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Abstract

Prompting has emerged as a dominant learn-
ing paradigm for adapting large language mod-
els (LLMs). While discrete (textual) prompts
prepend tokens to the input for optimized out-
puts, soft (parameter) prompts are tuned in the
embedding space via backpropagation, requiring
less engineering effort. However, unlike semanti-
cally meaningful discrete prompts, soft prompts
are tightly coupled to the LLM they were tuned
on, hindering their generalization to other LLMs.
This limitation is particularly problematic when
efficiency and privacy are concerns, since (1) it
requires tuning new prompts for each LLM which,
due to the backpropagation, becomes increasingly
computationally expensive as LLMs grow in size,
and (2) when the LLM is centrally hosted, it re-
quires sharing private data for soft prompt tuning
with the LLM provider. To address these con-
cerns, we propose a framework for Privacy Of
Soft-prompt Transfer (POST), a novel method
that enables private soft prompt tuning on a small
language model and then transfers the prompt
to the large LLM. Using knowledge distillation,
we first derive the small language model directly
from the LLM to facilitate prompt transferabil-
ity. Then, we tune the soft prompt locally, if
required with privacy guarantees, e.g., according
to differential privacy. Finally, we use a small
set of public data to transfer the prompt from the
small model to the large LLM without additional
privacy leakage. Our experimental results demon-
strate that our method effectively transfers soft
prompts while protecting local data privacy and
reducing the computational complexity over soft
prompt tuning on the large model.
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Figure 1. POST � Framework. 1 An LLM provider com-
presses Φt into a smaller LLM Φs by using knowledge distillation.
2 The private data owner learns a soft prompt ps on Φs using

their private dataset (optionally with DP guarantees). 3 The LLM
provider obtains the soft prompt pt for solving the user’s task by
transferring ps to the target LLM Φt—solely relying on a small
public dataset and no access to the private data for transfer.

1. Introduction
Large Language Models (LLMs) are strong general-purpose
language generators that can be adapted to solve various
private downstream tasks [4; 20]. One prominent paradigm
for adapting LLMs to private tasks is prompting [4; 20].
Soft prompts, which prepend trainable vectors to the input
and can be tuned automatically on the private data using
gradient-based approaches, are generally known to yield
higher performance at lower computational costs [16].

Yet, soft prompt tuning has two major limitations. 1) As
LLMs grow in size [10; 2; 1], prompt tuning becomes
increasingly expensive in terms of compute. 2) At the
same time, when LLMs are centrally hosted, prompt tun-
ing requires users to share their private data with the LLM
provider, which causes privacy leakage. An alternative solu-
tion to address the privacy concern would be for the LLM
provider to share their LLM with the user. However, this
would put the intellectual property of the LLM provider at
risk. From the user’s perspective, it would also be impracti-
cal as they lack the computational resources to deploy and
backpropagate through large models.

A potential solution to both problems is to tune the soft
prompt locally on a smaller model and then transfer it to the
large LLM, which is commonly known as “prompt trans-
fer” [26; 29; 30]. However, soft prompts are highly coupled
to the LLM they were tuned on, making them difficult to
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transfer. Existing approaches for transferring soft prompts
between two LLMs either require both the local small and
the central large model to access the private data [26], lead-
ing to privacy leakage, or are ineffective, as the transferred
prompt’s utility on the large central LLM often underper-
forms compared to the prompted small model [29], disin-
centivizing the use of the large model altogether.

To address these challenges, we propose POST, a frame-
work for Privacy Of Soft-prompt Transfer. POST consists
of three key steps. (1) First, the LLM provider performs
a knowledge distillation [12] to compress their large LLM
into a smaller model. (2) Next, the user performs local
prompt tuning using their private data on this smaller model,
potentially incorporating formal privacy guarantees through
differential privacy [8]. The user then provides this prompt
to the LLM provider, who finally (3) transfers the prompt to
achieve strong performance on the large LLM. To prevent
any additional privacy leakage from the user’s private data,
we equip POST with a novel prompt transfer method that
relies purely on access to a small public dataset rather than
the user’s private data for transfer. We provide an overview
of POST in Figure 1. Our thorough experimental evaluation
on both masked language models and auto-regressive lan-
guage models demonstrates that our method can efficiently
and privately transfer soft prompts at high utility.

