells’ Vl,x,y used in a new cell. In the “Reorg” layer, when l = 27, we apply
the same update calculations.

• The others: We have not discussed layers 25 and 28 in the discussion above. In layer 25,
we set V26,x,y = V17,x,y where (x, y) ∈ I17. In layer 28, we set V29,x,y = V25,x,y + V28,x,y

where (x, y) ∈ I28.

C Detailed Layout of Adversarial Patches Used in This Paper

This section shows the detailed information of Figures 3a-3e. The following is the detailed informa-
tion:

• Figure 3a: This figure shows a 100×100-size patch on the top left corner. This adversarial
patch corresponds to 5 ≤ x ≤ 104, 5 ≤ y ≤ 104. This layout is the same as Saha et al.’s
placement.

• Figure 3b: This figure shows a 100×100-size patch on the bottom left corner. This
adversarial patch corresponds to 5 ≤ x ≤ 104, 311 ≤ y ≤ 415. This layout is upside down
of Figure 3a.

• Figure 3c: This figure shows a 100×100-size patch on the middle left. This adversarial
patch corresponds to 5 ≤ x ≤ 104, 158 ≤ y ≤ 257. This adversarial patch is the center of
left side.

• Figure 3d: This figure shows two 70×70-size patches. These adversarial patches correspond
to 173 ≤ x ≤ 242, (35 ≤ y ≤ 104 or 311 ≤ y ≤ 380) We place these adversarial patches
near the center of an image.
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• Figure 3e: This figure shows four 50×50-size patches. These adversarial patches correspond
to (55 ≤ x ≤ 104 or 311 ≤ x ≤ 360), (79 ≤ y ≤ 128 or 287 ≤ y ≤ 336). We place these
adversarial patches near the center of image parted 2×2.

D Actual Diffusion of Adversarial Patches Effect

This section shows the verification of our diffusion model by the actual adversarial patches generated
in Section 4. Figures 6a-6e shows actual averaged effect values. Especially, Figures 6a, 6c, 6d, and 6e
correspond to calculation results depicted in Figures 4a-4d, respectively. We calculated effect values
as the sum of every absolute value contained in each cell. Then, we obtained the results depicted in
Figures 6a-6e by averaging effect values among all images. Figures 6a-6e showed that a range of
adversarial patch effect is almost the same with an estimated range by our diffusion model.

(a) Top left corner (b) Bottom left corner (c) Middle left (d) Two patches (e) Four patches

Figure 6: A range of remote adversarial patch effect. The area of adversarial patches are almost
10,000 pixels. Figures (a), (c), (d), and (e) correspond to Figures 4a-4d, respectively.

E Detailed Experimental Result

This section shows the detailed experimental environment and results.

At first, we explain our experimental environment. We use the following two machines in this
experiment:

• Ubuntu 20.04, 128GB memory, one GPU (NVIDIA GeForce RTX 2080 SUPER GPU)
using Cuda 9.0. This machine has two PyTorch versions, PyTorch 1.1.0 for Cuda 10.0 (used
in YOLOv2’s experiment) and PyTorch 1.12.1 for Cuda 10.2 (used in SSD’s experiment).

• Ubuntu 20.04, 32GB memory, two GPUs (NVIDIA RTX A5000), using Cuda 11.6 and
PyTorch 1.12.1 for Cuda 11.6. This machine is used for SSD’s experiment.

Our implementation was similar to that of Saha et al [16]. Our implementation, however, learned
adversarial patches without interruptions, while Saha et al.’s method interrupted the learning process
when the existence probability was less than 0.35 in each image. Other implementations functioned
similarly. We adopted the standard l∞ PGD attack. The learning process required 100 epochs with a
learning rate of 0.01 and 10 iterations per image. The confidence, NMS, and IOU overlap thresholds
used for the evaluations were 0.005, 0.45, and 0.5, respectively.

The detailed experimental results of YOLOv2 are shown in Table 3. Moreover, the detailed experi-
mental results of SSD are shown in Table 4.

