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Abstract

Contrastive representation learning techniques trained on large multi-modal datasets, such
as CLIP and CLOOB, have demonstrated impressive capabilities of producing highly trans-
ferable representations for different downstream tasks. In the field of ophthalmology, large
multi-modal datasets are conveniently accessible as retinal imaging scanners acquire both
2D fundus images and 3D optical coherence tomography (OCT) to evaluate the disease.
Motivated by this, we propose a CLIP/CLOOB objective-based model to learn joint rep-
resentations of the two retinal imaging modalities. We evaluate our model’s capability
to accurately retrieve the appropriate OCT based on a fundus image belonging to the
same eye. Furthermore, we showcase the transferability of the obtained representations by
conducting linear probing and fine-tuning on several prediction tasks from OCT.
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1. Introduction

Self-supervised learning aims to learn representations without manual labelling, often through
contrastive or reconstructive tasks, enabling efficient downstream task learning with fewer
annotated labels. In medical imaging, learning a meaningful representation by jointly mod-
elling different imaging modalities can facilitate disease progression modelling and person-
alised patient management. In retinal imaging, combining 2D fundus photography or near-
infrared reflective imaging with 3D optical coherence tomography (OCT) is readily available
and can provide complementary information about the retina’s structure. However, existing
multi-modal methods in ophthalmology are fusion-based and rely on supervised learning sig-
nals (Jin et al., 2022), while unsupervised multi-modal contrastive representation learning
in this field remains largely under-explored.

To address this gap, we propose a multi-modal pre-training method based on contrastive
objectives (CLIP (Radford et al., 2021) or CLOOB (Fürst et al., 2022)) to learn proficient
OCT and fundus image encoders without the need for expert annotations. We show that
our method can provide both a retrieval system and encoders to obtain comprehensive OCT
and fundus image representations for several downstream tasks.
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A. Pre-training of the CLIP/CLOOB models B. OCT-based predictive modelling
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Figure 1: A. Contrastive pre-training of the encoders of the two retinal imaging modalities
using CLIP/CLOOB. B. Using the pre-trained OCT volume for downstream tasks.

2. Method

The proposed contrastive framework (Figure 1A) utilises CLIP and CLOOB objectives,
InfoNCE and InfoLOOB, respectively. It employs ResNet18 with pre-trained ImageNet
weights as the backbone image encoder and VideoResNet18 with pre-trained Kinetics (Kay
et al., 2017) weights as the backbone volume encoder for fundus images and OCT volumes.
The dimension of the embedding space is set to d = 512, which determines the output size
of both encoders. The hyper-parameters and training strategies suggested by OpenCLIP
(Wortsman et al., 2022) and CLOOB are used. After contrastive pre-training, the fundus
encoder is discarded, and only the volume encoder is used to extract descriptive feature
representations for downstream tasks. This is achieved by adding a single fully-connected
layer after the encoder (Figure 1B). To demonstrate the models’ feature extractor capabil-
ities, linear probing is performed by freezing the encoder weights and training only the last
layer. Additionally, we fine-tuned the entire model for the downstream tasks.

3. Experiments & Results

Dataset and preprocessing For pre-training the CLIP/CLOOB models, the study uses
large-scale data from OPTIMA Lab imaging datasets. We extracted 70,767 fundus pho-
tography and OCT volume pairs acquired from 2,987 patients with neovascular age-related
macular degeneration (nAMD) using Spectralis, Cirrus, Nidek, or Topcon scanners. As an
additional external dataset for the downstream tasks, we use data from the HARBOR trial,
which contains OCT volumetric scans of 1098 patients undergoing treatment for nAMD,
with corresponding clinical and treatment labels (Busbee et al., 2013). To allow large batch
sizes, we downsize the fundus images and the OCT B-scans to 224x224. For OCT volume,
we then sample 20 B-scans randomly using a Gaussian probability distribution centred on
the central B-scan. Finally, the images/volumes are normalised.

Contrastive pre-training The pre-training dataset is divided into train-validation-test
sets at a ratio of 80%-15%-5%, using 3,537 fundus image-OCT volume pairs for the hold-
out set to evaluate the models’ retrieval ability. In this set, CLIP ranked the correct OCT
volume first in 10.51% of cases, while CLOOB ranked the correct OCT volume first in
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Query 
image

Central B-scan of top ranked retrieved OCT volumes/
Corresponding fundus images

1 2 3 4 5 6 7 8 9 10
Patient 1089, OD

Day 90, Cirrus
Patient 1089, OD

Day 90, Cirrus
Patient 13063, OD

Day 720 ,Cirrus
Patient 13063, OD

Day 660, Cirrus
Patient 4127, OD
Day 195, Cirrus

Patient 4158, OD
Day 279, Cirrus

Patient 4158, OD
Day 223, Cirrus

Patient 12167, OD
Day 518, Cirrus

Patient 13138, OS
Day 690, Cirrus

Patient 12947, OD
Day 0, Cirrus

Patient 13063, OD
Day 240, Cirrus

Figure 2: Example results for the retrieval task on the hold-out test set using CLOOB.
Orange boxes indicate the matching fundus image - OCT volume pair.

11.36% of cases. Figure 2 provides a qualitative example of this. It’s important to note
that this task is close-to-impossible for human experts to perform accurately.

External downstream tasks We define three downstream tasks on the external dataset,
namely: central subfield thickness (CST) prediction, best corrected visual acuity (BCVA)
prediction (Snellen equivalent of < 20/60), and high treatment need (TN) forecasting. The
first is a regression task, while the latter are binary classification tasks. To evaluate the
models’ performance, we use a 5-fold cross-validation technique, where we split the external
dataset into train-validation-test sets at a ratio of 80%-10%-10% per patient, stratified by
the target outcome. Our preliminary results (Table 1) show a notable improvement using
the CLIP/CLOOB pre-trained encoders over the Kinetics baseline across the different tasks.

Table 1: Results of linear probing and fine-tuning on the downstream tasks. The mean and
standard deviation of the performance measures over the 5-folds are reported.

Outcome Initialisation
Linear probing Fine-tuning

AUROC AUPRC AUROC AUPRC

BCVA Kinetics 0.788 (0.027) 0.717 (0.028) 0.854 (0.033) 0.784 (0.058)

CLIP 0.847 (0.044) 0.775 (0.088) 0.866 (0.052) 0.812 (0.066)

CLOOB 0.818 (0.048) 0.739 (0.103) 0.872 (0.029) 0.801 (0.053)

High TN Kinetics 0.481 (0.232) 0.354 (0.194) 0.811 (0.011) 0.675 (0.021)

CLIP 0.808 (0.047) 0.690 (0.075) 0.840 (0.020) 0.707 (0.051)

CLOOB 0.788 (0.089) 0.606 (0.137) 0.868 (0.031) 0.763 (0.069)

RMSE [µm] R-squared RMSE [µm] R-squared

CST Kinetics 114.720 (37.496) 0.107 (0.098) 85.368 (12.068) 0.354 (0.185)

CLIP 97.222 (25.108) 0.243 (0.098) 71.730 (12.764) 0.551 (0.205)

CLOOB 102.344 (30.081) 0.175 (0.043) 76.683 (17.073) 0.535 (0.131)

Conclusions Our initial findings suggest that using contrastive pre-training with multi-
modal retinal images yields transferable and meaningful OCT volume representations, which
can be leveraged for other clinical tasks. We plan to conduct additional analysis on diverse
datasets and downstream tasks to evaluate the approach’s potential and limitations better.
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