2. Background
Prompt Tuning. Prompt tuning (PT) aims to adapt a pre-
trained LLM to various downstream tasks. There are two
major types of prompts, 1) hard prompts [24; 25; 9], which
are discrete textual tokens prepended to the input text of the
LLM, and 2) soft prompts [11; 19; 33] which are tunable em-
bedding vectors provided to the LLM’s input. While discrete
prompts require thorough engineering to yield good perfor-
mance on downstream tasks, soft prompts can be tuned
through standard gradient-based training approaches [14].

Soft Prompt Transfer. Tuning soft prompts via backprop-
agation can be computationally expensive as LLMs grow in
size. This motivates the emergence of attempts to transfer,
i.e., to reuse, existing soft prompts. There are two broad sce-
narios for prompt transfer, cross-task transfer [27; 26; 32]
and cross-model transfer. Su et al. [26] address the latter,
i.e., transferring the soft prompt between different LLMs
by using the guidance of the private data. However, this
exposes the private data directly to the second LLM. Wu
et al. [29] present a zero-shot prompt transfer method which
avoids using private data. Unfortunately, in their approach,
the target model with the transferred prompt performs worse
than the prompted source model, leaving no incentive to use
the target model rather than the source model.

Differential Privacy for Soft Prompts. Differential pri-
vacy (DP) [7] is a mathematical framework that provides pri-
vacy guarantees for ML by implementing the intuition that

a model M : I → S, trained on two neighboring datasets
D, D′ that differ in only one data point, will yield roughly
the same output, i.e., Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈
S] + δ. The privacy parameter ε specifies by how much
the output is allowed to differ and δ is the probability of
failure to meet that guarantee. To adapt soft prompts with
DP guarantees, Duan et al. [6] proposed PromptDPSGD.

3. Setup and Problem Formulation
LLM Provider

Private 
Data

LLM

User

Figure 2. The Setup.

The Setup. We consider a setup
with two parties, an LLM provider
and a user, as shown in Figure 2.
The LLM provider deploys a
general-purpose LLM and offers
paid query access to it. The user
holds private data and wants to
adapt the LLM on this data to
solve their downstream tasks
while ensuring the confidentiality
and privacy of their data towards the LLM provider.

The Problem. Unfortunately, since soft prompt tuning
relies on computing the gradients, both data and LLM are
required to “interact” directly. The problem is that the user
cannot share their data with the LLM provider due to pri-
vacy concerns while the LLM provider cannot share their
LLM because of 1) intellectual property concerns and since
2) this would disrupt their business model, as users would no
longer be required to pay for accessing model queries. Addi-
tionally, most users would lack the computational resources
to tune the soft prompt on the large LLM. Consequently, the
powerful LLM could not be used for private tasks.

4. Our Private Transfer of Soft Prompts
Framework

We solve the above-mentioned problem by proposing
Privacy Of Soft-prompt Transfer (POST). POST consists
of three main building blocks, (1) a knowledge distillation
from the LLM to a small model, (2) private prompt tuning,
and (3) a privacy-preserving prompt transfer using public
data. We detail those building blocks in the following.

4.1. Knowledge Distillation

We denote the large LLM (teacher) model as Φt, the small
student models as Φs, the input sequence to an LLM as x.
We leverage KD in [23] to derive Φs from Φt. Different
from previous work in LLM distillation [23; 30] that mod-
erately compresses the LLM and tunes the whole model
to recover performance as much as possible, we perform
a more aggressive KD without emphasis on the student
model’s performance.