Tables 3 and 4 list the existence probabilities for our generated adversarial patches, which demonstrate
that our evaluation presented in the previous section is valid. The legitimacy of our evaluation stems
from significantly lower average existence probabilities with 2 or 4 adversarial patches compared
with that of a single adversarial patch. In conclusion, multiple adversarial patches have a stronger
effect than a single adversarial patch.
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Table 3: Existence probabilities with respect to certain patch in YOLOv2
# (Patches) None 1 2 4

Area - 100×100 70×70×2 50×50×4
=10,000 pixels =9,800 pixels =10,000 pixels

Layout - top left bottom left middle left - -
aeroplane 75.92% 42.45% 44.52% 12.88% 4.04% 2.51%

bicycle 70.30% 70.41% 50.26% 26.60% 5.94% 25.17%
bird 74.25% 38.76% 56.05% 17.18% 4.78% 8.78%
boat 63.05% 38.13% 43.19% 23.50% 3.09% 7.39%

bottle 49.16% 45.11% 40.99% 35.18% 29.17% 25.54%
bus 60.16% 51.64% 43.36% 21.49% 1.55% 20.65%
car 72.00% 50.54% 44.01% 31.02% 18.93% 19.51%
cat 64.52% 34.33% 43.01% 16.65% 2.55% 0.14%

chair 47.78% 43.10% 32.06% 29.88% 21.18% 9.65%
cow 79.63% 70.48% 66.75% 68.45% 7.15% 10.56%

diningtable 53.27% 53.27% 26.26% 34.58% 45.53% 33.82%
dog 73.21% 63.97% 46.62% 20.92% 5.81% 6.89%

horse 73.04% 56.39% 41.28% 19.29% 0.59% 0.84%
motorbike 65.45% 62.73% 45.92% 35.81% 17.33% 38.84%

person 68.63% 59.79% 60.34% 56.01% 26.2% 29.98%
pottedplant 50.45% 45.30% 44.29% 36.03% 23.88% 27.59%

sheep 72.35% 71.07% 51.66% 41.46% 8.21% 14.08%
sofa 48.29% 44.50% 24.76% 17.09% 3.51% 14.37%
train 74.20% 33.88% 40.24% 20.27% 2.60% 4.96%

tvmonitor 59.83% 43.08% 52.16% 47.60% 24.2% 33.97%
Average 64.77% 50.95% 44.89% 30.59% 12.81% 16.76%

Table 4: Existence probabilities with respect to certain patch in SSD. The class name in SSD is given
in parentheses.

# (Patches) None 1 2 4

Area - 100×100 70×70×2 50×50×4
=10,000 pixels =9,800 pixels =10,000 pixels

Layout - top left bottom left middle left - -
aeroplane 76.65% 13.61% 13.24% 11.84% 5.62% 6.03%(airplane)

bicycle 64.02% 28.54% 12.57% 13.85% 3.41% 5.42%
bird 68.65% 14.48% 14.67% 11.05% 5.09% 7.08%
boat 61.91% 19.33% 16.91% 14.05% 8.47% 10.21%

bottle 40.57% 30.84% 20.90% 19.52% 10.67% 11.76%
bus 76.06% 25.25% 20.72% 16.66% 2.81% 6.10%
car 68.79% 37.97% 31.87% 29.62% 16.92% 23.94%
cat 69.27% 13.21% 9.98% 4.36% 0.87% 0.49%

chair 53.75% 39.49% 24.89% 26.63% 8.71% 8.60%
cow 88.89% 36.85% 34.22% 20.02% 8.81% 8.16%

diningtable 59.07% 17.88% 6.67% 5.77% 0.52% 0.44%(dining table)
dog 72.77% 11.75% 9.58% 4.58% 0.86% 0.99%

horse 81.03% 13.83% 8.00% 8.96% 1.16% 2.43%
motorbike 75.37% 32.77% 17.60% 15.71% 4.63% 4.83%(motorcycle)

person 76.08% 44.59% 36.78% 30.95% 17.30% 20.19%
pottedplant 49.58% 25.90% 22.47% 18.81% 10.06% 11.02%(potted plant)

sheep 77.93% 34.60% 27.33% 20.65% 11.14% 11.96%
sofa (couch) 61.78% 15.71% 12.38% 7.84% 0.40% 0.81%

train 78.38% 12.29% 10.66% 7.03% 1.29% 1.01%
tvmonitor (tv) 62.94% 21.47% 28.61% 17.18% 3.57% 4.77%

Average 68.17% 24.52% 19.00% 15.25% 6.12% 7.31%
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