The objective used in the knowledge and the way we con-
struct the student model is show in Appendix C.1
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4.2. Private Prompt Tuning

The goal is to tune a local prompt ps on the small source
model Φs using the private data Dpri such that ps minimizes
the loss L on the private downstream task as

argmin
ps

∑
x∈Dpri

L(Φs, ps + x). (1)

This approach can be performed with standard PT. However,
this only provides confidentiality for the private data since
the data is not directly sent to the LLM provider. Recent
work [5], however, highlights that private information can
leak from tuned prompts.

To formally bound privacy leakage, ps can also be tuned
with DP guarantees, for example, using the PromptDPSGD
algorithm [6]. During optimization, PromptDPSGD clips
the per-sample gradients of the loss to a clip norm c and
adds Gaussian noise drawn from N (0, σ2, c2) to provide
(ε, δ)-DP guarantees.

4.3. Privacy-Preserving Prompt Transfer through
Public Data

The prompt ps, tuned on the small source model Φs, could,
in principle, be directly applied to the large target LLM Φt.
However, as described above, they do not initially perform
very well on other LLMs. A naive solution is to fine-tune
the target prompt pt on the private data Dpri. However, this
would disclose the private data to the LLM provider and
is, hence, not acceptable. As an alternative, we propose a
privacy-preserving prompt transfer that leverages a small
public dataset Dpub in an efficient transfer step to derive a
high-utility prompt pt from ps.

We start by initializing the target prompt pt with the same
initialization of ps, then iteratively update pt. For the itera-
tive update, we use the loss function

L = (1− α)L1 + αL2, (2)

that consists of two different loss terms. The first loss term
is defined as

L1 =
∑

x̂∈Dpub

KLDiv(Φt(pt + x̂)),Φs(ps + x̂)), (3)

where KLDiv denotes the Kullback–Leibler divergence. It
aims for aligning the predictions of the prompted source
and target model on the public data. The second loss term
is defined by

L2 =
∑

x̂∈Dpub

KLDiv((Φt(pt+x̂))−Φt(x̂)), (Φs(ps+x̂)−Φs(x̂)),

(4)
and optimizes to align the direction change induced by the
private prompt between Φt and Φs, again on the public data.

The hyperparameter α in Equation (2) controls the balance
between the two loss terms. We observe that a good choice
of α depends largely on the model’s zero-shot performance.

5. Empirical Evaluation
Models and Datasets. We follow Sanh et al. [23] to ag-
gressively distill a 12-layer Roberta-base [17] into a 2-layer
model and a 48-layer GPT2-XL [21] into a 4-layer small
model. We evaluate the performance on four classification
datasets: sst2 from the GLUE benchmark [28], imdb [18],
tweet [22] and arisetv [3]. We use these four datasets along
with agnew [31] as public datasets to facilitate the prompt
transfer. We discuss the choice of the public datasets for
transfer in detail in Appendix C.4. We follow Li et al. [15]
to formulate the classification task as a text-infilling task.

KD, Prompt Tuning, and Prompt Transfer. We fol-
low [23] to set the hyperparameters of knowledge distil-
lation (see Appendix C.1 for details). To train soft prompt,
we follow settings in Su et al. [26]. When applying DP, we
use PromptDPSGD proposed by Duan et al. [6]. Our prompt
tuning settings are presented in Appendix C.3. During the
prompt transfer, the model provider has no access to the
private dataset to find the right moment to stop the transfer,
so we report the transferred accuracy at fixed steps. We use
5000 steps for Roberta-base and 8000 steps for GPT2-XL.

Metrics and Baselines. To evaluate our method, we report
the accuracy of the test data split of our private datasets for
the large LLM with the transferred prompt (Private Trans-
fer). As baselines for comparison, we include the zero-shot
performance of the large LLM (Full ZS), representing the
lower bound our method should improve upon. Additionally,
we provide the performance of tuning the prompt for the
large LLM on the private training data, which, due to privacy
concerns, is not feasible in practice (Full PT). This serves
as the theoretical upper bound for potential performance.
We also report the accuracy of the prompted compressed
model after tuning the prompt on it (Comp. PT), as our pri-
vate transfer must improve over this metric to justify using
the large LLM instead of the small prompted one. Finally,
we report the direct transfer accuracy (Transfer), which is
the accuracy achieved when the prompt tuned on the small
model is directly applied to the large one.

Confidential Transfer. In Table 1, we evaluate the per-
formance of our method when only the confidentiality of
the private data is protected. Therefore, the user locally
tunes a soft prompt without DP guarantees. For each pri-
vate dataset, we use two different public datasets for prompt
transfer and report the transferred accuracy. We first observe
that the transferred performance is significantly higher than
the zero-shot performance. Additionally, after the prompt
transfer with POST, we outperform the small compressed
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Table 1. Confidential prompt transfer performance. We com-
press Roberta-base and GPT2-XL, tune prompts for different pri-
vate dataset on the compressed models, and transfer them back
using different public datasets (POST). Our POST significantly
improves performance over the small prompted model and our
prompt transfer yields a strong improvement over the direct trans-
fer (Transfer).

POST (ours)
Private Full ZS Full PT Comp. PT Transfer Public Test acc Public Test acc

sst2 72.25 91.74 79.10 76.49 tweet 87.73 imdb 85.21
imdb 72.19 89.88 78.85 76.92 tweet 83.96 sst2 80.27
tweet 36.53 68.68 56.65 43.10 imdb 54.55 sst2 58.25
arisetv 38.80 78.55 70.98 47.82 agnews 82.73 tweet 68.48

(a) Roberta-base.

POST (ours)
Private Full ZS Full PT Comp. PT Transfer Public Test acc Public Test acc

sst2 60.78 94.84 80.94 59.06 tweet 85.89 imdb 83.49
imdb 60.27 93.28 81.32 60.34 tweet 83.93 sst2 82.15
tweet 34.71 68.60 63.13 41.50 imdb 61.75 sst2 57.70
arisetv 52.98 87.22 77.10 55.43 agnews 87.56 tweet 82.12

(b) GPT2-XL.

Table 2. Differentially Private and Confidential prompt trans-
fer performance. We compress Roberta-base and GPT2-XL, tune
prompts for different private dataset on the compressed models
with DP guarantees (ε = 8), and transfer them back using different
public datasets (POST). Our POST significantly improves perfor-
mance over the small prompted model and our prompt transfer
yields a strong improvement over the direct transfer (Transfer).

POST (ours)
Private Full ZS Full PT Comp. PT Transfer Public Test acc Public Test acc

sst2 72.25 90.14 67.54 77.06 tweet 84.40 imdb 81.42
imdb 72.19 88.55 72.22 74.35 tweet 79.64 sst2 80.64
tweet 36.53 62.05 40.87 43.15 imdb 55.65 sst2 59.25
arisetv 38.80 72.53 64.25 47.34 agnews 79.11 tweet 71.98

(a) Roberta-base.

POST (ours)
Private Full ZS Full PT Comp. PT Transfer Public Test acc Public Test acc

sst2 60.78 91.28 74.31 57.80 tweet 79.93 imdb 84.06
imdb 60.27 89.59 74.81 63.66 tweet 78.03 sst2 75.16
tweet 34.71 61.47 48.60 41.50 imdb 58.05 sst2 54.75
arisetv 52.98 79.03 67.16 57.25 agnews 82.12 tweet 80.55

(b) GPT2-XL.

prompted model, giving users a strong incentive to transfer
their prompt back to the large LLM. Additionally, we show
that our prompt transfer is highly effective as it improves
over the direct transfer performance by a large margin. In
contrast to the soft prompt transfer method by Wu et al.
[29] which showed a decrease in accuracy after transfer, our
results highlight the practical applicability.

Differntially Private and Confidential Transfer. we also
perform experiments where we tune the local prompt with
DP. This yields provable upper bounds for the privacy leak-
age. Since the prompt transfer is executed using a few public
data points, no additional privacy leakage is incurred in that
step. We show the results of our experiments with ε = 8
in Table 2. The trends observed for the confidential prompt
transfer also hold. In particular, we observe that the im-
provement of the transfer performance to the large LLM
over the performance on the prompted compressed model is

Table 3. Baseline comparison. We present the performance of our
method against state-of-the-art baselines. We report test accuracies
over different private datasets Dpri. For our POST, we report the
accuracies under the best public dataset (see Table 1 and Table 2).

Method Φt Φs sst2 imdb tweet arisetv

OPT [13] GPT2-XL comp 60.67 61.70 30.70 42.87
OPT [13] GPT2-XL GPT2 62.16 63.18 35.20 46.38

Zero-Shot Transfer [29] GPT2-XL comp 63.65 61.27 41.60 56.64
Zero-Shot Transfer [29] with DP GPT2-XL comp 63.42 61.71 41.35 57.25

POST (ours) GPT2-XL comp 85.89 83.93 61.75 87.56
DP-POST (ours) GPT2-XL comp 84.06 78.03 58.05 82.12

even more significant than in the non-DP setup.

Ablations. We also investigate the size of the public dataset
and the transfer steps required to complete the transfer. The
results in Appendices D.2 and D.3 show that our method
only needs less than 100 samples and executes about 1000
steps for Roberta-base and about 2000 steps for GPT2.

Runtime. We also compare the runtime of our method with
prompt tuning on the full model in Table 11. We show that
our method can achieve about 6× speedup on sst2 dataset
when transferring with 5000 steps. See Appendix D.4 for
detail.

Comparing against State-of-the-Art Prompt Transfer
Approaches. We compare against two baselines, namely
the Zero-Shot transfer [29] and DP-OPT [13]. Zero-Shot
transfer operates in the same setup as we do and also relies
on soft prompts. To provide the optimal source model for
their approach, we use a compressed model that we obtained
by keeping the embedding layer frozen during KD (see row
3 in Table 10). DP-OPT is designed for discrete prompts.
Since their method relies on the small model having good
performance, we execute their method in two setups for a
fair comparison. 1) We tune source prompt using our com-
pressed model as the small model, and 2) we use GPT2
as the small model. To avoid the massive hyperparameter
tuning required for the private tuning in DP-OPT, we re-
solve to the standard OPT without DP guarantees following
their implementation [13]. The obtained results represented
an upper bound of DP-OPT, as introducing DP usually de-
grades performance. Our results in Table 3 highlight that
our POST significantly outperforms all baselines.

6. Conclusions
We present POST, a framework for the private transfer
of soft prompts that enables adapting LLMs of an LLM
provider with users’ private data while protecting both the
user’s privacy and the LLM provider’s intellectual prop-
erty. POST achieves significant improvements on the private
tasks through the prompt transfer, improves computational
efficiency of prompt tuning, and outperforms all private
prompt transfer baselines. Thereby, our work paves the way
for a wider and more trustworthy application of LLMs.
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A. Limitations
Our work proposes a method to protect the privacy and confidentiality of private data during the prompt tuning phase,
however, we didn’t address the privacy leakage risk during the inference phase. Also, compression of the LLMs through
knowledge distillation techniques may be computationally expensive for LLM providers. Additionally, in our method, the
selection of a public dataset will affect the transfer performance of soft prompts. While we observe, in general, that public
datasets that have a similar structure to the private data work best for transfer, there is no ideal strategy for selecting the
optimal public dataset

B. Broader Impacts
Regarding the broader impacts of our work, we propose a private transfer of soft prompts from a small language model to a
large LLM. The primary positive societal impact of our work is that our method can protect local data privacy and also
the intelligent property of the large model provider, which encourages wider and more trustworthy applications of LLMs.
Additionally, since our transfer enables more compute efficient prompt tuning and enables to re-use existing prompts, it can
have a positive environmental impact.

C. Experimental Setup
C.1. Knowledge Distillation

We follow the procedure of [23] to initialize and distill our compressed model. In detail, we rely on the following loss
from [23] to distill Φs from Φt:

Ldistil = αceLce + αlmLlm + αcosLcos. (5)

The objective is a linear combination of distillation loss Lce, language modeling loss Llm and embedding cosine loss Lcos.
Where Lce is the Kullback–Leibler divergence loss between the logits of Φs and Φt, Llm is the standard objective used in
pre-train a language model, i.e., the cross entropy loss for predicting the masked/next tokens, and Lcos is the cosine distance
of the embedding of Φs and Φt with αce, αlm and αcos weighting the respective losses.

We use the first and last layers of Roberta-base and the first two and last two layers of GPT2-XL to initialize our compressed
Roberta-base and GPT2-XL before knowledge distillation. We also initialize the small student model’s word embedding
and language modeling head the same as their teacher model. We conduct experiments on whether to freeze the language
modeling head and/or word embedding during knowledge distillation. The model’s structure and size are listed in Table 4.

Table 4. Model size before and after distillation.
model layer number hidden dimension head number parameter num (M)

Roberta-base 12 768 12 125
our distilled Roberta-base 2 768 12 53
GPT2-XL 48 1600 25 1560
our distilled GPT2-XL 4 1600 25 205

During knowledge distillation, we use the BookCorpus [34] dataset, and we took the checkpoint model that distilled for
50,0000 steps. The hyperparameters used in knowledge distillation are shown in Table 5.

Table 5. Hyperparameters in knowledge distillation.
αce αlm αcos lr batch size

5.0 2.0 1.0 0.00025 5

C.2. Text-infilling tasks

We use the text-infilling setting for the classification task. The setting is to let the model predict the ground truth text instead
of using a classification head to output the class probability. To increase the robustness of this method, we use multiple
ground truth text labels, and compare the average probability of outputting those text labels. See Table 6 for task templates
and the ground truth labels used in our experiment.
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Table 6. Task template and ground truth labels used in text-infilling. <s>means the sentence used in the dataset.
Dataset Task Template Roberta Task Template GPT2 Ground Truth Text Label

sst2 <s>, it was <mask> <s>, it was 0: [” terrible”,” negative”,” bad”,” poor”,” awful”]
1: [” positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

imdb <s>, it was <mask> <s>, it was 0: [” terrible”,” negative”,” bad”,” poor”,” awful”]
1: [” positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

tweet <s>, it was <mask> <s>, it was 0: [” terrible”,” negative”,” bad”,” poor”,” awful”]
1: [” moderate”,” neutral”,” balanced”]]
2: [” positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

arisetv <s>, it was about <mask> <s>, it was about 0: [” business”], 1: [” sports”], 2: [” politics”]
3: [” health”],4: [” entertainment”],5: [” technology”,” science”]

C.3. Prompt tuning

Following [26]’s setting, we use the soft prompt with a length of 100 tokens in all our experiments. We follow [6]’s setting
to obtain DP private prompt with PromptDPSGD. Table 7 shows the hyperparameters used in this experiment.

Table 7. Hyperparameters used during promptDPSGD.
dataset δ epochs lr

sst2 1.5 × 10−5 20 0.1
imdb 4 × 10−5 20 0.1
tweet 2 × 10−5 20 0.1

arisetv 2 × 10−4 20 0.1

C.4. Public Datasets for Prompt Transfer

We rely on small public datasets to perform our prompt transfer. A question is the right choice of the public dataset. We
normally choose the public dataset that performs a similar task as the private dataset, such as choosing imdb or tweet as
the public dataset of sst2 as they are all sentiment classification tasks. Transferring with a public dataset that performs a
different task from the private dataset may lead to suboptimal performance, we tested this setting to transfer soft prompt
trained on arisetv, a topic prediction dataset. The transfer performance of using tweet as public dataset is acceptable but
generally worse than using agnews, another topic prediction dataset, as a public dataset. In general, we found that the public
and private dataset do not need to have the same structure, such as class number. For example, using tweet (3 classes)
as a public dataset leads to better transfer performance than imdb (2 classes) on sst2 (also 2 classes). This highlights the
robustness of our method and the broad selection of public datasets for the transfer.

We report the hyperparameters used in the transfer experiments as Tables 8 and 9.

Table 8. Hyperparameters used during prompt transfer.
model batch size optimizer lr

Roberta-base 32 Adam 0.001
GPT-XL 8 Adam 0.001

Table 9. Setting of α for different datasets and models during prompt trasnfer.
dataset

model sst2 imdb tweet arisetv

Roberta-base 0.8 0.8 0.5 0.5
GPT2-XL 0.7 0.7 0.2 0.6
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D. Additional Experiments
D.1. Ablations

We also investigated the best way of performing KD to improve prompt transferability. In particular, we analyzed the impact
of keeping the word embedding or(and) language modeling heads frozen during KD on the prompt transfer performance.
Our results in Table 10 highlight that keeping the language modeling head fixed performs slightly better than the alternative
which mainly perform on-par. These results indicate that the successful transfer of our method is robust to the KD and
independent of any specific KD setting.

Table 10. Analyzing the KD setup. We perform an ablation on different designs of the KD and present their impact on the prompt
transfer for the private arisetv dataset, using agnews as public data. We analze different combinations of freezing the embedding (Fix
emb) and freezing the language modeling head (Fix head).

model Fix emb Fix head Acc. model Fix emb Fix head Acc.

Roberta-base

✕ ✓ 81.68 ±0.764

GPT2-XL

✕ ✓ 87.52 ±0.505
✓ ✓ 80.79 ±0.885 ✓ ✓ 86.51 ±0.726
✓ ✕ 80.84 ±0.360 ✓ ✕ 86.81 ±0.732
✕ ✕ 80.11 ±0.738 ✕ ✕ 87.48 ±0.170

D.2. Effect of Number of Public Samples used for Transfer

We also investigate the influence of the size of the public dataset required to complete the transfer. Our results in Figure 3
show that we can already yield high transfer performance with less than 100 public data points. This small size of public
datasets needed makes our method highly practical.
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Figure 3. Effect of number of public samples. We depict the number of samples from the public dataset used to perform our prompt
transfer. We plot results for arisetv as the private dataset with data subsampled from agnews as public data. Our results highlight that with
even less than 100 public data samples, our transfer yields high performance.

D.3. Effect of Number of Transfer Steps

We additionally investigate how many transfer steps are required to obtain good performance. Based on the insights from
the previous section, we randomly subsample 128 samples from the agnews dataset as public data and report the achieved
accuracy on arisetv as private data over different numbers of transfer steps. Our results in Figure 4 highlight that only a small
number of transfer steps is enough for convergence and high accuracy on the private task. In particular, while for GPT2-XL,
performance converges at around 2,000 steps for Roberta-base, we already observe convergence starting at 1,000 steps.

D.4. Runtime of our Method vs. Full Prompt Tuning on the Large Model

While, in practice, tuning the large LLM with the private data exhibits severe privacy risks and is, hence, not applicable,
we compare runtimes to get an insight on the computational gains introduced by tuning the prompt on a small model and
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Figure 4. Effect of number of transfer steps. We vary the number of steps during our private prompt transfer. We plot results for arisetv
as the private dataset and agnews as public data. We observe that already a small number of transfer steps yields high performance.

Table 11. Runtime of POST vs. Full PT. We present the runtime for our method, split by its individual components and compare against
full prompt tuning on the large LLM. We use arisetv and sst2 as private data. We execute 5000 steps of transfer. PT on Φt, Φs takes 20
epochs until convergence. All experiments are executed on a single A100 GPU.

Method arisetv (min) sst2 (min)

PT on Φt 184 2660
(1) PT on Φs 23 310
(2) Transfer 99 99

Ours total (1)+(2) 122 409

then transferring it. Since the PT time is determined by the size of the dataset if we want to backpropagate over all private
training examples, we present the runtimes of our approach vs. prompt tuning on the large LLM for two different-sized
datasets in Table 11. While on the small arisetv dataset, PT on the large model takes 150% of the time of executing our
POST, for the larger sst2 datasets, our method improves the runtime roughly by a factor of six (409 instead of 2660 minutes
on an A100). These results highlight that beyond the privacy protection, our POST also yields substantial improvements in
computational efficiency.
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